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Abstract

This thesis is devoted to the study of the long-time behaviors of dynamics with
mean }eld interactions and their associated particle systems. For most cases treated
in the thesis, the structural condition for the long-time behaviors is the ~at con-
vexity of the mean }eld energy functional, which is dizerent from the displacement
convexity studied in the classical works of optimal transport and gradient ~ow. The
thesis is comprised of three parts. In the }rst part, we study the overdamped and
underdamped mean }eld Langevin dynamics, which are gradient dynamics asso-
ciated to a mean }eld free energy functional, and show their time-uniform prop-
agation of chaos properties by exploiting their gradient structures and a uniform
logarithmic Sobolev inequality. In the second part, we }rst develop some technical
results on logarithmic Sobolev inequalities and apply them to get the time-uniform
propagation of chaos for various McKean–Vlasov dizusions. Speci}cally, for the 2D
viscous vortex model, we develop strong regularity bounds on its mean }eld limit
on the whole space and show its propagation of chaos by the Jabin–Wang method;
we also study its size of chaos problem using the entropy approach of Lacker and
obtain time-uniform sharp bounds in the high viscosity regime. In the last part of
the thesis, we explore alternative mean }eld dynamics that originate from convex
optimization problems. For the entropy-regularized optimization, we study a }c-
titious self-play dynamics and a self-interacting dizusion and show their long-time
convergences to the solution of the optimization problem. We also consider a non-
linear Schrödinger semigroup, which is a gradient ~ow for the optimization problem
regularized by Fisher information, and show its exponential convergence under a
uniform spectral gap condition.

Keywords. Long-time behavior, mean }eld interaction, propagation of chaos,
gradient ~ow, entropy, logarithmic Sobolev inequality.
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Résumé

Cette thèse est consacrée à l’étude des comportements en temps long des dyna-
miques avec des interactions de champ moyen et des systèmes de particules associés.
Pour la plupart des cas traités dans la thèse, la condition structurelle pour les com-
portements en temps long est la convexité plate de la fonctionnelle d’énergie de
champ moyen, qui est dizérente de la convexité de déplacement étudiée dans les
travaux classiques de transport optimal et de ~ot de gradient. La thèse est com-
posée de trois parties. Dans la première partie, nous étudions les dynamiques de
Langevin de champ moyen suramortie et sousamortie, qui sont des dynamiques
de gradient associées à une fonctionnelle d’énergie libre de champ moyen, et nous
montrons qu’elles présentent des propriétés de propagation du chaos uniforme en
temps en exploitant leurs structures de gradient et une inégalité de Sobolev loga-
rithmique uniforme. Dans la deuxième partie, nous développons d’abord quelques
résultats techniques sur les inégalités de Sobolev logarithmiques et nous les appli-
quons pour obtenir la propagation du chaos uniforme en temps pour de diverses
dizusions de McKean-Vlasov. En particulier, pour le modèle de vortex visqueux
en 2D, nous développons des bornes de régularité fortes sur sa limite de champ
moyen sur l’espace entier et nous montrons sa propagation du chaos par la mé-
thode de Jabin-Wang ; nous étudions également son problème de taille du chaos en
utilisant l’approche entropique de Lacker et nous obtenons des bornes optimales et
uniformes en temps dans le régime de haute viscosité. Dans la dernière partie de
la thèse, nous explorons d’autres dynamiques de champ moyen qui proviennent de
problèmes d’optimisation convexes. Pour l’optimisation régularisée par l’entropie,
nous étudions une dynamique d’auto-jeu }ctif et une dizusion auto-interagissante
et nous montrons leurs convergences en temps long vers la solution du problème
d’optimisation. Nous considérons également un semigroupe de Schrödinger non li-
néaire, qui est un ~ot de gradient pour le problème d’optimisation régularisé par
l’information de Fisher, et nous montrons sa convergence exponentielle sous une
condition de trou spectral uniforme.

Mots-clés. — Comportement en temps long, interaction de champ moyen, pro-
pagation du chaos, ~ot de gradient, entropie, inégalité de Sobolev logarithmique.
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Introduction

The objective of this thesis is to study the long-time behavior of various dynamics
with mean }eld interactions. Although it seems di{cult to give a both precise
and general de}nition of mean }eld interactions, we can say that in the scope of
this thesis, we are interested in non-linear ~ows of probability measures that are at
least formal limits of interacting particle systems, where each particle’s equation of
motion is in~uenced by other particles in a more or less equal manner and the total
strength of the in~uences is of order 1. To give a concrete example, consider the
McKean–Vlasov dynamics described by the following stochastic dizerential equation
(SDE):

dXt = b(mt, Xt) dt+
√
2dBt, where mt = Law(Xt). (1)

Here the solution Xt to the SDE is supposed to exist on the half line [0,∞) and
takes value in X with X being the Euclidean space Rd or the torus Td for some
integer d > 1; the drift b : P(X ) × X → Rd is regular enough to ensure the well-
posedness of the equation; and B is the standard d-dimensional Brownian motion.
To go from the probabilistic view point to the analytic one, we write the evolution
partial dizerential equation (PDE) that should be satis}ed by mt:

∂tmt = ∆mt −∇ ·
(
b(mt, ·)m

)
. (2)

The non-linearity of the equation above is due to the dependency on the measure
in the drift b(·, ·). We say that the non-linearity is of mean }eld type if we can }nd
a mapping

δb

δm
: P(X )×X × X → Rd

that approximates the non-linearity in the sense that

b
(
(1− t)m+ tδy, x

)
− b(m,x) = t

δb

δm
(m,x, y)− t

∫

X

δb

δm
(m,x, z)m(dz) + o(t)

under the limit [0, 1] 3 t→ 0, for all m ∈ P(X ) and x, y ∈ X , where δy stands for
the Dirac mass at y. This notably excludes local interactions where the drift b(m,x)
depends on the local density m(x) of the measure, i.e., b(m,x) = β

(
m(x), x

)
for

some β : R × X → Rd. This also excludes unfortunately the famous Boltzmann
model in the kinetic theory, where only particles at the same spatial position are
allowed to interact.

We now turn to the particle system that corresponds to the SDE (1) or the
Fokker–Planck PDE (2). Let N be an integer > 1 and denote the integer in-
terval J1, NK = {1, . . . , N} by [N ]. We introduce the shorthand notation x :=

1



2 Introduction in English

(x1, . . . , xN ) ∈ XN for the N -tuple of elements in X and denote the corresponding
empirical measure by

µN
x :=

1

N

∑

i∈[N ]

δxi .

The SDE system of the N particles writes

dXi
t = b(µN

Xt
, Xi

t) dt+
√
2dBi

t, for i ∈ [N ], (3)

where Bi are independent standard Brownian motions in d dimensions and µN
Xt

is
the empirical measure formed by Xt = (X1

t , . . . , X
N
t ). Switching to the analytic

side, we can also write the N -particle evolution PDE for mN
t := Law(Xt):

∂tm
N
t =

∑

i∈[N ]

∆im
N
t −

∑

i∈[N ]

∇i ·
(
b(µN

x , x
i)mN

t

)
. (4)

The above Fokker–Planck equation is de}ned on [0,∞)×XN and is most notably
a linear equation, as the drift

bN,i(x) := b(µN
x , x

i), for i ∈ [N ]

is completely determined by the particle con}guration x = (x1, . . . , xN ) and no
longer depends on an external probability law. In a way, we have removed the non-
linearity from the dynamics at the expense of increasing signi}cantly the dimension
of the PDE.

As mentioned above, we expect that when N tends to in}nity, the non-linear
system described by (1) or (2) provides a good approximation of the N -particle
dynamics (3) or (4). More precisely, we expect that if the N particles are initialized
independently from m0, i.e.,

Law(X0) = mN
0 = m⊗N

0 = Law(X0)
⊗N ,

then the limit
1

N

∑

i∈[N ]

δXi
t
= µN

Xt
→ mt in probability, when N →∞ (5)

holds for all t > 0. This is a law of large numbers for interacting particle systems.
Moreover, if the particles are exchangeable, i.e., the joint law of the particles does
not depend on their ordering, then the convergence of empirical measure above is
equivalent to the convergence

Law(X1
t , . . . , X

k
t ) =: m

N,k
t → m⊗k

t weakly, when N →∞, for all k }xed, (6)

or in other words, the subsystem of k particles is asymptotically independent when
the size of the whole system tends to in}nity. See e.g. Lemma 1.1.2 of Le Bris’s
thesis [145] for a precise statement of this equivalence. For some historical reasons,
the fact that the particles are asymptotically independent from each other is called
chaos in the early literature of kinetic theory, and thus the mean }eld limit above
is called propagation of chaos: once we have chaotic initial condition, then the
particles are chaotic for a positive time.

It was discovered by Sznitman [216] in the beginning of 1990s that by using
the synchronous coupling technique, we can prove propagation of chaos for a large



Introduction in English 3

class of drift. We explain the main ideas of this method in this paragraph. The
}rst step of the method is to create N independent copies of the mean }eld SDE
(1), or in analytic terms, consider the N -fold tensorization m⊗N

t of non-linear ~ow
mt = Law(Xt). We denote by X̄i, i ∈ [N ], these independent solutions to the
mean }eld SDE, and by B̄i, i ∈ [N ], the independent Brownian noises driving the
dynamics. They satisfy therefore the following SDE

dX̄i
t = b(mt, X̄

i
t) dt+

√
2dB̄i

t, for i ∈ [N ].

We then couple the independent dynamics of X̄i
t above with the interacting dy-

namics (3) by demanding the Brownian noises to be exactly the same, or in other
words synchronized:

Bi = B̄i, for i ∈ [N ].

Then, by subtracting the SDE of the interacting and the independent particles, we
get

d(Xi
t − X̄i

t) =
(
b(µN

Xt
, Xi

t)− b(mt, X̄
i
t)
)

dt,
where the noises are completely cancelled. Now assume that the drift coe{cient b
is regular enough so that we have the following control:

|b(µN
Xt
, Xi

t)− b(mt, X̄
i
t)| .

1

N

∑

j∈[N ]

|Xj
t − X̄j

t |+ |Xi
t − X̄i

t |+Rt, (7)

where Rt is a positive random variable such that E[Rt] → 0 when N → ∞. In
the original work of Sznitman, the drift depends on the measure through a kernel
function:

b(m,x) =

∫

X
K(x, y)m(dy)

for some K : X×X → Rd. Working with an K that is su{ciently regular, Sznitman
showed that the error term Rt corresponds to the error between

1

N

∑

j∈[N ]

K(·, X̄j
t ) and

∫

X
K(·, y)mt(dy).

As X̄j
t , j ∈ [N ], are independent variables of law mt, the error term Rt can be

controlled by O(N−1/2) thanks to the classical variance argument and this is the
sharp order in N by the central limit theorem. This control can also be veri}ed for
b that is jointly Lipschitz continuous in measure and space, where the metric for
the measure argument is the Kantorovich distance or the L1-Wasserstein distance.
Notably, a recent breakthrough of Fournier and Guillin [93] allows us to identify
the sharp order in N (which is roughly O(N−1/d)) for the random error term Rt

in the Wasserstein-Lipschitz case. Once the control (7) is established, by taking
absolute values and summing over i ∈ [N ], we }nd

d
∑

i∈[N ]

E[|Xi
t − X̄i

t |] .
∑

i∈[N ]

E[|Xi
t − X̄i

t |] dt+N E[Rt] dt.

Then according to Grönwall’s lemma, we get

1

N

∑

i∈[N ]

E[|Xi
t − X̄i

t |] 6
eCt

N

∑

i∈[N ]

E[|Xi
0 − X̄i

0|] + C

∫ t

0

eC(t−s) E[Rs] ds.
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In the case where the initial condition is chaotic mN
0 = m⊗N

0 , we can take X̄i
0 = Xi

0

so that the }rst term on the right hand side vanishes. Using the fact that E[R·]→ 0
when N →∞, we get

lim
N→∞

1

N

∑

i∈[N ]

E[|Xi
t − X̄i

t |] = 0

and this is su{cient to justify the mean }eld limit µN
Xt
→ mt in (5).

The synchronous coupling method presented above, despite being simple and
robust, fails to address the long-time behavior of the mean }eld limit without ad-
ditional conditions. Indeed, in the case where the error term satis}es the uniform
bound

E[Rs] 6
C√
N
,

we can only get, upon modifying the constant C,

1

N

∑

i∈[N ]

E[|Xi
t − X̄i

t |] 6
C(eCt − 1)√

N
.

That is to say, we need an exponentially large number of particles to well approxi-
mate the non-linear mean }eld ~ow in the long time. This phenomenon is generic
in evolutionary systems (recall the Cauchy–Lipschitz theory for ODE) and we must
impose structural conditions to avoid such exponential growth of error in time.

Gradient ~ows and convexities

The main structural condition on the dynamics in the thesis is that the drift is a
negative Wasserstein gradient corresponding to a convex mean }eld optimization
problem. To be precise, let F : P(X )→ R be a mean }eld functional. We say that
F admits a Wasserstein gradient DmF : P(X )×X → Rd if we have

lim
t↘0

F
(
(etv)#m

)
− F (m)

t
=

∫

X
DmF (m,x) · v(x)m(dx)

for all regular enough measure m ∈ P(X ) and vector }eld v : X → Rd. Here etv
denotes the exponential mapping generated by the vector }eld that corresponds the
ODE ẋ = v(x) in the following way:

etvx0 = xt, where x : [0, t]→ X solves ẋs = v(xs) for s ∈ [0, t];

and (etv)#m denotes the pushforward measure of m by the mapping etv. The
structural condition that we imposed above can be precisely stated as follows:

b(m,x) = −DmF (m,x) for some convex F : P(X )→ R. (8)

Here, the convexity of F is understood in the following ~at interpolation sense:

∀m0,m1 ∈ P(X ), ∀t ∈ [0, 1], F
(
(1− t)m0 + tm1

)
6 (1− t)F (m0) + tF (m1),

and this must not be confused with the displacement convexity, where the interpo-
lation between probability measures is constructed by the optimal transport (see



Introduction in English 5

Chapter 1 for more discussions on the dizerence between the two notions of con-
vexity). To clarify the ideas, we suppose that the mean }eld functional F satis}es

F (m) =

∫

X

U(x)m(dx)

for some regular enough potential function U : X → R. Then the Wasserstein
gradient of F is nothing but ∇U (which does not depend on the measure variable)
and F is always linear (thus convex) in the ~at interpolation sense. But F is
displacement convex if and only if the underlying potential U is a convex function
(see discussions in [4, Chapter 9]). In this case, the SDE (1), (3) become

dXt = −∇U(Xt) dt+
√
2dBt,

which is the classical overdamped Langevin dynamics. Thus, the mean }eld dynam-
ics of our interest

dXt = −DmF (mt, Xt) dt+
√
2dBt (9)

is called overdamped mean }eld Langevin dynamics and similarly for its correspond-
ing system of particles. Passing to the analytic side, we can write the associated
PDE

∂tmt = ∆mt +∇ ·
(
DmF (mt, ·)mt

)
. (10)

We mention that the Wasserstein gradient of a mean }eld functional is also related
to its linear functional derivative, whose precise de}nition will be given in the
following chapters. The linear derivative is denoted by δF/δm and is a mapping
from P(X ) × X → R. Under enough regularity, these two derivatives satisfy the
following equality:

DmF (m,x) = ∇x

δF

δm
(m,x).

The reason why the condition (8) would lead to long-time properties for the
mean }eld ~ow (1) is due to a simple yet powerful observation of Jordan, Kinder-
lehrer and Otto [126] in the late 1990s: the ~ow of measures associated to the SDE
(9) is a gradient ~ow for the free energy functional

F(m) = F (m) +H(m), where H(m) =

∫

X
m(x) logm(x) dx

in the L2-Wasserstein space. Especially, along the ~ow t 7→ mt, the free energy
t 7→ F(mt) is decreasing. Since the convexity of F ensures that the free energy
F = F + H has a unique minimizer m∗, we can expect that the mean }eld ~ow
converges to m∗. In other words, the ~ow (10) provides a dynamical way of solving
the optimization problem regularized by entropy:

inf
m∈P(X )

F(m) = inf
m∈P(X )

F (m) +H(m). (11)

More precisely, denoting the L2-Wasserstein metric by W2 and letting h be a time
step > 0, we can de}ne iteratively the following discrete ~ow of probability mea-
sures:

µh
n+1 = argmin

µ∈P(X )

F(µ) + W 2
2 (µ, µ

h
n)

2h
, with initial condition µh

0 = m0.
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This discrete scheme is called the JKO scheme. And we have the limit

µh
bt/hc → mt, when h→ 0, for all t > 0.

The reader can convince oneself on the terminology of “gradient ~ow” by considering
the following analogy in }nite dimension. Let n be an integer > 1 and let V : Rn →
R be a potential function. The discrete dynamics de}ned by

xhn+1 = argmin
x∈Rn

V (x) +
|x− xhn|2

2h
, with initial condition xh0 = x0

is nothing but the implicit Euler scheme

xhn+1 = xhn − h∇V (xhn+1)

for the gradient descent
ẋ = −∇V (x),

and under regularity assumptions on V , we can show that the discrete dynamics
converges to the continuous ODE. Working with displacement convexity, Carrillo,
McCann and Villani [39] studied the free energy dissipation and obtained the er-
godicity of the non-linear ~ow (9) in the 2000s. Ambrosio, Gigli and Savaré then
translated many of the results obtained under displacement convexity into state-
ments in the abstract formalism of gradient ~ows in metric spaces, beautifully
presented in their monograph [4]. On the other hand, only recently the gradient
~ow structure and the ~at convexity was exploited to obtain long-time behaviors
of the overdamped mean }eld Langevin ~ow. We mention here the works of K. Hu,
Z. Ren, Šiška and Szpruch [117], Nitanda, D. Wu and Suzuki [178], and Chizat [56].

The motivations behind our studies of the ~at convexity for the mean }eld
Langevin or the mean }eld optimization problem are two-fold: theoretical and
practical. From the viewpoint of the theory, it is quite natural to try to go beyond
the classical literature that relies on the displacement convexity and investigate
the alternative convexities that lead to long-time behaviors. Flat convexity is one
natural candidate. In fact, interestingly, for mean }eld game (MFG) systems, which
are essentially a pair of a Fokker–Planck and a Hamilton–Jacobi–Bellman equation
coupled with each other, the classical condition ensuring the well-posedness on
arbitrarily long intervals is the Lasry–Lions monotonicity [143], or the ~at convexity
in the case of potential games. Somewhat later, Gangbo and Mészáros [94] showed
that the displacement convexity is su{cient for the global well-posedness of the
MFG. For the practical part, recently there is a growing interest in modelling the
training dynamics of neural networks as a gradient ~ow in the space of probability
measures, and in the case of shallow networks, the loss landscape is convex in the
~at sense [163, 57, 211, 203]. The reader may refer to the application sections of
Chapters 1 and 2 for a detailed introduction to shallow neural networks and their
mean }eld formulation.

Main contributions

One major contribution of this thesis is to study not only the mean }eld ~ow (9) in
the long time, but also its associated particle system, under the ~at convexity of the
energy functional F . From the numerical point of view, this is the natural question
to raise after long-time behaviors of the mean }eld limit are established. Indeed, for
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the neural network example mentioned above, the mean }eld ~ow mt corresponds
to the training dynamics of an in}nite-neuron network and is not accessible to real
computers. The true training dynamics always involve a }nite number of particles
and are merely approximations to the mean }eld limit. Recalling that mN

t is the
joint law of the N particles, we wish to show that there exists a time-uniform bound
on the approximation error

d(mN
t ,m

⊗N
t )

for some appropriate metric d on the space of probability measures. This property,
called time-uniform propagation of chaos, is the main goal of the }rst two chapters,
which form Part I of the thesis. In Chapter 1, we develop the ideas explained above
and show that the approximation error is uniformly bounded in time. In Chapter 2,
we study the kinetic variant of mean }eld Langevin dynamics and obtain similar
results.

Another key ingredient of Part I is the logarithmic Sobolev inequality (log-
Sobolev inequality, LSI), and we showcase its importance by summarizing the ar-
gument of [178, 56] in the following. As already mentioned above, the method of
Part I is based on the gradient structure and the related free energy dissipation of
the non-linear Fokker–Planck equation (10). By taking the time-derivative of the
free energy functional, we get, at least formally,

dF(mt)

dt = −
∫

X
|∇ logmt +DmF (mt, ·)|2 dmt.

De}ne m̂ to be the unique probability measure with density

m̂(x) ∝ exp
(
− δF
δm

(m,x)

)
,

where δF/δm is the linear functional derivative of F . Then using the relation
between the linear derivative and the Wasserstein gradient, we }nd

dF(mt)

dt = −
∫

X

∣∣∣∣∇ log mt

m̂t

∣∣∣∣
2

dmt =: −I(mt|m̂t),

where the functional I(·|·) is called relative Fisher information. The log-Sobolev
inequality for the measure m̂t then allows us to lower bound the Fisher information
I(mt|m̂t) by the relative entropy

H(mt|m̂t) :=

∫

X
log mt(x)

m̂t(x)
mt(dx),

up to a multiplicative constant. Thanks to the ~at convexity, the relative entropy
H(mt|m̂t) can again be lowered bounded by the relative free energy F(mt)− infF .
Thus by combining the LSI and the convexity, we obtain the exponential contrac-
tivity of the free energy.

Being a powerful tool to get exponential contractivity, log-Sobolev inequalities
are unfortunately di{cult to establish, especially when we do not have direct access
to the density of the probability measure concerned. And this is the main objective
of the }rst two chapters of Part II. In Chapters 3 and 4, we provide two class of cri-
teria for the log-Sobolev inequality based on two completely dizerent methods. We
then give a few applications of the LSI to long-time behaviors of particle systems
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in the second half of Chapter 4. Notably, we extend the time-uniform local propa-
gation of chaos of Lacker and Le Flem [142] to the case of non-convex interaction
potential. By working with one of the methods more deeply, we manage to prove
an L∞ bound on the Hessian of the log-density of the mean }eld ~ow (2) with a
Biot–Savart kernel (which contains a singularity) de}ned on the whole space. This
technical result allows us to show for the }rst time the time-uniform propagation of
chaos for the 2D vortex model on the whole space. As a continuation of Chapter 4,
we still work on the 2D vortex model in Chapter 5 and show its time-uniform sharp
local propagation of chaos in the high temperature regime by extending the method
of Lacker [140] to singular interactions. The main novelty of our method is that
we use a combinatorial technique to solve the hierarchy of entropies which involve
additional terms introduced by the singular interaction.

Finally, we move to the last and perhaps the most exotic part of the thesis,
where we study long-time behaviors of non-linear dynamics outside the McKean–
Vlasov framework that has been discussed till now. Nevertheless, in Chapters 6 and
7, we still focus on the entropy-regularized mean }eld optimization problem (11).
Note that the }rst-order condition of the problem is equivalent to the }xed-point
problem

m = m̂,

where, as we recall, m̂(x) ∝ exp
(
− δF

δm
(m,x)

)
. By interpreting m̂ as the best-

response strategy to m, the }xed-point formulation can be understood as a Nash
equilibrium condition for a self-game where a person plays against himself. Mo-
tivated by the }ctitious play strategy from the classical game theory, we study
following dynamics

∂tmt = α(m̂t −mt), for some constant α > 0

called entropic }ctitious play, and show its convergence to equilibrium in Chapter 6.
One major drawback of the entropic }ctitious play is that given a player’s state m,
it is possibly expensive to compute the best response m̂ as this usually involves a
Monte Carlo run. To overcome this issue, in Chapter 7, we propose a self-interacting
dizusion dynamics which can be thought as an intermediate regime between the
entropic }ctitious play and a linear dizusion process. We will explain this point
in more detail below. Convergence to equilibrium for the self-interacting dynamics
is also established in the chapter. In the last Chapter 8, we consider instead the
mean }eld optimization problem regularized by Fisher information:

inf
m∈P(X )

F(m) := inf
m∈P(X )

F (m) + I(m) := inf
m∈P(X )

F (m) +

∫

X

|∇m(x)|2
m(x)

dx, (12)

and the associated gradient descent, with the relative entropy measuring the dis-
tance between probability measures. In other words, we propose to study the
continuous limit of the following JKO scheme

νhn+1 := argmin
ν∈P(X )

F(ν) +
H(ν|νhn)

h
, with initial condition νhn = m0. (13)

The resulting dynamics is a non-linear version of the Schrödinger semigroup and
is thus called mean }eld Schrödinger dynamics. Its exponential convergence is
obtained via a uniform spectral gap, i.e., a uniform Poincaré inequality.

∗∗∗
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In the rest of the introduction, we give detailed technical previews to the eight
chapters of the thesis. We discuss also some future prospects in the end.

Preview of Chapters 1 and 2
Uniform propagation of chaos for Langevin

The main results of the two chapters are the time-uniform propagation of chaos
for the overdamped and underdamped mean }eld Langevin dynamics. As the over-
damped dynamics has already been de}ned above in (9), we de}ne here only the
underdamped, or the kinetic dynamics

dXt = Vt dt,
dVt = −Vt dt−DmF (m

X
t , Xt) dt+

√
2dBt, where mX

t = Law(Xt).
(14)

The second-order structure of the dynamics models a Newtonian particle subject to
random forces, making it more suitable to describe physical phenomenons. More-
over, the kinetic Langevin dynamics exhibits an analog of Nesterov acceleration for
the gradient Markov chain Monte Carlo, that is, the overdamped Langevin. See
the work of Y.-A. Ma et al. [157]. The associated N -particle system is de}ned by
duplicating the SDE N times and replacing the dependency on mX

t by the empirical
measure

µN
Xt

=
1

N

∑

i∈[N ]

δXi
t
.

We still denote by mN
t the joint law of the N particles, but notice that now this

law is also joint in space and in speed:

mN
t := Law

(
(X1

t , V
1
t ), . . . , (X

N
t , V

N
t )
)
.

Our approach to the long-time behaviors of the overdamped and underdamped
mean }eld Langevin is based on the entropic (hypo-)coercivity of the dynamics,
which we explain in detail in the following.

Let us focus at the moment on the overdamped case, and denote the unique
invariant measure of (2) by m∗. This measure is also the unique minimizer to the
mean }eld free energy functional:

m∗ = argmin
m∈P(X )

F(m) = argmin
m∈P(X )

F (m) +H(m).

Introduce the relative free energy functional

FN (mN
t |m∗) := FN (mN

t )−NF(m∗)

:= N

∫

XN

F (µN
x )mN

t (dx) +H(mN
t )−NF (m∗)−NH(m∗),

and we will consider its evolution in time. Note that in the expression above, we
have used the same symbol H(·) for the entropy functional de}ned for probability
measures on XN and X . As noted above, the N -particle dynamics is in fact linear,
and we have

FN (mN
t ) = N

∫

XN

F (µN
x )mN

t (dx) +H(mN
t ) = H(mN

t |mN
∗ ) + constant,
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where mN
∗ is the N -particle invariant measure with density

mN
∗ (x) ∝ exp

(
−NF (µN

x )
)
.

So by classical computations, we get

d
dtF

N (mN
t |m∗) = −

∑

i∈[N ]

∫

XN

∣∣∣∣∇i log m
N
t (x)

mN∗ (x)

∣∣∣∣
2

mN
t (dx) =: −I(mN

t |mN
∗ ),

where I(·|·) stands for the relative Fisher information. The usual approach is then
to }nd conditions for a uniform-in-N LSI for mN

∗ so we can conclude as follows:

I(mN
t |mN

∗ ) & H(mN
t |mN

∗ ) > FN (mN
t |m∗)−O(1).

This is indeed the method of Malrieu [159] and Carrillo, McCann and Villani [39],
and also the more recent works of Guillin, W. Liu, L. Wu, C. Zhang [100, 99]. How-
ever, the conditions for the LSI therein seem to be more related to the displacement
convexity and do not seem compatible with the ~at convexity which is our struc-
tural condition for long-time behaviors. Our innovation is to see the N -particle
joint Fisher information I(mN

t |mN
∗ ) as the average value of Fisher informations

between conditional measures of only one particle. This is possible as we have the
decomposition by component:

∑

i∈[N ]

∫

XN

∣∣∣∣∇i log m
N
t (x)

mN∗ (x)

∣∣∣∣
2

mN
t (dx)

=
∑

i∈[N ]

∫

XN−1

∫

X

|∇i logmN,i|−i
t (xi|x−i) +DmF (µ

N
x , x

i)|2

m
N,i|−i
t (dxi|x−i)m−i

t (dx−i). (15)

Here −i stands for the set of all indices except i, namely [N ] \ {i}, and m
N,−i
t ,

m
N,i|−i
t are respectively marginal and conditional measures de}ned by

m
N,−i
t (x−i) :=

∫

X
mN

t (x) dxi,

m
N,i|−i
t (xi|x−i) :=

mN
t (x)

mN,−i(x−i)
.

By supposing that the probability measures m̂ of the following form

m̂(x) :=
exp
(
− δF

δm
(m,x)

)
∫
X exp

(
− δF

δm
(m, y)

)
dy
, where m ∈ P(X )

satisfy a uniform LSI, we can (after some manipulations on the measures) apply
the LSI for the one-particle measure to the conditional Fisher information in the
decomposition (15). Here we remark that this componentwise approach is not
entirely new, as it was already used to prove the stability of LSI by tensorization
(see e.g. [148, Section 5.2]) and the idea of decomposition is in fact the basis of many
dimension-free concentration inequalities (see e.g. the discussions on the Efron–
Stein inequality in [27, Section 3.1]). The novelty here is that the base measure
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mN
∗ is not necessarily tensorized and we manage to control the errors that come

from the dependency between the particles. Finally, by using the ~at convexity of
F in the intermediate steps, we obtain an N -particle LSI with an error term:

I(mN
t |mN

∗ ) & FN (mN
t |m∗)−O(1) (16)

and this allows us to conclude by Grönwall’s lemma

FN (mN
t |m∗) 6 Ce−ctFN (mN

t |m∗) +O(1) = O(Ne−ct + 1).

Note that by replacing mN
t by the invariant measure mN

∗ , we get

FN (mN
∗ |m∗) = O(1)

and thus (16) implies

I(mN
t |mN

∗ ) & FN (mN
t |m∗)−FN (mN

∗ |m∗)−O(1) = H(mN
t |mN

∗ )−O(1),

which is a defective log-Sobolev inequality for mN
∗ with constants uniform in N . For

the reason, by an abuse of language, we say that the inequality (16) is a defective
(or noised, discretized) version of the mean }eld non-linear LSI:

I(m|m̂) & H(m|m̂) > F(m)−F(m∗) > H(m|m∗). (17)

The calculations above will be explained in full detail and rigor in the proof of
Theorem 1.12 in Chapter 1. The control on the relative free energy FN (mN

t |m∗)
then implies the following, due to the convexity of F and Talagrand’s inequality,

W 2
2 (m

N
t ,m

⊗N
∗ ) . H(mN

t |m⊗N
∗ ) = O(Ne−ct + 1).

We combine this with the exponential convergence of the mean }eld ~ow

W 2
2 (mt,m∗) . H(mt|m∗) = O(e−ct)

and the standard propagation of chaos bound that is exponentially growing:

1

N
W 2

2 (m
N
t ,m

⊗N
t ) = O(ectN−α), for some α > 0.

Finally through a triangle argument, we get the desired uniform bound

sup
t>0

1

N
W 2

2 (m
N
t ,m

⊗N
t ) = O(N−α′

), for some α′ > 0.

We also conduct a rather detailed study of the (reverse) hypercontractivity of the
non-linear evolution (10) and obtain a rather strong lower bound on the density of
mt in long time. This allows us to mimic the triangle argument above and obtain
the uniform bound on the relative entropy:

sup
t>0

1

N
H(mN

t |m⊗N
t ) = O(N−α′′

), for some α′′ > 0.

In Chapter 2, we turn to the study of the long-time behavior of the hypoelliptic
non-linear ~ow (14) and its associated particle system. Note that in this case,
contrary to the overdamped mean }eld Langevin, the exponential convergence of
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the mean }eld ~ow does not even seem to have been established, and this is also the
}rst contribution of this chapter. By physical intuitions, for a probability measure
m ∈ P(X ×Rd), the natural free energy functional is the sum of the potential and
kinetic energies, and the entropy:

F(m) = F (mX) +
1

2

∫

X×Rd

|v|2m(dx dv) +H(m),

where mX is the }rst marginal of m. The particularity of the hypoellipticity lies in
the fact that, when we take the time-derivative of the free energy functional, we do
not get a full Fisher information, but only the partial one in the speed directions:

dF(mt)

dt = −
∫

X
|∇v logmt(x, v) + v|2mt(dx dv)

= −
∫

X

∣∣∣∣∇v log mt(x, v)

m̂t(x, v)

∣∣∣∣
2

mt(dx dv),

where m̂ is the probability measure with density

m̂(x, v) ∝ exp
(
− δF
δm

(mX , x)− 1

2
|v|2
)
.

