
ar
X

iv
:1

00
8.

48
11

v1
  [

m
at

h.
FA

]  
27

 A
ug

 2
01

0

ON THE EXISTENCE OF OPTIMAL SUBSPACE CLUSTERING

MODELS

AKRAM ALDROUBI AND ROMAIN TESSRA

Abstract. Given a set of vectors F = {f1, . . . , fm} in a Hilbert space H,
and given a family C of closed subspaces of H, the subspace clustering problem
consists in finding a union of subspaces in C that best approximates (models)
the data F. This problem has applications and connections to many areas
of mathematics, computer science and engineering such as the Generalized
Principle Component Analysis (GPCA), learning theory, compressed sensing,
and sampling with finite rate of innovation. In this paper, we characterize
families of subspaces C for which such a best approximation exists. In finite
dimensions the characterization is in terms of the convex hull of an augmented
set C+. In infinite dimensions however, the characterization is in terms of a
new but related notion of contact hull. As an application, the existence of
best approximations from π(G)-invariant families C of unitary representations
of abelian groups is derived.

1. Introduction

1.1. Motivation. Let H be a Hilbert space, F = {f1, . . . , fm} as set of vectors in
H, C a family of closed subspaces of H, V the set of all sequences of elements in C of
length l ( i.e., V = V(l) =

{

{V1, . . . , Vl} : Vi ∈ C, 1 ≤ i ≤ l
}

), and F a finite subset
of H. The following problem has several applications in mathematics, engineering,
and computer science:

Problem 1 (Non-Linear Least Squares Subspace Approximation).

(1) Given a finite set F ⊂ H, find the infimum of the expression

e(F,V) :=
∑

f∈F

min
1≤j≤l

d2(f, Vj),

over V = {V1, . . . , Vl} ∈ V, where d(x, y) := ‖x− y‖H.
(2) Find a sequence of subspaces Vo = {V o

1 , . . . , V
o
l } ∈ V (if it exists) such that

e(F,Vo) = inf{e(F,V) : V ∈ V}. (1.1)

When H = Rd, and C is the family of all subspaces of dimension less than or equal
to r, and l = 1, Problem 1 becomes the classical problem of searching for a subspace
V of dimension dim(V ) ≤ r that best fit a (finite) set of data F ⊂ Rd. For this
case, the best approximation V exists and it can be obtained using the Singular
Value Decomposition (SVD).

When l > 1, we get a non-linear version of the single subspace approximation prob-
lem mentioned above. This non-linear version also has many applications in math-
ematics and engineering. For example, Problem 1 is related and has applications
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to the subspace segmentation problem known in computer vision (see e.g.,[VMS05]
and the references therein). The subspace segmentation problem is used for face
recognition, motion tracking in videos, and the Generalized Principle Component
Analysis GPCA [VMS05]. Problem 1 is also related and has application to segmen-
tation and spectral clustering of Hybrid Linear Models (see e.g., [CL09] and the
reference therein). Compressed sensing is another related area where finite signals
in Cd are modeled by a union of subspaces M = ∪i∈IVi, with dim Vi ≤ s, where
s << d [CRT06].

1.2. The Minimal Subspace Approximation Property. It has been shown
that, given a family of closed subspaces C, the existence of a minimizing sequence of
subspaces Vo = {V o

1 , . . . , V
o
l } that solves Problem 1 is equivalent to the existence

of a solution to the same problem but for l = 1 [ACM08]:

Theorem 1.1. Problem 1 has a minimizing set of subspaces for any l ≥ 1 if and
only if it has a minimizing subspace for l = 1.

This suggests the following definition:

Definition 1.2. A set of closed subspaces C of a separable Hilbert space H has
the Minimum Subspace Approximation Property (MSAP) if for every finite subset
F ⊂ H there exists an element V ∈ C such that minimizes the expression e(F, V ) =
∑

f∈F
d2(f, V ) over all V ∈ C. More specifically, we will say that C has MSAP (k)

for some k ∈ N if the previous property holds for all subsets F of cardinality m ≤ k.

Using this terminology, Problem 1 has a minimizing sequence of subspaces if and
only if C satisfies the MSAP.

Remark 1.3. We will see that, in general, MSAP (k + 1) is strictly stronger than
MSAP (k).

There are some cases for which it is known that the MSAP is satisfied. For
example, H = Cd and C = {V ⊂ H : dimV ≤ s}, Eckhard-Young theorem [EY36]
implies that C satisfies MSAP. Another example is when H = L2(Rd) and C =
span{φ1, . . . ,φr} is the set of all shift-invariant spaces of length at most r. For this
last example, a result in [ACHM07] implies that C satisfies the MSAP. However, a
general approach for the existence of a minimizer had so far not been considered.
Thus, the main goal of this paper is to provide necessary and sufficient conditions
on the class C of closed subspaces in H so that C satisfies the Minimum Subspace
Approximation Property.

