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Abstract. We prove that Abels’ group over an arbitrary local field has a qua-
dratic Dehn function. As applications, we exhibit connected Lie groups and
polycyclic groups whose asymptotic cones have uncountable abelian fundamen-
tal group. We also obtain, from the case of finite characteristic, uncountably
many non-quasi-isometric finitely generated solvable groups, as well as peculiar
examples of fundamental groups of asymptotic cones.

1. Introduction

Let R be a commutative ring. We consider the following solvable group, intro-

duced by Abels [Ab1].

(1.1) A4(R) =




1 x12 x13 x14
0 t22 x23 x24
0 0 t33 x34
0 0 0 1

 : xij ∈ R; tii ∈ R×.


Observe that if we denote by Z(R) the subgroup generated by unipotent matrices

whose only nonzero off-diagonal entry is x14, then Z(R) is central inA4(R). Abels’

initial motivation was to exhibit a finitely presented group with an infinitely

generated central subgroup, namley A4(Z[1/p]). In particular, its quotient by

the central subgroup Z(Z[1/p]) is not finitely presented, showing that the class

of finitely presented solvable groups is not stable under taking quotients.

Abels’ group over local fields. Finite presentation of A4(Z[1/p]) is closely

related to the fact that A4(Qp) is compactly presented [Ab2], motivating the

study of Abels’ group over local fields. By local field, we mean a nondiscrete

locally compact field, endowed with its norm. Our main goal in this paper is to

provide the following quantitative version of this result.

Theorem 1.1. For every local field K, the group A4(K) has a quadratic Dehn

function.
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This means that loops of length r in A4(K) can be filled with area in O(r2)

when r → ∞. This extends Abels’ result [Ab1, Ab2] that A4(K) is compactly

presented if K has characteristic zero; besides, Abels’s result is nontrivial only

when K is ultrametric, while Theorem 1.1 is meaningful when K is Archimedean

too.

Recall that given a metric space (X, d) and a nonprincipal ultrafilter ω, a

certain metric space Coneω(X) can be defined as an “ultralimit” of the metric

spaces (X, 1
n
d) when n → ω, and is called the asymptotic cone of X along ω.

(The precise definitions will be recalled in Section 2.). The bilipschitz type of

Coneω(X) is a quasi-isometry invariant of X.

By Papasoglu’s theorem [Pap], a quadratic Dehn function implies that every

asymptotic cone is simply connected, so we obtain

Corollary 1.2. For every local field K and every nonprincipal ultrafilter ω, the

asymptotic cone Coneω(A4(K)) is simply connected.

Asymptotic cones and central extensions. Corollary 1.2 can be used to

obtain various examples of unusual asymptotic cones, using generalities on central

extensions, which we now partly describe (see Theorem 4.7 for a full version). Our

main tool relates, for certain central extensions

(1.2) 1→ Z → G→ Q→ 1,

the fundamental group π1(Coneω(Q)) and the group Coneω(Z), where Z is en-

dowed with the restriction of the metric of G. It can be viewed as an analogue

of the connection between the fundamental group of a Lie group and the center

of its universal cover. Notably, it implies the following

Theorem 1.3 (Corollary 4.8). Given a central extension as in (1.2), if G,Q are

compactly generated locally compact groups, Coneω(G) is simply connected and

Coneω(Z) is ultrametric, then

π1(Coneω(Q)) ' Coneω(Z).

As a direct application of Corollary 1.2 and Theorem 1.3, we deduce

Corollary 1.4 (Corollary 4.9). For every local field K and nonprincipal ultrafilter

ω, the group π1(Coneω(A4(K)/Z(K))) is an uncountable abelian group.

Remark 1.5. If K is non-Archimedean, Z(K) is not compactly generated, and it

follows that A4(K)/Z(K) is not compactly presented. Similarly, if K is Archi-

medean, the exponential distortion of Z(K) implies that the Lie groupA4(K)/Z(K)

has an exponential Dehn function.
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Application to discrete groups. We further obtain, from a slight variant of

Theorem 1.1, results concerning discrete groups. The first corollary, proved in

Section 5, is the following

Corollary 1.6. There exists a polycyclic group Λ, namely A4(R)/Z(R) if R is

the ring of integers of a totally real number field of degree 3, such that Λ has an

exponential Dehn function, and for every ω, the fundamental group π1(Coneω(Λ))

is abelian and nontrivial, namely isomorphic to a Q-vector space of continuum

dimension.

In the case of characteristic p, we prove

Corollary 1.7 (Theorem 5.1). The group A4(Fp[t, t
−1, (t− 1)−1]) is finitely pre-

sented and has a quadratic Dehn function.

The finite presentation of this group seems to be a new result. Note that

A4(Fp[t]) is not finitely generated, while A4(Fp[t, t
−1]) is finitely generated but

not finitely presented (see Remark 5.5). There were previous (substantially more

complicated) examples of finitely presented solvable groups whose center contains

an infinite-dimensional Fp-vector space in [BGS, §2.4] and [Kha, §2]; those ex-

amples have an undecidable word problem, so they are not residually finite and

their Dehn functions are not recursively bounded. Corollary 1.7, again combined

with Theorem 1.3, has the following three corollaries.

Corollary 1.8. There exist continuum many pairwise non-quasi-isometric solv-

able (actually (3-nilpotent)-by-abelian) finitely generated groups. Namely, for

each prime p, such groups can be obtained as quotients of A4(Fp[t, t
−1, (t− 1)−1])

by central subgroups.

To distinguish this many classes, we associate, to any metric space X, the

subset of the set U∞(N) of nonprincipal ultrafilters on the integers

ν(X) = {ω ∈ U∞(N) : Coneω(X) is simply connected};

the subset ν(X) ⊂ U∞(N) is a quasi-isometry invariant of X, and we obtain the

corollary by proving that ν achieves continuum many values on a certain class of

groups (however, the subset ν(X) can probably not be arbitrary).

Corollary 1.8 is proved in §6.B, as well as the following one, which relies on

similar ideas.

Corollary 1.9. There exists a (3-nilpotent)-by-abelian finitely generated group R,

namely a suitable central quotient of A4(Fp[t, t
−1, (t− 1)−1]), for which for every
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ultrafilter ω, we have π1(Coneω(R)) is isomorphic to either Fp (cyclic group on

p elements) or is trivial, and is isomorphic to Fp for at least one ultrafilter.

To put Corollary 1.9 into perspective, recall that Gromov [Gro, 2.B1(d)] asked

whether an asymptotic cone of a finitely generated group always has trivial or in-

finitely generated fundamental group. In [OOS], a first counterexample was given,

for which for some ultrafilter (in their language: for a fixed –fastly growing– scal-

ing sequence and all ultrafilters) the fundamental group is Z. Here we provide the

first example for which the fundamental group is finite and nontrivial. Moreover

we use the scaling sequence (1/n), which reads all scales, so in our example the

fundamental group is finite for all ultrafilters and scaling sequences.

The first example of a finitely generated group with two non-homeomorphic

asymptotic cones was obtained by Thomas and Velickovic [TV], and was improved

to 2ℵ0 non-homeomorphic asymptotic cones by Drutu and Sapir [DS]. These

examples are not solvable groups, although amenable examples (satisfying no

group law) appear in [OOS]. Corollary 1.9 provides the first examples of finitely

generated solvable groups with two non-homeomorphic asymptotic cones. The

next corollary, obtained in §6.E by a variation on the proof of the previous one,

improves it to infinitely many non-homeomorphic asymptotic cones.

Corollary 1.10. There exist a (3-nilpotent)-by-abelian finitely generated group,

namely a suitable central quotient of A4(Fp[t, t
−1, (t−1)−1]), with at least 2ℵ0 non-

bilipschitz homeomorphic, respectively at least ℵ0, non-homeomorphic, asymptotic

cones.

The fundamental group of a metric space has a natural bi-invariant pseudo-

metric space structure, whose bilipschitz class is a bilipschitz invariant of the

metric space, and the isomorphism in Theorem 1.3 is actually bilipschitz. This

extra-feature is used in the proof of the bilipschitz statement of Corollary 1.10.