One solution to deal with this degeneracy common in kinetic models is to introduce
a distorted quantity, as demonstrated by Y. Guo [103] and Talay [217], and this is
indeed the solution that Villani found for the linear Fokker–Planck dynamics [221,
Part I]. In the linear case, the potential energy F is given by a potential function:

F (mX) =

∫

X
U(x)mX(dx), for some U : X → R,

and thus m̂ is independent of m and is identical to the equilibrium measure, which
we denote by m∗. The idea of Villani is to introduce an anisotropic (but always
positive-de}nite) Fisher information

Ia,b,c(m|m∗) =
∫

X×Rd

(
a
∣∣∣∇v log m(z)

m∗(z)

∣∣∣
2

+ 2b∇v log m(z)

m∗(z)
· ∇x log m(z)

m̂(z)

+ c
∣∣∣∇x log m(z)

m∗(z)

∣∣∣
2
)
mt(dz),

where z = (x, v). By choosing the right a, b, c and doing some lengthy computa-
tions, we get

d
dt
(
F(mt) + Ia,b,c(mt|m∗)

)
. −

∫

X×Rd

∣∣∣∣∇z log mt(z)

m∗(z)

∣∣∣∣
2

mt(dz) =: −I(mt|m∗).

The full Fisher information on the right-hand side allows us to conclude by the
usual LSI for m∗ and the phenomenon is called hypocoercivity. In our work, we
adapt this construction of Villani to our non-linear setting, by replacing the m∗ in
the anisotropic Fisher by m̂t. We then need to compute the time-derivative of

F(mt) + Ia,b,c(mt|m̂t).



Introduction in English 13

Most of the computations follow in line with Villani’s original ones since the gen-
erator of the evolution at time t annihilates the measure m̂t, but we also need to
control the additional term that comes from the variation of m̂t. This fortunately
does not pose any problem to the hypocoercivity and we obtain the exponential
convergence of the mean }eld ~ow (see also the proof of Theorem 2.2).

For the associated N -particle system, since the dynamics is linear, we can di-
rectly apply the formalism of Villani, and the only important point is to have a
hypocoercivity that is uniform in N . To be precise, we have

d
dt
(
H(mN

t |mN
∗ ) + Ia,b,c(m

N
t |mN

∗ )
)
6 −κI(mN

t |mN
∗ )

for some a, b, c and κ > 0 that do not depend on N . In the kinetic case, we also
have a discretized LSI that is similar to (16), and this allows us to get again

FN (mN
t )−NF(m∗) 6 O(Ne−ct + 1).

The arguments are explained in detail in the proof of Theorem 2.3.
Finally, we also work on the short-time regularization properties of the hypoel-

liptic dynamics. By adapting the coupling by change of measure method developed
by Guillin, P. Ren and F.-Y. Wang in a series of works [102, 227, 193], we obtain
dimension-free log-Harnack inequalities for the mean }eld and the particle system
~ows, which lead to the regularization from Wasserstein distance to relative entropy.
Then we adapt Hérau’s functional [109] again to our setting to obtain the regular-
ization from relative entropy to relative Fisher information. We }nally combine the
long-time exponential convergences, short-time regularizations and standard ex-
ponentially growing propagation of chaos to derive a time-uniform propagation of
chaos bound, without requiring any regularity of the initial data (see Theorem 2.6).

Preview of Chapters 3 and 4
LSI and applications

The main objective of Chapters 3 and 4 is to obtain LSI criteria for probability
measures related to a dizusion process without directly having access to their den-
sities. In Chapter 3, we wish to show an LSI for the stationary measure to the
following time-homogeneous dizusion

∂tmt =
σ2

2
∆mt −∇ · (bmt),

and in Chapter 4, we allow the drift b to depend on time and wish to show a
time-uniform LSI for mt solving the inhomogeneous

∂tmt =
σ2

2
∆mt −∇ · (btmt). (18)

First note that the }rst problem is in fact more or less included in the second
one, since if we can show a time-uniform LSI for mt, t > 0, and we know that mt

converges to some stationary measure m∗ weakly, then m∗ also satis}es an LSI. So
we will primarily work within the second parabolic framework in the rest of the
preview. Secondly, if the drift in the }rst problem is a gradient:

b(x) = −∇U(x),
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then the dizusion is symmetric and we know that the stationary measure has den-
sity proportional to exp

(
−2U(x)/σ2

)
. In this case, by the classical Bakry–Émery

criterion and perturbation results, we already know how to show LSI for a large
class of U . Hence, the interest of Chapter 3 lies in the non-symmetric case. As a
}nal note, in the case where b satis}es a strong monotonicity:

(
bt(x)− bt(y)

)
· (x− y) 6 −κ|x− y|2, for some κ > 0,

then by repeating the classical argument of Malrieu [159] (see also the beginning of
Chapter 4), we can propagate the LSI uniformly in time, and the second problem
is solved. So we will focus on cases where such strong monotonicity is absent.

As mentioned above, we provide two class of such criteria based on two dizerent
methods. The }rst method is based on a recent work of Monmarché [168], where he
showed that, if b is regular enough and if b is only non-monotone inside a compact
set, then there exists σ0 such that for all σ > σ0, the dizusion process related to
(18) is contractive in L2-Wasserstein. In other words, for two solutions µt, νt to
(18), we have

W2(µt, νt) 6Me−λtW2(µ0, ν0), for some λ > 0. (19)

Two proofs of this result are given in the cited work of Monmarché and the proba-
bilistic proof is based on the synchronous coupling of the dizusion processes and a
modi}ed transport cost that is equivalent to the squared Euclidean distance. The
high temperature condition is crucially used to construct such a transport cost.
Then, by standard arguments (in fact, an L2 version of Malrieu’s propagation re-
sult [159]), the contraction (19) leads to a uniform Poincaré inequality for mt. We
then observe that, once we have some time-uniform control on x 7→ x · bt(x) and
∇bt, we can obtain respectively a Gaussian moment bound and a Harnack inequal-
ity (of F.-Y. Wang) that are both uniform in time. These two results lead to a
time-uniform hypercontractivity, which is equivalent to a time-uniform defective
log-Sobolev inequality. Then by combining the Poincaré and the defective LSI, we
get the desired time-uniform LSI.

The second method is based on direct estimates on the density of the solution
mt to (18) and may seem brutal to readers versed in functional inequalities. To
simplify we }x σ =

√
2 in this paragraph. Suppose that we have a reference measure

µ0 satisfying an LSI which is also stationary to the drift a0, that is to say,

∆µ0 −∇ · (a0µ0) = 0.

Denote the dizerence of drifts by gt := bt − a0 and the log-relative density by
ut := logmt/µ0. According to the respective PDE of mt and µ0, we }nd that ut
solves the Hamilton–Jacobi–Bellman (HJB) equation

∂tut = ∆ut + |∇ut|2 + b̃t · ∇ut + ϕt,

where the coe{cients are de}ned by

b̃t := 2∇ logµ0 − bt,
ϕt := −∇ · gt + gt · ∇ logµ0.

We say that the drift b̃ is weakly semi-monotone if
(
b̃t(x)− b̃t(y)

)
· (x− y) 6 −κ(|x− y|)|x− y|2,
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for some κ : (0,∞)→ R such that lim infr→∞ κ(r) > 0 and r 7→ r|κ(r)| is integrable
near 0. In a recent work [61], Conforti showed that if b̃ is weakly semi-monotone and
ϕ is Lipschitz continuous, then we have a time-uniform gradient bound on ut. Thus,
according to the log-Lipschitz perturbation result of Aida and Shigekawa [1], we
know that mt ∝ µ0 exp(ut) satis}es a time-uniform LSI. Conforti’s method for this
gradient estimate is probabilistic: he uses the coupling by re~ection for controlled
dizusion processes and shows the contraction in W1 distance, which leads to the
time-uniform gradient estimate. It seems that the uncontrolled version of coupling
by re~ection was }rst developed by Lindvall and Rogers [152] in the 1980s. This
coupling was generalized to dizusions on manifolds by Kendall [130] and then used
to derive gradient estimates for the heat equation by Cranston [65]. The weak
semi-convexity, along with re~ection coupling, was exploited by M.-F. Chen and
F.-Y. Wang [47] in the 1990s to estimate the spectral gap of the dizusion generator
and short-time regularizing ezects are derived by Priola and F.-Y. Wang in [187].
Porretta and Priola then showed the regularization ezect for the non-linear HJB
~ow in [186] by using the purely analytical comparison principle between viscosity
solutions. The more recent work of Eberle [83] revived this method as it drew a
lot of attention from the statistics and machine learning communities. We remark
that the above-cited work of Conforti made two contributions that are vital to
Chapter 4: }rst, the long-time estimate in the HJB case is obtained; and second,
the Hessian estimate (i.e. on ∇2ut) is also proved. We will comment in particular
on the second contribution in below.

In the rest of Chapter 4, we discuss a few examples that verify the two criteria
presented above and applied the time-uniform log-Sobolev to obtain time-uniform
sharp local propagation of chaos for McKean–Vlasov dynamics with non-convex
interaction potentials, which is not included in the paper of Lacker and Le Flem
[142]. The sharp local propagation of chaos will be discussed in more detail in
the preview of the next chapter. However, the most interesting application of our
method is perhaps the 2D vortex model on the whole space presented in the end
of the chapter. The 2D vortex model is a probabilistic formulation of the 2D
incompressible Navier–Stokes equations and we refer the reader to the expository
article [205] for more details. In this model, the mean }eld ~ow (1) follows the
McKean–Vlasov drift

b(m,x) =
1

2π

∫

R2

(x− y)⊥
|x− y|2 m(dy),

where the symbol ⊥ stands for the rotation in 2D: (x1, x2)⊥ = (−x2, x1). In other
words, we have that b(m,x) = (K ? m)(x) where K is the Biot–Savart kernel.
Recently, Jabin and Z. Wang [124] showed global-in-time propagation of chaos for
this model and Guillin, Le Bris and Monmarché [98] improved it into a uniform
propagation of chaos bound. However, since the method of Jabin and Z. Wang
is based on a weak-strong uniqueness principle, it requires rather strong regularity
on the mean }eld ~ow. To be more precise, one needs to control the L∞ norm of
∇ logmt and ∇2 logmt. This is rather di{cult to establish on the whole space as
we cannot have a global lower bound on the density mt. For this reason, the two
works cited above only treat the periodic 2D vortex model on the two-dimensional
torus. In Chapter 4, we show that by adding an additional quadratic con}nement,
i.e., by letting

b(m,x) = −κx+ (K ?m)(x),
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we can use the HJB method to get L∞ bounds on

∇ log mt

m∗
, ∇2 log mt

m∗
, where m∗ ∝ exp

(
−κ|x|

2

2

)
.

Moreover, these bounds converge to zero exponentially fast and this allows us to
show the generation of chaos property for the 2D vortex model. The proofs of
such L∞ bounds are moderately lengthy. Due to the singularity of the Biot–Savart
kernel K, we rely on a parabolic bootstrap procedure to gradually gain regularity
on the coe{cients b̃, ϕ, and we need both the long-time contraction of Conforti and
the short-time regularization of Porretta, Priola and F.-Y. Wang. To conclude the
discussion on 2D vortex, we mention that, after Chapter 4 appeared as preprint
[170], Rosenzweig and Serfaty uploaded their preprint [201] where they showed that
the 2D vortex models with and without quadratic con}nement are equivalent up
to a scaling transform. Thus our method can also be applied to the model on the
whole space without con}nement.

Finally, we mention that in Chapter 3, we also develop a LSI criterion for
the stationary measure of a kinetic dizusion. It is based on the HJB method
and the most important step is to construct a Wasserstein contraction for the
controlled kinetic dizusion processes. The statement and proof are presented in
the end of the chapter. The method is based on a mixed coupling, comprising
both synchronous and re~ective parts, and a distorted (usual for kinetic models)
transport cost motivated by the construction of Eberle, Guillin and Zimmer [84].
This result can be considered as a generalization (or even an improvement in certain
aspects) to the recent works of Kazeykina, Z. Ren, X. Tan and J. Yang [128] and
Schuh [206].

Preview of Chapter 5
Size of chaos for singular dynamics

In Chapter 5, we study a }ne property of the mean }eld large particle system called
local propagation of chaos. Although we have studied the quantitative propagation
of chaos in the previous chapters, the results obtained only concerns distances
between the particle and the tensorized mean }eld system as a whole, for example,
the Wasserstein distance W 2

2 (m
N
t ,m

⊗N
t ) or the relative entropy H(mN

t |m⊗N
t ). In

this chapter, instead of studying these global distances, we only observe the }rst
k particles from the N -particle system (3) and compare it with the k-tensorized
mean }eld ~ow. To justify considering only the }rst k particles and not other sets
of k particles, we need to of course suppose the exchangeability in the N particle
system, and this assumption will be in force throughout the chapter. We will also
assume that the mean }eld interaction in the drift takes the following kernel form:

b(m,x) =

∫

X
K(x, y)m(dy).

Recall that the law of the subsystem of k particles at time t is denoted by by mN,k
t ,

or in other words,
m

N,k
t := Law(X1

t , . . . , X
k
t ),

where the dependency of N on the right-hand side is implicit. So the question raised
above consists of }nding a sharp bound between the two probability measures mN,k

t

and m⊗k
t . This is an quantitative version of the chaos condition (6).
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For this reason, this question is also called size of chaos in the recent literature.
See the works of Paul, Pulvirenti and Simonella [182], Duerinckx [78], and Bernou
and Duerinckx [20]. One common point of the approaches of these works is that the
authors decompose the law of the N particles into a combinatorial sum of connected
correlation functions (or cumulants), the decomposition being called the cluster
expansion, and they study the evolution of correlation functions along the dynamics.
Depending on the speci}c mean }eld interaction, correlations between the particles
can be generated by collisions or through the drift and the randomness may come
from the initialization and also the dynamical noise. Then after estimating the size
of the cumulants, they go back to the problem of size of chaos and get

‖mN,k
t −m⊗k

t ‖ = O

(
k2

N

)
,

where ‖·‖ denotes an appropriate functional norm. Roughly speaking, the k2 factor
arises from counting the number of pairs among the }rst k particles. This factor
cannot be reduced within this approach, unless some cancellation occurs, which
may result from orthogonality.

A completely dizerent approach is developed in Lacker’s recent work [140],
where he considers directly the evolution of the errors between m

N,k
t and m⊗k

t ,
measured in terms of relative entropy

Hk
t := H(mN,k

t |m⊗k
t ).

The dynamics of the measure m
N,k
t is described by the BBGKY hierarchy and

involves the next-order marginal mN,k+1
t , and so the evolution of Hk

t should also
involve next-order quantities. Indeed, in the }nal step of Lacker’s proof, the dy-
namical equation reads

dHk
t

dt 6M
k2

N2
+M(Hk+1

t −Hk
t ),

where M is a constant related to the strength of the mean }eld interaction kernel
K. Then solving the system of inequalities above yields the global-in-time bound
Hk

t = O(k2/N2), and in terms of norm distance,

‖mN,k
t −m⊗k

t ‖TV = O

(
k

N

)

which improves the results above by a factor of k. This bound is sharp as it can be
attained by a simple Gaussian example. Later on this method was extended to the
time-uniform case in the weakly interacting regime by Lacker and Le Flem [142]
and the sharp bound for higher-order chaos is obtained by Hess-Childs and Rowan
[111]. We note that the method of Lacker crucially relies on the Brownian noise
to control the growth of Hk

t and this is possibly the reason for the gain of factor k
compared to the more combinatorial approaches above.

One common limitation of the previous works on the size of chaos is that we
require a strong regularity assumption (at least L∞) on the interaction kernel K
and thus excluding the interesting 2D vortex model where the kernel is Biot–Savart:

K(x, y) =
(x− y)⊥
2π|x− y|2 .
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The aim of Chapter 5 is precisely to overcome this limitation and show the sharp size
of chaos bound for the 2D vortex particle system, that is to say, Hk

t = O(k2/N2). By
combining the techniques of Jabin–Z. Wang and Lacker, we show that the evolution
of the relative entropy veri}es

dHk
t

dt 6 −c1Ikt + c2I
k+1
t +M

(
Hk

t +
k2

N2

)
+M(Hk+1

t −Hk
t ),

where Ikt , Ik+1
t are relative Fisher informations. In particular, we have

Ikt :=
∑

i∈[k]

∫

Xk

∣∣∣∣∇i log m
N,k
t (x[k])

m⊗k
t (x[k])

∣∣∣∣
2

m
N,k
t (dx[k]).

The main dizerence compared to Lacker’s work is of course the additional positive
Fisher information of the next order Ik+1

t , which comes from the singularity of
the kernel K. Solving the system of dizerential inequalities in the case c2 < c1 is
the main technical innovation of the chapter. We note that the condition c2 < c1
corresponds to the fact that the W−1,∞ norm of the kernel K is smaller than 1, so
our result is valid for weak vortex interactions, or equivalently vortices in the high
temperature regime. The main idea of the proof is to consider a weighted mix of
entropies of order > k:

Zk
t :=

N∑

i=k

ak,iH
i
t , where ak,i > 0 and ak,k = 1

By choosing the appropriate coe{cients ak,i, we can cancel all the Fisher infor-
mations in the dynamics of Zk

t and recover the original system of Lacker. So we
deduce Zk

t = O(k2/N2) and we can conclude by Hk
t 6 Zk

t . Using the ideas from [98]
we also improve the global-in-time size of chaos bound into a uniform one. Some
consequences are also discussed. For example, by leveraging the injection from Ld

into W−1,∞ [28], we can show a global-in-time sharp size of chaos bound for Ld

interactions of any strength. We also use an L2 (instead of entropy) approach for
the size of chaos in the vortex interaction case in order to lift the restriction on the
interaction strength, but unfortunately only a }nite-time result is obtained.

Preview of Chapters 6 and 7
Fictitious play and self-interaction

In Chapters 6 and 7, we study alternative mean }eld dynamics that approach the
minimizer of the entropy regularized mean }eld optimization problem (11) in long
time. The dynamics of interest in Chapter 6 is the entropic }ctitious play de}ned
in the following way:

∂tmt = α(m̂t −mt), where m̂t ∝ exp
(
− δF
δm

(m, ·)
)
. (20)

The de}nition of the dynamics above is motivated by the }ctitious play algorithm,
}rst proposed by Brown [34] in the framework of a two-person game. In a symmetric
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two-person game with continuous state space, we denote the state of the two players
by x, y respectively and the Nash equilibrium condition writes

x∗ ∈ BR(y∗), y∗ ∈ BR(x∗),

where BR(·) is the set of best response given the state of the adversary. Brown
proposes that both players follow the respective discrete dynamics

xt+1 =
t

t+ 1
xt +

1

t+ 1
at, where at ∈ BR(yt),

yt+1 =
t

t+ 1
yt +

1

t+ 1
bt, where bt ∈ BR(xt),

and expects that (xt, yt) converges to some Nash equilibrium (x∗, y∗) in long time.
To see the intuitions behind our entropic }ctitious play dynamics, note that by
variational calculus, the }rst-order condition of the optimization problem (11) reads

δF

δm
(m∗, x) + logm∗(x) = constant.

According to the de}nition the measure m̂, the above condition is equivalent to

m∗ = m̂∗.

It is a Nash equilibrium condition for the one-person (or self) game if the map-
ping m 7→ m̂ is interpreted as the best-response mapping. And if we replace the
1/t scaling in Brown’s dynamics by an exponentially scaling, and consider the
continuous-time version, the corresponding }ctitious play dynamics is exactly (20).
We note that Cardaliaguet and Hadikhanloo also used this idea in order to }nd
solution to mean }eld games [36], which can also be formulated as a }xed-point
problem.

The convergence of the }ctitious play algorithm is in general not guaranteed,
but in the case of potential games, we can usually }nd Lyapunov functions which
decreases along the dynamics. For our entropic }ctitious play, we calculate the
time-derivative of the free energy functional (which is the functional to optimize)
along the dynamics, and }nd

dF(mt)

dt = −α
(
H(mt|m̂t) +H(m̂t|mt)

)
.

Since we always suppose that the energy function F is ~at-convex, at this point we
can already use the entropy sandwich inequality (1.40) in Chapter 1:

H(mt|m̂t) > F(mt)−F(m∗)

and the exponential convergence follows. This is however not the approach that we
take in Chapter 6, partly because we were not familiar with such sandwich inequality
when the corresponding paper [49] was written. (This sandwich inequality was
already used in [56, 178] to show the exponential convergence of the overdamped
mean }eld Langevin dynamics at that time.) Instead, we take again the time-
derivative of H(mt|m̂t) and }nd that at least formally,

dH(mt|m̂t)

dt = −α
(
H(mt|m̂t) +H(m̂t|mt)

)

− α
∫∫

X 2

δ2F

δm2
(mt, x, y)(m̂t −mt)

⊗2(dx dy).
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The last term is negative by the convexity of F , so we get that

dH(mt|m̂t)

dt 6 −αH(mt|m̂t),

dH(mt|m̂t)

dt 6
dF(mt)

dt .

And by some elementary calculus we conclude that F(mt) decreases exponentially.
The second-order calculation above is interesting by itself as it resembles the Otto–
Villani proof [180] of the Bakry–Émery criterion, which we sketch here in a mini-
malist style. Suppose we are given an overdamped Langevin dynamics, generated
by ∆ −∇U · ∇ for some U : Rd → R satisfying ∇2U � ρ with ρ > 0. Denote the
invariant measure proportional to exp(−U) by m∗ and let mt be the associated
~ow of measure. Denote also for simplicity Ht := H(mt|m∗) and It := I(mt|m∗).
Otto and Villani calculated that

dHt

dt = −It,
dIt
dt 6 −2ρIt.

Since we know that limt→∞Ht = 0, we have

H0 =

∫ ∞

0

It dt 6
∫ ∞

0

I0e
−2ρt dt = I0

2ρ
.

As the initial value of the ~ow is arbitrary, we have established the log-Sobolev
inequality, and this leads to the exponential convergence of the relative entropy.
So in the entropic }ctitious play, the free energy F takes the role of entropy in
Otto–Villani, and H(mt|m̂t) the role of Fisher information.

Despite the simplicity of the entropic }ctitious play, an important numerical
di{culty is not taken into account in the analysis above. At each step t, we need
to compute the best response to mt, namely m̂t ∝ exp

(
− δF

δm
(mt, ·)

)
, and this

is usually done by Monte Carlo methods: for example, we launch particles from
an initial distribution and let them evolve according to the overdamped Langevin
dynamics. In su{ciently long time, with su{ciently large number of particles, we
can sample the measure m̂t with arbitrary precision. This step is called the inner
iteration in Chapter 6. However, the computational complexity of this iteration is
not addressed.

This is the reason in Chapter 7 we turn to the following dynamics:

dXt = −DmF (mt, Xt) dt+
√
2dBt,

dmt = λ(t)(δXt
−mt) dt.

(21)

Here λ : [0,∞)→ (0,∞) is to be determined and the mt is no longer the law of the
particle Xt, but is a weighted occupation measure of the particle according to the
second equation:

mt = e−
∫

t

0
λ(s) dsm0 +

∫ t

0

λ(s)e−
∫

t

s
λ(u) du δXs

ds.

The drift of the particle at time t depends thus on its history on the interval [0, t]
and for this reason the dynamics is called self-interacting. This type of dynamics
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was already studied by Cranston, Le Jan [66], Raimond [188], and Benaïm, Ledoux
and Raimond [15]. The recent paper of Du, Jiang and J. Li [75] addresses the utility
of such dynamics in sampling. For now we }x λ(t) = λ > 0. Note that each of
the two components in (21) has a natural time scale. If the measure argument mt

is frozen, the }rst component follows a linear overdamped Langevin and the time
scale is the mixing time for such process. Similarly, by }xing the Xt argument in
the second equation, we }nd that the time scale of the second component is 1/λ.
Under the limit λ→ 0, the second time scale becomes much larger than the }rst, so
the distribution of the }rst argument relaxes quickly to the steady state m̂t before
the second argument changes signi}cantly. And since, by Birkhoz’s theorem, the
Dirac mass δXt

averaged over a long enough interval is close to the steady state m̂t,
we expect that in the long time the self-interacting dynamics should be ezectively
described by the entropic }ctitious play:

dmt = λ(m̂t −mt) dt,

which converges to m∗ when t → ∞. On the other hand, under the limit λ → ∞,
the second argument mt becomes very close to the Dirac mass δXt

, so the dynamics
should be approximately the linear dynamics

dXt = −DmF (δXt
, Xt) dt+

√
2dBt.

This Markov process relaxes rapidly but its equilibrium measure, being proportional
to exp

(
−F (δx)

)
dx, is a priori dizerent from our target m∗. We are thus in a

situation similar to the classical bias-variance tradeoz once we make the connection
between the relaxation rate and the inverse of variance.

We study this tradeoz quantitatively in Chapter 7. We take a }xed λ > 0 in the
following and }rst study the convergence rate of the self-interacting process (21).
Note that in this case, the process is a time-homogeneous Markov in an in}nite-
dimensional state space with a highly degenerate noise, so proving its ergodicity
is usually a non-trivial task. However, thanks to the strong contractivity in the
second argument, we are able to establish an explicit exponential contractivity in
Wasserstein distance by a mixed coupling similar to the kinetic coupling of Eberle,
Guillin and Zimmer [84]. The resulting contraction rate deteriorates as λ decreases,
which is to be expected. Notably, the structural condition that F is ~at-convex is
not at all used for the Markov process’s relaxation. As a by-product, we know that
the stationary measure of the Markov process (21) exists and is unique, which we
denote by Pλ.

Then we study the bias between the stationary measure Pλ and the target
m∗ ⊗ δm∗

, where as we recall again, m∗ is the invariant measure to the mean }eld
Langevin dynamics (9) or the solution to the mean }eld optimization problem (11).
To proceed, we suppose that the mean }eld dependency is cylindrical:

F (m) = Φ(〈`,m〉) = Φ

(∫

X
`(x)m(dx)

)

for some ` : X → RD and some convex Φ: RD → R. Here the convexity of Φ
implies the ~at convexity of F as a mean }eld functional. Then the self-interacting
process (21) can be reduced to the projected system:

dXt = −∇xV (Yt, Xt) dt+
√
2dBt,

dYt = λ
(
`(Xt)− Yt

)
dt,

(22)
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where we have the correspondence

Yt = 〈`,mt〉,
V (y, x) = ∇Φ(y) · `(x).

Denote by ρ := ρλ the push-out of Pλ under the mapping

(x,m) 7→ (x, 〈`,m〉).

By construction, the measure ρ is invariant to the reduced dynamics (22), and
solves the stationary equation

∆xρ+∇x ·
(
∇xV (y, x)ρ

)
− λ∇y ·

((
`(x)− y

)
ρ
)
= 0.

Using the equation above and a uniform LSI, we derive the following L1 estimate
on conditional entropy:

∫

RD

H
(
ρ1|2(·|y)

∣∣m̂y

)
ρ2(dy) = O(λ), (23)

where ρ1|2, ρ2 are respectively the conditional and marginal measures formally
de}ned by

ρ2(y) :=

∫

X
ρ(x, y) dx,

ρ1|2(x|y) := ρ(x, y)

ρ2(y)
,

and m̂y is the Gibbs measure with density

m̂y(x) ∝ exp
(
−V (y, x)

)
.

The estimate (23) indicates that on average, ρ1|2(·|y) is close to m̂y. Denote the
cylindrical projection of the target measure y∗ := 〈`,m∗〉. We notice that

∫

RD

(
H(m̂y|m∗) +H(m∗|m̂y)

)
ρ2(dy)

= −
∫

X×Rd

(
V (y, x)− V (y∗, x)

)
(m̂y −m∗)(dx)ρ2(dy)

= −
∫

X×Rd

(
V (y, x)− V (y∗, x)

)(
ρ1|2(dx|y)−m∗(dx)

)
ρ2(dy) +O(

√
λ),

where for the last equality, we make the change of measure m̂y → ρ1|2(·|y) and con-
trol the error by the entropy estimate (23) and a transport inequality (Talagrand,
Pinsker or Bolley–Villani [25] depending on the assumption on V ). Using the form
of the potential V (y, x) = ∇Φ(y) · `(x) and the convexity of Φ, we can show that

∫

X×Rd

(
V (y, x)− V (y∗, x)

)(
ρ1|2(dx|y)−m∗(dx)

)
ρ2(dy) > 0.

So we get ∫

RD

(
H(m̂y|m∗) +H(m∗|m̂y)

)
ρ2(dy) = O(

√
λ).
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Again using Talagrand’s inequality, we }nd
∫

RD

W1

(
ρ1|2(·|y),m∗

)
ρ2(dy)

6

∫

RD

(
W1

(
ρ1|2(·|y), m̂y

)
+W1(m̂y,m∗)

)
ρ2(dy) = O(λ1/4).

This already indicates that the measures Pλ and m∗ ⊗ δm∗
, projected into the

X directions, are close to each other when λ is small. We can exploit again the
gradient structure of the dynamics to show the same thing for the Y directions.
Moreover, the order in λ can be improved to O(

√
λ). The }nal bound on the bias

that we obtain is the following:

W (Pλ,m∗ ⊗ δm∗
) = O(

√
λ),

where W denotes a Wasserstein distance between }nite-dimensional projections of
the in}nite-dimensional measures. This bound is also optimal in the order of λ, as
it can be veri}ed by a Gaussian example.

To summarize, a smaller λ leads to a weaker convergence rate, but reduces the
bias of the sampling, con}rming the intuitions from our previous discussions. How-
ever, it should be noted that the convergence rate achieved by re~ection coupling
deteriorates exponentially as λ → 0, rendering this rate unsuitable for analyzing
annealing dynamics in practice.

Preview of Chapter 8
Mean }eld Schrödinger dynamics

In the last chapter of the thesis, we study the mean }eld optimization problem
regularized by Fisher information (12) and the associated gradient ~ow. As we
mentioned above, the gradient ~ow should at least be the formal continuous limit
of the discrete JKO scheme (13). By calculus of variation, we get that the discrete
~ow is in fact the backward Euler:

δF

δm
(νhn+1, ·) +

1

h
log

νhn+1

νhn
= constant,

and we expect that νhbt/hc converges to the ~ow mt solving

∂tmt = −
δF

δm
(mt, ·)mt + λtmt,

where λt is the normalization constant

λt :=

∫

X

δF

δm
(mt, x)mt(dx)

ensuring that the mass is conserved: d
∫
X mt

/
dt = 0. Recall that the functional F

is regularized by Fisher information:

F(m) = F (m) +

∫

X

|∇m|2
m

.
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By integration by parts, we get the following expression for its linear functional
derivative:

δF

δm
(m,x) =

δF

δm
(m,x)− 2∇ ·

(∇m
m

)
− |∇m|

2

m2
.

We have also the gradient descent formula:

dF(mt)

dt = −
∫

X

∣∣∣∣
δF

δm
(mt, x)− λt

∣∣∣∣
2

mt(dx).

At this point, we can already expect that the non-linear ~ow mt, once well de}ned,
converges to the solution of optimization problem (12) for the following two reasons.
First, by the formula above, the regularized energy F ceases to decrease only if
δF
δm

(mt, ·) − λt = 0, that is to say, the measure mt is a stationary point to the
optimization problem (12). Second, the optimization problem, being the sum of
a ~at-convex F (which is our standing structural condition) and a strictly ~at-
convex Fisher information, has only one stationary point, and this point is the
global minimizer. Given these intuitions, we can rigorously prove the convergence
by compactness and LaSalle’s invariance principle, as done in [117].

The remaining question is to }nd an explicit convergence rate and the functional
inequality behind this rate. In the case of overdamped mean }eld Langevin, the
answer is a uniform log-Sobolev inequality as shown by [178, 56]. And for our
mean }eld Fisher gradient ~ow, we need a uniform spectral gap, or in other words,
a uniform Poincaré inequality. To see this, we make the change of variable

ψt :=
√
mt

and write the dynamical equation for ψt:

∂tψt = 2∆ψt −
1

2

δF

δm
(ψ2

t , ·)ψt +
1

2
λtψt.

Now λt satis}es
λt =

∫

X
4|∇ψt|2 +

δF

δm
(ψt, ·)ψ2

t

and is the constant ensuring that ψt is normalized in L2. In the linear case, the ~at
derivative does not depend on the measure:

δF

δm
(m,x) = U(x),

and the evolution of ψt corresponds to a linear Schrödinger semigroup. The ex-
ponential convergence is thus guaranteed by the spectral gap of the Hamiltonian
operator:

H = −4∆ + U.

Going back to our non-linear evolution, we de}ne the Hamiltonian at each instant:

Ht := −4∆ +
δF

δm
(mt, ·),

we then have

∂tψt = −
1

2
(Ht − λt)ψt,

λt = (ψt,Htψt)L2 .



Introduction in English 25

The descent of F(mt) satis}es

dF(mt)

dt = −
(
ψt, (Ht − λt)Htψt

)
L2 = −(ψt,H2

tψt)L2 + (ψt,Htψt)
2
L2 .

Denote by ψ̂t the unique normalized ground state of Ht. We get, by the spectral
gap,

(ψt,H2
tψt)L2 − (ψt,Htψt)

2
L2 & (ψt,Htψt)L2 − (ψ̂t,Htψ̂t)L2 .

Again, going back to the measure variables and using the convexity of F , we can
show that

(ψt,Htψt)L2 − (ψ̂t,Htψ̂t)L2 > F(mt)− infF.
So we have the exponential convergence:

F(mt)− infF 6 Ce−ct,

given the uniform spectral gap forHt. It is well known that the uniform spectral gap
is equivalent to a uniform Poincaré inequality for the probability measure m̂t := ψ̂2

t

solving the stationary equation

δF

δm
(mt, x)− 2∇ ·

(∇m̂t

m̂t

)
− |∇m̂t|2

m̂2
t

= constant.