1.3. Organisation. This paper is organized as follows: Section 2 will be devoted to
the characterization of MSAP in both finite and infinite dimensional Hilbert spaces.
We reformulate Problem 1 in Section 2.1. The characterization of MSAP is finite
dimension is obtained in Section 2.3. The infinite dimensional case is derived in
Section 2.4. A generalization of finitely generated shift-invariant spaces is discussed
in Section 3, and a proof of MSAP in these generalized spaces is derived. This gives
a new and more conceptual proof of the fact that shift-invariant subspaces of length
≤ l, for any l satisfy MSAP which was proved in [ACHM07].

2. Characterization of MSAP

Let C be a set of closed subspaces of a separable Hilbert space H. Our main
concern is to find a topological characterization of the MSAP of C. Recall that C
has MSAP if for every finite subset F ⊂ H, there exists a subspace V o ∈ C that
minimizes the expression

e(F, V ) =
∑

f∈F

d2(f, V ), (2.1)

over all V ∈ C.
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2.1. Reformulation in terms of projectors and states. Let Π(H) ⊂ B(H)
denotes the set of orthogonal projectors. The subspaces in C will be identified with
a subset of projectors. Specifically, a subspace V ∈ C will be identified with the
orthogonal projector Q = QV whose kernel is exactly V (i.e., Q = I − PV where
PV is the orthogonal projector on V ). In this way, we will identify any set of closed
subspaces C of H with a set of projectors {Q ∈ Π(H) : ker(Q) ∈ C} ⊂ Π(H). Using
this identification, we will denote this set of projectors by C as well, and express e
in (2.1) as

e(F, V ) = ΦF(QV ) =
∑

f∈F

〈QV f, f〉, (2.2)

where ΦF can now be viewed as a linear functional on the set B(H) of bounded
linear operators on H.

The choice of the topology to be considered on the set of bounded linear operators
B(H) is of crucial importance for analyzing the optima of the functional ΦF. Since
we are looking for problems of existence of minimizers, compacity will be of great
help. Hence, the weak operator topology will be the right one considered here.
Namely, recall that operators of norm ≤ 1 form a compact subset for the weak
operator topology (this is no longer true with the strong operator or the norm
topologies when the dimension is infinite). However, in infinite dimensional spaces,
the set or projectors is not closed for the weak operator topology. This will create
most of the complication that we will have to face in infinite dimension. In the
sequel, a “closed” subset of B(H) will always mean closed for the weak operator
topology.

From its expression, ΦF is a continuous linear functional in the weak operator
topology of B(H). Since the set of orthogonal projectors Π(H) is a bounded set in
the uniform topology of B(H), it is pre-compact in the weak operator topology of
B(H). Thus it is evident that if the set C ⊂ Π(H) is weakly closed in B(H), then
ΦF attains its minimum (and maximum) for some V o ∈ C, and we get

Proposition 2.1. If the set C ⊂ Π(H) is closed in the weak operator topology of
B(H), then C satisfies MSAP.

Note that if we let α :=
∑

f∈F
‖f‖2 (= 0, then α−1ΦF is a state on B(H), i.e., it

is a linear functional on B(H) which is non-negative on the subset P+(H) of non-
negative self-adjoint operators of B(H), and which equals 1 on the identity operator.
We can therefore reformulate MSAP as follows: C has MSAP if every state reaches
its infimum on C.

2.2. A sufficient geometric condition for MSAP. Clearly, it is not necessary
for C to be closed in order for C to have the MSAP even if H has finite dimension.
For example, the theorem below gives a sufficient condition for MSAP in terms
of the set C+ = C + P+(H) where P+(H) is the set of non-negative self adjoint
operators. It also gives a sufficient condition for MSAP in terms of the convex hull
co(C) of C, i.e., the smallest convex set containing C:

Theorem 2.2.

(C = C) ⇒ (C+ = C+) ⇒ (co(C+) = co(C+)) ⇒ (C satisfies MSAP ),

and the implications are strict in general.

Proof. Since C is compact and P+(H) is closed, C + P+(H) is closed. Hence C+ =
C + P+(H) = C + P+(H) = C+, and the first implication follows. The second
implication is obvious. For the last implication, let F be a finite set in H. Recall
that ΦF is continuous for the weak topology on B(H). We make the following trivial
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observation: if Q ∈ B(H) is a convex combination of elements Q1, Q2, . . ., then there
exists i such that ΦF (Qi) ≤ ΦF (Q). In particular, we have that

inf
co(C)

ΦF = inf
C

ΦF,

and since C is compact, this infimum is attained for some R0 ∈ C. By continuity
of ΦF, we have ΦF(R0) = infQ∈C ΦF(Q) = infQ∈C ΦF(Q). Using the assumption

co(C+) = co(C+), and the easily checked equality co(C+) = co(C) + P+(H), we get
that co(C) ⊂ co(C)+P+(H). Thus we have that R0 = Q0+N for some Q0 ∈ co(C)
and N ∈ P+(H). It follows that

ΦF(Q0) ≤ ΦF(Q0) + ΦF(N) = ΦF(R0) ≤ ΦF(Q0).