Actually, this pseudo-metric structure on the fundamental group of the cone is

used in a crucial way in the proof of Theorem 1.3 itself.

In view of Theorem 1.3, Corollaries 1.8, 1.9, and 1.10 are all based on a sys-

tematic study in Section 6 of the asymptotic cone of the infinite direct sum F
(N)
p ,

endowed with a suitable invariant ultrametric. In particular, Theorem 6.10 pro-

vides a complete classification of these asymptotic cones up to isomorphism of

topological groups.

Organization. Section 2 recalls the definition of Dehn function and asymptotic

cone. Section 1.1 is devoted to the proof of Theorem 1.1. In order to carry over

the results to discrete groups, a minor variant of Theorem 1.1 is proved in Section
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5. Finally Section 6 deals with asymptotic cones of the metric group F
(N)
p , whose

description leads to the latter corollaries.

Acknowledgments. We thank Denis Osin and Mark Sapir for interesting dis-

cussions about asymptotic cones.
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2. Dehn function, asymptotic cones

2.A. Dehn function. Let G be a locally compact group, generated by some

compact symmetric subset S. It is compactly presented if for some r, the set Rr

of relations of length at most r between elements of S generates the set of all

relations, i.e. G admits the presentation 〈S|Rr〉.
If this holds, and if w is a relation, i.e. an element of the kernel KS of the

natural homomorphism FS → G (where FS is the free group over S), the area

α(w) of w is defined as the length of w with respect to the union of FS-conjugates

of Rr. The Dehn function is then defined as

δ(n) = sup{α(w) : w ∈ KS, |w|S ≤ n}.

This function takes finite values. Although it depends on S and r, its asymptotic

behavior only depends on G. By convention, if G is not compactly presented,

we say it has an identically infinite Dehn function. Any two quasi-isometric

locally compact compactly generated groups have asymptotically equivalent Dehn

functions.

2.B. Asymptotic cone. Let (X, d) be a metric space and ω a nonprincipal

ultrafilter. Define

Precone(X) = {x = (xn) : xn ∈ X, lim sup d(xn, x0)/n <∞}.
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Define the pseudo-distance

dω(x, y) = lim
ω

1

n
d(xn, yn);

and Coneω(X) as the Hausdorffication of Precone(X), endowed with the resulting

distance dω.

IfX = G is a group and d is left-invariant, then Precone(G) (written Precone(G, d)

if needed) is obviously a group, dω is a left-invariant pseudodistance, and Coneω(G) =

Precone(G)/H, where H is the subgroup of elements at pseudodistance 0 from the

identity. It is not normal in general. However in case d is bi-invariant (e.g. when

G is abelian), it is normal and Coneω(G, d) is then naturally a group endowed

with a bi-invariant distance.

Taking asymptotic cones is a functor between metric spaces, mapping large-

scale Lipschitz maps to Lipschitz maps and identifying maps at bounded distance.

In particular, it maps quasi-isometries to bilipschitz homeomorphisms.

3. Proof of Theorem 1.1

Fix a local field K and write G = A4(K); let us show that G has a quadratic

Dehn function. The proof below partly uses some arguments borrowed from the

metabelian case [CT], which apply to several subgroups of G (see Lemma 3.3),

as well as Gromov’s trick (see §3.C). However, the presence of a distorted center

entails bringing in several new arguments, gathered in §3.D.

3.A. Generation of G. Fix t ∈ K with |t| > 1. Let G ⊂ A4(K) be the

subgroup of elements whose diagonal (1, t22, t33, 1) consists of elements of the

form (1, tn2 , tn3 , 1) with (n2, n3) ∈ Z2. So G is closed and cocompact in A4(K)

and we shall therefore stick to G.

Let D be the set of diagonal elements in G and let T be the set of diagonal

elements as above with (n1, n2) ∈ {(±1, 0), (0,±1)}. Let Uij be the set of upper

unipotent elements with all upper coefficients vanishing except uij, and U1
ij the

set of elements in Uij with |uij| ≤ 1.

Define S = T ∪ W , where W =
⋃

1≤i<j≤4,(i,j)6=(1,4) U
1
ij. This is a compact,

symmetric subset of G. We begin by the easy

Lemma 3.1. The subset S generates G.

Proof. Observe that T generates D, and that for all (i, j) with i < j and (i, j) 6=
(1, 4), D and U1

ij generates DUij. Moreover U14 ⊂ [U12, U24]. So the subgroup

generated by S contains D and Uij for all i < j. These clearly generate G. �
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Actually, we need a more quantified statement. Let [T ] be the set of words in

T , and | · |T the word length in [T ].

Lemma 3.2. There exists a constant C > 0 such that every element in the n-ball

Sn can be written as

(3.1) d
9∏
i=1

tisit
−1
i ,

where d, ti ∈ [T ], si ∈ W , and |c|T ≤ n, |ti|T | ≤ Cn.

Proof. Start from an element g inG. It can be written in a unique way du12u23u34u13u24u14
with d ∈ D, uij ∈ Uij. In turn, u14 can be uniquely written as [v12, v24], where

the (1, 2)-entry of v12 ∈ U12 is 1 and v24 ∈ U24.

If we assume that |g|T ≤ n, then clearly |d|T ≤ n, and there exists a universal

constant C > 1 (only depending on the norm of t such that the nonzero upper-

diagonal entry of the uij or v24 is at most Cn. So each uij can be written as

γijsijγ
−1
ij , where γij ∈ [T ] has length ≤ C ′n an sij ∈ U1

ij. Similarly v24 can be

written this way. (Actually, C ′ = 1 works if K is ultrametric.) �

3.B. Subgroups of G with contracting elements. An easy way to prove qua-

dratic filling is the use of elements whose action by conjugation on the unipotent

part is contracting. Although G itself does not contain such elements, we will

show that it contains large enough such subgroups. More precisely, the proof that

G has a quadratic Dehn function (implicitely) consists in showing that G is an

amalgamated product of finitely many subgroups containing contractions (Abels

used a similar strategy to show that G is compactly presented).

Lemma 3.3. Let G1 (resp. G2, resp. G3, resp. G4) be the subgroup of matrices

in G such that x14 = x24 = x34 = 0 (resp. x12 = x13 = x14 = 0, resp. x12 = x23 =

x34 = x14 = 0, resp. x13 = x14 = x23 = x24 = 0). Then all Gi have quadratic

Dehn functions.

Proof. All the verification are based on a standard contraction argument. Let

us start by G1. Observe that in G1, the left conjugation by the diagonal matrix

q = (1, t, t2, 1) maps S into itself, so is 1-Lipschitz on (G, dS). Thus the right

multiplication by q−1 is 1-Lipschitz as well; it is moreover of bounded displace-

ment (as any right multiplication), actually 3. Moreover it is contractive on the

unipotent part. Since the 9-ball has nonempty interior, there exists a constant

C such that for any n, if B(n) is the n-ball around 1 in G, for every g ∈ B(n),

gqCn is at distance at most 9 from its projection to D.
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So starting from a loop of size n, Cn successive right multiplications by q

homotope it to a loop of the same size, in so that each element is at distance at

most 9 from its projection to D. Each of these multiplications has cost ≤ 3n,

provided that for every s ∈ S, the relator qsq−1s′−1 is in R, where s′ is the

unique element of S represented by qsq−1 (which holds if all relations of length

8 are relators). This loop can be homotoped to its projection to D, provided all

relations of size 20=9+1+9+1 are relators. Finally this loop in D has quadratic

area (provided the obvious commuting relator of D ' Z2 is a relator).

By symmetry, G2 is similar.

Finally, G3 is also similar, using instead of q the diagonal element q′ = (1, t−1, t, 1),

whose left conjugation contracts both U13 and U24, and q′−1 works for G4. �

3.C. Gromov’s trick. Let R(C, n) be the set of null-homotopic words of the

form
27∏
i=1

tisit
−1
i ,

where ti ∈ [T ], |ti| ≤ Cn, and si ∈ W .