Denoting the log-density by ût := − log m̂t, we }nd that ût solves the ergodic HJB
equation

2∆ût − |∇ût|2 +
δF

δm
(mt, x) = constant.

Under the assumption that δF
δm

(m, ·) is a sum of a strongly convex and a Lipschitz-
continuous function, uniformly in m, we can employ the method of Conforti [61] to
obtain that ût is also a sum of a strongly convex and a Lipschitz part with uniform
bounds. Then a uniform Poincaré inequality follows from for example [9].

Recent advances and perspectives
A common drawback of Chapters 1 and 2, as an anonymous referee has put it,
is that we do not directly compare the particle system mN

t and the mean }eld
~ow mt in the long time. Instead, this comparison is done via the mean }eld
invariant measure m∗, complemented with a standard global-in-time bound. This
triangle argument is rather awkward and leads to loss of exponent in the }nal
propagation of chaos bound. We announce that we will solve this problem by a
direct comparison method, where we work with a distance between probability
measures that is induced by the free energy landscape, and recover the optimal
O(1) (or O(1/N), depending on the scaling) order error bound. We will also explore
other consequences of the non-linear LSI (17) and its N -particle version (16), such
as time-uniform measure concentration for the mean }eld Langevin particle system
and turnpike properties for the associated mean }eld Schrödinger problem.

In a recent work by the author [230], the defective LSI (16) established in
Chapter 1 was tightened to an N -uniform LSI through the use of an additional
Poincaré inequality. This approach ozers an alternative to the concurrent work of
Chewi, Nitanda, and M. S. Zhang [55], while providing improved dependence on
the mean }eld interaction strength.



26 Introduction in English

More recently, Bauerschmidt, Bodineau and Dagallier [14] adapted the Polchin-
ski ~ow method to mean }eld particle systems and established N -uniform LSI
throughout the entire uniqueness regime. Speci}cally, the free energy functional
F is permitted to include a ~at-concave energy component, and the analysis is
conducted directly under a projected form of the non-linear LSI:

I(m|m̂) & H(m|m̂) & F(m)−F(m∗).

This assumption is weaker than ~at convexity and enables the recovery of Curie–
Weiss critical behavior. However, the method appears less intrinsic for non-quadratic
interactions and results in a weaker LSI constant. We announce here that, in a
forthcoming work, we will establish an N -uniform defective LSI via an intrinsic
approach that depends solely on the unprojected free energy landscape. As a fur-
ther remark, our method corresponds to a coordinate stochastic localization scheme,
whereas theirs is a linear tilt scheme in the language of Y. Chen–Eldan [52].

In another recent work [194], we investigate the size of chaos problem for the
overdamped Langevin dynamics under the aforementioned non-linear LSI condition.
More precisely, we show that

H(mN,k
∗ | m⊗k

∗ ) = O

(
k2

N2

)
,

where mN,k
∗ denotes the k-marginal distribution of the N -particle Gibbs measure.

In that work, we identify a gradient structure for conditional measures and develop
an entropy hierarchy that is one order higher than Lacker’s original formulation.
This non-perturbative approach to mean }eld interaction extends the existing litera-
ture [141, 142, 20], which addresses only scenarios where the interaction is ezectively
dominated by dizusion. Nevertheless, the dynamical problem of uniform-in-time
sharp chaos remains largely open and clearly warrants further investigation.

For the singular 2D vortex model, the size of chaos problem is not completely
solved in the current thesis as our method fails in the low-temperature regime. The
full resolution of this problem requires additional study but it seems to the author
that some crucial elements are still lacking. Furthermore, we can also consider
the size of chaos problem for Coulomb or Riesz interactions in higher dimension.
This seems even more di{cult to the author due to the increased singularity of the
interaction kernel.

The study of Vlasov–Poisson systems has recently seen signi}cant advances,
with several novel ideas and techniques for establishing propagation of chaos intro-
duced in [30, 29, 51]. However, the unregularized case in dimension > 3, for both
the dizusive and non-dizusive settings, remains an open problem.

We may also ask whether the crucial elliptic entropy estimate in Chapter 7 can
be extended to the dynamical parabolic case. If successful, such an approach would
yield stronger contractivity properties than those achieved by the coupling method.
We also intend to investigate kinetic self-interacting dynamics and explore the use
of self-interaction in addressing mean }eld games.

As the studies of the mean }eld Schrödinger dynamics in Chapter 8 focus on
the theoretical part, it is equally important to explore its numerical aspects and
ezectiveness in real-world applications.

∗∗∗
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The eight chapters of the thesis have }rst appeared individually as the pub-
lications [50, 48, 171, 170, 49] and preprints [229, 77, 60]. For this reason, the
notations and conventions in dizerent chapters may not be consistent. They may
also be dizerent from these used in this introduction.



Introduction

L’objectif de cette thèse est d’étudier le comportement asymptotique de diverses
dynamiques avec des interactions de champ moyen. Bien qu’il semble di{cile de
donner une dé}nition à la fois précise et générale des interactions de champ moyen,
nous pouvons dire que, dans le cadre de cette thèse, nous nous intéressons aux
~ots non linéaires de mesures de probabilité qui sont au moins des limites formelles
de systèmes de particules en interaction, où l’équation de mouvement de chaque
particule est in~uencée par les autres particules d’une manière plus ou moins égale
et la force totale des in~uences est d’ordre 1. Pour donner un exemple concret,
considérons les dynamiques de McKean-Vlasov décrites par l’équation dizérentielle
stochastique (EDS) suivante :

dXt = b(mt, Xt) dt+
√
2dBt, où mt = Loi(Xt). (1)

Ici, la solution Xt de l’EDS est supposée exister sur la demi-droite [0,∞) et prendre
des valeurs dans X , où X est l’espace euclidien Rd ou le tore Td pour un entier
d > 1 ; la dérive b : P(X ) × X → Rd est su{samment régulière pour assurer le
caractère bien posé de l’équation ; et B est le mouvement brownien standard d-
dimensionnel. Pour passer du point de vue probabiliste au point de vue analytique,
on écrit l’équation aux dérivées partielles (EDP) d’évolution que mt doit satisfaire :

∂tmt = ∆mt −∇ ·
(
b(mt, ·)m

)
. (2)

La non-linéarité de l’équation ci-dessus est due à la dépendance de la mesure dans
la dérive b(·, ·). On dit que la non-linéarité est de type champ moyen s’il existe une
application

δb

δm
: P(X )×X × X → Rd

qui approxime la non-linéarité dans le sens que

b
(
(1− t)m+ tδy, x

)
− b(m,x) = t

δb

δm
(m,x, y)− t

∫

X

δb

δm
(m,x, z)m(dz) + o(t)

sous la limite [0, 1] 3 t → 0, pour tout m ∈ P(X ) et x, y ∈ X , où δy re-
présente la masse de Dirac en y. Cela exclut notamment les interactions locales
où la dérive b(m,x) dépend de la densité locale m(x) de la mesure, c’est-à-dire
b(m,x) = β

(
m(x), x

)
pour une certaine fonction β : R×X → Rd. Cela exclut aussi

malheureusement le célèbre modèle de Boltzmann en théorie cinétique, où seules
les particules à la même position spatiale sont autorisées à s’interagir.

Nous nous tournons maintenant vers le système de particules qui correspond
à l’EDS (1) ou à l’EDP de Fokker-Planck (2). Soit N un entier > 1 et notons

29
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l’intervalle entier J1, NK = {1, . . . , N} par [N ]. On introduit la notation abrégée
x := (x1, . . . , xN ) ∈ XN pour le N -uplet d’éléments dans X et note la mesure
empirique correspondante par

µN
x :=

1

N

∑

i∈[N ]

δxi .

Le système d’EDS des N particules s’écrit

dXi
t = b(µN

Xt
, Xi

t) dt+
√
2dBi

t, pour i ∈ [N ], (3)

où Bi sont des mouvements browniens standards indépendants en d dimensions
et µN

Xt
est la mesure empirique formée par Xt = (X1

t , . . . , X
N
t ). Passant au côté

analytique, on peut également écrire l’EDP d’évolution à N particules pour mN
t :=

Loi(Xt) :
∂tm

N
t =

∑

i∈[N ]

∆im
N
t −

∑

i∈[N ]

∇i ·
(
b(µN

x , x
i)mN

t

)
. (4)

L’équation de Fokker-Planck ci-dessus est dé}nie sur [0,∞) × XN et est principa-
lement une équation linéaire, car la dérive

bN,i(x) := b(µN
x , x

i), pour i ∈ [N ]

est entièrement déterminée par la con}guration des particules x = (x1, . . . , xN ) et
ne dépend plus d’une loi de probabilité externe. En quelque sorte, on a éliminé la
non-linéarité de la dynamique au prix d’augmenter considérablement la dimension
de l’EDP.

Comme nous l’avons mentionné précédemment, on s’attend à ce que lorsque
N tend vers l’in}ni, le système non linéaire décrit par (1) ou (2) fournisse une
bonne approximation de la dynamique à N particules (3) ou (4). Plus précisément,
on s’attend à ce que si les N particules sont initialisées indépendamment de m0,
c’est-à-dire

Loi(X0) = mN
0 = m⊗N

0 = Loi(X0)
⊗N ,

alors la limite
1

N

∑

i∈[N ]

δXi
t
= µN

Xt
→ mt en probabilité, lorsque N →∞ (5)

est véri}ée pour tout t > 0. Il s’agit d’une loi des grands nombres pour les systèmes
de particules en interaction. De plus, si les particules sont échangeables, c’est-à-dire
que la loi conjointe des particules ne dépend pas de leur ordre, alors la convergence
de la mesure empirique ci-dessus est équivalente à la convergence

Loi(X1
t , . . . , X

k
t ) =: m

N,k
t → m⊗k

t faiblement, lorsque N →∞, pour tout k }xé,
(6)

ou en d’autres termes, le sous-système de k particules est asymptotiquement indé-
pendant quand la taille du système entier tend vers l’in}ni. Voir par exemple le
lemme 1.1.2 de la thèse de Le Bris [145] pour un énoncé précis de cette équivalence.
Pour des raisons historiques, le fait que les particules soient asymptotiquement in-
dépendantes les unes des autres est appelé chaos dans les premières littératures
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en théorie cinétique, et donc la limite de champ moyen ci-dessus est appelée pro-
pagation du chaos : une fois que l’on a une condition initiale chaotique, alors les
particules sont chaotiques en un temps positif.

Il a été découvert par Sznitman [216] au début des années 1990 que grâce à la
technique de couplage synchrone, on peut prouver la propagation du chaos pour une
grande classe de dérives. Nous expliquons les idées principales de cette méthode dans
cet alinéa. La première étape de la méthode consiste à créer N copies indépendantes
de l’EDS de champ moyen (1), ou en termes analytiques, à considérer la N -ième
tensorisation m⊗N

t du ~ot non linéaire mt = Loi(Xt). On désigne par X̄i, i ∈ [N ],
ces solutions indépendantes de l’EDS de champ moyen, et par B̄i, i ∈ [N ], les
bruits browniens indépendants qui dirigent la dynamique. Ils satisfont donc les
EDS suivantes :

dX̄i
t = b(mt, X̄

i
t) dt+

√
2dB̄i

t, pour i ∈ [N ].

Ensuite, on couple les dynamiques indépendantes X̄i
t ci-dessus avec la dynamique

en interaction (3) en demandant que les bruits browniens soient exactement les
mêmes, ou en d’autres termes synchronisés :

Bi = B̄i, pour i ∈ [N ].

En soustrayant ensuite l’EDS des particules en interaction et des particules indé-
pendantes, on obtient

d(Xi
t − X̄i

t) =
(
b(µN

Xt
, Xi

t)− b(mt, X̄
i
t)
)

dt,

où les bruits sont complètement annulés. Supposons maintenant que le coe{cient
de dérive b est su{samment régulier pour que l’on ait le contrôle suivant :

|b(µN
Xt
, Xi

t)− b(mt, X̄
i
t)| .

1

N

∑

j∈[N ]

|Xj
t − X̄j

t |+ |Xi
t − X̄i

t |+Rt, (7)

où Rt est une variable aléatoire positive telle que E[Rt]→ 0 quand N →∞. Dans
le travail original de Sznitman, la dérive dépend de la mesure à travers une fonction
noyau :

b(m,x) =

∫

X
K(x, y)m(dy)

pour une certaine K : X ×X → Rd. En travaillant avec un K su{samment régulier,
Sznitman a montré que le terme d’erreur Rt correspond à l’erreur entre

1

N

∑

j∈[N ]

K(·, X̄j
t ) et

∫

X
K(·, y)mt(dy).

Comme X̄j
t , j ∈ [N ], sont des variables indépendantes de loi mt, le terme d’erreur

Rt peut être contrôlé par O(N−1/2) grâce à l’argument classique de la variance,
ce qui est l’ordre optimal en N selon le théorème central limite. On peut égale-
ment véri}er ce contrôle pour un b qui est lipschitzien conjointement en mesure et
en espace, où la distance métrique pour l’argument de mesure est la distance de
Kantorovich ou la distance de Wasserstein de L1. Notamment, une récente percée
de Fournier et Guillin [93] nous permet d’identi}er l’ordre optimal en N (environ
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O(N−1/d)) pour le terme d’erreur aléatoire Rt dans le cas de caractère lipschit-
zien de Wasserstein. Une fois que l’on établit le contrôle (7), en prenant les valeurs
absolues et en sommant sur i ∈ [N ], on obtient

d
∑

i∈[N ]

E[|Xi
t − X̄i

t |] .
∑

i∈[N ]

E[|Xi
t − X̄i

t |] dt+N E[Rt] dt.

Ensuite, selon le lemme de Grönwall, on obtient

1

N

∑

i∈[N ]

E[|Xi
t − X̄i

t |] 6
eCt

N

∑

i∈[N ]

E[|Xi
0 − X̄i

0|] + C

∫ t

0

eC(t−s) E[Rs] ds.

Dans le cas où la condition initiale est chaotique mN
0 = m⊗N

0 , on peut prendre
X̄i

0 = Xi
0 de sorte que le premier terme du côté droit s’annule. En utilisant le fait

que E[R·]→ 0 lorsque N →∞, on obtient

lim
N→∞

1

N

∑

i∈[N ]

E[|Xi
t − X̄i

t |] = 0

ce qui su{t à justi}er la limite de champ moyen µN
Xt
→ mt dans (5).

La méthode de couplage synchrone présentée ci-dessus, bien que simple et ro-
buste, échoue à aborder le comportement en temps long de la limite de champ moyen
sans des conditions supplémentaires. En ezet, dans le cas où le terme d’erreur sa-
tisfait la borne uniforme

E[Rs] 6
C√
N
,

on peut seulement obtenir, en modi}ant la constante C,

1

N

∑

i∈[N ]

E[|Xi
t − X̄i

t |] 6
C(eCt − 1)√

N
.

Cela signi}e que l’on a besoin d’un nombre exponentiellement grand de particules
pour bien approximer le ~ot de champ moyen non linéaire sur le long terme. Ce
phénomène est générique dans les systèmes évolutifs (rappelons-nous la théorie de
Cauchy-Lipschitz pour les EDO) et on doit imposer des conditions structurelles
pour éviter de telles croissances exponentielles de l’erreur en temps.

Flots de gradient et convexités

La principale condition structurelle sur la dynamique dans la thèse est que la
dérive est un gradient de Wasserstein négatif correspondant à un problème d’op-
timisation de champ moyen convexe. Pour être précis, soit F : P(X ) → R une
fonctionnelle de champ moyen. On dit que F admet un gradient de Wasserstein
DmF : P(X )×X → Rd si

lim
t↘0

F
(
(etv)#m

)
− F (m)

t
=

∫

X
DmF (m,x) · v(x)m(dx)

pour toute mesure m ∈ P(X ) et tout champ de vecteurs v : X → Rd su{sam-
ment régulier. Ici, etv désigne l’application exponentielle engendrée par le champ
de vecteurs qui correspond à l’EDO ẋ = v(x) de la manière suivante :

etvx0 = xt, où x : [0, t]→ X résout ẋs = v(xs) pour s ∈ [0, t] ;
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et (etv)#m désigne l’image de la mesure m par l’application etv. La condition struc-
turelle que l’on a imposée ci-dessus peut être précisément formulée comme suit :

b(m,x) = −DmF (m,x) pour une convexe F : P(X )→ R. (8)

Ici, la convexité de F est comprise dans le sens d’interpolation plate suivant :

∀m0,m1 ∈ P(X ), ∀t ∈ [0, 1], F
(
(1− t)m0 + tm1

)
6 (1− t)F (m0) + tF (m1),

et cela ne doit pas être confondu avec la convexité de déplacement, où l’on construit
l’interpolation entre les mesures de probabilité par le transport optimal (voir le cha-
pitre 1 pour plus de discussions sur la dizérence entre les deux notions de convexité).
Pour clari}er les idées, supposons que la fonctionnelle de champ moyen F satisfait

F (m) =

∫

X
U(x)m(dx)

pour une fonction de potentiel U : X → R su{samment régulière. Alors le gradient
de Wasserstein de F est simplement ∇U (qui ne dépend pas de la mesure) et
F est toujours linéaire (donc convexe) dans le sens d’interpolation plate. Mais F
est convexe de déplacement si et seulement si le potentiel sous-jacent U est une
fonction convexe (voir les discussions dans [4, Chapter 9]). Dans ce cas, les EDS
(1), (3) deviennent

dXt = −∇U(Xt) dt+
√
2dBt,

qui est la dynamique de Langevin suramortie classique. Ainsi, la dynamique de
champ moyen de notre intérêt

dXt = −DmF (mt, Xt) dt+
√
2dBt (9)

est appelée dynamique de Langevin de champ moyen suramortie et de manière
similaire pour son système correspondant de particules. Passant au côté analytique,
on peut écrire l’EDP associée

∂tmt = ∆mt +∇ ·
(
DmF (mt, ·)mt

)
. (10)

On mentionne que le gradient de Wasserstein d’une fonctionnelle de champ moyen
est également lié à sa dérivée fonctionnelle linéaire, dont la dé}nition précise sera
donnée dans les chapitres suivants. La dérivée linéaire est notée δF/δm et est une
application de P(X ) × X → R. Sous une régularité su{sante, ces deux dérivées
satisfont l’égalité suivante :

DmF (m,x) = ∇x

δF

δm
(m,x).

La raison pour laquelle la condition (8) mène aux propriétés en temps long pour
le ~ot de champ moyen (1) est due à une observation simple mais puissante de
Jordan, Kinderlehrer et Otto [126] à la }n des années 1990 : le ~ot des mesures
associé à l’EDS (9) est un ~ot de gradient pour la fonctionnelle d’énergie libre

F(m) = F (m) +H(m), où H(m) =

∫

X
m(x) logm(x) dx

dans l’espace de Wasserstein de L2. En particulier, le long du ~ot t 7→ mt, l’énergie
libre t 7→ F(mt) décroît. Comme la convexité de F assure que l’énergie libre F =
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F + H a un minimiseur unique m∗, on peut s’attendre à ce que le ~ot de champ
moyen converge vers m∗. En d’autres termes, le ~ot (10) fournit une méthode
dynamique pour résoudre le problème d’optimisation régularisé par l’entropie :

inf
m∈P(X )

F(m) = inf
m∈P(X )

F (m) +H(m). (11)

Plus précisément, en notant W2 la distance de Wasserstein de L2 et h le pas de
temps > 0, on peut dé}nir de manière itérative le ~ot discret suivant de mesures
de probabilité :

µh
n+1 = argmin

µ∈P(X )

F(µ) + W 2
2 (µ, µ

h
n)

2h
, avec la condition initiale µh

0 = m0.

Ce schéma discret est appelé schéma de JKO. Et l’on a la limite

µh
bt/hc → mt, lorsque h→ 0, pour tout t > 0.

Le lecteur peut se convaincre de la terminologie de « ~ot de gradient » en considérant
l’analogie suivante en dimension }nie. Soit n un entier > 1 et V : Rn → R une
fonction potentielle. La dynamique discrète dé}nie par

xhn+1 = argmin
x∈Rn

V (x) +
|x− xhn|2

2h
, avec la condition initiale xh0 = x0

n’est autre que le schéma d’Euler implicite

xhn+1 = xhn − h∇V (xhn+1)

pour la descente de gradient
ẋ = −∇V (x),

et sous des hypothèses de régularité sur V , on peut montrer que la dynamique
discrète converge vers l’EDO continue. Travaillant avec la convexité de déplacement,
Carrillo, McCann et Villani [39] ont étudié la dissipation de l’énergie libre et ont
obtenu l’ergodicité du ~ot non linéaire (9) dans les années 2000. Ambrosio, Gigli
et Savaré ont ensuite traduit beaucoup de résultats obtenus sous la convexité de
déplacement en énoncés dans le formalisme abstrait des ~ots de gradients dans les
espaces métriques, magni}quement présentés dans leur monographie [4]. D’autre
part, seulement récemment la structure de ~ot de gradient et la convexité plate ont
été exploitées pour obtenir les comportements en temps long du ~ot de Langevin
de champ moyen suramorti. Nous mentionnons ici les travaux de K. Hu, Z. Ren,
Šiška et Szpruch [117], de Nitanda, D. Wu et Suzuki [178], et de Chizat [56].

Les motivations derrière nos études sur la convexité plate pour la Langevin de
champ moyen ou le problème d’optimisation de champ moyen sont à la fois théo-
riques et pratiques. D’un point de vue théorique, il est naturel de chercher à dépasser
les littératures classiques qui reposent sur la convexité de déplacement et d’explo-
rer les convexités alternatives conduisant aux comportements en temps longs. La
convexité plate est l’un des candidats naturels. En fait, de manière intéressante,
pour les systèmes de jeux à champ moyen (JCM), qui consistent essentiellement en
une paire d’équations de Fokker-Planck et de Hamilton-Jacobi-Bellman couplées
entre elles, la condition classique assurant le caractère bien posé sur des intervalles
arbitrairement longs est la monotonie de Lasry-Lions [143], ou la convexité plate
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dans le cas des jeux de potentiel. Un peu plus tard, Gangbo et Mészáros [94] ont
montré que la convexité de déplacement est su{sante pour le caractère bien posé
global du JCM. Pour la partie pratique, il y a récemment un intérêt croissant à
modéliser les dynamiques d’entraînement des réseaux neuronaux comme un ~ot de
gradient dans l’espace de mesures de probabilité, et dans le cas des réseaux peu
profonds, le paysage de perte est convexe au sens plat [163, 57, 211, 203]. Le lecteur
peut se référer aux sections d’application des chapitres 1 et 2 pour une introduction
détaillée aux réseaux neuronaux peu profonds et leur formulation de champ moyen.

Principales contributions

L’une des contributions majeures de cette thèse est d’étudier non seulement le
~ot de champ moyen (9) à long terme, mais aussi le système de particules associé,
sous la convexité plate du fonctionnel d’énergie F . Du point de vue numérique, c’est
la question naturelle à poser après avoir établi les comportements à long terme de la
limite de champ moyen. En ezet, pour l’exemple de réseau de neurones mentionné
ci-dessus, le ~ot de champ moyen mt correspond à la dynamique d’apprentissage
d’un réseau à un nombre in}ni de neurones et n’est pas accessible aux ordinateurs
réels. La véritable dynamique d’apprentissage implique toujours un nombre }ni
de particules et n’est que des approximations de la limite de champ moyen. En
rappelant que mN

t est la loi conjointe des N particules, nous souhaitons montrer
qu’il existe une borne uniforme dans le temps sur l’erreur d’approximation

d(mN
t ,m

⊗N
t )

pour une métrique appropriée d sur l’espace de mesures de probabilité. Cette pro-
priété, appelée propagation du chaos uniforme en temps, est l’objectif principal des
deux premiers chapitres, qui forment la partie I de la thèse. Dans le chapitre 1,
nous développons les idées expliquées ci-dessus et montrons que l’erreur d’approxi-
mation est uniformément bornée dans le temps. Dans le chapitre 2, nous étudions
la variante cinétique des dynamiques de Langevin de champ moyen et obtenons des
résultats similaires.

Un autre ingrédient clé de la partie I est l’inégalité de Sobolev logarithmique
(inégalité de log-Sobolev, ISL), et nous en illustrons l’importance en résumant l’ar-
gument de [178, 56] comme suit. Comme nous l’avons mentionné précédemment, la
méthode de la partie I repose sur la structure du gradient et la dissipation d’énergie
libre associées à l’équation de Fokker-Planck non linéaire (10). En prenant la dérivée
temporelle de la fonctionnelle d’énergie libre, on obtient, au moins formellement,

dF(mt)

dt = −
∫

X
|∇ logmt +DmF (mt, ·)|2 dmt.

On dé}nit m̂ comme l’unique mesure de probabilité qui a pour densité

m̂(x) ∝ exp
(
− δF
δm

(m,x)

)
,

où δF/δm est la dérivée fonctionnelle linéaire de F . En utilisant ensuite la relation
entre la dérivée linéaire et le gradient de Wasserstein, on trouve

dF(mt)

dt = −
∫

X

∣∣∣∣∇ log mt

m̂t

∣∣∣∣
2

dmt =: −I(mt|m̂t),
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où la fonctionnelle I(·|·) est appelée information de Fisher relative. L’inégalité de
Sobolev logarithmique pour la mesure m̂t nous permet alors de minorer l’informa-
tion de Fisher I(mt|m̂t) par l’entropie relative

H(mt|m̂t) :=

∫

X
log mt(x)

m̂t(x)
mt(dx),

à une constante multiplicative près. Grâce à la convexité plate, l’entropie relative
H(mt|m̂t) peut à nouveau être minorée par l’énergie libre relative F(mt) − infF .
Ainsi, en combinant l’ISL et la convexité, on démontre la contractivité exponentielle
de l’énergie libre.

Étant un outil puissant pour obtenir la contractivité exponentielle, les inéga-
lités de Sobolev logarithmiques sont malheureusement di{ciles à établir, surtout
lorsque l’on a pas d’accès direct à la densité de la mesure de probabilité concernée.
Et c’est là l’objectif principal des deux premiers chapitres de la partie II. Dans
les chapitres 3 et 4, nous proposons deux classes de critères pour l’inégalité de
Sobolev logarithmique basées sur deux méthodes complètement dizérentes. Nous
donnons ensuite quelques applications de l’ISL aux comportements en temps longs
des systèmes de particules dans la seconde moitié du chapitre 4. Notamment, nous
étendons la propagation du chaos locale uniforme en temps de Lacker et Le Flem
[142] au cas d’un potentiel d’interaction non convexe. En approfondissant l’une
des méthodes plus en détail, nous parvenons à démontrer une borne de L∞ sur
le hessien de la densité logarithmique du ~ot de champ moyen (2) avec le noyau
de Biot-Savart (contenant une singularité) dé}ni sur l’espace entier. Ce résultat
technique nous permet de démontrer pour la première fois la propagation du chaos
uniforme en temps pour le modèle de vortex en 2D sur l’espace entier. En tant que
suite du chapitre 4, nous travaillons toujours sur le modèle de vortex en 2D dans
le chapitre 5 et montrons la propagation du chaos uniforme et optimale dans le
régime de haute température en étendant la méthode de Lacker [140] aux interac-
tions singulières. La principale nouveauté de notre méthode est l’utilisation d’une
technique combinatoire pour résoudre la hiérarchie des entropies qui implique des
termes supplémentaires introduits par l’interaction singulière.

En}n, nous abordons la dernière et peut-être la partie la plus exotique de la
thèse, où nous étudions les comportements en temps long des dynamiques non
linéaires en dehors du cadre de McKean-Vlasov qui a été discuté jusqu’à présent.
Néanmoins, dans les chapitres 6 et 7, nous nous concentrons toujours sur le problème
d’optimisation de champ moyen régularisé par l’entropie (11). Remarquons que la
condition du premier ordre du problème est équivalente au problème du point }xe

m = m̂,

où, comme nous nous en souvenons, m̂(x) ∝ exp
(
− δF

δm
(m,x)

)
. En interprétant m̂

comme la meilleure réponse à m, la formulation du point }xe peut être comprise
comme une condition d’équilibre de Nash pour un auto-jeu où une personne joue
contre elle-même. Motivés par la stratégie de jeu }ctif de la théorie classique des
jeux, nous étudions la dynamique suivante dans le chapitre 6 :

∂tmt = α(m̂t −mt),

pour une constante α > 0, appelée jeu }ctif entropique, et démontrons sa conver-
gence vers l’équilibre. Un inconvénient majeur du jeu }ctif entropique est que,
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donné l’état d’un joueur m, il peut être coûteux de calculer la meilleure réponse
m̂, car cela nécessite généralement un calcul de type Monte-Carlo. Pour surmon-
ter ce problème, dans le chapitre 7, nous proposons une dynamique de dizusion
auto-interagissante qui peut être considérée comme un régime intermédiaire entre
le jeu }ctif entropique et un processus de dizusion linéaire. Nous expliquerons ce
point en détail ci-dessous. La convergence à l’équilibre pour cette dynamique auto-
interagissante est également établie dans ce chapitre. Dans le dernier chapitre 8,
nous nous intéressons plutôt au problème d’optimisation de champ moyen régularisé
par l’information de Fisher :

inf
m∈P(X )

F(m) := inf
m∈P(X )

F (m) + I(m) := inf
m∈P(X )

F (m) +

∫

X

|∇m(x)|2
m(x)

dx, (12)

et la descente de gradient associée, avec l’entropie relative mesurant la distance
entre les mesures de probabilité. En d’autres termes, nous proposons d’étudier la
limite continue du schéma de JKO suivant :

νhn+1 := argmin
ν∈P(X )

F(ν) +
H(ν|νhn)

h
, avec la condition initiale νhn = m0. (13)

La dynamique résultante est une version non linéaire du semigroupe de Schrödinger
et est donc appelée dynamique de Schrödinger de champ moyen. On obtient sa
convergence exponentielle via un trou spectral uniforme, c’est-à-dire une inégalité
de Poincaré uniforme.

∗∗∗
Dans le reste de cette introduction, nous présentons des aperçus techniques

détaillés des huit chapitres de la thèse. Nous discutons également quelques perspec-
tives à la }n.

Aperçu des chapitres 1 et 2
Propagation du chaos uniforme pour les Langevin

Les résultats principaux des deux chapitres sont la propagation du chaos uni-
forme en temps pour les dynamiques de Langevin de champ moyen suramortie et
sousamortie. Comme la dynamique suramortie a été dé}nie précédemment dans
(9), on dé}nit ici uniquement la dynamique sousamortie, ou cinétique,

dXt = Vt dt,
dVt = −Vt dt−DmF (m

X
t , Xt) dt+

√
2dBt, où mX

t = Loi(Xt).
(14)

La structure du seconde ordre de la dynamique modélise une particule newtonienne
soumise à des forces aléatoires, ce qui la rend plus apte à décrire les phénomènes
physiques. En outre, la dynamique de Langevin cinétique présente un analogue de
l’accélération de Nesterov pour les méthodes de Monte-Carlo par chaînes de Markov
de type gradient, c’est-à-dire la Langevin suramortie. Voir le travail de Y.-A. Ma
et al. [157]. Le système de N particules associé est dé}ni en dupliquant l’EDS N

fois et en remplaçant la dépendance de mX
t par la mesure empirique

µN
Xt

=
1

N

∑

i∈[N ]

δXi
t
.
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Nous notons toujours par mN
t la loi conjointe des N particules, mais remarquons

que maintenant cette loi est conjointe à la fois en espace et en vitesse :

mN
t := Loi

(
(X1

t , V
1
t ), . . . , (X

N
t , V

N
t )
)
.

Notre approche des comportements en temps long des dynamiques de Langevin de
champ moyen suramortie et sousamortie se base sur l’(hypo-)coercivité entropique
de la dynamique, que nous expliquons en détail par la suite.

Considérons pour l’instant le cas suramorti et désignons par m∗ la mesure in-
variante unique de (2). Cette mesure est également le minimiseur unique de la
fonctionnelle d’énergie libre de champ moyen :

m∗ = argmin
m∈P(X )

F(m) = argmin
m∈P(X )

F (m) +H(m).

Introduisons la fonctionnelle d’énergie libre relative :

FN (mN
t |m∗) := FN (mN

t )−NF(m∗)

:= N

∫

XN

F (µN
x )mN

t (dx) +H(mN
t )−NF (m∗)−NH(m∗),

et examinons son évolution dans le temps. On remarque que dans l’expression ci-
dessus, on a utilisé le même symbole H(·) pour la fonctionnelle d’entropie dé}nie
pour les mesures de probabilité sur XN et X . Comme nous l’avons indiqué précé-
demment, la dynamique à N particules est en fait linéaire, et l’on a

FN (mN
t ) = N

∫

XN

F (µN
x )mN

t (dx) +H(mN
t ) = H(mN

t |mN
∗ ) + constante,

où mN
∗ est la mesure invariante des N particules avec une densité

mN
∗ (x) ∝ exp

(
−NF (µN

x )
)
.