Hence ΦF(Q0) = ΦF(R0) = infQ∈co(C) Φ(Q). But since Q0 ∈ co(C), there exists
P0 ∈ C such that ΦF (P0) = ΦF(Q0). This proves that C satisfies the MSAP.

To see why the last implication cannot be reversed, take C to be the set of
all finite dimensional subspaces (except the trivial vector space) of some infinite
dimensional space H. It has MSAP since for all finite sets F in H, one can find a
finite dimensional subspace containing it. On the other hand the convex hull of C+

does not contains 0, while the weak closure of C does.

To show that the second implication is not an equivalence, letH = !2 and consider
the sequence of vectors: vn = e1+en which weakly converges to e1, and the sequence
wn = e2+en+1, which weakly converges to e2. For all n ≥ 3, let Pn be the projector
on the space spanned by vn and wn. One checks that the sequence {Pn} converges
weakly toQ = (PE1

+PE2
)/2, whereE1 = span{e1}, and E2 = span{e2}. Moreover,

since Pn = Q+ (PEn
+PEn+1

)/2, where En = span{en}, and E2 = span{en+1}, we
conclude that Q < Pn for any n. Now define C = {Pn, n ≥ 3} ∪ {PE1

, PE2
}. The

closure of C consists of C ∪ {Q}. By the previous remark, Q does not belong to C+,
so that C+ is not closed. But on the other hand Q ∈ co(C), hence C ⊂ co(C) which
implies that co(C) = co(C). It follows that co(C+) = co(C+).

Finally, to see why the first implication cannot be reverse, let H = R3 and
consider the set C = C1 ∪ C2 which is the union of the plane C1 = span{e1, e2} and
the set of lines C2 = ∪v{span{v} : v = e3 + ce2, for some c ∈ R}. Then C (identified
with a set of projectors as described earlier) is not closed (since Qspan{e2} /∈ C) but
C satisfies the MSAP, since if the infimum is achieved by the missing line span{e2},
it is also achieved by the plane C1. !

Remark 2.3. For a perhaps more convincing example of why the last implication
is not an equivalence, let H = !2, {ej} its canonical basis, and let C be the set of
subspaces of co-dimension one except for the space span{e1}⊥. In other words, C
consists of all projectors of rank one except the projector Q1 on span{e1}. Clearly
for any finite subset F there exist (infinitely many) subspaces of C on which ΦF

vanishes, i.e., C has MSAP. However, co(C+) is not closed since Q1 does not belong
to it, while being in the closure of C.

2.3. Characterization of MSAP in finite dimension. The fact that the first
implication in Theorem 2.2 is not an equivalences was shown using an example in
a finite dimensional space, while the other two examples showing the the other two
implications are not equivalence were obtained in an infinite dimensional space. It
turns out that for finite dimensional spaces the last two implications are in fact
equivalences, and that for a Hilbert space H of dimension d < ∞, MSAP is also
equivalent to MSAP (d− 1) (see Definition 1.2). We have

Theorem 2.4. Suppose H has dimension d. Then the following are equivalent
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(i) C satisfies MSAP(d-1);
(ii) C satisfies MSAP;
(iii) co(C+) = co(C+);
(iv) C+ is closed.

Proof. Clearly (ii) implies (i), and (iv) implies (iii). By Theorem 2.2, (iii) implies
(ii). So we are left to show that (i) implies (iv). Since for finite dimensions, the
set of projectors of rank k is closed, the zero projector belongs to C if and only if
it belongs to C. Note that the case where C contains the zero projector is trivial,
since this implies that C+ is all of P+(H). We shall therefore omit this case.
Now let R0 ∈ C be a non-zero projector, and let F ⊂ H be a basis for kerR0.
Since R0 is non-zero, kerR0 has dimension ≤ d − 1 so that #(F) ≤ d − 1. Then
ΦF(R0) = 0 = infQ∈C ΦF(Q). Since C satisfies MSAP(d-1) there exists Q0 ⊂ C such
that ΦF(Q0) = 0. Hence kerR0 ⊂ kerQ0, so that Q0 ≤ R0, i.e., R0 = Q0 + N
for some N ∈ P+(H). Thus, C ⊂ C+ = C + P+(H). We get that C + P+(H) ⊂
C+P+(H)+P+(H) = C+. Since P+(H) is closed and C is compact, it follows that
C + P+(H) is closed. Hence C+ is closed. !

Remark 2.5. For spaces of dimension d < ∞, it is easy to show that MSAP(k-1) is
strictly weaker than MSAP(k) for 1 ≤ k ≤ d − 1. To see this, let C be the set of
all subspaces of dimension k except for the subspace generated by k independent
vectors {v1, . . . , vk}. The C has MSAP(k-1), but it does not satisfy MSAP(k).

2.4. Characterization of MSAP in infinite dimension. Let X be a locally
convex topological vector space. The example that we have in mind here is B(H)
equipped with the weak-operator topology.