Proposition 3.4. Let M be large enough, and define the set of relators as the

set of all words in S of length ≤M , that represent the trivial element of G. For

every C, there exists C ′ such that every word in R(C, n) has area ≤ C ′n2.

By Lemmas 3.1 and 3.2, as well as Gromov’s trick [CT, Prop. 4.3], to show that

G has a quadratic Dehn function, it is enough to show that null-homotopic words

that are concatenation of three words of the form (3.1) have quadratic area. By

an obvious conjugation and using that Z2 has a quadratic Dehn function, this

follows from Proposition 3.4, which we now proceed to prove.

3.D. Proof of Proposition 3.4. To simplify the exposition, we will adopt the

following convenient language: the phrase “the word w can be replaced by the

word w′, with a quadratic cost”, means that there are two universal constants

C1, C2 such that `(w′) ≤ C1`(w), and α(w−1w′) ≤ C2`(w)2. This will be denoted,

for short by: w  2 w
′.

Let J = {(i, j), 1 ≤ i < j ≤ 4, (i, j) 6= (1, 4)}. For (i, j) ∈ J , let exij be the

elementary matrix with entry (i, j) equal to x, and fix a word êxij of minimal

length in T ∪ U1
ij representing exij.

Using Lemma 3.3 (or the even easier observation that DUij has a quadratic

Dehn function for all (i, j)), Proposition 3.4 reduces to proving that, given c > 1,
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words of the form

(3.2) w =
27∏
k=1

êxkikjk (sup
k
|xk| ≤ cn)

have area in Oc(n
2).

Lemma 3.3 has the following immediate consequence.

Claim 3.5. We have

(1) [êu12, ê
v
23] 2 ê

uv
13 and êu13  2 [ê112, ê

u
23] ;

(2) [êu23, ê
v
34] 2 ê

uv
2,4 and êu24  2 [êu23, ê

1
34];

(3) [êu23, ê
v
24] 2 1;

(4) [êu23, ê
v
13] 2 1.

Claim 3.6. We have

(1) for any (i, j) ∈ J , êuij ê
v
ij  2 ê

u+v
ij and (êuij)

−1  2 ê
−u
ij ;

(2) [êu12, ê
v
34] 2 1;

(3) [êu13, ê
v
24] 2 1;

(4) [êu34, ê
v
24] 2 1;

(5) [êu12, ê
v
13] 2 1.

Claim 3.7. For every relation w as in (3.2), we have

(3.3) w  2 w1w2, where w1 = êu113 ê
v1
34 . . . ê

uq
13 ê

vq
34, and w2 = ê

u′1
12 ê

v′1
24 . . . ê

u′
q′

12 ê
v′
q′

24 ,

with q + q′ ≤ 27.

Proof. In w, we can, using Claim 3.5, shuffle all subwords of the form êxk23 to the

left. Some subwords of the form êy13 or êy24 appear: at most 272 = 729 (although

we can do much better). We can now aggregate all terms êxk23 to a single term

êx23, with quadratic cost by Claim 3.6(1); since w is null-homotopic, necessarily

x = 0, so we got rid of all elements êxk23 .

Next, using Claim 3.6, we can shuffle all subwords (êxk12 or êxk24 ) to the left, since

they commute with quadratic cost with the subwords of the form (êxk13 or êxk34 ). We

can aggregate when necessary consecutive subwords of the form êxkij using Claim

3.6(1). Since there are at most 27 subwords of the form êxk12 or êxk34 (or 12 instead

of 27 with some little effort), the claim is proved. �

We are led to reduce words as in (3.3). We first need the following general

formula. For commutators, we use the convention

[x, y] = x−1y−1xy.
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In any group and for any elements x1, . . . yk, we have, denoting xij = xixi+1 . . . xj,

(if i ≤ j) and defining similarly yij

(3.4) x1y1 . . . xkyk

= x1ky1k[y1k, x2k][x2k, y2k][y2k, x3k] . . . [x(k−1)k, y(k−1)k][y(k−1)k, xkk][xkk, ykk]

Thus, given w as in (3.3), and using Claim 3.6(1) several times, it can be

reduced, with quadratic cost, to a word of the form

êx13ê
y
12ê

z
34ê

t
24

52∏
i=1

[êxi13ê
yi
12, ê

zi
34ê

ti
24]

(−1)i ,

(here 52 = 2(27− 1), observing that the number of brackets in (3.4) is 2(k− 1)).

By projection, we have x = y = z = t = 0. Reshuffling as we did in the proof of

Claim 3.7, we obtain, with quadratic cost, the word

(3.5)
52∏
i=1

[êxi13, ê
zi
34]

(−1)i
52∏
i=1

[êyi12, ê
ti
24]

(−1)i .

We have proved

Claim 3.8. Every relation w as in (3.2), can be reduced with quadratic cost to a

relation as in (3.5).

We now recall the following formula due to Hall, valid in any group.

(3.6) [ab, [b, c]] · [bc, [c, a]] · [ca, [a, b]] = 1,

where ab = b−1ab. We also recall the simpler formula

(3.7) [ab, c] = [a, c]b [b, c].

Claim 3.9. We have

• [êx13, ê
y
34] 2 [ê112, ê

xy
24 ]

• [êx12, ê
y
24] 2 [ê113, ê

xy
34 ]

Proof. Both verifications are similar, so we only prove the first one. Define

(a, b, c) = (ê112, ê
x
23, ê

y
34). First observe that using Claim 3.5, êx13  2 [a, b], so

[êx13, ê
y
34] 2 [[a, b], c] = [c, [a, b]]−1.

Since [c, a]  2 1, we have [bc, [c, a]]  2 1 and [c, [a, b]]  2 [ca, [a, b]]; thus

applying Hall’s formula (3.6) to (a, b, c) we get

[c, [a, b]]−1  2 [ab, [b, c]].

On the other hand, using (3.7),

[ab, [b, c]] = [[b, a−1]a, [b, c]] = [[b, a−1], [b, c]]a · [a, [b, c]].
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Thus using Claim 3.5 and Claim 3.6(3), we get

[ab, [b, c]] 2 [êx13, ê
xy
24 ]a · [ê112, ê

xy
24 ] 2 [ê112, ê

xy
24 ].

So we proved [êx13, ê
y
34] 2 [ê112, ê

xy
24 ]. �

Define êr14 = [ê12, ê
r
24].

Claim 3.10. We have [êr14, ê
x
24] 2 1.

Proof. We have [êr14, ê
x
24] 2 [[ê113, ê

r
34], ê

x
24]. Since [ê113, ê

x
24] 2 1 and [êr34, ê

x
24] 2

1, it follows that [[ê113, ê
r
34], ê

x
24] 2 1. �

In the following claim, we use the identities, true in an arbitrary group: [a, b] =

[b, a−1]a and [a, bc] = [a, c][a, b]c.

Claim 3.11. We have (êr14)
−1  2 ê

−r
14 and êr14ê

s
14  2 ê

r+s
14 .

Proof.

(êr14)
−1 = [ê112, ê

r
24]
−1 = [êr24, ê

1
12] = [ê112, (ê

r
24)
−1]ê

r
24

Therefore, by Claims 3.6(1) and 3.10,

(êr14)
−1  2 [ê112, ê

−r
24 ]ê

r
24  2 [ê112, ê

−r
24 ] = ê−r14 .

For the addition, using Claim 3.6(1) and Claim 3.10

êr+s14 = [ê112, ê
r+s
24 ] 2 [ê112, ê

r
24ê

s
24] = [ê112, ê

s
24][ê

1
12, ê

r
24]

ês24 = ês14(ê
r
14)

ês14  2 ê
s
14ê

r
14. �

Conclusion of the proof of Proposition 3.4. By Claim 3.8, we start from a word

as in (3.5). By Claim 3.9, it can be reduced with quadratic cost to a word of

the form
∏104

i=1(ê
ri
14)

(−1)i . The inverse reduction in Claim 3.11 reduces this word

to
∏104

i=1 ê
(−1)iri
14 . The second one reduces it to ês14, with s =

∑
(−1)iri. Since this

is a null-homotopic word, s = 0 and we are done. �

4. Asymptotic cones and central extensions

4.A. Topology on the fundamental group. In order to determine the funda-

mental group of some asymptotic cones, it will be useful to equip it with a group

topology, and actually better, with a bi-invariant metric. We will see two possible

choices for such a metric, both being potentially interesting as they provide more

refined quasi-isometry invariants than the fundamental group alone. We shall use

them in order to state and prove Theorem 4.7 (which holds for both choices of

metric).