Ainsi, par des calculs classiques, on obtient

d
dtF

N (mN
t |m∗) = −

∑

i∈[N ]

∫

XN

∣∣∣∣∇i log m
N
t (x)

mN∗ (x)

∣∣∣∣
2

mN
t (dx) =: −I(mN

t |mN
∗ ),

où I(·|·) désigne l’information de Fisher relative. L’approche habituelle consiste
alors à trouver des conditions pour une inégalité de Sobolev logarithmique uniforme
en N pour mN

∗ , de sorte que l’on puisse conclure comme suit :

I(mN
t |mN

∗ ) & H(mN
t |mN

∗ ) > FN (mN
t |m∗)−O(1).

C’est en ezet la méthode de Malrieu [159] et de Carrillo, McCann et Villani [39], et
ainsi que des plus récents travaux de Guillin, W. Liu, L. Wu et C. Zhang [100, 99].
Toutefois, les conditions pour l’ISL qui y sont énoncées semblent davantage liées à
la convexité de déplacement et ne semblent pas compatibles avec la convexité plate,
qui est notre condition structurelle pour les comportements en temps long. Notre
innovation consiste à considérer l’information de Fisher conjointe à N particules
I(mN

t |mN
∗ ) comme la valeur moyenne des informations de Fisher entre les mesures
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conditionnelles d’une seule particule. Cela est possible grâce à la décomposition par
composant :

∑

i∈[N ]

∫

XN

∣∣∣∣∇i log m
N
t (x)

mN∗ (x)

∣∣∣∣
2

mN
t (dx)

=
∑

i∈[N ]

∫

XN−1

∫

X
|∇i logmN,i|−i

t (xi|x−i) +DmF (µ
N
x , x

i)|2

m
N,i|−i
t (dxi|x−i)m−i

t (dx−i). (15)

Ici, −i représente l’ensemble de tous les indices sauf i, c’est-à-dire [N ]\{i}, et mN,−i
t ,

m
N,i|−i
t sont respectivement les mesures marginale et conditionnelle dé}nies par

m
N,−i
t (x−i) :=

∫

X
mN

t (x) dxi,

m
N,i|−i
t (xi|x−i) :=

mN
t (x)

mN,−i(x−i)
.

En supposant que les mesures de probabilité m̂ de la forme suivante

m̂(x) :=
exp
(
− δF

δm
(m,x)

)
∫
X exp

(
− δF

δm
(m, y)

)
dy
, où m ∈ P(X )

satisfont une ISL uniforme, on peut (après quelques manipulations sur les mesures)
appliquer l’ISL pour la mesure d’une particule à l’information de Fisher condition-
nelle dans la décomposition (15). On note que cette approche par composant n’est
pas entièrement nouvelle, comme elle a déjà été utilisée pour prouver la stabilité
d’ISL par tensorisation (voir par exemple [148, Section 5.2]) et l’idée de décomposi-
tion est en fait à la base de nombreuses inégalités de concentration adimensionnelles
(voir par exemple les discussions sur l’inégalité d’Efron-Stein dans [27, Section 3.1]).
L’innovation ici est que la mesure de base mN

∗ n’est pas nécessairement tensorisée et
on parvient à contrôler les erreurs provenant de la dépendance entre les particules.
En}n, en utilisant la convexité plate de F dans les étapes intermédiaires, on obtient
une ISL à N particules avec un terme d’erreur :

I(mN
t |mN

∗ ) & FN (mN
t |m∗)−O(1) (16)

et cela permet de conclure par le lemme de Grönwall

FN (mN
t |m∗) 6 Ce−ctFN (mN

t |m∗) +O(1) = O(Ne−ct + 1).

On note qu’en remplaçant mN
t par la mesure invariante mN

∗ , on obtient

FN (mN
∗ |m∗) = O(1)

et donc (16) implique

I(mN
t |mN

∗ ) & FN (mN
t |m∗)−FN (mN

∗ |m∗)−O(1) = H(mN
t |mN

∗ )−O(1),

ce qui est une inégalité de log-Sobolev non tendue pour mN
∗ avec des constantes

uniformes en N . Pour cette raison, par abus de langage, on dit que l’inégalité (16)
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est une version non tendue (ou bruitée, discrétisée, défecteuse) de l’ISL non linéaire
de champ moyen :

I(m|m̂) & H(m|m̂) > F(m)−F(m∗) > H(m|m∗). (17)

Les calculs ci-dessus seront expliqués en détail et rigueur dans la démonstration du
théorème 1.12 dans le chapitre 1. Le contrôle sur l’énergie libre relative FN (mN

t |m∗)
implique ensuite, en raison de la convexité de F et de l’inégalité de Talagrand,

W 2
2 (m

N
t ,m

⊗N
∗ ) . H(mN

t |m⊗N
∗ ) = O(Ne−ct + 1).

On combine ceci avec la convergence exponentielle du ~ot de champ moyen

W 2
2 (mt,m∗) . H(mt|m∗) = O(e−ct)

et la borne standard de propagation du chaos qui croît exponentiellement :

1

N
W 2

2 (m
N
t ,m

⊗N
t ) = O(ectN−α), pour un certain α > 0.

Finalement, à travers un argument de triangle, on obtient la borne uniforme sou-
haitée

sup
t>0

1

N
W 2

2 (m
N
t ,m

⊗N
t ) = O(N−α′

), pour un certain α′ > 0.

Nous menons également une étude assez détaillée de l’hypercontractivité (inverse)
de l’évolution non linéaire (10) et obtenons une borne inférieure assez forte sur la
densité de mt à long terme. Cela nous permet de reproduire l’argument du triangle
ci-dessus et d’obtenir la borne uniforme sur l’entropie relative :

sup
t>0

1

N
H(mN

t |m⊗N
t ) = O(N−α′′

), pour un certain α′′ > 0.

Dans le chapitre 2, nous nous tournons vers l’étude du comportement en temps
long du ~ot non linéaire hypoelliptique (14) et de son système de particules associé.
À noter que dans ce cas, contrairement à la Langevin de champ moyen suramortie,
la convergence exponentielle du ~ot de champ moyen ne semble même pas avoir
été établie, ce qui constitue également la première contribution de ce chapitre.
Suivant les intuitions physiques, pour une mesure de probabilité m ∈ P(X × Rd),
la fonctionnelle d’énergie libre naturelle est la somme des énergies potentielle et
cinétique, ainsi que de l’entropie :

F(m) = F (mX) +
1

2

∫

X×Rd

|v|2m(dx dv) +H(m),

où mX est la première loi marginale de m. La particularité de l’hypoellipticité réside
dans le fait que, lorsque l’on prend la dérivée temporelle de la fonctionnelle d’énergie
libre, on n’obtient pas une information de Fisher complète, mais seulement partielle
dans les directions de la vitesse :

dF(mt)

dt = −
∫

X
|∇v logmt(x, v) + v|2mt(dx dv)

= −
∫

X

∣∣∣∣∇v log mt(x, v)

m̂t(x, v)

∣∣∣∣
2

mt(dx dv),
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où m̂ est la mesure de probabilité avec la densité

m̂(x, v) ∝ exp
(
− δF
δm

(mX , x)− 1

2
|v|2
)
.

Une solution pour traiter cette dégénérescence courante dans les modèles cinétiques
est d’introduire une quantité tordue, comme Y. Guo [103] et Talay [217] l’ont dé-
montré, et c’est en ezet la solution que Villani a trouvée pour la dynamique linéaire
de Fokker-Planck [221, Part I]. Dans le cas linéaire, l’énergie potentielle F est don-
née par une fonction potentielle :

F (mX) =

∫

X
U(x)mX(dx), pour une certaine U : X → R,

et donc m̂ est indépendante de m et identique à la mesure d’équilibre, que l’on note
m∗. L’idée de Villani est d’introduire une information de Fisher anisotrope (mais
toujours dé}nie positive) :

Ia,b,c(m|m∗) =
∫

X×Rd

(
a
∣∣∣∇v log m(z)

m∗(z)

∣∣∣
2

+ 2b∇v log m(z)

m∗(z)
· ∇x log m(z)

m̂(z)

+ c
∣∣∣∇x log m(z)

m∗(z)

∣∣∣
2
)
mt(dz),

où z = (x, v). En choisissant les bons a, b, c et en ezectuant quelques calculs longs,
on obtient

d
dt
(
F(mt) + Ia,b,c(mt|m∗)

)
. −

∫

X×Rd

∣∣∣∣∇z log mt(z)

m∗(z)

∣∣∣∣
2

mt(dz) =: −I(mt|m∗).

L’information de Fisher pleine du côté droit nous permet de conclure par l’ISL ha-
bituelle pour m∗ et le phénomène est appelé hypocoercivité. Dans notre travail, nous
adaptons cette construction de Villani à notre cadre non linéaire, en remplaçant le
m∗ dans l’information de Fisher anisotrope par m̂t. On doit alors calculer la dérivée
temporelle de

F(mt) + Ia,b,c(mt|m̂t).

La plupart des calculs suivent la ligne des travaux originaux de Villani, puisque le
générateur de l’évolution au temps t annihile la mesure m̂t, mais on doit également
contrôler le terme supplémentaire provenant de la variation de m̂t. Heureusement,
cela ne pose aucun problème pour l’hypocoercivité et nous obtenons la conver-
gence exponentielle du ~ot de champ moyen (voir également la démonstration du
théorème 2.2).

Pour le système de N particules associé, puisque la dynamique est linéaire, on
peut appliquer directement le formalisme de Villani, et le point essentiel est d’avoir
une hypocoercivité uniforme en N . Plus précisément, on a

d
dt
(
H(mN

t |mN
∗ ) + Ia,b,c(m

N
t |mN

∗ )
)
6 −κI(mN

t |mN
∗ )

pour certains a, b, c et κ > 0 qui ne dépendent pas de N . Dans le cas cinétique, on a
également une ISL discrétisée similaire à (16), ce qui permet d’obtenir de nouveau

FN (mN
t )−NF(m∗) 6 O(Ne−ct + 1).
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On explique les arguments en détail dans la démonstration du théorème 2.3.
En}n, nous travaillons également sur les propriétés de régularisation à court

terme de la dynamique hypoelliptique. En adaptant la méthode de couplage par
changement de mesure développée par Guillin, P. Ren et F.-Y. Wang dans une
série de travaux [102, 227, 193], nous obtenons des inégalités de log-Harnack sans
dimension pour le ~ot de champ moyen et le système de particules, ce qui conduit
à la régularisation de la distance de Wasserstein à l’entropie relative. Ensuite, nous
adaptons la fonctionnelle de Hérau [109] à notre cadre pour obtenir la régularisa-
tion de l’entropie relative à l’information de Fisher relative. En}n, nous combinons
les convergences exponentielles à long terme, les régularisations à court terme et
la propagation standard exponentiellement croissante du chaos pour dériver une
borne de propagation du chaos uniforme en temps, sans nécessiter de régularité des
données initiales (voir le théorème 2.6).

Aperçu des chapitres 3 et 4
ISL et applications

L’objectif principal des chapitres 3 et 4 est d’obtenir des critères d’ISL pour
les mesures de probabilité liées à un processus de dizusion sans avoir directement
accès à leurs densités. Dans le chapitre 3, nous souhaitons montrer une ISL pour la
mesure stationnaire de la dizusion homogène en temps suivante

∂tmt =
σ2

2
∆mt −∇ · (bmt),

et dans le chapitre 4, nous permettons à la dérive b de dépendre du temps et
souhaitons montrer une ISL uniforme en temps pour mt résolvant l’inhomogène

∂tmt =
σ2

2
∆mt −∇ · (btmt). (18)

Notons d’abord que le premier problème est en fait plus ou moins inclus dans
le second, car si l’on peut montrer une ISL uniforme en temps pour mt, t > 0,
et sait que mt converge faiblement vers une mesure stationnaire m∗, alors m∗
satisfait également une ISL. Nous travaillerons donc principalement dans le cadre
parabolique dans le reste de l’aperçu. Deuxièmement, si la dérive dans le premier
problème est un gradient :

b(x) = −∇U(x),

alors la dizusion est symétrique et l’on sait que la mesure stationnaire a une densité
proportionnelle à exp

(
−2U(x)/σ2

)
. Dans ce cas, par le critère classique de Bakry-

Émery et les résultats de perturbation, on sait déjà comment montrer une ISL
pour une grande classe de U . Ainsi, l’intérêt du chapitre 3 réside dans le cas non
symétrique. En}n, dans le cas où b satisfait une forte monotonie :

(
bt(x)− bt(y)

)
· (x− y) 6 −κ|x− y|2, pour un certain κ > 0,

en répétant l’argument classique de Malrieu [159] (voir aussi le début du chapitre 4),
on peut propager l’ISL uniformément dans le temps, et le second problème est réso-
lu. Nous nous concentrerons donc sur les cas où cette forte monotonie est absente.

Comme nous l’avons mentionné ci-dessus, nous proposons deux classes de tels
critères basés sur deux méthodes dizérentes. La première méthode est basée sur
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un travail récent de Monmarché [168], où il a montré que, si b est assez régulier
et si b n’est non monotone qu’à l’intérieur d’un ensemble compact, alors il existe
σ0 tel que pour tout σ > σ0, le processus de dizusion lié à (18) est contractant en
Wasserstein de L2. Autrement dit, pour deux solutions µt, νt de (18), on a

W2(µt, νt) 6Me−λtW2(µ0, ν0), pour un certain λ > 0. (19)

Monmarché présente deux démonstrations de ce résultat dans son travail cité et
la démonstration probabiliste est basée sur le couplage synchrone des processus de
dizusion et un coût de transport modi}é équivalent à la distance euclidienne au
carré. La condition de haute température est crucialement utilisée pour construire
un tel coût de transport. Ensuite, par des arguments standards (en fait, une version
L2 du résultat de propagation de Malrieu [159]), la contraction (19) mène à une
inégalité de Poincaré uniforme pour mt. On observe ensuite que, une fois que nous
avons un contrôle uniforme en temps sur x 7→ x · bt(x) et ∇bt, on peut obtenir
respectivement une borne de moment gaussienne et une inégalité de Harnack (de
F.-Y. Wang) qui sont toutes les deux uniformes dans le temps. Ces deux résultats
conduisent à une hypercontractivité uniforme en temps, ce qui équivaut à une inéga-
lité de log-Sobolev non tendue uniforme en temps. Ensuite, en combinant l’inégalité
de Poincaré et l’ISL défectueuse, on obtient l’ISL uniforme en temps souhaitée.

La seconde méthode repose sur des estimations directes sur la densité de la so-
lution mt de (18) et peut sembler brutale pour les lecteurs versés dans les inégalités
fonctionnelles. Pour simpli}er, on }xe σ =

√
2 dans cet alinéa. Supposons qu’il

existe une mesure de référence µ0 satisfaisant une ISL qui est aussi stationnaire par
rapport à la dérive a0, c’est-à-dire,

∆µ0 −∇ · (a0µ0) = 0.

Notons la dizérence des dérives par gt := bt−a0 et la densité relative logarithmique
par ut := logmt/µ0. Selon les EDP respectives de mt et µ0, on trouve que ut résout
l’équation de Hamilton-Jacobi-Bellman (HJB)

∂tut = ∆ut + |∇ut|2 + b̃t · ∇ut + ϕt,

où les coe{cients sont dé}nis par

b̃t := 2∇ logµ0 − bt,
ϕt := −∇ · gt + gt · ∇ logµ0.

On dit que la dérive b̃ est faiblement semi-monotone si
(
b̃t(x)− b̃t(y)

)
· (x− y) 6 −κ(|x− y|)|x− y|2,

pour une certaine κ : (0,∞) → R telle que lim infr→∞ κ(r) > 0 et r 7→ r|κ(r)|
est intégrable près de 0. Dans un travail récent [61], Conforti a démontré que si
b̃ est faiblement semi-monotone et ϕ est lipschitzienne, alors il existe une borne
uniforme en temps sur le gradient de ut. Ainsi, selon le résultat de perturbation log-
lipschitzienne d’Aida et Shigekawa [1], le ~ot de mesures mt ∝ µ0 exp(ut) satisfait
une ISL uniforme en temps. La méthode de Conforti pour cette estimation du
gradient est probabiliste : il utilise le couplage par ré~exion pour des processus
de dizusion contrôlés et montre la contraction en distance W1, ce qui conduit à
l’estimation du gradient uniforme en temps. La version non contrôlée du couplage
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par ré~exion semble avoir été développée pour la première fois par Lindvall et
Rogers [152] dans les années 1980. Ce couplage a été généralisé aux dizusions sur
des variétés par Kendall [130] et ensuite utilisé pour dériver des estimations de
gradient pour l’équation de la chaleur par Cranston [65]. La semi-convexité faible,
avec le couplage par ré~exion, a été exploitée par M.-F. Chen et F.-Y. Wang [47]
dans les années 1990 pour estimer le trou spectral du générateur de dizusion et les
ezets régularisants à court terme sont dérivés par Priola et F.-Y. Wang dans [187].
Porretta et Priola ont ensuite montré l’ezet de régularisation pour le ~ot de HJB
non linéaire dans [186] en utilisant le principe de comparaison purement analytique
entre les solutions de viscosité. Le travail plus récent d’Eberle [83] a ravivé cette
méthode car il a attiré beaucoup d’attention des communautés de statistiques et
d’apprentissage automatique. Nous remarquons que le travail de Conforti cité ci-
dessus a apporté deux contributions vitales au chapitre 4 : d’abord, on obtient
l’estimation en temps long dans le cas de HJB ; et ensuite, on démontre également
l’estimation du hessien (c’est-à-dire sur ∇2ut). Nous commenterons en particulier
sur la deuxième contribution ci-dessous.

Dans le reste du chapitre 4, nous discutons quelques exemples qui véri}ent les
deux critères présentés ci-dessus et appliquons l’ISL uniforme en temps pour obtenir
la propagation du chaos locale uniforme en temps pour la dynamique de McKean-
Vlasov avec des potentiels d’interaction non convexes, ce qui n’est pas incluse dans
l’article de Lacker et Le Flem [142]. La propagation du chaos locale sera discutée
plus en détail dans l’aperçu du chapitre suivant. Cependant, l’application la plus
intéressante de notre méthode est peut-être le modèle de vortex en 2D dans l’espace
entier présenté à la }n du chapitre. Le modèle de vortex en 2D est une formulation
probabiliste des équations de Navier-Stokes incompressibles en 2D et nous renvoyons
le lecteur à l’article d’exposition [205] pour plus de détails. Dans ce modèle, le ~ot
de champ moyen (1) suit la dérive de McKean-Vlasov

b(m,x) =
1

2π

∫

R2

(x− y)⊥
|x− y|2 m(dy),

où le symbole ⊥ représente la rotation en 2D : (x1, x2)⊥ = (−x2, x1). En d’autres
termes, la dérive véri}e b(m,x) = (K ? m)(x) où K est le noyau de Biot-Savart.
Récemment, Jabin et Z. Wang [124] ont montré la propagation du chaos globale
en temps pour ce modèle et Guillin, Le Bris et Monmarché [98] l’ont améliorée en
une borne uniforme de la propagation du chaos. Cependant, puisque la méthode de
Jabin et Z. Wang est basée sur un principe d’unicité faible-fort, elle nécessite une
régularité assez forte du ~ot de champ moyen. Pour être plus précis, il faut contrôler
la norme L∞ de ∇ logmt et ∇2 logmt. Ceci est assez di{cile à établir dans l’espace
entier car on ne peut pas avoir de borne inférieure globale sur la densité mt. Pour
cette raison, les deux travaux cités ci-dessus ne traitent que le modèle de vortex
en 2D périodique sur le tore bidimensionnel. Dans le chapitre 4, on montre qu’en
ajoutant un con}nement quadratique supplémentaire, c’est-à-dire, en laissant

b(m,x) = −κx+ (K ?m)(x),

on peut utiliser la méthode de HJB pour obtenir des bornes L∞ sur

∇ log mt

m∗
, ∇2 log mt

m∗
, où m∗ ∝ exp

(
−κ|x|

2

2

)
.

De plus, ces bornes convergent vers zéro de façon exponentielle et cela permet de
montrer la propriété de génération du chaos pour le modèle de vortex en 2D. Les
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démonstrations de telles bornes L∞ sont modérément longues. En raison de la sin-
gularité du noyau de Biot-Savart K, on s’appuie sur une procédure de bootstrap
parabolique pour gagner progressivement en régularité sur les coe{cients b̃, ϕ, et
l’on a besoin à la fois de la contraction à long terme de Conforti et de la régularisa-
tion à court terme de Porretta, Priola et F.-Y. Wang. Pour conclure la discussion
sur les vortex en 2D, on note que, après que le chapitre 4 était apparu en prépu-
blication [170], Rosenzweig et Serfaty ont mis en ligne leur prépublication [201] où
ils montrent que les modèles de vortex en 2D avec et sans con}nement quadra-
tique sont équivalents par une transformation d’échelle. Ainsi, notre méthode peut
également s’appliquer au modèle sur l’espace entier sans con}nement.

En}n, nous mentionnons que dans le chapitre 3, on développe également un
critère d’ISL pour la mesure stationnaire d’une dizusion cinétique. Il est basé sur
la méthode de HJB et l’étape la plus importante est de construire une contraction
de Wasserstein pour les processus de dizusion cinétiques contrôlés. L’énoncé et la
démonstration sont présentés à la }n du chapitre. La méthode repose sur un cou-
plage mixte, comprenant à la fois des parties synchrone et ré~échie, et un coût de
transport tordu (habituel pour les modèles cinétiques) motivé par la construction
d’Eberle, Guillin et Zimmer [84]. On peut considérer ce résultat comme une gé-
néralisation (ou même une amélioration à certains égards) des travaux récents de
Kazeykina, Z. Ren, X. Tan et J. Yang [128] et de Schuh [206].

Aperçu du chapitre 5
Taille du chaos pour les dynamiques singulières

Dans le chapitre 5, nous étudions une propriété }ne du grand système de par-
ticules de champ moyen appelée propagation du chaos locale. Bien que nous ayons
étudié la propagation du chaos quantitative dans les chapitres précédents, les résul-
tats obtenus concernent uniquement les distances entre le système de particules et le
système de champ moyen tensorisé dans son ensemble, par exemple, la distance de
Wasserstein W 2

2 (m
N
t ,m

⊗N
t ) ou l’entropie relative H(mN

t |m⊗N
t ). Dans ce chapitre,

au lieu d’étudier ces distances globales, on observe uniquement les k premières par-
ticules du système des N particules (3) et les compare avec le ~ot de champ moyen
tensorisé k fois. Pour justi}er le fait de ne considérer que les k premières parti-
cules et non d’autres ensembles de k particules, nous devons bien entendu supposer
l’échangeabilité dans le système de N particules, et cette hypothèse sera en vigueur
tout au long du chapitre. On suppose également que l’interaction de champ moyen
dans la dérive prend la forme de noyau suivante :

b(m,x) =

∫

X
K(x, y)m(dy).

Rappelons que la loi du sous-système de k particules au temps t est notée mN,k
t ,

ou en d’autres termes,
m

N,k
t := Loi(X1

t , . . . , X
k
t ),

où la dépendance de N dans le membre de droite est implicite. La question soulevée
consiste donc à trouver une borne précise entre les deux mesures de probabilité mN,k

t

et m⊗k
t . C’est une version quantitative de la condition de chaos (6).

Pour cette raison, la question est également appelée taille du chaos dans les
littératures récentes. Voir les travaux de Paul, Pulvirenti et Simonella [182], de
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Duerinckx [78], et de Bernou et Duerinckx [20]. Un point commun des approches
de ces travaux est que les auteurs décomposent la loi des N particules en une somme
combinatoire de fonctions de corrélation connexes (ou cumulants), la décomposition
étant appelée développement en clusters, et ils étudient l’évolution des fonctions
de corrélation le long de la dynamique. En fonction de l’interaction spéci}que de
champ moyen, les corrélations entre les particules peuvent être engendrées par des
collisions ou à travers la dérive et l’aléa peut provenir de l’initialisation et aussi du
bruit dynamique. Après avoir estimé la taille des cumulants, ils reviennent alors au
problème de la taille du chaos et obtiennent

‖mN,k
t −m⊗k

t ‖ = O

(
k2

N

)
,

où ‖·‖ désigne une norme fonctionnelle appropriée. Grossièrement parlant, le facteur
k2 provient du comptage du nombre de paires parmi les k premières particules.
Ce facteur ne peut pas être réduit dans cette approche, à moins qu’une certaine
annulation ne se produise, ce qui peut résulter de l’orthogonalité.

Une approche complètement dizérente est développée dans le travail récent de
Lacker [140], où il considère directement l’évolution des erreurs entre mN,k

t et m⊗k
t ,

mesurées en termes d’entropie relative

Hk
t := H(mN,k

t |m⊗k
t ).

La dynamique de la mesure mN,k
t est décrite par la hiérarchie de BBGKY et im-

plique la marginale d’ordre supérieur mN,k+1
t , et donc l’évolution de Hk

t devrait
également impliquer des quantités d’ordre supérieur. En ezet, dans la dernière
étape de la démonstration de Lacker, l’équation dynamique s’écrit

dHk
t

dt 6M
k2

N2
+M(Hk+1

t −Hk
t ),

où M est une constante liée à la force du noyau d’interaction de champ moyen K.
En résolvant le système d’inégalités ci-dessus, on obtient la borne globale en temps
Hk

t = O(k2/N2), et en termes de distance de norme,

‖mN,k
t −m⊗k

t ‖TV = O

(
k

N

)

ce qui améliore les résultats ci-dessus par un facteur de k. Cette borne est optimale
car elle peut être atteinte par un simple exemple gaussien. Par la suite, cette mé-
thode a été étendue au cas uniforme en temps dans le régime d’interaction faible
par Lacker et Le Flem [142] et la borne optimale pour le chaos d’ordre supérieur
est obtenue par Hess-Childs et Rowan [111]. Nous remarquons que la méthode de
Lacker repose crucialement sur le bruit brownien pour contrôler la croissance de
Hk

t et c’est peut-être la raison du gain de facteur k par rapport aux approches plus
combinatoires ci-dessus.

Une limitation commune des travaux précédents sur la taille du chaos est que l’on
nécessite une forte hypothèse de régularité (au moins L∞) sur le noyau d’interaction
K, excluant ainsi le modèle intéressant de vortex en 2D où le noyau est de Biot-
Savart :

K(x, y) =
(x− y)⊥
2π|x− y|2 .
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Le but du chapitre 5 est précisément de surmonter cette limitation et de démontrer
la borne optimale de la taille du chaos pour le système de particules de vortex en
2D, c’est-à-dire, Hk

t = O(k2/N2). En combinant les techniques de Jabin-Z. Wang
et de Lacker, on montre que l’évolution de l’entropie relative véri}e

dHk
t

dt 6 −c1Ikt + c2I
k+1
t +M

(
Hk

t +
k2

N2

)
+M(Hk+1

t −Hk
t ),

où Ikt , Ik+1
t sont des informations de Fisher relatives. En particulier, on a

Ikt :=
∑

i∈[k]

∫

Xk

∣∣∣∣∇i log m
N,k
t (x[k])

m⊗k
t (x[k])

∣∣∣∣
2

m
N,k
t (dx[k]).

La principale dizérence par rapport au travail de Lacker est bien sûr l’information
de Fisher positive d’ordre supérieur Ik+1

t , qui provient de la singularité du noyau K.
Résoudre le système d’inégalités dizérentielles dans le cas c2 < c1 est la principale
innovation technique du chapitre. Remarquons que la condition c2 < c1 correspond
au fait que la norme W−1,∞ du noyau K est inférieure à 1, donc notre résultat est
valide pour des interactions de vortex faibles, ou de manière équivalente, pour des
vortex dans un régime de haute température. L’idée principale de la démonstration
est de considérer un mélange pondéré des entropies d’ordre > k :

Zk
t :=

N∑

i=k

ak,iH
i
t , où ak,i > 0 et ak,k = 1.

En choisissant les coe{cients appropriés ak,i, on peut annuler toutes les informa-
tions de Fisher dans la dynamique de Zk

t et retrouver le système original de Lacker.
On en déduit ainsi Zk

t = O(k2/N2) et on peut conclure par Hk
t 6 Zk

t . En utilisant
les idées de [98], on améliore également la borne globale en temps sur la taille du
chaos pour obtenir une borne uniforme. On en discute également certaines consé-
quences. Par exemple, en tirant parti de l’injection de Ld dans W−1,∞ [28], on
peut démontrer une borne optimale et globale en temps pour la taille du chaos
pour les interactions en Ld de toute intensité. On utilise également une approche
en L2 (plutôt qu’en entropie) pour la taille du chaos dans le cas des interactions de
vortex a}n de lever la restriction sur la force d’interaction, mais malheureusement
on n’obtient un résultat que pour un temps }ni.

Aperçu des chapitres 6 et 7
Jeu }ctif et auto-interaction

Dans les chapitres 6 et 7, nous étudions des dynamiques de champ moyen alter-
natives qui approchent le minimiseur du problème d’optimisation de champ moyen
régularisé par l’entropie (11) en temps long. La dynamique d’intérêt dans le cha-
pitre 6 est le jeu }ctif entropique dé}ni de la manière suivante :

∂tmt = α(m̂t −mt), où m̂t ∝ exp
(
− δF
δm

(m, ·)
)
. (20)

La dé}nition des dynamiques ci-dessus est motivée par l’algorithme de jeu }ctif,
d’abord proposé par Brown [34] dans le cadre d’un jeu à deux personnes. Dans un
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jeu symétrique à deux personnes avec un espace d’états continu, on note les états
des deux joueurs par x, y respectivement, et la condition d’équilibre de Nash s’écrit

x∗ ∈ MR(y∗), y∗ ∈ MR(x∗),

où MR(·) est l’ensemble des meilleures réponses donné l’état de l’adversaire. Brown
propose que les deux joueurs suivent les dynamiques discrètes respectives

xt+1 =
t

t+ 1
xt +

1

t+ 1
at, où at ∈ MR(yt),

yt+1 =
t

t+ 1
yt +

1

t+ 1
bt, où bt ∈ MR(xt),

et s’attend à ce que (xt, yt) converge vers un certain équilibre de Nash (x∗, y∗)
à long terme. Pour comprendre les intuitions derrière nos dynamiques de jeu }ctif
entropique, remarquons que par le calcul variationnel, la condition du premier ordre
du problème d’optimisation (11) est

δF

δm
(m∗, x) + logm∗(x) = constante.

Selon la dé}nition de la mesure m̂, la condition ci-dessus est équivalente à

m∗ = m̂∗.

C’est une condition d’équilibre de Nash pour le jeu à une personne (ou auto-jeu) si
la fonction m 7→ m̂ est interprétée comme la fonction de meilleure réponse. Et si l’on
remplace le facteur 1/t dans les dynamiques de Brown par une échelle exponentielle,
et considérons la version continue, les dynamiques de jeu }ctif correspondantes
sont exactement (20). Nous remarquons que Cardaliaguet et Hadikhanloo ont aussi
utilisé cette idée a}n de trouver des solutions aux jeux à champ moyen [36], ce qui
peuvent également être formulés comme un problème du point }xe.

En général, on ne peut pas garantir la convergence de l’algorithme de jeu }ctif,
mais dans le cas des jeux de potentiel, on peut souvent trouver des fonctions de
Lyapunov qui diminuent le long des dynamiques. Pour le jeu }ctif entropique, on
calcule la dérivée temporelle de la fonctionnelle d’énergie libre (qui est la fonction-
nelle à optimiser) le long des dynamiques, et l’on trouve

dF(mt)

dt = −α
(
H(mt|m̂t) +H(m̂t|mt)

)
.

Puisque l’on suppose toujours que la fonction d’énergie F est convexe au sens plat,
on peut déjà utiliser l’inégalité de sandwich de l’entropie (1.40) dans le chapitre 1 :

H(mt|m̂t) > F(mt)−F(m∗).

et la convergence exponentielle suit. Cependant, ce n’est pas l’approche que nous
avons adoptée dans le chapitre 6, en partie parce que nous n’étions pas familiers
avec une telle inégalité de sandwich lorsque le papier correspondant [49] a été écrit.
(Cette inégalité de sandwich a déjà été utilisée dans [56, 178] pour démontrer la
convergence exponentielle de la dynamique de Langevin de champ moyen suramortie
à cette époque.) Au lieu de cela, on prend à nouveau la dérivée temporelle de
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H(mt|m̂t) et trouve que, au moins formellement,

dH(mt|m̂t)

dt = −α
(
H(mt|m̂t) +H(m̂t|mt)

)

− α
∫∫

X 2

δ2F

δm2
(mt, x, y)(m̂t −mt)

⊗2(dx dy).

Le dernier terme est négatif en raison de la convexité de F . On obtient donc

dH(mt|m̂t)

dt 6 −αH(mt|m̂t),

dH(mt|m̂t)

dt 6
dF(mt)

dt .

Et par quelques calculs élémentaires, on conclut que F(mt) diminue exponentielle-
ment. Le calcul du second ordre ci-dessus est intéressant en soi car il ressemble à
la démonstration d’Otto-Villani [180] du critère de Bakry-Émery, que nous esquis-
sons ici de manière minimaliste. Supposons que l’on a une dynamique de Langevin
suramortie, engendrée par ∆ −∇U · ∇ pour une certaine U : Rd → R satisfaisant
∇2U � ρ avec ρ > 0. Notons parm∗ la mesure invariante proportionnelle à exp(−U)
et mt le ~ot de mesure associé. Posons également pour simpli}er Ht := H(mt|m∗)
et It := I(mt|m∗). Otto et Villani ont calculé que

dHt

dt = −It,
dIt
dt 6 −2ρIt.