Definition 2.6. We define a closed half-space to be a set of the form Hφ,a = {x ∈
X : φ(x) ≥ a}, for some a ∈ R and φ an R-linear functional on X . The boundary
of such half-space is the (affine) hyperplane of equation φ(x) = a.

For the reminder of this paper, we will use half-space to mean closed half space.
Using this terminology, a direct application of Hahn-Banach theorem implies that
the closed convex hull co(E) of a subset E is the intersection of all half-spaces
containing E. Let us introduce a slightly different notion, called contact hull.

Definition 2.7. The contact hull T (E) of a subset E of X is the intersection of
all half spaces containing E and whose boundary intersects E non-trivially. Such a
half-space is called contact half-space of E. The set of contact half-spaces containing
E is denoted by T (E).

Remark 2.8. Note that if the set of all contact half-spaces of E is empty, then
T (E) = X . Clearly the contact hull is closed and the closed convex hull is contained
in the contact hull. However, the converse is not true.

Now, we are ready to prove a geometric characterization of MSAP. Here the
locally convex space X is B(H) equipped with the weak-operator topology.

Theorem 2.9. Let C be a set of projector in B(H). Then C has MSAP if and only
if

T (C+) = T
(

C+
)

.

Proof. First note that a R-linear functional φ ∈ B(H)∗ reaches its minimum a ∈ R

on some subset E if and only if {x,φ(x) ≥ a} is a contact half-space of E.

Let us show that T (C+) = T
(

C+
)

implies MSAP. Consider some R-linear func-
tional ΦF for some finite set F. By definition of the weak operator topology on
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B(H), ΦF is continuous for this topology. Hence the infimum m of ΦF on C+ co-

incides with its infimum on C+ = C
+
. But the infimum m on C

+
is achieved on C,

since C is compact. Thus, HΦF,m ∈ T (C+). But saying that T (C+) = T (C
+
) exactly

means that the contact half-spaces to C+ and those of C
+
coincide. This means that

HΦF,m ∈ T (C+), and hence ΦF reaches its minimum on C+, and therefore on C.

To prove the converse, we will need the following well-known (but crucial) ob-
servation. In terms of states, it says that states which are continuous for the weak
operator topology are convex combination of vector states, i.e., a convex combina-
tions of functionals on B(H) of the form φ = 〈·f, f〉 where f ∈ H and ‖f‖ = 1.

Claim 2.10. For a real or a complex Hilbert space, the restriction to P+(H) of an
element φ ∈ B(H)∗ which takes non-negative values on P+(H) can be written as
φ(A) = ΦF(A) for some finite set F, and for all A ∈ P+(H).

Proof. Since φ is a continuous functional on B(H) endowed with the weak operator
topology, φ must be of the form

φ(A) =
∑

i∈I

〈Avi, wi〉

for some vectors {vi, wi : i ∈ I} in H, where I is a finite set. Let M := span{vi, wi :
i ∈ I} and the operator AM := ΠMAΠM where ΠM is the orthogonal projector
on M. Define the operator φM (AM ) = φ(A) for all A ∈ B(H). Let {ei} be an
orthonormal basis for M . Then φM (B) =

∑

i,j λij〈Bei, ej〉 for all B ∈ B(M). This
can be written as tr(ΣΩ), where Σ is the matrix with entries λij and Ω is the matrix
whose entries are 〈Bej , ei〉. Since φ is nonnegative on P+(H) it follows that for any
nonnegative definite matrix Ω

tr(ΣΩ) = tr
(

(
Σ+ Σ∗

2
)Ω

)

= trΛS∗ΩS,

where Λ is the matrix of eigen values of (Σ+Σ∗

2 ) and S is the matrix of its eigen
vectors. Therefore, φ(A) = ΦF(A) for all A ∈ P+(H), where the vectors F =
{f1, . . . , fm} are given by fi = σ1/2

∑

j Sijej . !

Now suppose that C has MSAP. Let Hφ,a = {x,φ(x) ≥ a} be a contact half-space

to C
+
. Note that this implies that φ ≥ 0 on P+(H). Therefore, on P+(H), φ = ΦF

for some F. As C has MSAP by assumption, ΦF reaches its minimum on C, hence
on C+. Therefore, the above half-space Hφ,a is a contact half space to C+. !

Corollary 2.11. If C has the MSAP, then T (C+) = co(C+).

Proof. Clearly co(C+) ⊂ T (C+). Moreover, as a general fact, co(C+) = co(C+).
And since C has MSAP, the previous theorem implies that T (C+) = T (C+). Hence,
without loss of generality, we can assume that C is compact.