Let X be a topological space with base-point x0 with a basis of neighbourhoods

V . A naive way to define a topology on π1(X, x0) is as follows. For every V ∈ V ,
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define KV as the set of elements representable as a loop with image in V ; this

is a subgroup of π1(X, x0). However, there is, in general, no group topology

on π1(X, x0) such that (KV )V ∈V : indeed, it is not necessarily true (e.g. if X =

R2 −Q2) that if g is fixed and gi → 1, then ggig
−1 → 1 for this topology.

A natural solution is simply to replace KV by its normal closure. In other

words, define LV as the set of elements in π1(X, x0) that can be represented by

a finite product
∏k

i=1 ciγic
−1
i , where ci, γi are loops based at x0 and γi has image

in V . Clearly LV is a normal subgroup in π1(X, x0), and LV ∩ LW ⊃ LV ∩W for

all V,W ∈ V . It follows that the cosets of LV , for V ∈ V , form a basis of open

(actually clopen) sets for a topology on π1(X, x0), which is a group topology.

Equivalently, π1(X, x0) is endowed with the topology induced by the homomor-

phic mapping into
∏

V ∈V π1(X, x0)/LV , each π1(X, x0)/LV being discrete and the

product being endowed with the product topology. Then (X, x0) 7→ π1(X, x0) is

a functor from the category of pointed topological spaces to the category of topo-

logical group. In particular, any two homeomorphic pointed topological spaces

have their fundamental group isomorphic as topological groups.

If the topology of X is defined by a metric d, this topology is pseudo-metrizable,

where the pseudo-distance of a loop γ to the identity is defined as inf{ε > 0 :

γ ∈ LB(ε)}, where B(ε) is the closed ε-ball around x0. This pseudo-distance is

bi-invariant and satisfies the ultrametric inequality. Then (X, x0) 7→ π1(X, x0) is

a functor from the category of pointed metric spaces with pointed isometric (resp.

Lipschitz) maps, to the category of pseudo-metric groups. In particular, any two

isometric (resp. bilipschitz) pointed metric spaces have their fundamental groups

isometrically (resp. bilipschitz) isomorphic as pseudo-metric groups.

4.B. Central subgroups and liftings. Let G be a locally compact compactly

generated group and Z a closed central subgroup. Fix an ultrafilter ω once and

for all. Assume that Coneω(Z) is totally disconnected, where Z is always endowed

with the word metric from G.

If X is a metric space with base-point x0, denote by P(X) the set of paths in

X based at x0, i.e. of continuous bounded maps from R+ to X mapping 0 to x0
(in the sequel since the considered metric spaces will be homogeneous, the choice

of x0 won’t matter and therefore will be kept implicit). This is a metric space

with the sup distance.

There is an obvious 1-Lipschitz map ψ : P(Coneω(G)) → P(Coneω(G/Z)).

As Z is abelian, Coneω(Z) is a topological abelian group in the natural way;

moreover Z being central, the action of Z on G by (left) multiplication induces

an action of Coneω(Z) on Coneω(G) such that Coneω(G/Z) indentifies with the
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set of Coneω(Z)-orbits under this action1. Moreover, and once again because Z

is central, for every x ∈ Coneω(G) and z, z′ ∈ Coneω(Z), we have

d(z, z′) = d(zx, z′x).

In particular the action is free.

The fundamental observation is the following proposition.

Proposition 4.1. If Coneω(Z) is ultrametric, then the above map ψ is a (1/3, 1)-

bilipschitz homeomorphism.

Thus we have to lift paths from Coneω(G/Z) to Coneω(G). The easier part is

uniqueness, i.e. injectivity of u.

Let X ⊂ Coneω(G)2 be the graph of the equivalence relation of the action of

Coneω(Z). Then there is a map s : X → Coneω(Z) mapping (x, y) to the unique

z such that zx = y. This map is Lipschitz: indeed if s(x, y) = z and s(x′, y′) = z′,

then

d(z, z′) = d(zx, z′x) ≤ d(zx, z′x′) + d(z′x′, z′x) = d(y, y′) + d(x, x′).

We can now prove

Lemma 4.2. The map ψ is injective.

Proof. Assume that ψ(u) = ψ(v). This means that (u(t), v(t)) ∈ X for all t.

So there is a well-defined continuous map σ : t 7→ s(u(t), v(t)) with values in

Coneω(Z), with σ(0) = 1. As the latter is assumed to be totally disconnected,

the map σ has to be constant, hence equal to 1, i.e. u = v. �

Lemma 4.3. The map ψ has dense image.

To prove this we first need the following lemma.

Lemma 4.4. Let G be group endowed with a word metric with respect to some

generating subset S. Let N be a closed normal subgroup, and endow G/N with

the word metric with respect to the image of S. Fix ε > 0. Consider x ∈
Coneω(G) and y, y′ ∈ Coneω(G/N) satisfying d(y, y′) ≤ ε and p(x) = y, where p

is the natural projection. Then there exists x′ ∈ Coneω(G) with d(x, x′) ≤ ε and

p(x′) = y′.

Proof. By homogeneity, we can suppose that x = 1. Write y′ as a sequence

(yn) with limω d(yn, 1) ≤ 1, and lift yn to an element xn of G with the same

1It turns out that this identification holds as metric spaces: the distance on Coneω(G/Z)
coincides with the distance between Coneω(Z)-orbits in Coneω(G).
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word length. Then (xn) defines an element x′ of Coneω(G) with the required

properties. �

Proof of Lemma 4.3. Let v be an element of P(Coneω(G/Z)) and fix ε > 0.

There exists a sequence 0 = t0 < t1 < . . . tending to infinity such that every

segment [ti, ti+1] is mapped by v to a set of diameter at most ε. By applying

inductively Lemma 4.4, there exists a sequence (xi) in Coneω(G) such that x0 = 1,

p(xi) = v(ti) and d(xi, xi+1) ≤ ε for all i. As Coneω(G) is geodesic, we can find

a continuous function u : R+ → Coneω(G) such that u(ti) = xi for all i and u

is geodesic on every segment [ti, ti+1] (in the sense that for some constant ci ≥ 0

and all t, t′ in this segment, d(u(t), u(t′)) = ci|t− t′|). Then d(p ◦ u, v) ≤ 2ε, and

observe that ψ(u) = p ◦ u by definition of ψ. �

Let Pg denote the set of elements u of P(Coneω(G)) such that there exists

0 = t0 < t1 < . . . tending to infinity such that u is geodesic in restriction to each

[ti, ti+1] and such that the projection

p : Coneω(G)→ Coneω(G/Z)

is isometric in restriction to u([ti, ti+1]). We summarize this as: the sequence

0 = t0 < t1 < . . . is u-good; if moreover d(u(ti), u(ti+1)) ≤ ε for all i, we call

it (u, ε)-good; note that given ε > 0, any u-good sequence can be refined to a

(u, ε)-good sequence. The proof of Lemma 4.3 actually shows that ψ(Pg) is dense

in P(Coneω(G/Z)).

Lemma 4.5. Suppose that Coneω(Z) is ultrametric. Then the map ψ−1 is 3-

Lipschitz on ψ(Pg).