Puisque l’on sait que limt→∞Ht = 0, on a

H0 =

∫ ∞

0

It dt 6
∫ ∞

0

I0e
−2ρt dt = I0

2ρ
.

Comme la valeur initiale du ~ot est arbitraire, on a établi l’inégalité de log-Sobolev,
ce qui conduit à la convergence exponentielle de l’entropie relative. Ainsi, dans le
jeu }ctif entropique, l’énergie libre F joue le rôle de l’entropie dans Otto-Villani,
et H(mt|m̂t) joue le rôle d’information de Fisher.

Malgré la simplicité du jeu }ctif entropique, une di{culté numérique importante
n’est pas prise en compte dans l’analyse ci-dessus. À chaque étape t, on doit calculer
la meilleure réponse à mt, à savoir m̂t ∝ exp

(
− δF

δm
(mt, ·)

)
, et cela se fait généra-

lement par des méthodes de Monte-Carlo : par exemple, on lance des particules à
partir d’une distribution initiale et les laissons évoluer selon la dynamique de Lan-
gevin suramortie. Après un temps su{samment long, avec un nombre su{samment
grand de particules, on peut échantillonner la mesure m̂t avec une précision arbi-
traire. On appelle cette étape itération intérieure dans le chapitre 6. Cependant,
nous n’y abordons pas la complexité algorithmique de cette itération.

C’est la raison pour laquelle, dans le chapitre 7, nous nous tournons vers la
dynamique suivante :

dXt = −DmF (mt, Xt) dt+
√
2dBt,

dmt = λ(t)(δXt
−mt) dt.

(21)
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Ici, λ : [0,∞) → (0,∞) est à déterminer et mt n’est plus la loi de la particule Xt,
mais une mesure d’occupation pondérée de la particule selon la deuxième équation :

mt = e−
∫

t

0
λ(s) dsm0 +

∫ t

0

λ(s)e−
∫

t

s
λ(u) du δXs

ds.

Le terme de dérive de la particule au temps t dépend donc de son histoire sur
l’intervalle [0, t] et pour cette raison, la dynamique est dite auto-interagissante. Ce
type de dynamique a déjà été étudié par Cranston et Le Jan [66], Raimond [188],
et Benaïm, Ledoux et Raimond [15]. L’article récent de Du, Jiang et J. Li [75]
aborde l’utilité de telles dynamiques dans l’échantillonnage. Pour l’instant, on }xe
λ(t) = λ > 0. Remarquons que chacun des deux composants dans (21) a une échelle
de temps naturelle. Si l’argument de mesure mt est }gé, le premier composant suit
une Langevin suramortie linéaire et l’échelle de temps est le temps de mélange pour
un tel processus. De même, en }xant l’argument Xt dans la deuxième équation,
on trouve que l’échelle de temps du deuxième composant est 1/λ. Sous la limite
λ→ 0, la deuxième échelle de temps devient beaucoup plus grande que la première,
si bien que la distribution du premier argument se stabilise rapidement vers l’état
stationnaire m̂t avant que le second argument ne change de manière signi}cative.
Et puisque, par le théorème de Birkhoz, la masse de Dirac δXt

moyennée sur un
intervalle su{samment long est proche de l’état stationnaire m̂t, on espère que sur
le long terme, la dynamique auto-interagissante devrait être décrit ezectivement
par le jeu }ctif entropique :

dmt = λ(m̂t −mt) dt,

qui converge vers m∗ lorsque t→∞. D’autre part, sous la limite λ→∞, le second
argument mt devient très proche de la masse de Dirac δXt

, donc la dynamique
devrait se rapprocher de la dynamique linéaire

dXt = −DmF (δXt
, Xt) dt+

√
2dBt.

Ce processus de Markov se stabilise rapidement, mais sa mesure d’équilibre, étant
proportionnelle à exp

(
−F (δx)

)
dx, est a priori dizérente de notre objectif m∗. On

se retrouve donc dans une situation similaire au compromis biais-variance classique
une fois que l’on fait le lien entre le taux de relaxation et l’inverse de la variance.

Nous étudions quantitativement ce compromis dans le chapitre 7. Nous pre-
nons un λ > 0 }xe et étudions d’abord le taux de convergence du processus auto-
interagissant (21). Remarquons que dans ce cas, le processus est de Markov homo-
gène dans un espace d’état in}ni-dimensionnel avec un bruit hautement dégénéré,
donc prouver son ergodicité est généralement une tâche non triviale. Cependant,
grâce à la forte contractivité dans le second argument, nous sommes en mesure
d’établir une contractivité exponentielle explicite en distance de Wasserstein par
un couplage mixte similaire au couplage cinétique d’Eberle, Guillin et Zimmer [84].
Le taux de contraction obtenu se détériore lorsque λ diminue, ce qui est à prévoir.
Notamment, la condition structurelle que F est convexe au sens plat n’est pas du
tout utilisée pour la relaxation du processus de Markov. En conséquence, on sait
que la mesure stationnaire du processus de Markov (21) existe et est unique, ce que
nous notons par Pλ.

Nous étudions ensuite le biais entre la mesure stationnaire Pλ et la cible m∗ ⊗
δm∗

, où, rappelons-le, m∗ est la mesure invariante pour la dynamique de Langevin
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de champ moyen (9) ou la solution du problème d’optimisation de champ moyen
(11). Pour procéder, on suppose que la dépendance de champ moyen est cylindrique :

F (m) = Φ(〈`,m〉) = Φ

(∫

X
`(x)m(dx)

)

pour un ` : X → RD et une fonction convexe Φ: RD → R. Ici, la convexité de Φ
implique la convexité au sens plat de F en tant que fonctionnelle de champ moyen.
Le processus auto-interagissant (21) peut alors être réduit au système projeté

dXt = −∇xV (Yt, Xt) dt+
√
2dBt,

dYt = λ
(
`(Xt)− Yt

)
dt,

(22)

où les variables se correspondent de manière suivante :

Yt = 〈`,mt〉,
V (y, x) = ∇Φ(y) · `(x).

Notons ρ := ρλ l’image de la mesure Pλ par l’application

(x,m) 7→ (x, 〈`,m〉).

Par construction, la mesure ρ est invariante par rapport à la dynamique réduite
(22), et résout l’équation stationnaire :

∆xρ+∇x ·
(
∇xV (y, x)ρ

)
− λ∇y ·

((
`(x)− y

)
ρ
)
= 0.

En utilisant l’équation ci-dessus et une inégalité de log-Sobolev uniforme, on dé-
montre l’estimation de L1 sur l’entropie conditionnelle suivante :

∫

RD

H
(
ρ1|2(·|y)

∣∣m̂y

)
ρ2(dy) = O(λ), (23)

où ρ1|2 et ρ2 sont respectivement les mesures conditionnelle et marginale dé}nies
formellement par

ρ2(y) :=

∫

X
ρ(x, y) dx,

ρ1|2(x|y) := ρ(x, y)

ρ2(y)
,

et m̂y est la mesure de Gibbs qui a pour densité

m̂y(x) ∝ exp
(
−V (y, x)

)
.

L’estimation (23) indique qu’en moyenne, ρ1|2(·|y) est proche de m̂y. Désignons la
projection cylindrique de la mesure cible par y∗ := 〈`,m∗〉. On remarque que

∫

RD

(
H(m̂y|m∗) +H(m∗|m̂y)

)
ρ2(dy)

= −
∫

X×Rd

(
V (y, x)− V (y∗, x)

)
(m̂y −m∗)(dx)ρ2(dy)

= −
∫

X×Rd

(
V (y, x)− V (y∗, x)

)(
ρ1|2(dx|y)−m∗(dx)

)
ρ2(dy) +O(

√
λ),
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où pour la dernière égalité, on ezectue le changement de mesure m̂y → ρ1|2(·|y)
et contrôle l’erreur par l’estimation de l’entropie (23) et une inégalité de transport
(Talagrand, Pinsker ou Bolley-Villani [25] selon l’hypothèse sur V ). En utilisant la
forme du potentiel V (y, x) = ∇Φ(y) · `(x) et la convexité de Φ, on peut démontrer
que ∫

X×Rd

(
V (y, x)− V (y∗, x)

)(
ρ1|2(dx|y)−m∗(dx)

)
ρ2(dy) > 0.

On obtient donc
∫

RD

(
H(m̂y|m∗) +H(m∗|m̂y)

)
ρ2(dy) = O(

√
λ).

En utilisant à nouveau l’inégalité de Talagrand, on trouve
∫

RD

W1

(
ρ1|2(·|y),m∗

)
ρ2(dy)

6

∫

RD

(
W1

(
ρ1|2(·|y), m̂y

)
+W1(m̂y,m∗)

)
ρ2(dy) = O(λ1/4).

Cela indique déjà que les mesures Pλ et m∗ ⊗ δm∗
, projetées dans la direction X,

sont proches l’une de l’autre quand λ est petit. On peut exploiter à nouveau la
structure de gradient de la dynamique pour démontrer la même chose pour les
directions de Y . De plus, l’ordre en λ peut être amélioré à O(

√
λ). La borne }nale

sur le biais que l’on obtient est la suivante :

W (Pλ,m∗ ⊗ δm∗
) = O(

√
λ),

où W désigne une distance de Wasserstein entre les projections de dimension }nie
des mesures de dimension in}nie. Cette borne est également optimale en fonction
de λ, comme cela peut être véri}é par un exemple gaussien.

Pour résumer, une plus petite valeur de λ conduit à un taux de convergence
plus faible, mais réduit le biais de l’échantillonnage, con}rmant les intuitions de nos
discussions précédentes. Cependant, il convient de noter que le taux de convergence
obtenu par le couplage par ré~exion se détériore de façon exponentielle lorsque λ→
0, rendant ce taux inadapté à l’analyse des dynamiques d’annealing en pratique.

Aperçu du chapitre 8
Dynamique de Schrödinger de champ moyen

Dans le dernier chapitre de la thèse, nous étudions le problème d’optimisation
de champ moyen régularisé par l’information de Fisher (12) et le ~ot de gradient
associé. Comme nous l’avons mentionné ci-dessus, le ~ot de gradient devrait au
moins être la limite continue formelle du schéma discret de JKO (13). Par calcul
des variations, on se rend compte que le ~ot discret est en fait l’Euler rétrograde :

δF

δm
(νhn+1, ·) +

1

h
log

νhn+1

νhn
= constante,

et on s’attend à ce que νhbt/hc converge vers le ~ot mt résolvant

∂tmt = −
δF

δm
(mt, ·)mt + λtmt,
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où λt est la constante de normalisation

λt :=

∫

X

δF

δm
(mt, x)mt(dx)

assurant que la masse est conservée : d
∫
X mt

/
dt = 0. Rappelons que la fonctionnelle

F est régularisée par l’information de Fisher :

F(m) = F (m) +

∫

X

|∇m|2
m

.

Par intégration par parties, on obtient l’expression suivante pour sa dérivée fonc-
tionnelle linéaire :

δF

δm
(m,x) =

δF

δm
(m,x)− 2∇ ·

(∇m
m

)
− |∇m|

2

m2
.

À ce stade, on peut déjà s’attendre à ce que le ~ot non linéaire mt, une fois bien
dé}ni, converge vers la solution du problème d’optimisation (12) pour les deux
raisons suivantes. Tout d’abord, par la formule ci-dessus, l’énergie régularisée F

cesse de diminuer seulement si δF
δm

(mt, ·)−λt = 0, c’est-à-dire que la mesure mt est
un point stationnaire du problème d’optimisation (12). Deuxièmement, le problème
d’optimisation, étant la somme d’un F convexe au sens plat (qui est notre condition
structurelle de base) et d’une information de Fisher strictement convexe au sens
plat, n’a qu’un seul point stationnaire, et ce point est le minimiseur global. Compte
tenu de ces intuitions, on peut démontrer rigoureusement la convergence par la
compacité et le principe d’invariance de LaSalle, comme cela a été fait dans [117].

La question restante est de trouver un taux de convergence explicite et l’inégalité
fonctionnelle derrière ce taux. Dans le cas de la Langevin de champ moyen sousa-
mortie, la réponse est une inégalité de log-Sobolev uniforme comme le montrent
[178, 56]. Et pour notre ~ot de gradient de champ moyen et de Fisher, nous avons
besoin d’un trou spectral uniforme, ou en d’autres termes, d’une inégalité de Poin-
caré uniforme. Pour le voir, on ezectue le changement de variable

ψt :=
√
mt

et écrit l’équation dynamique pour ψt :

∂tψt = 2∆ψt −
1

2

δF

δm
(ψ2

t , ·)ψt +
1

2
λtψt.

Maintenant λt satisfait

λt =

∫

X
4|∇ψt|2 +

δF

δm
(ψt, ·)ψ2

t

et est la constante garantissant que ψt est normalisé dans L2. Dans le cas linéaire,
la dérivée plate ne dépend pas de la mesure :

δF

δm
(m,x) = U(x),

et l’évolution de ψt correspond à un semi-groupe de Schrödinger linéaire. La conver-
gence exponentielle est ainsi garantie par le trou spectral de l’opérateur hamilto-
nien :

H = −4∆ + U.
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En revenant à l’évolution non linéaire, on dé}nit le hamiltonien à chaque instant :

Ht := −4∆ +
δF

δm
(mt, ·).

Alors

∂tψt = −
1

2
(Ht − λt)ψt,

λt = (ψt,Htψt)L2 .

La diminution de F(mt) satisfait

dF(mt)

dt = −
(
ψt, (Ht − λt)Htψt

)
L2 = −(ψt,H2

tψt)L2 + (ψt,Htψt)
2
L2 .

Notons ψ̂t l’état fondamental normalisé unique de Ht. On obtient, par le trou
spectral,

(ψt,H2
tψt)L2 − (ψt,Htψt)

2
L2 & (ψt,Htψt)L2 − (ψ̂t,Htψ̂t)L2 .

De nouveau, en revenant aux variables de mesure et en utilisant la convexité de F ,
on peut déduire que

(ψt,Htψt)L2 − (ψ̂t,Htψ̂t)L2 > F(mt)− infF.

On a donc la convergence exponentielle :

F(mt)− infF 6 Ce−ct,

étant donné le trou spectral uniforme pour Ht. Il est bien connu que le trou spectral
uniforme est équivalent à une inégalité de Poincaré uniforme pour la mesure de
probabilité m̂t := ψ̂2

t résolvant l’équation stationnaire

δF

δm
(mt, x)− 2∇ ·

(∇m̂t

m̂t

)
− |∇m̂t|2

m̂2
t

= constante.

En notant la densité logarithmique par ût := − log m̂t, on trouve que ût résout
l’équation de HJB ergodique

2∆ût − |∇ût|2 +
δF

δm
(mt, x) = constante.

Sous l’hypothèse que δF
δm

(m, ·) est une somme d’une fonction fortement convexe et
d’une fonction lipschitzienne, uniformément en m, on peut utiliser la méthode de
Conforti [61] pour obtenir que ût est également une somme d’une partie fortement
convexe et d’une partie lipschitzienne avec des bornes uniformes. Une inégalité de
Poincaré uniforme suit alors de par exemple [9].

Avancées récentes et perspectives
Un inconvénient commun des chapitres 1 et 2, comme l’a souligné un relecteur

anonyme, est que nous ne comparons pas directement le système de particules mN
t

et le ~ot de champ moyen mt à long terme. Au lieu de cela, cette comparaison
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est faite via la mesure invariante de champ moyen m∗, complétée par une borne
globale en temps. Cet argument triangulaire est plutôt maladroit et entraîne une
perte d’exposant dans la borne }nale de propagation du chaos. Nous annonçons
que nous résoudrons ce problème par une méthode de comparaison directe, où nous
travaillons avec une distance entre les mesures de probabilité qui est induite par le
paysage d’énergie libre, et retrouvons l’ordre d’erreur optimale O(1) (ou O(1/N),
selon la normalisation). Nous explorerons également d’autres conséquences de l’ISL
non linéaire (17) et de sa version à N particules (16), telles que la concentration de
la mesure uniforme en temps pour le système de particules de Langevin de champ
moyen et les propriétés de turnpike pour le problème de Schrödinger de champ
moyen associé.

Dans un travail récent de l’auteur [230], l’ISL défectueuse (16) établie au cha-
pitre 1 a été tendue en une ISL N -uniforme grâce à l’utilisation d’une inégalité de
Poincaré supplémentaire. Cette approche ozre une alternative au travail simultané
de Chewi, Nitanda et M. S. Zhang [55], tout en fournissant une meilleure dépen-
dance à la force d’interaction du champ moyen.

Plus récemment, Bauerschmidt, Bodineau et Dagallier [14] ont adapté la mé-
thode du ~ot de Polchinski aux systèmes de particules à champ moyen et ont établi
une ISL N -uniforme sur l’ensemble du régime d’unicité. Plus précisément, le fonc-
tionnel d’énergie libre F est autorisé à inclure une composante d’énergie concave
au sens plat, et l’analyse est menée directement sous une forme projetée de l’ISL
non linéaire :

I(m|m̂) & H(m|m̂) & F(m)−F(m∗).

Cette hypothèse est plus faible que la convexité plate et permet de retrouver le
comportement critique de Curie-Weiss. Cependant, la méthode semble moins in-
trinsèque pour les interactions non quadratiques et conduit à une constante d’ISL
plus faible. Nous annonçons ici que, dans un travail à venir, nous établirons une ISL
défectueuse N -uniforme via une approche intrinsèque qui dépend uniquement du
paysage d’énergie libre non projeté. De plus, notre méthode correspond à un sché-
ma de localisation stochastique par coordonnées, tandis que la leur est un schéma
de bascule linéaire dans le langage de Y. Chen-Eldan [52].

Dans un autre travail récent [194], nous étudions la question de la taille du chaos
pour la dynamique de Langevin suramortie sous la condition d’ISL non linéaire
mentionnée ci-dessus. Plus précisément, nous montrons que

H(mN,k
∗ | m⊗k

∗ ) = O

(
k2

N2

)
,

où m
N,k
∗ désigne la distribution k-marginale de la mesure de Gibbs à N parti-

cules. Dans ce travail, nous identi}ons une structure de gradient pour les mesures
conditionnelles et développons une hiérarchie d’entropie d’un ordre supérieur à la
formulation originale de Lacker. Cette approche non perturbative de l’interaction
de champ moyen étend la littérature existante [141, 142, 20], qui ne traite que des
scénarios où l’interaction est ezectivement dominée par la dizusion. Néanmoins, le
problème dynamique du chaos uniforme en temps reste en grande partie ouvert et
mérite clairement des recherches supplémentaires.

Pour le modèle singulier de vortex en 2D, le problème de la taille du chaos n’est
pas complètement résolu dans la thèse actuelle car notre méthode échoue dans le
régime de basse température. La résolution complète de ce problème nécessite une
étude supplémentaire, mais il semble à l’auteur que certains éléments cruciaux font
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encore défaut. De plus, nous pouvons également considérer le problème de la taille
du chaos pour les interactions de Coulomb ou de Riesz en dimension supérieur. Cela
semble encore plus di{cile à l’auteur en raison de la singularité plus forte dans le
noyau d’interaction.

L’étude des systèmes de Vlasov-Poisson a récemment connu des avancées signi}-
catives, plusieurs idées et techniques novatrices pour établir la propagation du chaos
ayant été introduites dans [30, 29, 51]. Toutefois, le cas non régularisé en dimension
> 3, aussi bien dans le cadre dizusif que non dizusif, demeure un problème ouvert.

On peut également se demander si l’estimation entropique elliptique cruciale du
chapitre 7 peut être étendue au cas dynamique parabolique. Si cela réussit, une telle
approche fournirait des propriétés de contractivité plus fortes que celles obtenues
par la méthode de couplage. Nous avons également l’intention d’étudier la dyna-
mique cinétique auto-interagissant et d’explorer l’utilisation de l’auto-interaction
dans le cadre des jeux à champ moyen.

Alors que les études sur la dynamique de Schrödinger de champ moyen dans
le chapitre 8 se concentrent sur la partie théorique, il est tout aussi important
d’explorer ses aspects numériques et son e{cacité dans les applications réelles.

∗∗∗
Les huit chapitres de la thèse sont d’abord parus individuellement sous forme

de publications [50, 48, 171, 170, 49] et de prépublications [229, 77, 60]. Pour cette
raison, les notations et conventions dans les dizérents chapitres peuvent ne pas être
cohérentes. Elles peuvent également être dizérentes de celles utilisées dans cette
introduction.
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Chapter 1

Uniform-in-time propagation
of chaos for mean }eld
Langevin dynamics

Abstract. We study the mean }eld Langevin dynamics and the associated particle
system. By assuming the functional convexity of the energy, we obtain the Lp-
convergence of the marginal distributions toward the unique invariant measure for
the mean }eld dynamics. Furthermore, we prove the uniform-in-time propagation
of chaos in both the L2-Wasserstein metric and relative entropy.

Based on joint work with Fan Chen and Zhenjie Ren.

1.1 Introduction
1.1.1 Preview of main results
Let F : P2(R

d)→ R be a mean }eld functional and DmF be its intrinsic derivative.
In this paper, we study the long-time behavior of the following mean }eld Langevin
(MFL) dynamics:

dXt = −DmF (mt, Xt) dt+
√
2dWt, where mt = Law(Xt), (1.1)

as well as the corresponding dynamics of N particles:

dXi
t = −DmF (µXt

, Xi
t) dt+

√
2dW i

t , i = 1, . . . , N, where µXt
=

1

N

N∑

i=1

δXi
t
.

Here, Wt,W
i
t are independent d-dimensional standard Brownian motions. We sup-

pose that F is a functional such that

• the mapping m 7→ F (m) is convex in the functional sense (as opposed to the
optimal transport sense);

• for every x ∈ Rd, the mapping m 7→ DmF (m,x) is MF
mm-Lipschitz continuous

with respect to the L1-Wasserstein metric;

59
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• for every m ∈ P2(R
d), the probability measure on Rd that has density propor-

tional to x 7→ exp
(
− δF

δm
(m,x)

)
satis}es the ρ-logarithmic Sobolev inequality

(LSI) for some ρ > 0.

Recently, there has been a growing interest in modeling the training of neural
networks as a convex mean }eld optimization problem (see [163, 57, 211, 203, 117,
128, 63] and also our Section 1.3 for explanations). With some exceptions (e.g.,
[57, 176, 179] and Chapters 6 and 8), the majority of the studies [163, 117, 56,
178] have focused on the entropy-regularized mean }eld optimization problem and
the corresponding MFL dynamics in the form of (1.1). It was }rst proved in [117]
that under the convexity assumption of F , the marginal distributions of the MFL
dynamics converge toward its unique invariant measure, which is also the unique
minimizer of the mean }eld optimization problem. Then it is shown in [178, 56]
that, with the presence of the uniform LSI, such kind of convergence is exponentially
fast. The main contribution of this paper lies in that, we further explore the }ne
properties of MFL dynamics with a particular emphasis on its uniform-in-time
propagation of chaos property, i.e., the time-uniform upper bounds for the distance
between the }nite-particle and the mean }eld dynamics. Therefore, we provide a
theoretical guarantee for the applicability of the }nite-particle approximation when
the dynamics is expected to run for an inde}nitely long time.

Recall that we have de}ned mt = Law(Xt). Let us also de}ne

mN
t = Law(X1

t , . . . , X
N
t )

and denote by m∞ the unique invariant measure of the mean }eld dynamics. Our
main results are summarized as follows:

• if the Radon–Nikodým derivative dm0/dm∞ belongs to Lp0(m∞) for some
p0 > 1, then for every p ∈ R, the norm ‖dmt/dm∞‖Lp(m∞) → 1 exponentially
fast when t→∞;

• the scaled L2-Wasserstein distance and the relative entropy 1
N
W 2

2 (m
N
t ,m

⊗N
∞ ),

1
N
H(mN

t |m⊗N
t ) converge to a O(N−1) neighborhood of zero when t → ∞,

with an exponential rate that is independent of N ;

• if the initial error is zero, i.e., mN
0 = m⊗N

0 , then

sup
t∈[0,∞)

1

N
W 2

2 (m
N
t ,m

⊗N
t )→ 0

when N →∞; further if the assumption of the }rst claim holds, then

sup
t∈[0,∞)

1

N
H(mN

t |m⊗N
t )→ 0

when N →∞.

We also refer those interested readers to Chapter 2, which delves into analogous
properties for kinetic MFL dynamics.
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1.1.2 Related works
Long-time behavior of McKean–Vlasov dynamics. Propagation of chaos in
}nite time for the stochastic McKean–Vlasov dynamics

dXt = b(mt, Xt) dt+
√
2dWt, where mt = Law(Xt)

is relatively easy to show, using the synchronous coupling approach, given that b
is a jointly Lipschitz function of both measure and space variables in the sense of
the Wasserstein metric. The bound obtained by this method, however, generally
tends to in}nity when the time interval extends to in}nity. Besides, the dynamics
may possess multiple invariant measures, so uniform-in-time convergence can not
be expected without some additional assumptions or a more general de}nition of
convergence itself (e.g. convergence modulo symmetries).

The research on the long-time behavior of McKean–Vlasov dynamics has been
active in recent years and here we introduce a setting that has appeared in many
previous works. Consider functions U , V : Rd → R and the following special kind
of drift

b(m,x) = −∇U(x)−
∫
∇V (x− x̃)m(dx̃).

In this case, U is referred as the external potential and V is called the interaction
potential.

In this paragraph, we provide a far from exhaustive review of uniform-in-time
propagation of chaos (POC) for McKean–Vlasov dynamics. First, in the work
[159] of Malrieu in 2001, uniform POC is established by synchronous coupling for
overdamped dynamics under the assumption that U is strongly convex and V is
convex. In an alternative way, Carrillo, McCann and Villani set up the mean }eld
gradient ~ow framework in their work [39], which our paper also relies on. They
showed the exponential convergence of the overdamped mean }eld system under the
assumption that U + 2V is strongly convex. In Monmarché’s work [167], uniform
POC is extended to the kinetic Langevin dynamics, assuming the same convexity
assumption on U + 2V . This assumption is further relaxed in his follow-up work
with Guillin [101], where they incorporate the uniform-in-N log-Sobolev inequality
in [100]. In [80], Durmus, Eberle, Guillin and Zimmer showed uniform POC for
overdamped Langevin dynamics, under the assumption that the con}ning potential
U is only weakly convex and V is small enough, utilizing a re~ection coupling
technique. The re~ection coupling technique is then used by Schuh in [206] to show
uniform POC for kinetic Langevin dynamics, albeit in this setting, the form of the
con}ning potential is more restricted compared to the overdamped case. The weak
uniform-in-time convergence is also demonstrated for the overdamped dynamics on
a torus in [70] by Delarue and Tse under various settings. This research assumes the
smallness of interaction without explicitly specifying its form and employs a master
equation analysis. In [142], Lacker and Le Flem showed a sharp O(1/N2) rate for
time-uniform propagation of chaos for the overdamped dynamics, by studying the
relative entropy growth between marginal distributions with the help of a time-
uniform log-Sobolev inequality for the mean }eld ~ow.

We now comment on the assumptions and methods of these works. Apart
from the second and third settings of [70] and that of [142], the aforementioned
works all rely on the smallness or the (semi-, weak) convexity of the interaction
potential. This smallness or convexity is used to control the error between the
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coupled processes, or to deduce a uniform-in-N log-Sobolev inequality for the N -
particle system’s invariant measure (see [100]). Our setting is dizerent from those
in other works. First, our results are built upon the functional convexity of the
mean }eld energy functional, which is a dizerent (and even exclusive in some cases)
assumption from the convexity of the interaction potential. Further details on this
alternative assumption of convexity will be provided in the following paragraph.
Second, our approach does not rely on a uniform-in-N log-Sobolev inequality for
the invariant measure of the N -particle system.

Finally, we remark that the translation-invariant models have been studied in
the last setting of [70] and also in [79]. In these cases, there exists a continuum
of invariant measures, and the POC is then obtained modulo the translational
symmetry. Besides, we also mention that in a recent work [98], Guillin et al.
studied the 2D viscous vortex model where the particles are in singular interactions
and showed the uniform POC estimates.

Linear functional convexity. One of our key assumptions is the (linear func-
tional) convexity of the mean }eld functional F , formally de}ned in (1.2). Except
in [215, 70], this assumption has not been explicitly exploited to investigate the
long-time behavior of the McKean–Vlasov dynamics. It is important to distinguish
this convexity from the displacement convexity, which frequently appears in the op-
timal transport literature and is de}ned in, for instance, [222, De}nition 16.1]. We
will clarify in Remark 1.18 that, for continuous two-body interaction potentials,
Bochner’s theorem implies that these two concepts are even mutually exclusive,
except in trivial cases.

This particular form of convexity is implicitly exploited in [70] to obtain time-
uniform POC estimates. More precisely, the authors studied McKean–Vlasov drift
of form b(m,x) = −

∫
∇V (x− x̃)m(dx̃) on the torus, where all Fourier coe{cients

of the interaction potential V are nonnegative. Then this property is used to
obtain estimates on the master equation in the long time. We note that, here, the
positivity of the Fourier coe{cient implies that the corresponding energy F (m) =
1
2

∫∫
V (x− x̃)m(dx)m(dx̃) is convex in our functional sense. Although our results

are stated for dynamics in Rd, it is reasonable to expect that our methodology can
be extended to the torus and yield similar results.

The primary motivation for introducing this new setting is to study the train-
ing of two-layer (or one-hidden-layer) neural networks, which we will explain in
Examples 1.21 and 1.27.

Gradient descent. Our dynamics is a special case of McKean–Vlasov with the
drift of gradient type:

b(m,x) = −DmF (m,x) = −∇
δF

δm
(m,x).

This form of drift corresponds to the gradient descent of the free energy F = F +H
in L2-Wasserstein space, here, H(m) =

∫
m(x) logm(x) dx is the (absolute) entropy

of the measure. We refer the readers to [126] for detailed discussions about the
gradient ~ow with the linear energy F (m) =

∫
V (x)m(dx), and [4] for a general

gradient ~ow framework in Wasserstein space. We note that, in a previous work
[117], this gradient ~ow structure is exploited to obtain the ergodicity of the MFL
dynamics. Precisely, the authors established the following free energy dissipation
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formula
dF(mt)

dt = −
∫
|DmF (mt, x) +∇ logmt(x)|2mt(dx),

and then by combining this with LaSalle’s invariance principle and the uniqueness of
the invariant measure, they showed the global convergence of the MFL dynamics. In
this paper, we will prove the same energy descent formula under weaker assumptions
on the regularity of x 7→ DmF (m,x), thanks to the general framework developed
in [4].

1.1.3 Main contributions
Lp convergence and hypercontractivity of MFL. The exponential conver-
gence of relative entropy for the MFL with convex F has been proved in [56, 178] via
log-Sobolev inequalities, extending the classical result [180] wherein the F is linear
in measure. In this paper, we introduce a stronger Lp-convergence in Theorem 1.9.
To achieve this enhanced convergence result, we require the initial condition to lie
in Lp0 for some p0 > 1. This contrasts with the situation of relative entropy, where
elliptic regularization ensures relative entropy to be }nite at all positive times (see
Proposition 1.37).

Our method of proof is based on the L2-convergence and the hypercontractivity,
which ports the L2-convergence to Lp for all p ∈ R. Two pivotal observations
are the growth of Lp-norm formula (1.51) and the hypercontractive inequalities
(1.20), (1.21) for the mean }eld ~ow. Recently the hypercontractivity has also been
ultilized in [59] to show the Lp-convergence of MFL with Riesz interactions (though
on a torus). Finally, it is important to mention that the proof of our propagation
of chaos result (Theorem 1.14) requires the Lp-convergence for p negative. To
address this requirement, we establish the reverse hypercontractivity of the MFL.
This property follows from the analogous formal computations to those employed in
direct hypercontractivity, under the assumption that the invariant measure satis}es
a LSI.

Convergence of particle system. Within the mean }eld setting established
in [56, 178], we show in Theorem 1.12 that the particle system’s free energy con-
verges to the N -tensorized invariant measure of the mean }eld system exponentially
modulo an error of size O(N−1) per particle. Our proof approach relies on a de-
composition of relative Fisher information and a componentwise application of the
log-Sobolev inequality, which introduces the O(N−1) error per particle. Our result
dizers from that of [100], where the precise convergence of the particle system to
its invariant measure is obtained through the use of the uniform-in-N log-Sobolev
inequality. One notable advantage of our method is that we allow applications in-
volving potentially signi}cant interactions, including cases such as the training of
neural networks (as discussed in Examples 1.21 and 1.27.)

Propagation of chaos. By combining the two previous results, i.e. the Lp-
convergence of the MFL and the entropic convergence of the particle system, we
are able to control the distance between the particle system mN

t and N -tensorized
mean }eld ~ow m⊗N

t , in terms of Wasserstein distance and relative entropy. The
bound on Wasserstein is a direct consequence of Talagrand’s T2 transport inequal-
ity. To control the relative entropy we employ a classical duality formula (1.55) to
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link H(mN
t |m⊗N

t ) to the −p norm ‖dmt/dm∞‖−p for p > 0, whose exponential
convergence is guaranteed by Theorem 1.9. As a side result, we also obtain the
uniform-in-time concentration of measure of the mean }eld ~ow (Theorem 1.11),
based on this observation.