Now suppose that x ∈ T (C+)! co(C+). By Hahn-Banach’s theorem there exists a
weak-continuous R-functional φ ∈ B(H)∗ such that φ(x) < φ(y) for all y ∈ co(C+).
Let λ := infco(C+) φ. We have that λ = infco(C+) φ = infco(C+) φ = infC+ φ = infC φ.
Since C is compact we have get that Hφ,λ is a contact half-space to C+. In other
words,Hφ,λ is a contact half-space containing C+, but not x. This is in contradiction
with the fact that x ∈ T (C+). !
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3. π(G)-invariant subspaces and MSAP

3.1. Projectors of finite corank. Let H denote a separable Hilbert space, and
let, as before Π = Π(H) be the set of projectors on H, equipped with the topology
of weak convergence. Let P+

1 denote the set of positive self-adjoint operators of
norm ≤ 1. Note that Π is closed for the strong topology but not for the weak one,
unless the dimension is finite, in which case Π is compact. Namely, we have

Proposition 3.1. Let Πk (resp. Π−k) be the set of projectors of rank k (resp. of
corank k). If H is infinite dimensional, then

(1) The weak closure of Πk is the set of positive self-adjoint operators of norm
≤ 1 and of rank at most k.

(2) The weak closure of Π−k is the set of positive self-adjoint operators q of
norm ≤ 1 such that qx = x on a subspace V of codimension at most k
(i.e., dimV ⊥ ≤ k). In other words, q ∈ Π−k if and only if q is a positive
operators of norm ‖q‖ ≤ 1 such that q ≥ p for some p ∈ Π−k.

To prove Proposition 3.1 we need the following Lemma:

Lemma 3.2. The operators of rank ≤ k form a weak closed subset of B(H).

Proof of Lemma. This follows from the fact that an operator x has a rank less
than or equal to k if and only if all sub-determinants of size k + 1 of x vanish (for
instance if x is expressed as a matrix in an orthonormal basis), and the fact that
the sub-determinant functions of any size n are weakly continuous. !

Proof of Proposition 3.1. Note that the two statements are equivalent. Thus we
only need to prove (i).

Note that the set of positive operators, the set of operators with norm ≤ 1, and by
the lemma, operators of rank ≤ k, are weakly closed sets. So we only have to show
that every positive self-adjoint operator x of norm ≤ 1 and of rank at most k can be
weakly approximated by projectors of rank ≤ k. To see that, let us express x as a
diagonal matrix in an orthonormal basis (ei)i∈N, such that the diagonal coefficients
xi,i = t2i lie in [0, 1], and equal 0 if i ≥ k + 1. For every unit vector v, denote by
pv be the projector on span{v}. For each i ∈ N, let si =

√

1− t2i . Clearly, for
every i the sequence of unit vectors vn(i) = |ti|ei+sieni+n(k+1) converges weakly to
|ti|ei. Hence the sequence of projectors pvn(i) converges weakly to t2i pei . Moreover
vn(i) ⊥ vn(j) for i '= j. Therefore the sequence xn =

∑

1≤i≤k pvn(i) is a sequence

of projectors of rank k that converges weakly to x =
∑

1≤i≤k t
2
i pei . !

Note that (by definition) the space Π+
−k is the set of positive self-adjoint q such that

there exists a projector p of corank at most k such that q ≥ p. As an immediate
consequence of (2) in the above proposition, we obtain

Corollary 3.3. We have that Π+
−k = Π+

−k, so, in particular, the set C of subspaces
of dimension at most k has MSAP.

3.2. The π(G)-invariant setting. Let H denotes a Hilbert space (possibly of
finite dimension), and let G be a locally compact, σ-compact group, and let π
be a continuous unitary representation of G, i.e. a continuous homomorphism
G → B(H).

Definition 3.4. Let W be a closed π(G)-invariant subspace of H, i.e., π(g)w ∈ W
for all g ∈ G and w ∈ W . We define the π(G)-dimension of W to be the minimal
dimension of a subspace V such that

W = span{π(g)v; g ∈ G, v ∈ V }.
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Example 3.5. The prototypical example is H = L2(Rd), G = Zd, and π(k) be-
ing the translation operator by k. Given φ1, . . . ,φr ∈ L2(R), the space W =
span{φ1(·− k), · · · ,φr(·− k)} is a π(G)-invariant subspace of L2.Moreover, by con-
struction, W = span{π(k)f ; k ∈ Zd, f ∈ V }, where V = span{φ1, · · · ,φr}. Hence
the π(Zd)-dimension of W is ≤ r. Such a space is often called a shift-invariant space
of length r.

Recall that an operator A ∈ B(H) is called π(G)-invariant if it commutes with
the representation π, i.e. if π(g)A(w) = A(π(g)(w)) for all g ∈ G and w ∈ H. Note
that if p is a projector, and if the representation is unitary, then p is π(G)-invariant
if and only if its range (resp. its kernel) is a π(G)-invariant subspace.

In the “π(G)-invariant setting”, we can extend the notion of corank in the obvious
way, namely by saying that a π(G)-invariant operator has π(G)-corank k if its
kernel has π(G)-dimension k. We will denote the set of projectors of corank ≤ k by
ΠG

−k(H).

Remark 3.6. Note that if the representation π is trivial (i.e. if π(g) = Id for
all g ∈ G), then the π(G)-dimension and π(G)-corank coincide with the usual
dimension and corank.