Proof. Let u, v belong to Pg with d(p ◦ u, p ◦ v) = σ. Fix ε > 0. Consider a

sequence 0 = t0 < t1 < . . . which is both (u, ε) and (v, ε)-good. By Lemma

4.4, there exists wi such that p(wi) = p(u(ti)) and d(wi, v(ti)) ≤ σ (we choose

w0 = 1). Set zi = s(u(ti), wi), i.e. wi = ziu(ti). Then

d(zi, zi+1) = d(ziu(ti), zi+1u(ti)) ≤ d(ziu(ti), v(ti)) + d(v(ti), v(ti+1))+

d(v(ti+1), zi+1u(ti+1)) + d(zi+1u(ti+1), zi+1u(ti))

≤ σ + ε+ σ + ε.

As Coneω(Z) is ultrametric, we obtain that d(1, zi) ≤ 2σ + 2ε for all i. So

d(wi, u(ti)) ≤ 2σ+2ε for all i, and so d(u(ti), v(ti)) ≤ 3σ+2ε for all i. Accordingly,

d(u(t), v(t)) ≤ 3σ+3ε for all t. As ε is arbitrary, we obtain d(u(t), v(t)) ≤ 3σ. �



DEHN FUNCTION AND ASYMPTOTIC CONES OF ABELS’ GROUP 15

Proof of Proposition 4.1. It follows from Lemma 4.5 that ψ−1 extends to a 3-

Lipschitz map ϕ defined on the closure of ψ(Pg), which is by Lemma 4.3 all of

P(Coneω(G/Z)); moreover by density and continuity, ψ ◦ ϕ is the identity on

P(Coneω(G/Z)). So ψ is surjective and is duly (1/3, 1)-bilipschitz. �

If X is a metric space with base-point x0, denote by L(X) the set of continuous

loops based on x0. It can be naturally viewed as a closed metric subspace of

P(X), by extending all function as constant equal to the base point beyond 1.

In particular, all the above can be applied.

Take again G,Z . . . as above and keep assuming that Coneω(Z) is ultrametric.

If u ∈ L(Coneω(G/Z)), define µ(u) = ϕ(u)(1). This defines a 3-Lipschitz map

µ : L(Coneω(G/Z))→ Coneω(Z).

In particular, being continuous and mapping to a totally disconnected space, it

factors through a map

µ̃ : π1(Coneω(G/Z))→ Coneω(Z).

Clearly, µ = 1 in restriction to ψ(L(Coneω(G))). Therefore the following compo-

sition is trivial

π1(Coneω(G))→ π1(Coneω(G/Z))
µ̃→ Coneω(Z).

The map µ̃ is surjective: this is a trivial consequence of the path-connectedness

of Coneω(G).

The lifting map ϕ = ψ−1 allows to lift homotopies and as a direct consequence

we get the injectivity of the map π1(Coneω(G))→ π1(Coneω(G/Z)).

Finally, if u is in the kernel of µ̃, then this means that ϕ(µ) is a loop of which

u is the image. So we get an exact sequence of groups

(4.1) 1→ π1(Coneω(G))→ π1(Coneω(G/Z))
µ̃→ Coneω(Z)→ 1.

It is actually, in a reasonable sense, an exact sequence in the context of metric

groups with Lipschitz maps.

Definition 4.6. Given three metric groups (groups endowed with left-invariant

pseudometrics), we call an exact sequence

1→ N
ι−→ G

p−→ Q→ 1

Lipschitz-exact2 if ι is Lipschitz, and there exist constants C,C ′ > 0 such that

(4.2) Cd(g,Ker(p)) ≤ d(1, p(g)) ≤ C ′d(g,Ker(p))

2We do not require ι to be a bilipschitz embedding, so this could be called “right Lipschitz-
exact exact sequence”; however we shall not use this stronger notion of being Lipschitz-exact.



16 YVES CORNULIER, ROMAIN TESSERA

for all g ∈ G.

Inequality (4.2) says that the distance between elements in Q is bi-Lipschitz

equivalent to the distance between corresponding N -cosets in G. In particular

the right-hand inequality in (4.2) means that p is C ′-Lipschitz. Observe that if

N is trivial, (4.2) just means that p : G→ Q is a bilipschitz isomorphism.

In our case, the exact sequence (4.1) is Lipschitz-exact with constants 1 and 3.

The right-hand inequality follows from the combined facts that Z is commutative

(hence conjugations disappear in the image) and ultrametric (so that a large

product of small loops is still small).

To check the non-trivial left-hand case, take u ∈ π1(Coneω(G/Z)). Fixing a

representing element in L(Coneω(G/Z)), lift it (through ϕ), extend it to a closed

loop via a geodesic of length d(1, µ̃(u)), and take the image by p. We get an

element of Ker(µ̃) at distance ≤ d(1, µ̃(u)) of u.

Finally we get

Theorem 4.7. Let G be a locally compact, compactly generated group and Z a

closed, central subgroup. Endow G with a word length with respect to a compact

generating subset and let Z be endowed with the restriction of this word length.

Given a nonprincipal ultrafilter ω, assume that Coneω(Z) is ultrametric. Then

the sequence

1→ π1(Coneω(G))→ π1(Coneω(G/Z))
µ̃−→ Coneω(Z)→ 1

is a Lipschitz-exact sequence of metric groups.

Corollary 4.8. If Coneω(G) is simply connected, then

π1(Coneω(G/Z))
µ̃−→ Coneω(Z)

is a bilipschitz isomorphism of metric groups.

4.C. Ultrametric on Abels’ group. Let K be a local field. On SLd(K), define

a left-invariant pseudometric d(g, h) = `(g−1h), where ` is the length defined as

follows

• If K is ultrametric, `(A) = supi,j log |Aij|;
• if K is Archimedean, `(1) = 0 and `(A) = supi,j log |Aij|+ C, where C is

a large enough constant (C ≥ log d works).

This length is equivalent to the word length with respect to a compact generating

subset. Moreover, the embedding A4(K) ⊂ SL4(K) is quasi-isometric, therefore

we can endow A4(K) (or any cocompact lattice therein) with the restriction of

this distance, which is equivalent to the word distance.
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We immediately see that this distance is ultrametric in restriction to Z(K) ⊂
A4(K) if K is ultrametric, and quasi-ultrametric in the case of K Archimedean,

namely satisfies d(x, z) ≤ max(d(x, y), d(y, z)) + log(2). Thus, in all cases,

Coneω(Z(K)) is ultrametric.

Thus, Corollary 4.8 can be applied along with Theorem 1.1. This yields Corol-

lary 1.4.

Corollary 4.9. The group GK = A4(K)/Z(K) has an asymptotic cone with

abelian uncountable fundamental group. Precisely, the fundamental group of

Coneω(GK) is isomorphic, as an abstract group, with F(R) (direct sum of contin-

uum copies of F), where F is the prime field of the same characteristic as K (Q

or Fp).

Actually, the fundamental group is isomorphic, as a topological group, to

(F(κ1))κ0 , a countable product of the direct sum of continuum copies of F. This

is established in Theorem 6.10 when K has characteristic p, but the proof carries

over the remaining case F = Q.

5. Examples with lattices

Let R be either Fp[t, t
−1, (t − 1)−1], or the ring of integers of a totally real

number field of degree 3.

Theorem 5.1. The group A4(R) is finitely presented and has a quadratic Dehn

function.

The proof consists of embedding R as a cocompact lattice in a certain larger

group.

There is a natural cocompact embedding R ⊂ K, where K is the locally com-

pact ring R3 or Fp((t))
3. Note that A4(R) is not cocompact in A4(K), because R×

is not cocompact in K×. However R× is cocompact in K×1 , the closed subgroup

of elements in K× for which the multiplication preserves the Haar measure in K.

Let A4(K)1 be the set of elements of A4(1), both of whose diagonal entries are

in K×1 , so A4(R) is cocompact in A4(K)1. Theorem 5.1 follows from

Theorem 5.2. A4(K)1 has a quadratic Dehn function.

On the proof. The proof is strictly analogous to that of A4 of a local field, so we

do not repeat the technical details. The only difference lies in the proof of Claims

3.5 and 3.6. It could be proved by using the natural generalization of Lemma

3.3. However this would be more difficult as there is no “contracting element”

in the subgroups involved, because of the restriction on the determinant of the
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diagonal elements. Recall that K is now a product of three local fields, say

K = K1 ×K2 ×K3. Define J ′ = J × {(1, 2, 3)}, and let, for (i, j,m) ∈ J ′, Uijm
be the set of elements in Uij(K) whose (i, j)-entry is in Km.