Let us now compare our method to those of [142, 215]. In [142] the authors
assumed the mean }eld ~ow satis}es a uniform LSI and utilized an entropy growth
formula similar to our Lp-growth formula to estimate the relative entropy bound.
As remarked in [215], verifying this uniform LSI can be challenging in the mean }eld
setting. In particular if one wishes to apply the Holley–Stroock perturbation lemma
to the invariant measure m∞, the mean }eld ~ow needs to satisfy log dmt/dm∞ ∈
L∞ uniformly In [215], Suzuki, Nitanda and Wu made the assumptions that the
con}ning potential exhibits a super-quadratic growth, so that this boundedness
follows from the ultracontractivity via super LSI. However, this con}ning potential
is stronger than the quadratic one in our setting and the constants derived from
ultracontractivity are dependent on the spatial dimension.

1.1.4 Notations
Let d be a positive integer and x an element of Rd. We denote the Euclidean norm
of x ∈ Rd by |x| and de}ne cd as the volume of the d-dimensional unit ball. Let
p > 1, we de}ne Pp(R

d) to be the space of probability measures on Rd with }nite
p-moment, i.e., Pp(R

d) = {m ∈ P(Rd) :
∫
|x|pm(dx) < +∞}. The Lp-Wasserstein

metric is denoted by Wp and its de}nition along with elementary properties, can
be found in [4, Chapter 7].

Consider a mean }eld functional F : P2(R
d)→ R. We denote by δF

δm
: P2(R

d)×
Rd → R its linear functional derivative and by DmF = ∇ δF

δm
: P2(R

d)×Rd → Rd

its intrinsic derivative, provided they exist. The de}nition of linear functional
derivative on P2(R

d) can be found in [37, De}nition 5.43].
Let X, Y be two random variables. We denote the distribution of X as Law(X)

and write X ∼ m when m = Law(X). Additionally, we use X d
= Y to indicate

that Law(X) = Law(Y ). The set of couplings between probability measures µ,
ν is denoted by Π(µ, ν). Let N > 2 be an integer, we use the bold letter xN =
(x1, . . . , xN ) to represent an N -tuple of the elements in Rd. We omit the subscript
N when there are no ambiguities.

Let I ⊂ {1, . . . , N}. We de}ne −I := {1, . . . , N} \ I, i.e., the complementary
index set of I. For a probability measure mN = Law(X) ∈ P(RdN ), we denote its
marginal and the (regular) conditional distributions by

mN,I = Law(Xi)i∈I ,

mN,I|−I(x−I) = Law
(
(Xi)i∈I

∣∣Xj = xj , j ∈ −I
)
,

where the latter is de}ned mN,−I -almost surely and x−I denotes the tuple (xj)j∈−I .
We identify i with the singleton {i} when working with indices.

Given xN = (x1, . . . , xN ) ∈ RdN , we denote the corresponding empirical mea-
sure by

µxN
=

1

N

N∑

i=1

δxi .

For i = 1, . . . , N , as introduced in the paragraph above, the symbol −i denotes the
complementary set {1, . . . , N} \ i. We denote the empirical measure of the N − 1



1.2 Main results 65

points x−i
N = (xj)j 6=i by

µx
−i
N

=
1

N − 1

N∑

j=1, j 6=i

δxj .

For a RdN -valued random variable XN = (Xi)Ni=1, we can thereby form the random
empirical measures µXN

, µX
−i
N

.
When a measure m ∈ P(Rd) has a density with respect to the d-dimensional

Lebesgue measure, we still denote its density function by m : Rd → R. Let γ be a
positive and σ-}nite measure on Rd. We de}ne the relative entropy

H(m|γ) =
∫

log dm
dγ (x)m(dx)

and the relative Fisher information

I(m|γ) =
∫ ∣∣∣∣∇ log dm

dγ

∣∣∣∣
2

m(dx)

provided the corresponding integrals are well de}ned. In cases where the integrals
are not well de}ned, we set H, I = +∞ respectively. When γ = Ld is the Lebesgue
measure on Rd, we omit the dependence on γ and de}ne the absolute entropy and
Fisher information as:

H(m) := H(m|Ld), I(m) := I(m|Ld),

provided they are well-de}ned. For nonnegative functions f : Rd → [0,+∞) we
also de}ne its entropy as

Entm f = Em[f log f ]− Em[f ] logEm[f ],

which is well de}ned in [0,+∞] according to Jensen’s inequality.

Organization of paper. In Section 1.2, we present our assumptions, introduce
the mean }eld Langevin dynamics and the particle system, and state our main
results. In section 1.3, we ozer some examples of MFL, to which our theorems
can be applied, accompanied by numerical experiments of two-layer neural network
training. The proofs are given in the rest of the paper, and for the most techni-
cally demanding ones, we detail them in Appendix A.1. We also show a modi}ed
Bochner’s theorem in Appendix A.2.

1.2 Main results
Assumptions. Let F : P2(R

d) → R be a mean }eld functional. We suppose F
is convex in the sense that for all t ∈ [0, 1] and all m, m′ ∈ P2(R

d),

F
(
(1− t)m+ tm′) 6 (1− t)F (m) + tF (m′). (1.2)

Suppose also its intrinsic derivative DmF : P2(R
d)×Rd → Rd exists and satis}es

∀x ∈ Rd, ∀m,m′ ∈ P2(R
d), |DmF (m,x)−DmF (m

′, x)| 6MF
mmW1(m,m

′) (1.3)
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for some constant MF
mm > 0. For each m ∈ P2(R

d), we de}ne a probability measure
m̂ by its density

m̂(x) ∝ exp
(
− δF
δm

(m,x)

)

and suppose m̂ satis}es the ρ-logarithmic Sobolev inequality (LSI) uniformly in m

for some ρ > 0, that is, for every m ∈ P2(R
d),

∀f ∈ C1
b (R

d), ρEntm̂(f2) 6 Em̂[|∇f |2]. (1.4)
Here, we implicitly suppose that m̂ is well de}ned for all m ∈ P2(R

d), and in partic-
ular, we have

∫
exp
(
− δF

δm
(m,x)

)
dx <∞. We remark that the inequality above can

be veri}ed for mean }eld functionals F whose linear derivative δF
δm

is a perturbation
of a strongly convex function. For details, we refer readers to Proposition 1.25 in
Section 1.3.2. We suppose as well

sup
m∈P2(Rd)

sup
x∈Rd

|∇DmF (m,x)| 6MF
mx (1.5)

for some constant MF
mx > 0. Finally, for some of the results we additionally suppose

that x 7→ DmF (m,x) belongs to C3 with the bounds
sup

m∈P2(Rd)

sup
x∈Rd

|∇kDmF (m,x)| < +∞, k = 2, 3. (1.6)

Remark 1.1 (Well-de}nedness of m̂). The de}nition of m̂ relies on the }niteness of
the normalization constant

Z(m̂) =

∫
exp
(
− δF
δm

(m,x)

)
dx. (1.7)

As mentioned above, it is assumed implicitly in the condition (1.4) that Z(m̂) is
}nite for every m ∈ P2(R

d). We will prove in Proposition 1.32 that the following
is su{cient for this }niteness:

• the condition (1.3) holds, and

• there exists at least one measure m0 such that Z(m̂0) is }nite and m0 satis}es
the LSI (1.4).

Remark 1.2 (Functional inequalities). By approximating the function f by a se-
quence of functions in C1

b, we }nd that the inequality (1.4) holds for functions f
whose generalized derivative satis}es Em̂[|∇f |2] < +∞. It is well known that the
LSI (1.4) implies the Poincaré inequality:

∀f ∈ C1
b (R

d), 2ρVarm̂(f) 6 Em̂[|∇f |2]. (1.8)
The restriction f ∈ C1

b can be analogously removed. The LSI (1.4) also implies
Talagrand’s T2-transport inequality:

∀µ ∈ P2(R
d), ρW 2

2 (µ, m̂) 6 H(µ|m̂). (1.9)
See the original work of Otto and Villani [180] for a proof. We also sketch their
argument in the proof of Lemma 1.31. All those three inequalities, namely (1.4),
(1.8), (1.9), are stable under tensorization: if one replaces, for some N > 2, the
measure m̂ by its tensor product m̂⊗N , which is a measure on RdN , and the function
f : Rd → R (resp. the probability measure µ on Rd) by function fN : RdN → R

having a square-integrable weak derivative ∇fN with respect to the measure m̂⊗N

(resp. probability measures µN on RdN ), then the inequalities hold with the same
constant ρ.
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Mean }eld and particle system. We study the mean }eld Langevin dynamics,
that is, the following McKean–Vlasov SDE

dXt = −DmF (mt, Xt) dt+
√
2dWt, where Law(Xt) = mt. (1.10)

Let N > 2. The corresponding N -particle system is de}ned by

dXi
t = −DmF (µXt

, Xi
t) dt+

√
2dW i

t , i = 1, . . . , N, where µXt
=

1

N

N∑

i=1

δXi
t
.

(1.11)
Here, W , W i are standard Brownian motions in Rd, which are independent from
each other. Their marginal distributions mt = Law(Xt), mN

t = Law(Xt) =
Law(X1

t , . . . , X
N
t ) then solve the Fokker–Planck equations respectively

∂tmt = ∆mt +∇ ·
(
DmF (mt, ·)mt

)
, (1.12)

∂tm
N
t =

N∑

i=1

(
∆im

N
t +∇i ·

(
DmF (µx, x

i)mN
t

))
. (1.13)

The mean }eld equation (1.12) is non-linear while the N -particle system equation
(1.13) is linear. We will prove in Proposition 1.37 that, if the initial condition
m0 ∈ P2(R

d), the mean }eld dynamics (1.12) is well posed and enjoys certain
regularity.
Remark 1.3. We have }xed the volatility (dizusion) constant to be

√
2 to simplify

our computations. In order to apply our results to the MFL de}ned by

dXt = −DmF (mt, Xt) dt+ σ dWt, where Law(Xt) = mt,

with some σ > 0, we apply the rescaling: t̃ = σ2

2 t, F̃ = 2
σ2F and X̃t̃ = Xt. In

this way, the new dizusion process t̃ 7→ X̃t̃ satis}es the SDE (1.10), whose dizusion
constant is }xed to

√
2, with the new mean }eld functional F̃ . The same scaling

transform can be applied to the particle system as well.

Free energy and invariant measure. We focus on the long-term behavior
of the MFL (1.12) and the corresponding particle system (1.13), where invariant
measures play a key role. De}ne mean }eld free energy F : P2(R

d) → (−∞,+∞]
by

F(m) = F (m) +H(m). (1.14)
Given the assumptions (1.2), (1.3), (1.4) and (1.5), we can show the existence of a
unique minimizer of F , denoted by m∞. Furthermore, this measure m∞ satis}es
the }rst-order condition:

m∞(dx) = m̂∞(dx) = 1

Z(m̂∞)
exp
(
− δF
δm

(m∞, x)

)
dx. (1.15)

The precise statement and proof is given in Proposition 1.34. Dizerentiating both
sides of the }rst-order condition, we obtain ∆m∞ + ∇ ·

(
DmF (m∞, x)m∞

)
= 0,

which implies that m∞ is an invariant measure to mean }eld Fokker–Planck equa-
tion (1.12). Conversely, we will show in Corollary 1.39 that under our conditions
every invariant measure satis}es the }rst-order condition and, therefore, we get the
uniqueness of invariant measure as well.
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The N -particle system (1.11) is a classical Langevin dynamics because the equa-
tion (1.13) is linear. We de}ne the N -particle free energy FN : P2(R

dN ) →
(−∞,+∞] by

FN (mN ) = N

∫
F (µx)m

N (dx) +H(mN ). (1.16)

We will prove in Proposition 1.33 that under our assumptions (1.2), (1.3) and (1.4),
the minimizer mN

∞ of FN exists, and has the density

mN
∞(dx) ∝ exp

(
−NF (µx)

)
dx, (1.17)

which is invariant to the N -particle Fokker–Planck equation (1.13). By the def-
inition of free energy we have FN (mN ) = H(mN |mN

∞) + constant, so mN
∞ also

minimizes the N -particle free energy FN .

L
p
+ space for all p ∈ R. We investigate the convergence of the marginal distribu-

tions of the mean }eld dynamics in the Lp(m∞)-norm for all p ∈ R and take special
care when p < 1. Let µ be a probability measure on Rd and h : Rd → [0,+∞] be
a measurable function. For p 6= 0 de}ne

‖h‖Lp(µ) =

(∫
h(x)pµ(dx)

)1/p
,

and for p = 0 de}ne

‖h‖L0(µ) = exp
(∫

logh(x)µ(dx)
)
.

We say h ∈ Lp
+(µ) if

‖h‖Lp(µ)





< +∞ if p > 0,

∈ (0,+∞) if p = 0,

> 0 if p < 0.

It is well-known that p 7→ ‖h‖p is increasing, which ensures that the 0-norm is well
de}ned once ‖h‖p < +∞ for some p > 0 or ‖h‖q > 0 for some q < 0. In this paper
we will only work with µ equal to m∞, the mean }eld invariant measure. In this
case we write ‖h‖p = ‖h‖Lp(m∞) for simplicity. We also say h ∈ L1+(m∞) or h is
L1+-integrable if there exists a number p0 > 1 such that h ∈ Lp0(m∞).

Statement of main results. Recall that mt and mN
t are the respective marginal

distributions of the mean }eld and the N -particle system (1.10), (1.11). We slightly
improve the exponential energy dissipation result for the MFL dynamics (1.10).
Theorem 1.4 (Energy dissipation of MFL). Assume F satis}es (1.2), (1.3), (1.4)
and (1.5). If mt0 has }nite entropy and }nite second moment for some t0 > 0, then
for every t > t0,

H(mt|m∞) 6 F(mt)−F(m∞) 6
(
F(mt0)−F(m∞)

)
e−4ρ(t−t0). (1.18)

Remark 1.5. The theorem stated here dizers slightly from the previous results
([56, Theorem 3.2] and [178, Theorem 1]), in that we have removed the technical
restriction that x 7→ DmF (m,x) is in}nitely dizerentiable. This is achieved by
using the dizerential calculus in the Wasserstein space developed in the monograph
[4].
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The proof of the theorem is postponed to Section 1.4.2.
We also study the MFL system’s convergence beyond the entropic sense. In

particular, we show that the system converges in the L2 sense given L2-initial
values (Proposition 1.6), and that the system is also hypercontractive and reverse-
hypercontractive (Proposition 1.7).

Denote
ht(x) :=

dmt

dm∞
(x)

for the solution mt of the MFL dynamics (1.12), where m∞ is the unique invariant
measure to the MFL, satisfying (1.15).

Proposition 1.6 (L2-convergence). Assume F satis}es (1.2), (1.3), (1.4), (1.5)
and (1.6). Let mt ∈ C

(
[0,+∞); (P2,W2)

)
be a solution to (1.12). If ht0 ∈ L2(m∞),

then ht ∈ L2(m∞) for all t > t0. Moreover, for all ρ′ ∈ (0, ρ), we have

∀t > t0, ‖ht − 1‖22 6Me−4ρ′(t−t0), (1.19)

for the constant M de}ned by

M = exp
(
∆(t0)

4ρ

)(
‖ht0 − 1‖22 +

∆(t0)

4(ρ− ρ′)

)
,

where
∆(t0) =

(MF
mm)2

ρ− ρ′
(
1 +

MF
mm

ρ
+

(MF
mm)2

2ρ2

)
log‖ht0‖2.

Proposition 1.7 (Hypercontractivity). Assume F satis}es (1.2), (1.3), (1.4), (1.5)
and (1.6). Suppose ht0 ∈ Lq0(m∞) for some q0 6= 1. Let ε ∈ (0, 1] and q(t) solve the
ODE q̇ = 4(1−ε)ρ(q−1) with the initial condition q(t0) = q0. Then ht ∈ Lq(t)(m∞)
for t > t0. Moreover, we have for q0 > 1,

log‖ht‖q(t) 6 log‖ht0‖q0 +
∫ t

t0

δ(s) ds, (1.20)

and for q0 < 1,

log‖ht‖q(t) > log‖ht0‖q0 +
∫ t

t0

δ(s) ds, (1.21)

where δ(t) = 1
4ε

(
q(t)− 1

)
(MF

mm)2W 2
1 (mt,m∞).

Remark 1.8 (Optimality of exponent’s growth). In the case where the mean }eld
interaction is absent, Nelson’s theorem [6, Théorème 2.3.1] shows the optimality of
the exponent’s growth in Proposition 1.7.

The proofs of Propositions 1.6 and 1.7 are given in Section 1.4.3.
By combining the L2-convergence and the hypercontractivity, we can obtain the

Lp-convergence of the MFL dynamics.

Theorem 1.9 (Lp-convergence of MFL). Assume F satis}es (1.2), (1.3), (1.4),
(1.5) and (1.6). Suppose h0 ∈ Lp0(m∞) for some p0 > 1. For ρ′ ∈ (0, ρ) and
p ∈ R, we set

τp =

{
1
4ρ′

log (p−1)∨1
(p0−1)∧1 , if p > 0,

1
4ρ′

log 2(1−p)
(p0−1)∧1 , if p < 0.
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Then for all t > τp, we have that ht belongs to Lp(m∞) and its norm satis}es

∣∣log‖ht‖p
∣∣ 6

(
2(1− p)

p
1p∈(0,1) + 1p 6∈(0,1)

)

(
1 +

P (α)

8ε2

)
H

P (α)/4ε
1

(
H2

1 − 1
)
e−4(1−ε)ρ(t−τp)

+
(
(p− 2)+1p>0 + (1/2− p)1p60

) p0P (α) log‖h0‖p0

16(p0 − 1)ε(1− ε) , (1.22)

where α =MF
mm/ρ, P (α) = α2 + α3 + α4/2, and

logH1 =

(
1 +

p0(2− p0)+P (α)
16(p0 − 1)ε(1− ε)

)
log‖h0‖p0 .

Remark 1.10 (Necessity of L1+-initial condition). We here explain why it is nec-
essary to assume m0 ∈ Lp0(m∞) for some p0 > 1 in Theorem 1.9. Let m0(dx) ∝
exp
(
−∑d

ν=1 |xν |
)

dx, i.e., the d-tensorized exponential distribution and F (m) =
1
2

∫
|x|2m(dx). The Langevin dynamics (1.10) is nothing but Ornstein–Uhlenbeck:

dXt = −Xt dt+
√
2dWt.

The SDE is solved explicitly by

Xt = e−tX0 +
√
2

∫ t

0

e−(t−s) dWs
d
= e−tX0 +

√
1− e−2tN ,

where N ∼ N (0, 1) is a standard normal independent from X0. The Langevin has
unique invariant measure m∞ ∝ exp(−|x|2/2), i.e., the standard normal distribu-
tion in Rd. The initial condition m0 lies in all Pp for all p > 1 but m0/m∞ does
not belong to Lp0 for any p0 > 1. And so is mt. Indeed, for all ε > 0,

E[exp(ε|Xt|2)] = E
[
exp
(
ε(e−t|X0|+

√
1− e−2tN )2

)]

> E

[
exp
(
ε

2
(e−2t|X0|2 − 2(1− e−2t)N 2)

)]

= E

[
exp
(
ε

2
e−2t|X0|2

)]
E
[
exp
(
−ε(1− e−2t)N 2

)]
= +∞.

Here we used (a+ b)2 > 1
2a

2 − b2 and the independence between X0 and N . This
implies

∫
mt(x)m∞(x)−ε dx = +∞ for all ε > 0. Let p > 1. By Hölder’s inequality

we have
(∫

mt(x)
pm∞(x)−(p−1) dx

)1/p(∫
m∞(x)1−ε dx

)1−1/p

>

∫
mt(x)m∞(x)−ε(1−1/p) dx = +∞.

Hence
∫
mt(x)

pm∞(x)−(p−1) dx = +∞.
As a by-product of our Lp-convergence result above, we can use the transport

method to show the following uniform-in-time concentration of measure result.
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Theorem 1.11 (Uniform-in-time concentration of measure). Under the hypotheses
of Theorem 1.9, for all ρ′ ∈ (0, ρ) there exist constants

Cρ′ = Cρ′(ρ,MF
mm, p0, ‖h0‖p0

), τρ′ = τρ′(ρ, p0)

such that for every 1-Lipschitz function f : Rd → R, every t > τρ′ and every r > 0,

mt[|f − Emt
f | > r] 6 2 exp

(
−ρ′r2 + Cρ′e−4ρ′t(r + 1)

)
. (1.23)

The proofs of Theorems 1.9 1.11 are postponed to Section 1.4.4.
We further study the system of N particles, and show that its marginal dis-

tributions approximate m⊗N
∞ , the N -tensorized mean }eld invariant measure, at a

uniform-in-N exponential rate with a uniform-in-N “bias”, whose precise meaning
will be given below.

Theorem 1.12 (Uniform-in-N energy dissipation of particle systems). Assume F
satis}es (1.2), (1.3), (1.4) and (1.5). If mN

t0
belongs to P2(R

dN ) and has }nite
entropy for some N > 2 and t0 > 0, then for all ρ′ ∈ (0, ρ), we have

H(mN
t |m⊗N

∞ ) 6 FN (mN
t )−NF(m∞)

6
(
FN (mN

t0
)−NF(m∞)

)
e−(4ρ′−C1N

−1)(t−t0)

+
C2

4ρ′ − C1N−1
, (1.24)

for every t > t0 and every N > C1/4ρ
′, where the constants C1, C2 are de}ned by

C1 =MF
mm

(
16 +

6MF
mmρ

′

ρ(ρ− ρ′)

)
,

C2 = dMF
mm

(
10 +

3MF
mmρ

′

ρ(ρ− ρ′)

)
.

The proof of Theorem 1.12 is postponed to Section 1.5.1.
Remark 1.13 (Sharpness of the size of bias). Let the initial condition mN

0 of the
N -particle system be equal to mN

∞, the system’s invariant measure. By sending t
to in}nity in (1.24), we have

H(mN
∞|m⊗N

∞ ) 6
C2

4ρ′ − C1N−1
,

provided that FN (mN
∞) < +∞ and N > C1/4ρ

′. Drawing an analogy with statis-
tics, we will refer to the relative entropy H(mN

∞|m⊗N
∞ ) as the ‘bias’. Then, the O(1)

order of the bias when N → +∞ is sharp and we give an example attaining this
order in the following. Consider the mean }eld functional

F (m) =
1

2

∫
x2m(dx) + α

2

(∫
xm(dx)

)2

with α > 0. We can easily verify all our assumptions on F . The mean }eld invariant
measure is nothing but the d-dimensional standard Gaussian variable:

m∞(dx) = (2π)−d/2 exp
(
−|x|

2

2

)
dx,
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and the invariant measure of the N -particle system reads

mN
∞(dx) = (2π)−dN/2(detAN )1/2 exp

(
−1

2

N∑

i=1

|xi|2 − α

2N

( N∑

j=1

xi
)2)

dx,

where AN is the Nd×Nd matrix whose d× d blocks read

(AN )ij =

{(
1 + α

N

)
1d×d if i = j,

α
N
1d×d if i 6= j.

Especially, we have FN (mN
∞) < +∞. By diagonalizing AN , we can obtain detAN =

(1 + α)d. Hence, the relative density between mN
∞ and m⊗N

∞ reads

dmN
∞

dm⊗N∞
(x) = (1 + α)d/2 exp

(
− α

2N

( N∑

j=1

xi
)2)

,

and the relative entropy satis}es

H(mN
∞|m⊗N

∞ ) = EX∼mN
∞

[
log dmN

∞
dm⊗N∞

(X)

]

=
d

2
log(1 + α)− α

2N
EX∼mN

∞

[( N∑

i=1

Xi

)2]

=
d

2
log(1 + α)− dα

2(1 + α)
.

So the O(1) order in N of the bias in (1.24) is sharp.
Finally, we study the propagation of chaos phenomenon. On }nite horizon we

use the classical arguments of synchronous coupling and Girsanov’s theorem to
show that the distance between the particle system mN

t and the tensorized mean
}eld system m⊗N

t grows at most exponentially, in the sense of Wasserstein distance
and relative entropy. On the other hand, for large time, we control the distance
using the long time behavior proved in Theorems 1.4, 1.9 and 1.12.

Theorem 1.14 (Wasserstein and entropic propagation of chaos). Assume F sat-
is}es (1.2), (1.3), (1.4) and (1.5). Suppose m0 belongs to P2(R

d), mN
0 belongs to

P2(R
dN ) and they both have }nite entropy for some N > 2.

• Then for all ρ′ ∈ (0, ρ), we have

ρW 2
2 (m

N
t ,m

⊗N
t ) 6 2N

(
F(m0)−F(m∞)

)
e−4ρt

+ 2
(
FN (mN

0 )−NF(m∞)
)
e−(4ρ′−C1N

−1)t +
2C2

4ρ′ − C1N−1
, (1.25)

for every t > 0 and every N > C1/4ρ
′, where the constants C1, C2 are the

same as in Theorem 1.12. If additionally m0 ∈ P6(R
d), then we have

W 2
2 (m

N
t ,m

⊗N
t ) 6 eC4tW 2

2 (m
N
0 ,m

⊗N
0 )

+NC5(e
C4t − 1)

(
v6(m0)

1/3 + 1
)
δd(N), (1.26)
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for every t > 0, where C4 = max
(
1 + 3(MF

mx)
2 + 3(MF

mm)2, 2MF
mx + 4d/3 +

16/3
)
, and C5 is a constant depending only on MF

mx, MF
mm and d, the term

v6(m0) is de}ned by v6(m0) :=
∫ ∣∣x−

∫
x′m0(dx′)

∣∣6m0(dx) and the term δd(N)
is de}ned by

δd(N) :=





N−1/2 if d < 4,

N−1/2 log(1 +N) if d = 4,

N−2/d if d > 4.

• If additionally (1.6) holds and h0 ∈ Lp0(m∞) for some p0 > 1, then we have

H(mN
t |m⊗N

t ) 6 NC3e
−4ρ′t

+ 2
(
FN (mN

0 )−NF(m∞)
)
e−(4ρ′−C1N

−1)t +
2C2

4ρ′ − C1N−1
, (1.27)

for every t > τ and every N > C1/4ρ
′, for some constants C3, τ > 0 depending

only on ρ, ρ′, MF
mm, p0 and ‖h0‖Lp0 (m∞). If additionally m0 ∈ P6(R

d) and
H(mN

0 |m⊗N
0 ) is both }nite, then we have

H(mN
t |m⊗N

t ) 6 H(mN
0 |m⊗N

0 )

+NC5(e
C4t − 1)

(
v6(m0)

1/3 + 1
)
δd(N), (1.28)

for every t > 0, for possibly dizerent constants C4, C5 > 0 depending on
MF

mx, MF
mm and d.

If the initial error is zero, i.e., mN
0 = m⊗N

0 , we obtain the following result by
combining the }nite-time and long-time estimates, as in the proof of Corollary 5 of
[101].

Corollary 1.15. Assume F satis}es (1.2), (1.3), (1.4) and (1.5). Suppose m0 ∈
P6(R

d), m0 has }nite entropy, and mN
0 = m⊗N

0 . Then there exist constants C,
N0 > 0, depending on ρ, MF

mm, MF
mx, m0 and d, such that for all N > N0,

sup
t∈[0,∞)

1

N
W 2

2 (m
N
t ,m

⊗N
t ) 6

C

Nκ
(1.29)

where κ = min(2ρ/C4, 1)/(d∨4) with C4 being the constant in the Wasserstein case
of Theorem 1.14. If additionally F satis}es (1.6), we have as well

sup
t∈[0,∞)

1

N
H(mN

t |m⊗N
t ) 6

C

Nκ
(1.30)

for every N > N0, with the constants C, κ, N0 > 0 rede}ned accordingly.

The proofs of Theorem 1.14 and Corollay 1.15 are postponed to Section 1.5.2.
The rate κ obtained in the corollary above seems to be highly optimal compared
to the O(1/N) rate in Theorem 1.12. This is due to the fact that, for }nite time,
we do not exploit at all the coercive structure of the MFL. We note that it is
recently shown in [70] that if we consider a weaker distance and work under stronger
regularity conditions, then the optimal O(1/N) rate can be achieved even when the
supremum over all time is taken.
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Comments on the assumptions. The conditions (1.3), (1.5) ensure that the
drift is jointly Lipschitz continuous in measure and space, which guarantees the well-
posedness of the mean }eld and the particle system dynamics (1.10), (1.11). This
also implies that the ~ow is AC2 in L2-Wasserstein space (refer to De}nition 1.36),
which coincides with the type of curves studied in [4, Chapter 8]. In particular, the
“chain rule” holds true, which yields immediately the energy dissipation (1.48) and
(1.58).

The assumptions (1.2), (1.4), which have already appeared in the previous works
[56, 178], are key to the exponential convergence of relative entropy of the MFL.
They are also used in this work, along with (1.3), to show the exponential entropic
convergence of the particle system in Theorem 1.12.

The condition (1.6) is technical in that it does not contribute to any constants
in our results. This condition allows us to obtain a simple “standard algebra”
of the time-dependent semigroup induced by the MFL and to justify easily the
computations in Lp spaces needed to prove Theorem 1.9, which is then used to show
Theorem 1.14 and Corollary 1.15. It is possible that our results can also be obtained
without the higher-order bounds (for example, by an approximation argument).
We, however, choose to work in this setting to avoid excessive technicalities.

1.3 Applications
1.3.1 Su{cient conditions for functional convexity
We propose two criteria for the convexity of mean }eld functionals. The }rst crite-
rion treats translationally invariant two-body interactions, i.e., energy functionals
of the form:

FInt(m) =
1

2

∫∫
V (x− y)m(dx)m(dy). (1.31)

We have the following modi}ed version of Bochner’s theorem.

Theorem 1.16 (Bochner). Let V : Rd → R be a bounded, continuous and even
function. Then, the following conditions are equivalent:

(i) The functional FInt, de}ned by (1.31), is convex on P(Rd).

(ii) For all signed measure µ on Rd with zero net mass, i.e.,
∫

dµ = 0, we have∫∫
V (x− y)µ(dx)µ(dy) > 0.

(iii) The Fourier transform V̂ of V is the sum of a }nite and positive measure on
Rd \ {0} and a scalar multiple of the Dirac mass δ0 at zero.

The proof of this modi}ed version of Bochner’s theorem is postponed to Ap-
pendix A.2.
Example 1.17 (Regularized Coulomb). It is well-known that in dimension d > 3
the Coulomb potential VC(x) = 1

/(
d(d − 2)cd|x|d−2

)
is the fundamental solution

to Laplace’s equation, that is to say,

∆VC = −δ0. (1.32)

Hence its Fourier transform V̂C veri}es V̂C(k) = (2π)−d/2|k|−2 > 0. However V̂C 6∈
L1(Rd) and Theorem 1.16 does not apply (which is consistent with the singularity
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of VC at 0). To solve this problem, we propose the regularization

V̂RC(k) =
e−r0|k|

(2π)d/2|k|2

for some r0 > 0. Its Fourier inverse VRC : Rd → R is then indeed a bounded
continuous function and has the explicit expression for d = 3:

VRC(x) =

∫
e−r0|k|eik·x

(2π)3|k|2 d3k =

{
arctan(|x|/r0)(2π2|x|)−1 if x 6= 0,

(2π2r0)
−1 if x = 0.

Note that when r0 → 0, we have VRC(x)→ VC(x) for every x ∈ Rd. The functional

FRC(m) =
1

2

∫∫
VRC(x− y)m(dx)m(dy)

=
1

2

∫∫
1

2π2

arctan(|x− y|/r0)
|x− y| m(dx)m(dy) (1.33)

is well de}ned and convex on P(R3) by Theorem 1.16.
Remark 1.18 (Exclusion of two notions of convexity). If the functional FInt satis}es
the conditions of Theorem 1.16, we know

2V (0)− V (s)− V (−s) = 2

(2π)d/2

∫

Rd

(
1− cos(k · s)

)
V̂ (dk) > 0.

If the function V is not constant, then there exists some s0 ∈ Rd such that
V (s0) 6= V (0). The evenness of V implies V (−s0) = V (s0) and, therefore, V (s0) =
V (−s0) < V (0). In particular, V is not convex, and the functional FInt cannot be
geodesically convex. In other words, the only functionals of form (1.31) with con-
tinuous, bounded and even V that are both functionally and geodesically convex
are constant functionals.
Remark 1.19. Other regularizations preserving the positivity of the Coulomb po-
tential can also be possible. For example we can convolute Laplace’s equation (1.32)
with a heat kernel ρε : x 7→ (2πε)−d/2 exp

(
−(2ε)−1x2

)
to obtain

∆V ′
RC = ∆(VC ? ρ

ε) = −ρε.
The Fourier transform of V ′

RC reads

V̂ ′
RC(k) =

ρ̂ε(k)

|k|2 =
e−2π2ε|k|2

(2π)d/2|k|2 ,

which is positive and L1-integrable. The main reason for choosing the regularization
in Example 1.17 is that it allows for the simple expression given in (1.33) in three
dimensions.

The second criterion is an analogue of the property of convex functions under
composition.
Proposition 1.20. Let X be a Banach space. If V : Rd → X is a function of
quadratic growth and g : X → R is convex, then the functional F : P2(R

d) → R

de}ned by
F (m) = g

(∫
V (x)m(dx)

)

is convex.