Let us end this section by stating an analogue of Theorem 2.2 in the π(G)-
invariant setting. The proof is the same, using the fact that π(G)-invariant operators
form a weak-closed subalgebra of B(H) (i.e. a Von Neumann subalgebra of B(H)).
Let us define (P+)G(H) to be the set of all π(G)-invariant, positive operators in
B(H).

Proposition 3.7. Suppose that C is a set of π(G)-invariant subspaces of H. If
C + (P+)G(H) is closed in the weak operator topology, then C satisfies MSAP .

3.3. MSAP for invariant subspaces. The problem that we address now is whether
we can generalize Corollary 3.3 to the “π(G)-invariant” context. Precisely: does
the set of all closed π(G)-invariant subspaces with π(G)-dimension at most k has
MSAP for all k ∈ N? For simplicity, we will restrict our attention to the case of
abelian groups.

As mentioned earlier, an interesting case is the shift-invariant spaces case in which
G = Zd acts by translations on H = L2(Rd). For this case the π(G)-invariant sub-
spaces are usually called shift-invariant subspaces. Moreover, the π(G)-dimension
is called length in this particular example. We now prove that the fact that shift-
invariant subspaces of length ≤ l, for any l satisfy MSAP [ACHM07] actually holds
for any unitary representation of a locally compact abelian group G (note that even
for the group Z, this yields a lot of new examples).

Theorem 3.8. Let π be a unitary representation of a locally compact σ-compact
abelian group G. Then,

ΠG
−k ⊂ ΠG

−k + (P+)G(H).

In particular, the set of closed π(G)-invariant subspaces of H of π(G)-dimension at
most k has MSAP.

Our main tool for proving this theorem, will be the generalized spectral theorem
for locally compact σ-compact abelian groups (see for instance [Dix]). Let Ĝ be the
dual of G, i.e. the set of complex characters χ on G. Recall that a character is a
continuous homomorphism from G to the group of complex numbers of modulus 1.
As this group identifies as U(1), i.e. the group of unitary operators in dimension
1, one sees that Ĝ can be interpreted as the set of one-dimensional representations
of G. Note that as U(1) is a compact group, Ĝ comes naturally equipped with the
structure of a locally compact, σ-compact group. To keep in mind some concrete
examples, let us recall that the dual of Z is U(1), that the dual of U(1) is Z and
that R̂ = R.
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3.4. Proof in finite dimension. Although the proof in finite dimension is not
different in spirit from the general case, we decided to add it for pedagogical reasons,
since this allows us to avoid all the problems concerning measurability.

Let us start by recalling the content of the spectral theorem in finite dimension.
Assume dim(H) = d. Then there exists an orthonormal basis (e1, . . . , ed) where all
operators π(g) are diagonal in this basis. In other words there exists an isometry
T : H → "2({1, . . . , d}) such that Tπ(g)T−1 = diag(χi(g)), where for each 1 ≤ i ≤ d,
χi is a character of G. Although this description of π is quite nice, it could be
improved to take into account the fact that various χi’s might be equal. We now
give another description.

The spectral theorem in finite dimension. Now, for each χ ∈ Ĝ, let us define
the multiplicity mχ of χ in π to be the number of distinct values of i such that

χ = χi. Let µ be the measure on Ĝ which equals a dirac on χ if mχ > 0, and
zero otherwise. For each χ, associate the space Hχ = Cmχ (note that for all except

finitely many this space is reduced to zero). Now, define the space L2(Ĝ, (Hχ), µ)
to be the direct sum

⊕

χ Hχ. An element of this space is denoted v = (v(χ))χ such

that v(χ) ∈ Hχ for each χ ∈ Ĝ. We equip L2(Ĝ, (Hχ), µ) with the following scalar
product: for v, w ∈ L2(Ĝ, (Hχ), µ), we have

〈v, w〉 :=

∫

Ĝ
〈v(χ)w(χ)〉Hχ

dµ(χ) =
∑

χ

〈v(χ), w(χ)〉Hχ
.

Let us now collect a few observations.

Proposition 3.9.

(1) There is an isometry S : H → L2(Ĝ, (Hχ), µ) such that for all g ∈ G, and

all v ∈ L2(Ĝ, (Hχ), µ),

Sπ(g)S−1(v)(χ) = χ(g)v(χ).

To simplify the notation, let us identify H with L2(Ĝ, (Hχ), µ) and π with
SπS−1, so that we now simply have

π(g)(v)(χ) = χ(g)v(χ)

(2) A ∈ B(H) is π(G)-invariant if and only if A decomposes as
⊕

χ∈Ĝ Aχ, with
Aχ ∈ B(Hχ).

(3) Suppose that V is a subspace of H, and let W be the π(G)-invariant subspace
generated by V , i.e. W = span{π(g)v; g ∈ G, v ∈ V }. Then W =

⊕

χ Vχ

where each Vχ is the projection of V onto Hχ.