The claims have to be written as

Claim 5.3. For all (i, j,m) ∈ J ′, we have

• êxijmê
y
ijm  2 ê

x+y
ijm ; (êxijm)−1  2 ê

−x
ijm;

• if (k, `, n) ∈ J ′ with (j,m) 6= (k, n), [êxijm, ê
y
k`n] 2 1;

• if (j, k,m) ∈ J ′ and (i, k) 6= (1, 4), [êxijm, ê
y
jkm] 2 ê

xy
ikm.

It is proved by showing that each of these relations hold in a smaller subgroup

with a quadratic Dehn function, using the following substitute for Lemma 3.3:

Lemma 5.4. For all (i, j,m), (k, `, n) ∈ J , such that (j,m) 6= (k, n), DUijmUk`n
has a quadratic Dehn function; for each (i, j,m), (j, k,m) ∈ J with (i, k) 6= (1, 4),

DUijmUjkmUikm has a quadratic Dehn function.

Proof (sketched). The point is, for each of these groups, to find in D a contracting

element. Most cases were already considered in the proof of Lemma 3.3. The

only remaining ones (1, i,m) and (i, 4, n) with m 6= n and i ∈ {2, 3}. To do it,

it is enough to find an element in K×1 contracting Km and dilating Kn. This is

well-known and was already done in [CT]. �

Proof of Corollary 1.6. The proof of Corollary 4.9, without changes, proves that

π1(Coneω(A4(R
3)1/Z(R3))) is isomorphic, as an abstract group, to Q(R). Since

Λ is a lattice in A4(R
3)1/Z(R3), the same result holds for π1(Coneω(Λ)).

By [Gro, Corollary 3.F′5], every connected solvable Lie group has an at most

exponential Dehn function, so every polycyclic group has an at most exponential

Dehn function. Since Z(R3) is central and exponentially distorted, for every

path γ of linear size in A4(R
3)1 joining the identity to an element of exponential

size in Z(R3), the image of γ in A4(R
3)1/Z(R3) has (at least) exponential area.

Thus A4(R
3)1/Z(R3), and therefore Λ as well, has an at least exponential Dehn

function. Finally, we conclude that Λ has an exactly exponential Dehn function.

�

Corollary 1.7 follows from Theorem 5.2, because A4(Fp[t, t
−1, (t − 1)−1]) is a

cocompact lattice in A4(Fp((t))
3)1.

Remark 5.5. The group A4(Fp[t]) is not finitely generated. Indeed, consider

its subgroup H of matrices (aij) satisfying a22 = 1. Since the group of invertible
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elements in Fp[t] is reduced to F×p , H has finite index (namely, p−1) in A4(Fp[t]).

There is a surjective homomorphism H → Fp[t], mapping a matrix as above to

a12. Since Fp[t] is not finitely generated as a group, it follows that H is not

finitely generated, nor is its overgroup of finite index A4(Fp[t]).

From similar but more elaborate reasons, A4(Fp[t, t
−1]) is not finitely presented

(its finite generation is an easy exercise). Indeed, define L as those matrices for

which aij is some power of t. Since the group of invertible elements in Fp[t, t
−1]

consists of utk for u ∈ F×p and k ∈ Z, L has index p− 1 in A4(Fp[t, t
−1]). There

is a homomorphism φ from L to GL2(Fp[t, t
−1]), mapping a matrix to its 2 × 2

northwest block, so that

φ(L) =

{(
1 Q
0 tk

)
: Q ∈ Fp[t, t

−1], k ∈ Z

}
.

The latter group is isomorphic to the lamplighter group FpoZ and is not a quotient

of a finitely presented solvable group [Bau, BS]. So L is not finitely presented,

nor is its overgroup of finite index A4(Fp[t, t
−1]).

6. Cones of subgroups of F
(N)
p

Let N be the set of positive integers (so 0 /∈ N). Consider the group F
(N)
p

(with basis (δn)n∈N), with left-invariant ultradistance defined by the length |u| =
sup{n : un 6= 0}. Each subgroup is endowed with the induced distance. Observe

that the ball of radius n has cardinality pn.

For every subset J of N, we endow the subgroup F
(J)
p with the induced metric.

The purpose of this section is to study the topological groups Coneω

(
F

(J)
p

)
in terms of properties of the subset J and of the ultraproduct ω. This analysis

culminates in a classifications of these cones up to continuous isomorphism (see

Theorem 6.10).

The relevance of this study comes from Corollary 4.8: indeed, since F
(I)
p can

be viewed as a bilipschitz embedded central subgroup of A4(Fp[t, t
−1, (t− 1)−1]),

there is an isomorphism

(6.1) Coneω
(
F(J)
p

)
' π1

(
Cone

(
A4(Fp[t, t

−1, (t− 1)−1])/F(J)
p

))
6.A. Cones of F

(N)
p .

Lemma 6.1. Let X be a metric space and x0 a base-point. Let cn be the min-

imal number of closed n-balls needed to cover the closed 2n-ball around x0. If

ω is a nonprincipal ultrafilter and limω cn = ∞, then Coneω(X) has continuum

cardinality.
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Proof. Let Cn be a set of cn points in the 2n-ball, at mutual distance at least

n. There is a natural map from the ultraproduct
∏ω Cn → Coneω(X), which

maps any two distinct points at distance at least 1. If we show that
∏ω Cn has

continuum cardinality, we are done. To check the latter (which is well-known),

since it is no longer related to the original metric on Cn, we can now identify

Cn with the subset {0, 1/cn, . . . , (cn − 1)/cn} of [0, 1], and map any u ∈
∏ω Cn

to φ(u) = limω un ∈ [0, 1]. Then this map
∏

ω Cn → [0, 1] is easily shown to be

surjective. �

Lemma 6.2. If X is a separable metric space, then Coneω(X) and π1(Coneω(X))

have cardinality at most continuum.

Proof. If D is a countable dense subset, every element of Coneω(X) is determined

by a sequence in D, whence the conclusion. Also, every loop Coneω(X) is deter-

mined by a continuous map from a dense subset C of the circle, to Coneω(X).

Since (2ℵ0)ℵ0 = 2ℵ0 , we are done. �

Lemma 6.3. For every nonprincipal ultrafilter, Coneω

(
F

(N)
p

)
is isomorphic, as

an abstract group, to a Fp-vector space of continuum dimension.

Proof. It is obviously of p-torsion, so it is enough to check it has continuum

cardinality. This follows from Lemma 6, observing that the cardinality of a ball

of radius 2n is pn times larger than the cardinality of the ball of radius n. �

6.B. Subgroups with cone of finite rank. If x ∈ N, define

σJ(x) = inf
y∈J
| log(x/y)|.

It measures the “multiplicative distance” from x to J.

Lemma 6.4. Let J be a subset of N and ω a nonprincipal ultrafilter. Then

Coneω

(
F

(J)
p

)
is trivial if and only if limn→ω σJ(n) =∞.

Proof. Suppose that limn→ω σJ(n) = ` <∞. So there is K ∈ ω with σJ(n) ≤ 2`

for all n ∈ K. For all n ∈ K, let m(n) be an element of K with | log(n/m(n))| ≤
2`, in other words, m(n) ∈ [e−2`n, e2`n]. Define u(n) ∈ F

(J)
p as follows: u(n) =

δm(n) if n ∈ J and u(n) = 0 if n /∈ J . So |u(n)| ≤ e2`n for all n, so that (u(n))

defines an element of Coneω

(
F

(J)
p

)
; moreover its norm is at least e−2` so it is a

nonzero element.