76 Chapter 1: Uniform propagation of chaos for MFL

Proof. Immediate.

Example 1.21 (L2-loss of two-layer neural networks). We }rst explain the struc-
ture of two-layer neural networks and then introduce the mean }eld model for it.
Consider an activation function ϕ : R→ R satisfying

ϕ is continuous and non-decreasing,
lim

x→−∞
ϕ(x) = 0, lim

x→+∞
ϕ(x) = 1,

(1.34)

De}ne S = R × Rd × R, where the neurons take values. For each neuron θ =
(c, a, b) ∈ S we de}ne the feature map:

Rd 3 z 7→ Φ(θ; z) := `(c)ϕ(a · z + b) ∈ R, (1.35)

where ` : R → [−L,L] is a truncation function with the truncation threshold L ∈
(0,+∞]. Such truncation has been considered in recent papers [117, 178]. The
two-layer neural network is nothing but the averaged feature map parameterized
by N neurons θ1, . . . , θN ∈ S:

Rd 3 z 7→ ΦN (θ1, . . . , θN ; z) =
1

N

N∑

i=1

Φ(θi; z) ∈ R. (1.36)

The training of neural network aims to minimize the distance between the averaged
output (1.36) and a (only empirically known) label function f : Rd → R, i.e.

inf
(θ1,...,θN )∈SN

d
(
f,ΦN (θ1, . . . , θN ; ·)

)
(1.37)

for some loss functional d. In this paper, we use the L2(µ)-norm as the loss func-
tional where µ ∈ P(Rd) represents the feature distribution. In this way, the objec-
tive function of the minimization reads

FN
NNet(θ

1, . . . , θN ) =
N

2

∫ ∣∣f(z)− ΦN (θ1, . . . , θN ; z)
∣∣2µ(dz). (1.38)

To }t the problem to our theoretical framework, we assume that the feature map
Φ : S ×Rd → R satis}es

∀θ ∈ S, Φ(θ; ·) ∈ L2(µ),

∃C > 0, ∀θ ∈ S, ‖Φ(θ; ·)‖L2(µ) 6 C(1 + |θ|2).

Now we present the mean }eld formulation of two-layer neural networks. Let
P2(S) be the space of probability measures on S of }nite second moment and de}ne
the class of functions representable by the mean }eld neural network by:

Nϕ,` = {h : Rd → R : ∃m ∈ P2(S), ∀x ∈ Rd, h(x) = EΘ∼m[Φ(Θ;x)]}. (1.39)

In particular the N -neuron output functions de}ned in (1.36) belong to this class
since

ΦN (θ1, . . . , θN ; ·) = EΘ∼ 1
N

∑N
i=1 δ

θi [Φ(Θ; ·)].
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Instead of the }nite-dimensional optimization (1.37), we consider the following
mean }eld optimization:

inf
P2(S)

FNNet(m),

where FNNet(m) := d
(
f,EΘ∼m[Φ(Θ; ·)]

)
=

1

2

∫ ∣∣f(z)− EΘ∼m[Φ(Θ; z)]
∣∣2µ(dz).

(1.40)
The functional FNNet is convex by Proposition 1.20 since

FNNet(m) = g

(∫
V (θ)m(dθ)

)

with V : S 3 θ 7→
(
z 7→ Φ(θ; z)

)
∈ L2(µ) and g : L2(µ) 3 h 7→ ‖f − h‖2L2(µ) ∈ R.

Remark 1.22 (Motivation of mean }eld formulation). The N -neuron problem (1.38)
is non-convex due to the non-linear activation function ϕ. Inspired by the fact that
the width N of two-layer neural networks is usually large in practice, the authors
of [163, 57, 203, 117] consider the mean }eld formulation of neural networks which
convexi}es the original problem.
Remark 1.23 (Absence of geodesic convexity). We highlight here that if FNNet
is geodesically convex and regular enough, then the N -neuron problem FN

NNet is
convex, which is not true. Hence by contradiction FNNet has no geodesic convexity.
Indeed, suppose FNNet is geodesically convex. Note that t 7→ 1

N

∑N
i=1 δθi+tvi is a

geodesic in (P2,W2) in a neighborhood of t = 0 if θi are distinct from each other
(as the pairing (θi, θi + tvi), i = 1, . . . , N veri}es cyclical monotonicity for t small
enough). By the geodesic convexity of FNNet and the relation FN

NNet(θ
1, . . . , θN ) =

NFNNet
(

1
N

∑N
i=1 δθi

)
, we obtain the local convexity of FN

NNet on the set

SN \∆N := SN \ {(θ1, . . . , θN ) ∈ SN : ∃i 6= j, θi = θj}.

If FN
NNet is additionally C2, the local convexity implies ∇2FN

NNet > 0 on SN \∆N

and by density ∇2FN
NNet > 0 everywhere. Therefore FN

NNet is convex on SN .
Remark 1.24 (Expressiveness of truncated networks). It is well known that two-
layer neural networks are universal approximators, that is, they can approximate
any continuous function on Rd arbitrarily well with respect to the compact-open
topology ([116, Theorem 2.4]). This implies that the in}mum in (1.40) is zero if
µ is compactly supported and no truncation is present (that is, L = +∞ and `

is the identity function). However, if a truncation with L < +∞ is applied, all
functions h ∈ Nϕ,` satisfy the bound ‖h‖∞ 6 L and therefore cannot approximate
well functions that exceed L. However, Barron’s theorem [13, Theorem 2] says that
if a function f satis}es

f(x) = f(0) +

∫
(eiω·x − 1)F (dω)

for every x ∈ B(0, R), for some complex-valued measure F , and if there exists c+,
c− ∈ R such that `(c+) = L and `(c−) = −L, and that

L > R

∫
|ω||F (dω)|+ |f(0)|,
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then the best approximation error

inf
Φ∈Nϕ,`

‖f − Φ‖L2(µ) = 0

for every probability measure µ supported in B(0, R).

1.3.2 Examples of MFL dynamics
We construct MFL dynamics for the two examples discussed earlier and demon-
strate that our theorems are applicable in both cases. To verify the LSI condition
(1.4) we will use the following results.
Proposition 1.25. Let µ(dx) = e−V (x) dx be a probability measure in Rd for some
V ∈ C2(Rd).

• (Bakry–Émery [11]) If ∇2V > κ then µ satis}es a κ/2-LSI.

• (Holley–Stroock [113]) If V = V1+V2, where e−V1 is the density of a probability
measure satisfying an ρ-LSI and V2 is bounded with oscillation oscV2, then µ

satis}es a ρ exp(− oscV2)-LSI.

• (Aida–Shigekawa [1]) If V2 in the previous statement is Lipschitz-continuous
instead of bounded, then µ satis}es an LSI as well.

Example 1.26 (MFL for regularized Coulomb system). Let λ > 0. De}ne

FExt(m) =
λ

2

∫
|x|2m(dx). (1.41)

We consider the functional F = FRC + FExt where FRC is de}ned in (1.33). By
the discussions in Example 1.17 the functional F satis}es the convexity condition
(1.2). Its linear functional derivative reads

δF

δm
(m,x) =

∫
VRC(x− y)m(dy) + 1

2
λ|x|2

and its intrinsic derivative reads DmF (m,x) =
∫
∇VRC(x − y)m(dy) + λx. The

conditions (1.3), (1.5), (1.6) are satis}ed because

‖∇nVRC‖∞ 6
1

(2π)d/2

∫
|k|nV̂RC(dk) =

∫
|k|n e−r0|k|

(2π)d|k|2 ddk < +∞

for all n > 0 (and d > 3). In particular, the bound in (1.3) is veri}ed by
MF

mm = ‖∇2VRC‖∞. For the uniform LSI, we can apply Holley–Stroock or Aida–
Shigakawa, since the }rst term in δF

δm
is uniformly bounded and uniformly Lip-

schitz and the second term veri}es the Bakry–Émery condition. The LSI con-
stant given by Holley–Stroock has the simple expression in three dimensions ρ =
λ exp(− oscVRC)/2 = λ exp(−1/2π2r0)/2. The L1+-integrability of the initial con-
dition, needed by Theorem 1.9 and the second part of Theorem 1.14, is veri}ed
once we have

∃C, ε > 0, ∀x ∈ R, m0(x) 6 Ce−ε|x|2 . (1.42)
However, as the regularization parameter r0 approaches 0, we observe ρ → 0 and
MF

mm → +∞, suggesting our method is not suitable for the unregularized Coulomb
interaction. We refer readers to [32, 33, 199, 59] for recent developments on the
noised gradient ~ow of Coulomb (and more generally, Riesz) particle systems, where
the modulated free energy is used to tackle the singularity in the interactions.
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Example 1.27 (MFL for two-layer neural networks). Recall the mean }eld two-layer
neural networks in Example 1.21. Suppose

• the truncation L is }nite;

• the activation and truncation functions ϕ, ` have bounded derivatives of up
to fourth order;

• the feature distribution µ has }nite second moment;

• the label function f belongs to L2(µ).

On top of the mean }eld optimization problems (1.40), we add the quadratic reg-
ularizer FExt in (1.41) to the loss, as for the Coulomb system. Then the function
and the functional to optimize read

FN (θ1, . . . , θN ) =
N

2

∫ ∣∣∣∣f(z)−
1

N

N∑

i=1

Φ(θi; z)

∣∣∣∣
2

µ(dz) + λ

2

N∑

i=1

|θi|2,

F (m) =
1

2

∫ ∣∣f(z)− EΘ∼m[Φ(Θ; z)]
∣∣2µ(dz) + λ

2

∫
|θ|2m(dθ).

The N -neuron loss can be recover from the mean }eld loss by FN (θ1, . . . , θN ) =

NF
(

1
N

∑N
i=1 δθi

)
. We verify the assumptions of our theorems one by one. The

functional convexity of F = FNNet + FExt is already proved in Example 1.21. The
linear functional derivative of F reads

δF

δm
(m, θ) = −

∫ (
f(z)− EΘ∼m[Φ(Θ; z)]

)
Φ(θ; z)µ(dz) + λ

2
|θ|2.

The }rst term on the right hand side is uniformly bounded: for every m ∈ P2(S)
and every θ ∈ S,

∣∣∣∣
∫ (

f(z)− EΘ∼m[Φ(Θ; z)]
)
Φ(θ; z)µ(dz)

∣∣∣∣ 6 (‖f‖L1(µ) + ‖`‖∞)‖`‖∞.

Hence by Holley–Stroock the uniform LSI condition (1.4) is satis}ed with the con-
stant

ρ =
λ

2
exp
(
−2(‖f‖L1(µ) + ‖`‖∞)‖`‖∞

)
.

The intrinsic derivative of F reads

DmF (m, θ) = −
∫ (

f(z)− EΘ∼m[Φ(Θ; z)]
)∂Φ
∂θ

(θ; z)µ(dz) + λθ,

where the partial derivative of the feature map Φ, de}ned in (1.35), reads

∂Φ

∂c
(θ; z) = `′(c)ϕ(a ·z+b), ∂Φ

∂a
(θ; z) = `(c)ϕ′(a ·z+b)z, ∂Φ

∂b
(θ; z) = `(c)ϕ′(a ·z+b)

for θ = (c, a, b) ∈ S. Similarly we obtain the second order intrinsic derivative:
D2

mF (m, θ, θ
′) =

∫
∂Φ
∂θ

(θ; z)⊗ ∂Φ
∂θ

(θ′; z)µ(dz). Its 2-norm satis}es the bound

|D2
mF (m, θ, θ

′)|22 6 ‖`′‖2∞ + ‖`‖2∞‖ϕ′‖2∞
(
1 +M2(µ)

)
,
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where M2(µ) =
∫
|z|2µ(dz) is the second moment of µ. Thanks to the Kantorovich

duality and the Cauchy–Schwarz inequality, the W1-Lipschitz constant of m 7→
DmF (m,x) can be given by

MF
mm =

(
‖`′‖2∞ + ‖`‖2∞‖ϕ′‖2∞

(
1 +M2(µ)

))1/2
.

So DmF satis}es the condition (1.3). Since `, ϕ have bounded derivatives of
up to fourth order, the derivatives ∇kDmF (m, θ) for k = 1, 2, 3 are also uniformly
bounded. Thus the technical conditions (1.5) (1.6) are also satis}ed. Finally, the
L1+-integrability of the initial value m0 is veri}ed once we require the pointwise
Gaussian bound (1.42) on the density of m0.
Remark 1.28 (Link to practice). In the training of neural networks, the measure µ is
an empirical measure 1

K

∑K
k=1 δzk and on the feature points {zk}Kk=1 the labels are

known f(zk) = yk. This collection of pairs {zk, yk}Kk=1 are the available training
data. In practice, instead of the mean }eld dynamics, we can only simulate the
corresponding N -particle system. In other words, we calculate the N -neuron SDE

dΘi
t =

1

K

K∑

k=1

(
yk − ΦN (Θ1

t , . . . ,Θ
N
t ; zk)

)∂Φ
∂θ

(Θi
t; zk) dt− λΘi

t dt+ σ dW i
t , (1.43)

for i = 1, . . . , N . The }rst drift term of the dizusion is the gradient

∇θiFN (Θ1
t , . . . ,Θ

N
t ),

so the time-discretization of this dizusion is nothing but the noisy gradient descent
(NGD) algorithm for training neural networks. We refer readers to [232, 235,
153, 234, 173] for its applications. The second drift term −λΘi

t, coming from our
quadratic regularization, is called weight decay in the }eld of machine learning. It
is believed to lead to better generalizations of the trained neural network (see [135,
155]).
Remark 1.29 (Noised data). In the previous remark we suppose the data available
{zk, yk}Nk=1 are precise: yk = f(zk), while in practice they may be subject to errors:
y′k = f(zk) + εk. The new collection of points {zk, y′k}Nk=1 induces another mean
}eld functional F ′

NNet de}ned by

F ′
NNet(m) =

1

2K

K∑

k=1

(
y′k − EΘ∼m[Φ(Θ; zk)]

)2
.

From the triangle inequality for the L2-distance we deduce

|F ′
NNet(m)− FNNet(m)| 6

(
1

K

K∑

k=1

ε2k

)1/2
FNNet(m)1/2 +

1

2K

K∑

k=1

ε2k.

The actual N -neuron training process is therefore the noised gradient descent for
the functional F ′ := F ′

NNet + FExt and approximately converges to (m′
∞)⊗N where

m′
∞ minimizes F ′ = F ′ + σ2

2 H. The dizerence between respective minima can be
bounded as follows:

F ′(m′
∞)−F(m∞) 6 F ′(m∞)−F(m∞) = F ′

NNet(m∞)− FNNet(m∞)

6

(
1

K

K∑

k=1

ε2k

)1/2
FNNet(m∞)1/2 +

1

2K

K∑

k=1

ε2k.
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Hence the additional error converges to zero as the noise in the data (εk)
K
k=1 tends

to zero.
Remark 1.30 (Advantages over other approaches). Our Theorems 1.12 and 1.14 es-
tablish the exponential convergence of the N -neurons training process (1.43) with-
out supposing the truncation satis}es the regularity conditions such as ‖∇k`‖∞ < c

for some small constant c. This stands in contrast to many previous studies on
uniform-in-time propagation of chaos relying on the smallness of the mean }eld
interaction (e.g. [80] and the }rst setting of [70]). Yet the smallness approach does
not apply to general neural networks: in our setting, the smallness requires the
Lipschitz constants MF

mm to be smaller than a constant times ρ, which we denote
by MF

mm . ρ, and the relation is di{cult to verify. Indeed, using the constants
MF

mm, ρ obtained in Example 1.27, we need
(
‖`′‖2∞ + ‖`‖2∞‖ϕ′‖2∞

(
1 +M2(µ)

))1/2
.
λ

2
exp
(
−2(‖f‖L1(µ) + ‖`‖∞)‖`‖∞

)
.

This forces either the regularization λ to be very large or the truncation ‖`‖∞ to
be very small. In conclusion, our approach based on the functional convexity ozers
the advantage of obtaining the exponential convergence, albeit at a very slow rate,
without such restrictions on λ or `.

1.3.3 Numerical experiments
As explained in Examples 1.21 and 1.27, the MFL dynamics for training two-layer
neural networks veri}es all the conditions of our theorems, so its particle systems
satisfy the uniform exponential energy dissipation (1.24). We now present our
numerical experiments.

Setup. We aim to train a neural network to approximate the elementary func-
tion z 7→ f(z) = sin 2πz1 + cos 2πz2 on [0, 1]2. We uniformly sample K points
{zi}Kk=1 from [0, 1]2 and calculate the corresponding labels yk = f(zk) to prepare
our training data {zk, yk}Kk=1. These points are plotted in Figure 1.1. We }x the
truncation function ` by `(x) = (x ∧ 100) ∨ −100 and the sigmoid activation func-
tion ϕ by ϕ(x) = 1/

(
1 + exp(−x)

)
. The Brownian noise has volatility σ, and it

is necessary to apply the scaling transform in Remark 1.3 before comparing to the
theoretical results. Additionally, the quadratic regularization constant λ is }xed
in our experiments. The initial values (Θi

0)
N
i=1 = (ci0, a

i
0, b

i
0)

N
i=1 of the N neurons

are sampled independently from a normal distribution m0 in four dimensions. The
training process (1.43) is discretized with time step ∆t and terminated at time T .
The values of the hyperparameters K, σ, m0, ∆t, T are listed in Table 1.1 and the
training algorithm is shown in Algorithm 1. We take the number of neurons N to
be 2P for P = 6, . . . , 10 and repeat the training 10 times for each N .

Results. We compute the sum of the N−1-scaled loss 1
N
FN

NNet(Θ
1
t , . . . ,Θ

N
t ) at

each time t and plot its evolution in Figure 1.2. We observe the value of 1
N
FN

NNet
}rst decreases exponentially and then decreases more slowly or even stabilizes. To
explore the relationship between this residual error and the number of neurons,
for each value of N we calculate the average value of 1

N
FN

NNet during the last 500
training steps and take the average of these values over the 10 independent runs.
The results are plotted in Figure 1.3.
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Figure 1.1: Data samples {zk, yk}Kk=1

(schematic).

Parameters Value
∆t 0.2
T 4000
K 1000
m0 N (0, 52)
σ 1
λ 10−5

Table 1.1: Hyperparameters
of neural network training.

Algorithm 1: Noised gradient descent for training a two-layer neural net-
work

Input: number of particles N , activation ϕ, truncation `, data set
(zk, yk)

K
k=1, noise σ, initial distribution m0, time step ∆t, time

horizon T

Output: (Θi
T )

N
i=1

generate i.i.d. Θi
0 = (Ai

0, B
i
0, C

i
0) ∼ m0, i = 1, . . . , N ;

for t = 0,∆t, 2∆t, . . . , T −∆t do
generate i.i.d. N i

t ∼ N (0, 1), i = 1, . . . , N ;
// update particles according to discretized Langevin
for i = 1, . . . , N do

Θi
t+∆t ← Θi

t −
(
DmFNNet

(
1
N

∑N
j=1 δΘj

t
,Θi

t

)
+ λΘi

t

)
∆t+ σ

√
∆tN i

t ;
/* where DmFNNet

(
1
N

∑N
j=1 δΘj

t
,Θi

t

)
=

1
K

∑K
k=1

(
yk − ΦN (Θ1

t , . . . ,Θ
N
t ; zk)

)
∂Φ
∂θ

(Θi
t; zk) */
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Figure 1.2: Individual (shadowed)
and 10-averaged (bold) losses versus
time steps.
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Figure 1.3: Average losses of last 500
steps for individual trainings (shad-
owed) and its 10-average (bold).
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Discussions. Our truncation function ` does not have bounded derivatives of up
to fourth order as required in Example 1.27 and we can work around this by taking
a sequence of regular `n approximating ` since the constants MF

mm, ρ depends only
on ‖`‖∞, ‖`′‖∞. In our experiment we also ignore the time-discretization error and
the dizerence between training and validation data sets. As shown in Figure 1.2 the
losses }rst decrease exponentially at a uniform rate for dizerent numbers of neurons,
N . This is consistent with the convergence rate ρ′− C1

N
predicted by Theorems 1.12

and 1.14. However, the LSI constant obtained in Example 1.27 by Holley–Stroock
is excessively small and fails to predict the actual convergence rate. Given that the
Holley–Stroock method relies solely on the boundedness of neural networks, this
phenomenon suggests the internal structure of neural networks allows for a faster
convergence rate that is not captured by the perturbation lemma.

We }t the residual losses with the curve α
N

+ β in Figure 1.3. We choose this
parametrization for two reasons: the }rst term α

N
corresponds to the error term

in the convergence result (1.24) of the free energy 1
N
FN (mN

t ); the second term β

accounts for the facts that F(m∞) 6= 0 and that the free energy dizers from the
neural network’s loss by

1

N
FN (mN

t )− 1

N
FN

NNet(m
N
t ) =

λ

2N

∫
|θ|2mN

t (dθ) + σ2

2N
H(mN

t ).

In particular the relative entropy H(mN
t ) can not be directly calculated.

1.4 Mean }eld system
1.4.1 Existence of the measures m̂, m∞, mN

∞

Our assumptions dizer from those in the earlier works, such as [117]. Speci}cally,
we do not require the coercivity condition of type

∀m ∈ P2(R
d), ∀x ∈ Rd, DmF (m,x) · x > C(|x|2 − 1).

Instead we only assume the condition (1.5) onDmF (m,x). As a result, the existence
of the measures m̂,m∞,mN

∞, introduced in Section 1.2, is not obvious. In this
subsection we show that thanks to the conditions (1.2), (1.3), (1.4), these measures
are indeed well de}ned.

First we sketch a proof that regular enough measures satisfying an LSI in Rd

have }nite moments.

Lemma 1.31. Let µ(dx) = e−Ψ dx be a probability measure in Rd where Ψ is twice
dizerentiable with the bound |∇2Ψ| 6 C. If µ satis}es an LSI, i.e. (1.4) holds when
m̂ is replaced by µ for some ρ > 0, then µ ∈ ∩p>1Pp(R

d) and
∫
eα|x|µ(dx) < +∞

for all α > 0.

Proof. Here we repeat the argument of Otto and Villani in [180]. Suppose µ satis}es
a ρ-LSI (but we do not suppose µ ∈ P2(R

d) a priori). For every measure ν ∈ P2(R
d)

of }nite entropy (e.g. the Gaussians), the heat ~ow

∂tνt = ∆νt +∇ · (νt∇Ψ), ν0 = ν

is well de}ned and is an absolutely continuous curve in (P2,W2) thanks to the bound
|∇2Ψ| 6 C and [22, Theorem 7.4.1]. Hence by the argument of [180, Proposition
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1’], we can obtain H(νt|µ) 6 H(ν|µ)e−4ρt and

W2(ν, νt) 6
1√
ρ

(√
H(ν|µ)−

√
H(νt|µ)

)
. (1.44)

The sequence νt are tight in the weak topology of P since we have ρW2(ν, νt)
2 6

H(ν|µ) =
∫
(log ν + Ψ)ν < +∞ (recall that Ψ is of quadratic growth). By the

lower-semicontinuity of H(·|µ) we must have νt → µ in P weakly when t → ∞.
Then we take lim inft→∞ on both side of (1.44) and use the lower-semicontinuity
of W2 with respect to the weak topology of P to obtain Talagrand’s inequality

ρW 2
2 (ν, µ) 6 H(ν|µ).

Hence µ ∈ P2. Finiteness of higher moments and exponential moments then follows
from concentration inequalities via Herbst’s argument (see e.g. the proof of [27,
Theorem 5.5]).

We give a su{cient condition to the existence of m̂ for every m ∈ P2(R
d) so

that the condition (1.4) makes sense.
Proposition 1.32. Assume F satis}es (1.3). If there exists a measure m0 ∈
P2(R

d) such that m̂0 is well de}ned (i.e. Z(m̂0) < +∞) and m0 satis}es LSI (1.4),
then m̂ are well de}ned (i.e. Z(m̂) < +∞) for all m ∈ P2(R

d).
Proof. By de}nition we have

Z(m̂) =

∫
exp
(
− δF
δm

(m,x)

)
dx

= Z(m̂0)

∫
exp
(
δF

δm
(m0, x)−

δF

δm
(m,x)

)
m̂0(dx),

where the term on the exponential is of linear growth since its derivative is uni-
formly bounded:

∣∣∇
(
δF
δm

(m0, x) − δF
δm

(m,x)
)∣∣ = |DmF (m0, x) − DmF (m,x)| 6

MF
mmW2(m0,m). But by Lemma 1.31, all exponential moments of m̂0 are }nite.

Thus Z(m̂) < +∞ and m̂ is well de}ned.

We now show that the N -particle invariant measure is also well de}ned.
Proposition 1.33. Assume F satis}es (1.2) and (1.4). Then the measure mN

∞ in
(1.17) is well de}ned and has }nite exponential moments for all N > 2.
Proof. Fix m0 ∈ P2(R

d). Using convexity we obtain

NF (µx) > NF (m0) +N

∫
δF

δm
(m0, y)(µx −m0)(dy)

= NF (m0)−N
∫

δF

δm
(m0, y)m0(dy) +

N∑

i=1

δF

δm
(m0, x

i).

The integral
∫

δF
δm

(m0, y)m0(dy) is }nite thanks to Lemma 1.31. Hence
∫

exp
(
−NF (µx)

)
dx 6 C

∫
exp
(
−

N∑

i=1

δF

δm
(m0, x

i)

)
dx = C

(
Z(m̂0)

)N
< +∞.

Apply the same argument to
∫

exp
(
α
∑N

i=1 |xi|
)

exp
(
−NF (µx)

)
dx we obtain the

}niteness of exponential moments.
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Proposition 1.34. Assume F satis}es (1.2), (1.4), (1.3) and (1.5). Then the mean
}eld free energy F , de}ned in (1.14), has a unique minimizer m∞. The minimizer
m∞ is also the unique solution to the }rst-order equation (1.15) and an invariant
measure to the MFL dynamics (1.12).

Proof. Recall that F(m) = F (m)+H(m) where the absolute entropy H(m) is well
de}ned for m ∈ P2 and has value in (−∞,+∞] thanks to the decomposition

H(m) =

∫
logm(x)m(x) dx

=

∫
log m(x)

(2π)−d/2e−x2/2
m(x) dx+

∫ (
log(2π)−d/2 − x2

2

)
m(x) dx. (1.45)

The }rst term, which is the relative entropy between m and a normalized Gaussian,
is always nonnegative and the second term is }nite. Moreover the free energy F
satis}es

F(m)− F (m0) >

∫
δF

δm
(m0, x)(m−m0)(dx) +H(m)

= −
∫

log m̂0(x)(m−m0)(dx) +H(m) = H(m|m̂0) +

∫
log m̂0(x)m0(dx)

(1.46)

for all m,m0 ∈ P2 such that m0 has }nite entropy. Since the LSI (1.4) implies the
T2 inequality (1.9), the functional F has P2-coercivity:

ρW 2
2 (m, m̂0) 6 H(m|m̂0) 6 F(m)−

∫
log m̂0(x)m0(dx)− F (m0).

The conditions (1.2), (1.5) imply also the P2-lower-continuity of F : if (mn)n∈N is
a sequence convergent to m in the weak topology of P2, then we have

lim inf
n

F (mn)− F (m)

> lim inf
n

∫
δF

δm
(m,x)(mn −m)(dx)

= lim inf
n

∫ (
δF

δm
(m,x)− δF

δm
(m, 0)

)
(mn −m)(dx)

> lim inf
n

∫ (
DmF (m, 0) · x−

MF
mx

2
|x|2
)
(mn −m)(dx)

= 0.

Here the second inequality follows from Taylor’s formula and MF
mx denotes the

constant in the condition (1.5). The entropy H is also P2-lower-semicontinuous
by the previous decomposition (1.45). The free energy F is then lower-bounded,
coercive, lower-semicontinuous and convex, so there exists unique minimizer in P2

which we denote by m∞.
Now we show the equivalence between the minimizing property of the free energy

F and the }rst-order condition (1.15). If m0 satis}es (1.15) then m̂0 = m0 and
from (1.46) we deduce F(m) > F(m0) for all m ∈ P2, i.e. m0 is the minimizer of
F . For the reverse implication we refer readers to the necessary part of the proof
of [117, Proposition 2.5].
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Finally since m∞ satis}es (1.15) we have

∆m∞ +∇ · (DmF (m∞, x)m∞) = ∇ ·
(
m∞∇

(
δF

δm
(m∞, x) + logm∞

))
= 0,

and m∞ is invariant to (1.12).

Remark 1.35. We will establish the uniqueness of the invariant measure of the MFL
in Corollary 1.39 after deriving the free energy dissipation formula (1.48).

1.4.2 Proof of Theorem 1.4
First we recall the de}nition of AC2 curves in [4].

De}nition 1.36. Let (X, d) be a complete metric space and x : [a, b] → X be
a continuous mapping. We say x is absolutely continuous (a.c.) and write x ∈
AC
(
[a, b]; (X, d)

)
if there exists m ∈ L1([a, b]) such that

∀a 6 s < t 6 b, d
(
x(s), x(t)

)
6

∫ t

s

m(u)du.

We say x ∈ AC2
(
[a, b]; (X, d)

)
if additionally m ∈ L2([a, b]). For a globally de}ned

curve x : [t0,+∞) → X we say x belongs to the class AC2
loc and denote x ∈

AC2
loc
(
[t0,+∞; (X, d)

)
, if x ∈ AC2

loc
(
[t0, T ]; (X, d)

)
for every T > t0.

Now we state the wellposedness and regularity result.

Proposition 1.37 (Existence, uniqueness and regularity of MFL). Assume F sat-
is}es (1.3) and (1.5). Then

1. for all m0 ∈ P2(R
d) there exists a unique continuous ~ow m : [0,+∞) →

P2(R
d) solving weakly the Fokker–Planck equation (1.12);

2. moreover, this solution has density and }nite entropy for positive time:

∀t > 0,

∫
|logmt(x)|mt(x) dx < +∞;

3. if additionally mt0 has }nite entropy for some t0 > 0, then the integral
∫ t

t0

∫ |∇ms(x)|2
ms(x)

dx ds (1.47)

is }nite for every t > t0; therefore (mt)t>t0 ∈ AC2
loc
(
[t0,+∞); (P2,W2)

)
and

has tangent vector vt(x) = −DmF (mt, x)−∇ logmt(x) for t > t0 a.e. in the
sense of [4, Proposition 8.4.5].

Due to the technical nature of this proposition its proof is postponed to Ap-
pendix A.1. Using the results of Proposition 1.37 and applying the formalism of
[4], we establish the free energy dissipation formula, which is crucial to our studies
on the dynamics of gradient ~ow.
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Proposition 1.38 (Energy dissipation). Assume F satis}es (1.3) and (1.5). If
mt0 is a measure of }nite entropy and }nite second moment for some t0 > 0, then
the free energy F , de}ned in (1.14), is absolutely continuous along the ~ow (mt)t>t0

constructed in Proposition 1.37. Moreover it has derivative

dF(mt)

dt = −
∫
|DmF (mt, x) +∇ logmt(x)|2mt(dx), for t > t0 a.e. (1.48)

Proof. We will apply the chain rule result of [4, Proposition 10.3.18] and we verify
its conditions, namely, the dizerentiability of the free energy F = F + H and of
the ~ow of measures mt. Firstly under the conditions (1.3), (1.5), we can apply the
argument of [56, Lemma A.2] to show that F : P2(R

d) → R is −λ-geodesically-
convex for some λ > 0 and it has dizerential DmF (mt, ·) at mt. Secondly the
entropy H : P2(R

d) → (−∞,+∞] is also 0-geodesically-convex by the result of
[4, Proposition 9.3.9] and for t > t0 a.e. has subdizerential ∇ logmt at mt by [4,
Theorem 10.4.6], thanks to the regularity bounds in the previous Proposition 1.37.
Hence the free energy F = F + H is −λ-geodesically-convex and has dizerential
DmF (mt, ·)+∇ logmt at mt. For the ~ow of measures mt we have already obtained
its AC2-regularity in the previous proposition and its tangent vector reads vt =
−DmF (mt, ·)−∇ logmt at mt for t > t0 a.e. Then we can apply the chain rule to
obtain the absolute continuity of t 7→ F(mt) and

∀T > t0, F(mT )−F(mt0) =

∫ T

t0

(
DmF (mt, x) +∇ logmt(x)

)
· vt(x)mt(dx) dt

which is the desired result.

Corollary 1.39 (Uniqueness of the invariant measure). Under (1.2), (1.3), (1.4)
and (1.5), there exists a unique invariant measure in P2(R

d) to the mean }eld
dynamics (1.12).

Proof. The existence part is already shown in Proposition 1.34. Letm∗ ∈ P2(R
d) be

an invariant measure. We let the initial condition m0 be equal to m∗ and construct
according to Proposition 1.37 the MFL solution (mt)t>0. By the invariance of m∗
we have mt = m∗ for all t > 0, so m∗ must have density and }nite entropy. We
then apply the energy dissipation formula (1.48) and obtain

for x ∈ Rd a.e., DmF (m∗, x) +∇ logm∗(x) = 0.

Integrating this equation, we obtain m∗ solves the }rst-order condition (1.15) which
has unique solution by Proposition 1.34.