Proof. The proofs of (1) and (2) are elementary. Let us only indicate how to prove
(3). Note that since span{π(g)v; g ∈ G, v ∈ V } and that

⊕

χ Vχ is π(G)-invariant
we have that W ⊂

⊕

χ Vχ. Moreover, since V ⊂ W , Vχ ⊂ W , hence
⊕

χ Vχ ⊂ W .
Thus, W =

⊕

χ Vχ. !

Let us go back to the purpose of this section, namely the proof of Theorem 3.8
whenH is finite-dimensional. By the above proposition, elements in ΠG

−k are exactly
elements of the form p =

⊕

χ pχ, where each pχ is a projector on Hχ of corank at
most k, i.e. an element of Π−k(Hχ). Since H is finite, there are only finitely χ for
which pχ is the nonzero projector. This latest fact together with the fact that for
each χ, the set Π−k(Hχ) is closed, implies that ΠG

−k is closed, and Theorem 3.8
follows when H is finite-dimensional.
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3.5. Proof of Theorem 3.8. As previously mentioned, the proof of Theorem 3.8
relies on the generalized spectral theorem for abelian groups that we now recall.
The first two assertions of the following theorem follow from the classical theory
(see for instance [Dix]).

Theorem 3.10 (Generalized spectral theorem for abelian groups). Let G be a
locally compact σ-compact abelian group, and let π be a unitary representation of
G. There exists a Borel measure µ on Ĝ, together with an isometry from H to
L2(Ĝ, (Hχ), µ), where (Hχ)χ∈Ĝ is a measurable family of subspaces of a separable
Hilbert space H′, such that the representation π decomposes as a direct integral of
representations (Hχ,πχ), where πχ is the multiplication by the character χ. This is
usually denoted by

π =

∫ ⊕

Ĝ
πχdµ(χ).

Moreover, the following statement are true.

(i) A ∈ B(H) is π(G)-invariant if and only if A decomposes as
∫ ⊕
χ∈Ĝ Aχdµ(χ),

with Aχ ∈ B(Hχ) (defined a.e.).
(ii) Suppose that V is a closed subspace of H, and let W be the closed π(G)-

invariant subspace generated by V , i.e. W = span{π(g)v; g ∈ G, v ∈ V }.

Then W =
∫ ⊕
χ Vχdµ(χ) where each Vχ is the projection of V onto Hχ

(defined a.e.).
(iii) For every χ ∈ Ĝ, let Wχ be a subset of operators of B(Hχ) of norm ≤ 1.

Suppose moreover that the family (Wχ)χ∈Ĝ is measurable. Consider W the

subset of all (π(G)-invariant) operators of the form
∫ ⊕
Ĝ Aχdµ(χ) such that

Aχ ∈ Wχ, which we denote by

W :=

∫ ⊕

Ĝ
Wχdµ(χ).

Then, we have

W =

∫ ⊕

Ĝ
Wχdµ(χ),

for the weak topology.

Proof of (iii). Assume B ∈ W , then there exists An ∈ W such that An converges

weakly to B. Since B is also π(G)-invariant, B =
∫ ⊕
χ∈Ĝ Bχdµ(χ). Thus we have

∫ ⊕
χ∈Ĝ

〈

(An
χ − Bχ)v(χ), w(χ)

〉

Hχ
dµ(χ) → 0, as n → ∞. Hence ‖(An

χ − Bχ)v(χ)‖Hχ

converges in measure to zero, from which we deduce that there exists a subsequence
(A

nj
χ − Bχ)v(χ) that converges strongly to 0 a.e.. Hence A

nj
χ converges weakly to

Bχ, a.e.. Thus, Bχ ∈ Wχ. Conversely, assume that a sequence An
χ ∈ Wχ converges

weakly to Bχ. Then the Lebesgue dominated convergence theorem implies that

An =
∫ ⊕
χ∈Ĝ Aχdµ(χ), converges weakly to B =

∫ ⊕
χ∈ĜBχdµ(χ). !

The main step toward the proof of Theorem 3.8 is the following description of
π(G)-invariant projectors.

Lemma 3.11. With the notation of Theorem 3.8, we have that for every π(G)-
invariant projector p, there exists a measurable field (pχ) of projectors such that

p =

∫ ⊕

Ĝ
pχdµ(χ).

Moreover, the π(G)-corank of p is at most k (i.e., kernel of p is π(G)-dimension
≤ k) if and only if for a.e. χ ∈ Ĝ, corank(pχ) ≤ k.
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Proof. By (ii) that if p has π(G)-corank at most k, then for a.e. χ ∈ Ĝ, pχ has
corank at most k. The converse is also true but more subtle.

Claim 3.12. Let {px}x∈X be a measurable family of projectors of finite corank
in some separable Hilbert space H′, where X is some Borel measure space. For
i = 1, 2, . . . , there exists a measurable family of vectors {exi } such that for a.e.
x ∈ X, (ex1 , e

x
2 , . . . , e

x
rx) is a basis of ker px, and exi = 0 for i > rx.