Conversely, assume that Coneω

(
F

(J)
p

)
is nontrivial; let (u(n)) be a nontrivial

element, so |u(n)| ≤ Cn for all n and limω |u(n)|/n = c > 0. Define K =
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{n ≥ 1 : |u(n)| ≥ cn/2, so K ∈ ω. For n ∈ K, |u(n)| ∈ J and thus σJ(n) ≤
max(| log(c/2)|, | log(C)), thus limω σJ <∞. �

We need to refine the function σ. Suppose that J is infinite (otherwise F
(J)
p

is bounded and all its asymptotic cones are points). For n ∈ N, let φJ,n be a

bijection N → J such that σ
(m)
J (n) := (| log(n/φJ,n(m))|) is nondecreasing with

respect to m. Thus σ
(1)
J (n) is the multiplicative distance from m to J ; if a closest

point m in J from n is removed, σ
(2)
J (n) is the multiplicative distance from n to

J − {m}, and so on. The following lemma extends Lemma 6.4.

Lemma 6.5. Let ω be a nonprincipal ultrafilter and J ⊂ N an infinite set. Then

Coneω

(
F

(J)
p

)
has rank less than q if and only if limω σ

(q)
J =∞.

Proof. Suppose that limω σ
(q)
J <∞. For 1 ≤ i ≤ q, let ui be the sequence ui(n) =

σ
(i)
J (n). We can alter ui outside some subset in ω, to ensure that ui has at most

linear growth. Then (ui)1≤i≤k is easily seen to be Fp-free in Coneω

(
F

(N)
p

)
. �

Proof of Corollary 1.9. Set I = {22n : n ∈ N}. Then it follows from Lemma 6.5

that Coneω

(
F

(I)
p

)
has rank less than one. If moreover I ∈ ω then it has rank

one. So the result follows from (6.1). �

Let I be a fastly growing set of positive integers (I = {αm : m ≥ 0}, where

αm+1/αm →∞), and (In)n∈N a partition of I into infinite sets. For every n ∈ N,

let ωn be an ultrafilter supported by In.

Proposition 6.6. The map

{Subsets of N} → {Subsets of N}
J 7→

{
n : Coneωn

(
F(J)
p

)
is trivial

}
is surjective.

Proof. Write H(J) = F
(J)
p . Let M be a subset of N and W (M) =

⋃
n∈M In.

Let us check that {n : Coneωn(H(W (M))) is trivial} is exactly the complement

N−M . Indeed, if n ∈ M then In ⊂ W (M), so σW (M)(m) = 1 for all m ∈ In so

limωn σW (M) = 1 and Coneωn(H(W (M)) is nontrivial by Lemma 6.4. Conversely,

if n /∈ M , then limn∈In,n∈∞ σW (M) = ∞ (because I is a fastly growing set), so

limωn σW (M) =∞, so Coneωn(H(W (M)) is trivial, again by Lemma 6.4. �

Proposition 6.6 together with (6.1) prove Corollary 1.8.
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6.C. Topological properties of the cone.

Lemma 6.7. Let G be a group endowed with a biinvariant complete Hausdorff

ultrametric. Then G is the projective limit of G/Gr, Gr its closed r-ball, when

r → 0. In particular, if Gr has finite index for all r > 0, then G is compact.

Proof. The fact that the distance on G is ultrametric implies that Gr is a sub-

group, and its bi-invariance that Gr is normal. Hence the projective limit itself

is a group, endowed with an ultra bi-invariant metric such that the closed ball

of radius r consists of (gs)s>0 such that gs = 1G/Gs for all s > r. This metric

makes the natural continuous homomorphism ψ from G to the projective limit

an isometry onto its image. But since the latter is dense and G is complete, ψ is

an isomorphism of metric groups. �

We say that J ⊂ N is ω-doubling if, denoting jn = #(J ∩ {1, . . . , n}), for all

c, C ∈ N we have limω(jCn− jcn) <∞, lower ω-semidoubling if for some C0, this

is true for all c and all C ≤ C0 and upper ω-semidoubling if for some c0, this

is true for all C and c ≥ c0. We say that a metric space is σ-bounded if it is a

countable union of uniformly bounded subsets.

Recall that a metric space is proper if all closed bounded subsets are compact.

Lemma 6.8. Let J be an infinite subset of N. Then J is ω-doubling if and

only if Coneω

(
F

(J)
p

)
is proper (and otherwise it contains a closed bounded dis-

crete subgroup of continuum cardinality); J is lower ω-semidoubling if and only

if Coneω

(
F

(J)
p

)
is locally compact; J is upper ω-semidoubling if and only if

Coneω

(
F

(J)
p

)
is σ-bounded (and otherwise every ball has continuum index).

Proof. Denote by Gr (Hr) the closed (open) r-ball in Coneω

(
F

(J)
p

)
; both are

open subgroups.

Let us first check that if GC is compact then we have limω(jCn − jcn) <∞ for

all c > 0.

Fix C, c > 0 and suppose limω(jCn−jcn) =∞. Let Jn be the set of elements in

J∩[cn/2, Cn]. Then there is an obvious homomorphism φ from
∏

ω F
(Jn)
p to the C-

ball in Coneω

(
F

(N)
p

)
, mapping any two distinct elements at distance≥ c/2. Since

limω(jCn − jcn) = ∞, limω #Jn = ∞, so we obtain a infinite, closed discrete set

in the C-ball of Coneω

(
F

(N)
p

)
, which is therefore not compact. So Coneω

(
F

(J)
p

)
is not proper; if moreover for all C there exists c such that limω(jCn − jcn) =∞,

then we deduce that Coneω

(
F

(J)
p

)
is not locally compact. Besides, if for all c
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there exists C such that limω(jCn − jcn) = ∞, we deduce that every ball has

continuum index in Coneω

(
F

(J)
p

)
.

Let us now check an almost converse, namely assume that limω(jCn−jcn) <∞,

for all c then Hc is compact.

First suppose that limω(jCn − jcn) < ∞ for a given c > 0. Let Jn and φ be

defined as above. Consider the composite homomorphism
∏

ω(F
(Jn)
p )

φ→ GC →
GC/Gc. We claim that it its image contains HC/Hc. Indeed, let (un) be in HC ; we

can suppose that |un| ≤ Cn for all n. Set Kn = J ∩ [0, cn/2[. Write un = vn +wn
with vn ∈ F

(Jn)
p and wn ∈ F

(Kn)
p . Then |wn| ≤ cn, so (un) = (vn) modulo Gc,

while clearly (vn) is in the image of φ.

It follows from Lemma 6.7 that HC is compact. If this is true for all C, we

deduce that Coneω

(
F

(J)
p

)
is proper; if this is true for C small enough, this implies

that Coneω

(
F

(J)
p

)
has a compact open subgroup and therefore is locally compact.

If this is true for c large enough, it follows that the closed c-ball has finite index

in any larger ball, so has at most countable index in Coneω

(
F

(J)
p

)
. �

For infinite J ⊂ N, C > 1, and n ∈ N, let ρC(n) be the smallest element in

J ∩ [Cn,∞[; for c < 1 let λc(n) be the largest element in {0} ∪ J ∩ [0, cn].

Lemma 6.9. Coneω

(
F

(J)
p

)
is bounded if and only if limω ρC(n)/n =∞ for some

C > 1, and is discrete if and only if limω λc(n)/n = 0 for some c < 1.

Proof. Suppose that limω ρC(n)/n = ∞. Then Coneω

(
F

(J)
p

)
is equal to its

closed C-ball. Conversely if Coneω

(
F

(J)
p

)
is equal to its open C-ball, then

limω ρC(n)/n = ∞. The verifications are straightforward and the other equiva-

lence is similar. �

6.D. A classification result. We can now classify the groups Coneω

(
F

(J)
p

)
modulo isomorphism of topological groups. Let κ0 be the countable cardinal,

and κ1 = 2κ0 be the continuum cardinal. By F
(κ1)
p we denote the direct sum of

κ1 copies of the cyclic group Fp, with the discrete topology. By Hκ0 we denote

the product of κ0 copies of H, with the product topology.

Theorem 6.10. Let J ⊂ N be a subset and G = Coneω

(
F

(J)
p

)
. Then, denoting

by ' the isomorphy relation within topological groups

• If G is not locally compact, then G ' (F
(κ1)
p )κ0.