Proof. First, note that rx = corank(px) is a measurable map X → N, and then
define a measurable partition of X = X0 ∪ X1 . . . such that rx equals i on Xi for
each i ∈ N. So we can suppose that rx is constant, equal to some integer k.

Now, let us define a metric on X , by pulling back the norm on Π = Π(H′), i.e.
d(x, y) := ‖px−py‖. Clearly, d is measurable. Since Π−k is a separable metric space,
we can cover it by a countable family of balls of arbitrarily small radius. Hence, one
sees by an easy argument that it is enough to define {exi } on a small ball, say B(x, ε)
for some x ∈ X , and ε > 0. As px is defined almost everywhere, either B(x, ε) has
measure 0, in which case, there is nothing to do, or there exists y ∈ B(x, ε) such
that py is well defined, and ry = k. Take an orthonormal basis (e1, e2, . . . , ek) of
ker py, and for all z ∈ B(x, ε), define ezi = (1− pz)(ei), for i = 1, . . . , k. If ε is small
enough, it is easy to see that the (ezi )i are still linearly independent, and therefore
form a basis of ker pz. !

Note that in the above claim, we can even suppose that the (exi )1≤i≤rx form an
orthogonal basis of ker px for a.e. x ∈ Ĝ, and that ‖exi ‖ ≤ 1 for a.e. x ∈ ker px and

all i. Now, if p =
∫ ⊕
Ĝ pχdµ(χ), with corank(pχ) ≤ k, by the claim, we can find a

measurable family of vectors {(eχ1 , e
χ
2 , . . . , e

χ
k )}χ such that for a.e. χ, (eχ1 , . . . , e

χ
k )

generates kerpχ, and are mutually orthogonal (some might be equal to 0), and that

‖eχi ‖ ≤ 1 for a.e. χ. Now, let f be a positive function in L2(Ĝ, µ), and define for
a.e. χ, ξi(χ) = f(χ)eχi . Note that ξi ∈ L2(Ĝ, (Hχ)) for all i. We need to prove
that ker p is generated, as a closed π(G)-invariant subspace by ξ1, . . . , ξk. But since

p =
∫ ⊕
Ĝ pχdµ(χ), if W = kerp then W =

∫ ⊕
χ Vχdµ(χ), where Vχ = ker pχ. But by

construction, Vχ = span{ξi(χ) : i = 1, · · · , k}. Thus, ker p has π(G)-codimension
k. This finishes the proof of the lemma. !

Now we are in position to finish the proof of Theorem 3.8. By Theorem 3.5 (i),
every π(G)-invariant projector decomposes as p =

∫

Ĝ pχdµ(χ) where (pχ)χ∈Ĝ is a

Borel measurable family of projectors in L2(Ĝ, (Hχ)). The proof of the theorem
follows immediately from (iii), Corollary 3.3 and the previous lemma. !

3.6. Concrete examples and applications. In this section we provide several
examples and applications to illustrate the results.

Example 3.13. As a first application of Theorem 2.2 or Corolloary 3.3 we get the
well known C. Eckart and G. Young Theorem [EY36]. Specifically, if H is finite
dimensional and if and C is the family of subspaces of dimension less than or equal
to r, then C satisfies MSAP since C is closed. As a consequence, Problem 1 has a
solution.

Example 3.14. A more interesting example is a generalization of the C. Eckart and
G. Young Theorem [EY36] when H is infinite dimensional and C is the family of
subspaces of dimension less than or equal to r. For this case, a direct application
of Corollary 3.3 implies that C satisfied MSAP.
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Example 3.15. Another interesting example is when G = Z, H = L2(R), π(l)f :=
Tlf where Tl is the translation operator by the translation l, and Ck is the set of all
subspaces that are π(Z)-invariant and and have π(Z)-dimension n. The set Ck is
precisely the so called shift invariant subspaces of L2(R) of length at most k, that
acts by translations on H = L2(Rd). As a direct consequence of Theorem 3.8, the
set Ck satisfies MASP. This gives a new proof for the fact that Ck satisfies MSAP
[ACHM07].

Example 3.16. A discrete version of the shift invariant space result above can be
obtained by letting G = mZ where m is a positive integer, H = "2(Z), π(ml)f :=
Smlx where Sml is the shift operator by the index ml,i.e., if y = Smlx, then yn =
xn−ml for all n ∈ Z. If we let Ck to be the set of all subspaces that are π(mZ)-
invariant and have π(mZ)-dimension k. Then the set Ck satisfies MSAP.

Example 3.17. An interesting and useful case is in the finite dimensional case H =
"2({1, · · · , d}), where d = ml for some positive integers m and l. Let G = Z/mZ be
the cyclic group of integers modulo m. By letting π(j)x = Sjlx be the shift operator
modulo d we get that the set Ck of all subspaces that are π(Z/mZ)-invariant and
have π(mZ)-dimension k satisfy MASP.

The last three examples are related in a way similar to the way the Fourier
Integral, the Fourier series and the discrete FFT are related, and hence this relation
can be used for numerical approximations and implementations.
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