• If G is discrete, then

– if G is bounded and proper, G ' Fn
p for some finite n;
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– if G is unbounded and proper, G ' F
(κ0)
p

– if G is not proper, G ' F
(κ1)
p ;

• If G is locally compact and not discrete, then

– if G is bounded and proper, G ' Fκ0
p ;

– if G is unbounded and proper, G ' Fκ0
p × F

(κ0)
p

– if G is not proper, G ' Fκ0
p × F

(κ1)
p ;

The discussion whether G is locally compact, discrete, bounded, σ-bounded,

and determining the value of n in case G is finite, is settled by Lemmas 6.5, 6.8,

and 6.9.

Proof. Note that G is abelian of exponent p, and has cardinality ≤ κ1 by Lemma

6.2. If G is discrete, it is therefore isomorphic to F
(κ)
p for a certain cardinal κ.

The first two statements are clear, and if G is discrete and not proper, Lemma

6.8 shows that G has continuum cardinality.

If G is locally compact, as any locally compact abelian group, it has a compact

subgroup K such that G/K is a Lie group; since its identity component (G/K)0

has exponent p, it has to be trivial so G/K is discrete. As a Fp-vector space, K

admits a complement in G, so G ' K ⊕ L as topological group, with L discrete.

Since K is compact, Pontryagin duality shows that K ' FX
p for some set X, while

L ' F
(Y )
p . Since G is nondiscrete, X is infinite. If G is proper and bounded, it

is compact, so G ' FX
p ; if G is proper and unbounded, so is L, so L ' F

(κ0)
p . If

G is not proper, then by Lemma 6.8 it contains a closed subgroup isomorphic to

F
(κ1)
p , so G/K does as well, so L ' F

(κ1)
p .

Besides (still assuming G locally compact and nondiscrete), some ball GR of G

is compact, and by Lemma 6.7 is projective limit of the discrete groups GR/Gr

when r → 0. Compactness implies that GR/Gr is finite. So GR is isomorphic to

Fκ0
p and therefore K as well.

Finally assume that G is not locally compact. By Lemma 6.8, for every Fp ≤ ∞
there exists 0 < c < C such that GC/Gc has continuum cardinality. Hence define

a decreasing sequence (εn), tending to zero, such that Gεn/Gεn+1 has continuum

cardinality for all n (and ε0 =∞). So G is the projective limit of all G/Gεn . Let

Ln be a complement subgroup of Gεn in Gεn−1 (where G0 = G). So

G = Gε0 = L1 ⊕Gε1 = L1 ⊕ L2 ⊕Gε2 = · · ·
k⊕
i=1

Li ⊕Gεk = . . .

This provides a homomorphism ι : G →
∏
Li, clearly injective. Also map a

sequence ` = (`i) in
∏
Li to the sequence ρ(`) = (

∏k
i=1 `i)k, which belongs to the
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projective limit. This ρ is a continuous homomorphism and ι ◦ ρ is the identity,

so ι is a topological isomorphism. Since each Li is isomorphic to F
(κ1)
p , we are

done. �

Proposition 6.11. The group G = Coneω(R, log(1 + | · |)) is topologically iso-

morphic to (Q(κ1))κ0 (where κ1 = 2κ0 and κ0 is countable).

Proof. This metric on R satisfies the quasi-ultrametric condition

d(x, z) ≤ max(d(x, y), d(y, z)) + log(2),

so G is ultrametric; it is readily observed that the index between any two balls

is continuum �

6.E. Non-bilipschitz cones.

Lemma 6.12. There exists a subset I ⊂ N such that for every n and every

J ⊂ {1, . . . , n}, there exists m ∈ N such that I ∩ [n−1m,nm] = {jm : j ∈ J}.

Proof. Construct I by an obvious induction, after enumerating finite subsets of

N. �

Lemma 6.13. Let I be a subset satisfying the conditions of Lemma 6.12, and

view I as a metric space, for the distance induced by the inclusion I ⊂ R. Then

for every J ⊂ N, there exists an ultrafilter ω such that Coneω(I) = {0} ∪ J .

Proof. For every n, there exists mn such that I ∩ [n−1mn, nmn] = {jm : j ∈
J, j ≤ n}. Clearly, we can arrange (mn) to tend to infinity. If {mn : n ∈ N} ∈ ω,

then Coneω(I) = {0} ∪ J . �

Proposition 6.14. Let I ⊂ N be a subset satisfying the conditions of Lemma

6.12. Then there are continuum many cones Coneω(F
(I)
p ), up to bilipschitz group

isomorphism, when ω ranges over nonprincipal ultrafilters of N. Moreover, the

topological group Coneω(F
(I)
p ) achieves all types described in Theorem 6.10 that

are proper.

In view of (6.1), Corollary 1.10 follows from Proposition 6.14.

Proof of Proposition 6.14. If X is a metric space, define

D(X) = {log(d(x, y)) : x 6= y ∈ X}.

If T ⊂ R≥0, define `(T ) = {log(y), y ∈ T − {0}}. If X, Y are bilipschitz, then

`(D(X)) and `(D(Y )) are at bounded Hausdorff distance.
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DenoteH(J) = F
(J)
p . It is straightforward that ifX is an isometry-homogeneous

metric space,

D(Coneω(X)) = Coneω(D(X)).

Note that for J ⊂ N, we have D(H(J)) = J . Let L = {22n : n ∈ N}. Then if

J,K ⊂ L are subsets of L, if `(J) and `(K) are at bounded distance then J and

K coincide up to a finite set.

Let I be as in Lemma 6.13, so for every J ⊂ N, there exists ω(J) such that

Coneω(J)(I) = {0} ∪ J .

We have, for any J ⊂ N,

D(Coneω(J)(H(I))) = Coneω(J)(D(H(I))) = Coneω(J)(I) = {0} ∪ J,

so

`(D(Coneω(J)(H(I))) = `(J).

Taking continuum many J = Ji so that the `(Ji) are pairwise at infinite Hausdorff

distance, we obtain that the Coneω(Ji)(H(I)) are pairwise non-bilipschitz.

To prove the last statement, use the following notation: in Lemma 6.12, write

m = m(J, n). Fix k ≥ 0 and for n ≥ k, set Jn = {1, . . . , k} ⊂ {1, . . . , n}.
Let ω be an ultrafilter containing {m(Jn, n) : n ≥ k}. Then by Lemma 6.5,

Coneω(H(I)) ' Fk
p.

Now set Kn = {1, . . . , n} and let ω be an ultrafilter containing {m(Kn, n) :

n ≥ 1}. Then Coneω(H(I)) is proper by Lemma 6.8 and discrete by Lemma 6.9,

so by Theorem 6.10 it is isomorphic to F
(κ0)
p as a topological group.

Set rn = b
√
nc. If ω is assumed to contain {rnm(Kn, n)}, the same lemmas

imply that Coneω(H(I)) is proper and unbounded, so by Theoremı̈¿1
2
6.10 it is

isomorphic to Fκ0
p × F

(κ0)
p as a topological group.

Now set Ln = {1, . . . , rn}. If ω contains {rnm(Ln, n) : n ≥ 1}, the same

lemmas imply that Coneω(H(I)) is proper and bounded, so by Theorem 6.10 is

isomorphic to Fκ0
p as a topological group. �

Actually we could require further assumptions to ensure that the three remain-

ing cases of Theorem 6.10 appear. Namely, we would need the following three

conditions, which can be implemented in an inductive construction of I (where

all intervals are meant in N)

• for every n, there exists m ∈ I such that I ∩ [n−1m,nm] = [n−1m,nm]

(to obtain
(
F

(κ1)
p

)κ0
);

• for every n, there exists m ∈ I such that I ∩ [n−1m,nm] = [m,nm] (to

obtain F
(κ1)
p );
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• for every n, there exists m ∈ I such that

I ∩ [n−1m,nm] = [m,nm] ∪ {bm/kc : 1 ≤ k ≤ n}

(to obtain Fκ0
p × F

(κ1)
p ).
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