Now we show the close relation between the free energy and the relative en-
tropies.

Lemma 1.40 (Entropy sandwich). Assume F satis}es (1.2), (1.3), (1.4) and (1.5).
Then for every m ∈ P2(R

d) we have

H(m|m∞) 6 F(m)−F(m∞) 6 H(m|m̂)

6

(
1 +

MF
mm

ρ
+

(MF
mm)2

2ρ2

)
H(m|m∞). (1.49)
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Proof. The }rst two inequalities are proved in [56, Lemma 3.4]. We show the
rightmost one. Recall that Z(m̂) is the normalization constant de}ned in (1.7). We
have

H(m|m̂)−H(m|m∞) =

∫ (
log m

m̂
− log m

m∞

)
m =

∫
log m∞

m̂
m

=

∫ (
δF

δm
(m,x)− δF

δm
(m∞, x)

)
m(x) dx+ logZ(m̂)− logZ(m∞).

By Jensen’s inequality, the dizerence between δ := logZ(m̂)− logZ(m̂∞) satis}es

δ = logZ(m̂)− log
∫

exp
(
− δF
δm

(m∞, x)

)
dx

= logZ(m̂)− log
∫

exp
(
− δF
δm

(m∞, x)− log m̂(x)

)
m̂(x) dx

6 logZ(m̂) +

∫ (
δF

δm
(m∞, x) + log m̂(x)

)
m̂(x) dx

6 logZ(m̂) +

∫ (
δF

δm
(m∞, x)−

δF

δm
(m,x)− logZ(m̂)

)
m̂(x) dx

=

∫ (
δF

δm
(m∞, x)−

δF

δm
(m,x)

)
m̂(x) dx.

Then we have by Kantorovich duality and W1-Lipschitzianity in (1.3)

H(m|m̂)−H(m|m∞) 6

∫ (
δF

δm
(m,x)− δF

δm
(m∞, x)

)(
m(x)− m̂(x)

)
dx

6 ‖DmF (m,x)−DmF (m∞, x)‖∞W1(m, m̂)

6MF
mmW1(m,m∞)W1(m, m̂)

6MF
mmW1(m,m∞)

(
W1(m,m∞) +W1(m̂,m∞)

)
.

Note that, for the }rst term in the bracket above, we have

W1(m,m∞) 6W2(m,m∞) 6
√
ρ−1H(m|m∞)

by the T2 and log-Sobolev inequalities, (1.9), (1.4), and for the second term, we
have

W 2
1 (m̂,m∞) 6W 2

2 (m̂,m∞) 6
1

ρ
H(m̂|m∞) 6

1

4ρ2

∫ ∣∣∣∣∇ log m̂

m∞

∣∣∣∣
2

m̂

=
1

4ρ2

∫
|DmF (m,x)−DmF (m∞, x)|2m̂(x) dx

6
(MF

mm)2

4ρ2
W 2

1 (m,m∞) 6
(MF

mm)2

4ρ3
H(m|m∞),

which concludes.

The proof of Theorem 1.4 is nothing but the combination of the previous two
results.
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Proof of Theorem 1.4. By Proposition 1.38 we have

dF(mt)

dt
= −

∫
|DmF (mt, x) +∇ logmt(x)|2mt(dx) = −I(mt|m̂t)

6 −4ρH(mt|m̂t) 6 −4ρ
(
F(mt)−F(m∞)

)
, for t > t0 a.e.

The }rst inequality is due to the uniform log-Sobolev inequality (1.4) and the
second to the entropy sandwich (1.49). The second inequality in (1.18) is then
obtained by Grönwall’s lemma, and the }rst inequality has already been proved in
Lemma 1.40.

1.4.3 L
2-convergence and hypercontractivity

Standard algebra

We }rst work on dense set of su{ciently regular functions that will be necessary
our proofs.

For notational simplicity, de}ne bt(x) := −DmF (mt, x), b∞(x) := −DmF (m∞, x)
and recall that ht(x) := dmt

dm∞

(x). The relative density ht then solves

∂th = ∆h+ (2b∞ − bt) · ∇h−
(
∇ · (bt − b∞) + (bt − b∞) · b∞

)
h. (1.50)

In this subsection we will }x the ~ow of measures mt to be that constructed in
Proposition 1.37 and let h change independently frommt. We will also only consider
solutions in L∞([t0, T ];L1(m∞)

)
with initial value ht0 ∈ L1(m∞) to the evolution

equation (1.50) (in the sense of [22, (6.1.3)]). We then know that the solution is
then unique by applying [22, Theorem 9.6.3] to hm∞.

De}nition 1.41 (Standard algebra). The standard algebra A+ is the set of positive
and C2 functions h : Rd → (0,∞) satisfying the following conditions:

• there exists a constant M > 0 such that for every x ∈ Rd, |logh(x)| 6
M(1 + |x|);

• for k = 1, 2, there exist constants Mk > 0 such that for every x ∈ Rd,
|∇kh(x)| 6 exp

(
Mk(1 + |x|)

)
.

For a collection of functions (hi)i∈I we say that hi ∈ A+ uniformly for i ∈ I or
(hi)i∈I ⊂ A+ uniformly, if there exist constants M , M1, M2 such that the previous
bounds holds for all hi, i ∈ I.

Remark 1.42. The word “standard algebra” is the terminology in [6]. Readers may
have noticed A+ is not an algebra in the usual sense, as it contains only positive
functions and is not closed under scalar multiplication by −1. To remedy this we
can de}ne A = A+ − A+ and A is truely an algebra. We introduce this unusual
set of functions in order to do Lp-computations for p < 1.

Then we can state the density and stability of A+.

Proposition 1.43 (Density of A+). Let p > 1, q < 1, h : Rd → [0,+∞] be a
measurable function and µ be a probability measure on Rd having a density with
respect to the Lebesgue measure. If h ∈ Lp(µ), then there exists a sequence (hn)n∈N

in A+ such that hn → h in Lp(µ); if h ∈ Lq(µ), then there exists a sequence
(hn)n∈N in A+ such that ‖hn‖q → ‖h‖q; and if h ∈ Lp ∩ Lq(µ), then the sequence
in A+ can be chosen such that both convergences hold.
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Proposition 1.44 (Stability of A+ under ~ow). Assume F satis}es (1.2), (1.3),
(1.4), (1.5) and (1.6). For every t0 > 0 and h′ ∈ A+, there exists a solution
h : [t0,+∞)→ A+ to (1.50) with initial value h(t0, ·) = h′. Moreover the temporal
weak derivative ∂th exists and ht belongs to A+ locally uniformly, i.e., (ht)t∈K ⊂ A+

uniformly for every compact subset K ⊂ [t0,+∞).
The proofs of Propositions 1.43 and 1.44 are postponed to Appendix A.1 due

to their technical nature.

Proof of Proposition 1.6

First, by working in A+, we obtain the following Lp-norm growth formula.
Proposition 1.45 (Lp-norm growth). Assume F satis}es (1.2), (1.3), (1.4), (1.5)
and (1.6). Let p 6= 0 and h : [a, b] → A+ be a solution to the evolution (1.50).
Then the growth of p-norm t 7→

∫
ht(x)

pm∞(dx) is absolutely continuous and has
derivative

d
dt

∫
ht(x)

pm∞(dx) = p(p− 1)

(
−
∫
ht(x)

p−2|∇ht(x)|2m∞(dx)

+

∫
ht(x)

p−1∇ht(x) ·
(
bt(x)− b∞(x)

)
m∞(dx)

)
(1.51)

for t ∈ [a, b] a.e.
Proof. We }rst suppose t 7→ h(t, x) is C1 instead of only absolutely continuous.
Notice that the evolution equation (1.50) of h can be rewritten as

∂th = (∆ + b∞ · ∇)h− (bt − b∞) · ∇h− ∇ ·
(
m∞(bt − b∞)

)

m∞
h,

where the }rst term corresponds to the symmetric operator ∆+ b∞ ·∇ in L2(m∞).
We then have

d
dt

∫
ht(x)

pm∞(dx)

= p

∫
ht(x)

p−1
(
∆+ b∞(x) · ∇

)
ht(x)m∞(dx)

− p
∫
ht(x)

p−1
(
bt(x)− b∞(x)

)
· ∇ht(x)m∞(dx)

− p
∫
∇ ·
(
m∞(bt − b∞)

)
(x)ht(x)

p dx

= −p(p− 1)

∫
ht(x)

p−2|∇ht(x)|2m∞(dx)

− p
∫
ht(x)

p−1
(
bt(x)− b∞(x)

)
· ∇ht(x)m∞(dx)

+ p

∫
∇ht(x)p ·

(
bt(x)− b∞(x)

)
m∞(dx)

= p(p− 1)

(
−
∫
ht(x)

p−2|∇ht(x)|2m∞(dx)

+

∫
ht(x)

p−1∇ht(x) ·
(
bt(x)− b∞(x)

)
m∞(dx)

)
.
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We can justify the }rst equality by the dominated convergence theorem and the two
integrations by parts in the second one by an approximating sequence of functions,
thanks to the fact that ht ∈ A+ locally uniformly.

Then, for the general case where t 7→ ht(x) is only absolutely continuous, thanks
to the fact that ht belongs to A+ locally uniformly, we have for every s, t ∈ [a, b]
with s 6 t,
∫
ht(x)

pm∞(dx)−
∫
hs(x)

pm∞(dx) = p

∫ t

s

∫
hu(x)

p−1∂uhu(x)m∞(dx) du,

where ∂uhu(x) is the weak derivative that exists only a.e. Then we plug in the
evolution equation (1.50) and compute as before.

Remark 1.46. By dividing (1.51) by p− 1 and taking the limit p→ 1, one formally
obtains

d
dt

∫
ht(x) loght(x)m∞(dx) = −

∫ |∇ht(x)|2
ht(x)

m∞(dx)

+

∫
∇ht(x) ·

(
bt(x)− b∞(x)

)
m∞(dx). (1.52)

This entropy growth formula is one of the key ingredients of the method of Jabin
and Wang [124] and has also been used in [98]. A weak version of this formula
under weak regularity of b has been rigorously proved in the Appendix A of the
}rst arXiv version of [142]. In our case, the formula can be }rst rigorously proved
for h taking value in A+, as is done in the proposition above, and then we treat
the general case by the density of A+.

The Lp-norm growth formula implies the existence of a strongly continuous
semigroup in Lp(m∞) for all p ∈ [1,+∞).

Corollary 1.47 (Lp-continuity of ~ow). Under the hypotheses of Proposition 1.45,
for every p > 1 and every a 6 s 6 t 6 b there exists a constant Cs,t,p > 0 such that

∫
ht(x)

pm∞(dx) 6 Cs,t,p

∫
hs(x)

pm∞(dx)

holds for every solutions to (1.50) in A+. Therefore the evolution equation (1.50)
determines a strongly continuous (and positive) semigroup (P t

s)s6t in L
p
+(m∞) for

p ∈ [1,+∞).

Proof. For hs ∈ A+ de}ne ht = h(t, ·) ∈ A+ where h is the unique solution of (1.50)
in A+. The mapping hs 7→ ht is linear (when the multiplying scalar is positive).
For p > 1, the growth of Lp-norm satis}es

d

du

∫
hu(x)

pm∞(dx) 6 p(p− 1)

4

∫
hu(x)

p|bu(x)− b∞(x)|2m∞(dx)

6
p(p− 1)

4
(MF

mm)2W 2
1 (mu,m∞)

∫
hu(x)

pm∞(dx)

for u ∈ [s, t] a.e., by Proposition 1.45 and by Cauchy–Schwarz inequality The
existence of the stated constant Cs,t,p then follows from an application of Grönwall’s
lemma. For p > 1, the mapping hs 7→ ht =: P

t
shs extends uniquely to a continuous
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linear one by the density ofA+ in Lp
+(m∞). By the dominated convergence theorem

we have limt→s

∫
|ht(x) − hs(x)|pm∞(dx) = 0 when hs ∈ A+, using the fact that

(hu)u∈[s,t] ⊂ A+ uniformly. This property extends to general hs ∈ L
p
+(m∞) by

the density in Proposition 1.43. Hence P t
s is a strongly continuous semigroup on

L
p
+(m∞). To recover the usual de}nition of strongly continuous semigroup we note

that Lp = L
p
+ − Lp

+ and de}ne P t
sh := P t

sh+ − P t
sh− for h ∈ Lp(m∞).

Proof of Proposition 1.6. First suppose ht0 ∈ A+. Thanks to Proposition 1.45 with
p = 2, we have

d

dt

∫
h(x)2tm∞(dx)

= −2
∫
|∇ht(x)|2m∞(dx) + 2

∫
ht(x)∇ht(x) ·

(
bt(x)− b∞(x)

)
m∞(dx)

6 −2(1− ε)
∫
|∇ht(x)|2m∞(dx) + 1

2ε

∫
ht(x)

2|bt(x)− b∞(x)|2m∞(dx)

6 −4(1− ε)ρ
(∫

h2t (x)m∞(dx)− 1

)
+

(MF
mm)2

2ε
W 2

1 (mt,m∞)‖ht‖22

= −4(1− ε)ρ‖ht − 1‖22 +
(MF

mm)2

2ε
W 2

1 (mt,m∞)‖ht‖22,

where we }rst use the Cauchy–Schwarz inequality before applying the Poincaré
inequality (1.8) satis}ed by m∞ and the Lipschitz bound on |bt(x) − b∞(x)| =
|DmF (mt, x)−DmF (m∞, x)|. By the T2 inequality (1.9) we have W 2

1 (mt,m∞) 6
W 2

2 (mt,m∞) 6 ρ−1H(mt|m∞). Thanks to Lemma 1.40 and Theorem 1.4 we have

H(mt|m∞) 6 F(mt)− F (m∞) 6 e−4ρ(t−t0)(F(mt0)−F(m∞))

6

(
1 +

MF
mm

ρ
+

(MF
mm)2

2ρ2

)
e−4ρ(t−t0)H(mt0 |m∞).

Finally note that the relative entropy satis}es, for p > 1,

H(mt0 |m∞) 6 log‖ht0‖p/(p−1)
p (1.53)

since by Jensen’s inequality we have

exp
(∫

log
(
h
p−1
t0

)
dmt0

)
6

∫
h
p−1
t0

dmt0 =

∫
h
p
t0

dm∞.

Chaining up the previous three inequalities we obtain

(MF
mm)2

2ε
W 2

1 (mt,m∞) 6
(MF

mm)2

2ε
W 2

2 (mt,m∞)

6
ρα2

2ε

(
1 + α+

α2

2

)
log‖ht0‖22e−4ρ(t−t0) =: ∆(t),

where we de}ne α :=MF
mm/ρ. The decrease of L2-norm then satis}es

d

dt
‖ht‖22 6 −

(
4ρ′ −∆(t)

)
‖ht − 1‖22 +∆(t)
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with ρ′ := (1− ε)ρ. Thanks to Grönwall’s lemma and the fact that
∫ +∞
s

∆(u) du 6

∆(s)/4ρ, we obtain

‖ht − 1‖22

6 e
−4ρ′(t−t0)+

∫
t

t0
∆(s) ds‖ht0 − 1‖22 +

∫ t

t0

e−4ρ′(t−s)+
∫

t

s
∆(u)du∆(s) ds

6 e∆(t0)/4ρ

(
e−4ρ′(t−t0)‖ht0 − 1‖22 +

∫ t

t0

e−4ρ′(t−s)∆(s) ds
)

6 e∆(t0)/4ρ

(
e−4ρ′(t−t0)‖ht0 − 1‖22 +∆(t0)

∫ t

t0

e−4ρ′(t−s)e−4ρ(s−t0) ds
)

6 e∆(t0)/4ρ

(
e−4ρ′(t−t0)‖ht0 − 1‖22 +

∆(t0)

4(ρ− ρ′) (e
−4ρ′(t−t0) − e−4ρ(t−t0))

)

6 e∆(t0)/4ρ

(
‖ht0 − 1‖22 +

∆(t0)

4ερ

)
e−4ρ′(t−t0).

For general ht0 ∈ L2(m∞), we take an approximating sequence (hnt0)n∈N in A+

such that hnt0 → ht0 in L2(m∞) according to Proposition 1.44. We have established
that ‖hnt − 1‖2 6 Ce−γt where hnt = P t

t0
hnt0 . By the continuity shown in Corol-

lary 1.47, we have hnt → ht in L2(m∞). Therefore, the inequality (1.19) holds for
general ht0 ∈ L2(m∞).

Proof of Proposition 1.7

Proof of Proposition 1.7. First assume ht0 ∈ A+ so that ht ∈ A+ for all t > t0 and
that ht ∈ A+ uniformly on compact sets of [t0,+∞) thanks to Proposition 1.44.
De}ne the function ϕ(t) = log‖ht‖q(t). In particular, if q(t) = 0, then ϕ(t) =∫

loght(x)m∞(dx). By the de}nition of the stable algebra A+ we know ϕ(t) is
well de}ned for t > t0. Moreover, it follows from Fubini’s theorem that t 7→ ϕ(t) is
absolutely continuous for t > t0 and its weak derivative reads

ϕ̇(t)

=
q̇(t)

q(t)2
∫
ht(x)q(t)m∞(dx)

(∫
ht(x)

q(t) loght(x)q(t)m∞(dx)

−
∫
ht(x)

q(t)m∞(dx) log
∫
ht(x)

q(t)m∞(dx)
)

+
q(t)− 1∫

ht(x)q(t)m∞(dx)

(
−
∫
ht(x)

q(t)−2|∇ht(x)|2m∞(dx)

+

∫
ht(x)

q(t)−1∇ht(x) ·
(
bt(x)− b∞(x)

)
m∞(dx)

)
.

We recognize the term on the }rst line as the entropy,
∫
ht(x)

q(t) loghq(t)t m∞(dx)−
∫
ht(x)

q(t)m∞(dx) log
∫
ht(x)

q(t)m∞(dx)

= Entm∞
(h

q(t)
t ),

which, by LSI (1.4), has upper bound

Entm∞
(h

q(t)
t ) 6

1

ρ
Em∞

[
|∇hq(t)/2|2

]
6
q(t)2

4ρ

∫
ht(x)

q(t)−2|∇ht(x)|2m∞(dx).
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By Cauchy–Schwarz, the second term on the second line satis}es
∫
ht(x)

q(t)−1∇ht(x) ·
(
bt(x)− b∞(x)

)
m∞(dx)

6 ε

∫
ht(x)

q(t)−2|∇ht(x)|2m∞(dx) + 1

4ε

(∫
ht(x)

q(t)m∞(dx)
)
‖bt − b∞‖2∞

6 ε

∫
ht(x)

q(t)−2|∇ht(x)|2m∞(dx) + (MF
mm)2W 2

1 (mt,m∞)

4ε

∫
ht(x)

q(t)m∞(dx).

Therefore, for q0 > 1 (so that q(t) > 1, q̇(t) > 0), we have ϕ̇(t) 6 δ(t) while for
q0 < 1 (so that q(t) < 1, q̇(t) < 0) we have ϕ̇(t) > δ(t). To deal with the case
q(t) = 0 we use the continuity of t 7→ ϕ(t). We have thus shown (1.20) and (1.21)
for ht0 ∈ A+.

Now consider general ht0 ∈ Lq0
+ (m∞). In the case q0 > 1, we use the density of

A+ (Proposition 1.43) to }nd a sequence (hnt0)n∈N in A+ with hnt0 → ht0 in Lq0 .
To each hnt0 there exists a ~ow t 7→ hnt in A+ satisfying (1.20). For t > t0, we also
have hnt → ht in Lq0 by the semigroup property in Corollary 1.47 so that along a
subsequence hnt → ht a.e. By Fatou’s lemma we obtain

log
(∫

h
q(t)
t (x)m∞(dx)

)1/q(t)
6 lim inf

n→∞

(∫
hnt (x)

q(t)m∞(dx)
)1/q(t)

6 lim inf
n→∞

log‖hnt0‖q0 +
∫ t

t0

δ(s) ds = log‖ht0‖q0 +
∫ t

t0

δ(s) ds.

So (1.20) is proved for general ht0 ∈ Lq0 . In the case q0 < 1, we choose again
by Proposition 1.43 a sequence (hnt0)n∈N in A+ such that hnt0 → ht0 in L1 and
limn→∞ ‖hnt0‖q0 = ‖ht0‖q0 . By the L1-continuity, hnt → ht in L1 so that along a
subsequence hnt → ht pointwise m∞-a.e. For q(t) > 0 we have by Fatou’s lemma

lim inf
n→∞

∫ (
|hnt (x)|+ 1− |hnt (x)|q(t)

)
m∞(dx) >

∫ (
|ht(x)|+ 1− |ht(x)|q(t)

)
m∞(dx).

Thus lim supn→∞
∫
|hnt (x)|q(t)m∞(dx) 6

∫
|ht(x)|q(t)m∞(dx). So taking lim sup

on both sides of the inequality

log‖hnt ‖q(t) > log‖hnt0‖q0 +
∫ t

t0

δ(s) ds

gives us (1.21). For q(t) < 0 we have directly by Fatou

lim inf
n→∞

∫
hnt (x)

q(t)m∞(dx) >
∫
ht(x)

q(t)m∞(dx)

so that

log‖ht‖q(t) > lim sup
n→∞

log‖hnt ‖q(t) > lim sup
n→∞

log‖hnt0‖q0 +
∫ t

t0

δ(s) ds

= log‖ht0‖q0 +
∫ t

t0

δ(s) ds.

To conclude we treat q(t) = 0 by a continuity argument. Take ε′ ∈ (0, ε) and let
q′ be the solution to q̇′ = 4(1 − ε′)ρ(q′ − 1) with q′(t0) = q(t0) = q0 < 1 and
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δ′(t) = 1
4ε′ (q

′(t) − 1)(MF
mm)2W 2

1 (mt,m∞). We have q′(t) < q(t) = 0 so that by
previous discussions

log‖ht‖q′(t) > log‖ht0‖q0 +
∫ t

t0

δ′(s) ds,

whereas log‖ht‖q(t) > log‖ht‖q′(t) by the monotonicity of p-norm. We take the limit
ε′ → ε to obtain (1.21).

Remark 1.48. The computations are similar to that for the hypercontractivity of a
dizusion process whose invariant measure m satis}es a defective LSI, i.e. for some
c, δ > 0,

∀f ∈ C1
b (R

d), Entm(f2) 6 cEm[|∇f |2] + δEm[|f |2].
See [12, Chapter 5] and [6, Chapter 2] for the link between defective LSI and
hypercontractivity.

1.4.4 Proofs of Theorems 1.9 and 1.11
After showing the L2-convergence and the hypercontractivity, we are }nally ready
to give the proof of Theorem 1.9.

Proof of Theorem 1.9. We will }rst use Proposition 1.7 to show that after a }nite
time h lies in L2(m∞), then use Proposition 1.6 to show that its L2(m∞)-norm
diminishes exponentially and }nally apply Proposition 1.7 again to extend this
result to all Lp.

To this end, let ρ′ ∈ (0, ρ) be arbitrary and set ε = 1 − ρ′/ρ. De}ne q̇1(t) =
4(1− ε)ρ

(
q1(t)− 1

)
with q1(0) = p0, and we know

q1(s) = (p0 − 1) exp
(
4(1− ε)ρs

)
+ 1.

Since p0 > 1, q1 is exponentially increasing. If p0 ∈ (1, 2) we set t1 = (4(1 −
ε)ρ)−1 log 1

p0−1 . This de}nition ensures that q1(t1) = 2. Otherwise if p0 > 2, we
simply set t1 = 0. Thus, in both cases, we have

t1 =
1

4(1− ε)ρ log 1

(p0 − 1) ∧ 1
.

By the hypercontractivity (1.20) in Proposition 1.7, we have

‖ht1‖2 6 exp
(∫ t1

0

δ1(s) ds
)
‖h0‖p0

,

where δ1(s) = 1
4ε (q1(s) − 1)(MF

mm)2W 2
1 (ms,m∞). On the other hand, we can

control the Wasserstein distance W 2
1 (ms,m∞) as follows:

W 2
1 (ms,m∞) 6W 2

2 (ms,m∞) 6 ρ−1H(ms|m∞)

6 ρ−1
(
F(ms)−F(m∞)

)

6 ρ−1
(
F(m0)−F(m∞)

)

6 ρ−1

(
1 +

MF
mm

ρ
+

(MF
mm)2

2ρ2

)
H(m0|m∞)

6 ρ−1

(
1 +

MF
mm

ρ
+

(MF
mm)2

2ρ2

)
log‖h0‖p0/(p0−1)

p0
,
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thanks to the T2 inequality (1.9), Theorem 1.4, Lemma 1.40 and the inequality
(1.53). Setting α :=MF

mm/ρ and P (α) = α2 + α3 + α4/2, we get
∫ t1

0

δ1(s) ds 6 MF
mmp0

4ε(p0 − 1)

(
α+ α2 +

α3

2

)
log‖h0‖p0

∫ t1

0

(q1(s)− 1) ds

6
MF

mmp0

4ε(p0 − 1)

(
α+ α2 +

α3

2

)
log‖h0‖p0

1

4(1− ε)ρ (2− p0)+

6
p0(2− p0)+

16(p0 − 1)ε(1− ε)P (α) log‖h0‖p0 =:M log‖h0‖p0 .

And thus, ‖ht1‖2 6 ‖h0‖1+M
p0

. By Proposition 1.6 we know that for all t ∈ [t1,+∞),

‖ht‖22 − 1 6 exp
(
P (α)

4ε
log‖ht1‖2

)(
‖ht1‖22 − 1 +

P (α)

4ε2
log‖ht1‖2

)
e−4(1−ε)ρ(t−t1)

6 ‖ht1‖P (α)/4ε
2

(
1 +

P (α)

8ε2

)(
‖ht1‖22 − 1

)
e−4(1−ε)ρ(t−t1)

6

(
1 +

P (α)

8ε2

)
H

P (α)/4ε
1

(
H2

1 − 1
)
e−4(1−ε)ρ(t−t1),

for H1 being the upper bound of ‖ht1‖2 de}ned by

logH1 =

(
1 +

p0(2− p0)+P (α)
16(p0 − 1)ε(1− ε)

)
log‖h0‖p0

.

Now we de}ne τp by

τp =





t1 +
1

4(1−ε)ρ log
(
(p− 1) ∨ 1

)
if p > 1,

t1 if p ∈ (0, 1)

t1 +
1

4(1−ε)ρ log
(
2(1− p)

)
if p 6 0

=

{
1

4(1−ε)ρ log (p−1)∨1
(p0−1)∧1 if p > 0,

1
4(1−ε)ρ log 2(1−p)

(p0−1)∧1 if p < 0,

In the case p > 1, for t > τp we set t2 = t − (4(1 − ε)ρ)−1 log
(
(p − 1) ∨ 1

)
> t1

and let q2 solves q̇2(t) = 4(1 − ε)ρ
(
q2(t) − 1

)
with q2(t2) = 2. Our choice ensures

q2(t) = 2 ∨ p > p. By the hypercontractivity (1.20) we have

‖ht‖q2(t) 6 exp
(∫ t

t2

δ2(s) ds
)
‖ht2‖2,

where δ2(s) = 1
4ε

(
q2(s) − 1

)
(MF

mm)2W 2
1 (ms,m∞). The integral of δ2 can be con-

trolled in the same way as we did to push p0 → 2 by hypercontractivity:
∫ t

t2

δ2(s) ds 6 MF
mmp0

4ε(p0 − 1)

(
α+ α2 +

α3

2

)
log‖h0‖p0

∫ t

t2

(
q2(s)− 1

)
ds

6
p0P (α)

16(p0 − 1)ε(1− ε) log‖h0‖p0
(p− 2)+.
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The p-norm then satis}es

log‖ht‖p 6 log‖ht‖q2(t) 6 log‖ht2‖2 +
p0(p− 2)+P (α)

16(p0 − 1)ε(1− ε) log‖h0‖p0

6
1

2

(
‖ht2‖22 − 1

)
+

p0(p− 2)+P (α)

16(p0 − 1)ε(1− ε) log‖h0‖p0

6
1

2

(
1 +

P (α)

8ε2

)
H

P (α)/4ε
1

(
H2

1 − 1
)
e−4(1−ε)ρ(t2−t1)

+
p0(p− 2)+P (α)

16(p0 − 1)ε(1− ε) log‖h0‖p0

6
1

2

(
1 +

P (α)

8ε2

)
H

P (α)/4ε
1

(
H2

1 − 1
)
e−4(1−ε)ρ(t−τp)

+
p0(p− 2)+P (α)

16(p0 − 1)ε(1− ε) log‖h0‖p0 .

So the upper bound in (1.22) is established. The lower bound follows from the
monotonicity of p-norm: we have log‖ht‖p > log‖ht‖1 = 0.

For p ∈ (0, 1), we observe Hölder’s inequality
(∫

hpm∞

)1/(2−p)(∫
h2m∞

)(1−p)/(2−p)

>

∫
hm∞ = 1,

so that for t > τp = t1 we have log‖ht‖p > − 2(1−p)
p

log‖ht‖2. Thus we obtain the
desired bound by inserting the upper bound for ‖ht‖2.

Finally we treat p 6 0. Given t > τp, set t3 = t−
(
4(1−ε)ρ

)−1 log
(
2(1−p)

)
> t1

and let q3 solves q̇3(t) = 4(1 − ε)ρ
(
q3(t) − 1

)
with q3(t3) =

1
2 . Our choice ensures

q3(t) = p. De}ne δ3(s) = 1
4ε

(
q3(s) − 1

)
(MF

mm)2W 2
1 (ms,m∞). It satis}es, as done

in the previous steps,
∫ t

t3

δ3(s) ds > − p0
(
1
2 − p

)
P (α)

16(p0 − 1)ε(1− ε) log‖h0‖p0
.

We obtain, by the reverse hypercontractivity (1.21),

log‖ht‖p > log‖ht3‖ 1
2
+

∫ t

t3

δ3(s) ds

> −2 log‖ht3‖2 −
p0
(
1
2 − p

)
P (α)

16(p0 − 1)ε(1− ε) log‖h0‖p0

= − log
(
1 + ‖ht3 − 1‖22

)
− p0

(
1
2 − p

)
P (α)

16(p0 − 1)ε(1− ε) log‖h0‖p0

> −‖ht3 − 1‖22 −
p0
(
1
2 − p

)
P (α)

16(p0 − 1)ε(1− ε) log‖h0‖p0

> −
(
1 +

P (α)

8ε2

)
H

P (α)/4ε
1

(
H2

1 − 1
)
e−4(1−ε)ρ(t−t1)

− p0
(
1
2 − p

)
P (α)

16(p0 − 1)ε(1− ε) log‖h0‖p0
.
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Thus, we have established the lower bound in (1.22), for both p ∈ (0, 1) and p 6 0.
To conclude, we compare again the p-norm with the 1-norm and use the mono-
tonicity.

To conclude the discussions about the mean }eld dynamics we show a lemma
which uses Lp-norms to control a “cross entropy”-like quantities and use it to obtain
the uniform-in-time concentration of measure result in Theorem 1.11. The lemma
will also be used in the proof of Theorem 1.14.

Lemma 1.49. Let µ, ν ∈ P(Rd) and h : Rd → (0,+∞) be a measurable function.
Then for all p > 0,

−1

p
H(ν|µ) + log‖h‖L−p(µ) 6

∫
loghdν 6

1

p
H(ν|µ) + log‖h‖Lp(µ). (1.54)

Proof. Let X be a measurable space, µ, ν be probability measures on X and U :
X → R be a random variable. We have the convex duality inequality (see e.g. [27,
Corollary 4.14])

Eν [U ] 6 H(ν|µ) + logEµ[e
U ]. (1.55)

The right hand side of the inequality is always well de}ned in (−∞,+∞]. Take
U = p logh. For p > 0 we obtain

∫
loghdν 6

1

p
H(ν|µ) + 1

p
log
∫
ep log h dµ =

1

p
H(ν|µ) + log‖h‖Lp(µ),

and for p < 0 we obtain
∫

loghdν >
1

p
H(ν|µ) + log‖h‖Lp(µ).

Proof of Theorem 1.11. Let f : Rd → R be 1-Lipschitz continuous and de}ne for
t > 0 the moment-generating function ψt,f (λ) = logEmt

eλ(f−Emt
f). The equality

in (1.55) can be attained and therefore we have (see also [27, Corollary 4.14])

ψt,f (λ) = sup
µ�mt

λ(Eµ f − Emt
f)−H(µ|mt).

For each µ� mt, the }rst term satis}es

Eµ f − Emt
f 6W1(µ,mt) 6W1(µ,m∞) +W1(mt,m∞)

6

√
1

ρ
H(µ|m∞) +W1(mt,m∞)

by Talagrand’s transport inequality (1.9) for m∞. The second term satis}es

H(µ|mt) =

∫
log dµ

dmt

dµ =

∫ (
log dµ

dm∞
− loght

)
dµ

= H(µ|m∞)−
∫

loght dµ

> H(µ|m∞)− 1

p
H(µ|m∞)− log‖ht‖p
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for p > 1 by the previous Lemma 1.49. Hence for λ > 0 the moment-generating
function ψt,f satis}es

ψt,f (λ) 6 sup
µ�mt

λ

√
1

ρ
H(µ|m∞) + λW1(mt,m∞)− (1− p−1)H(µ|m∞) + log‖ht‖p

6
λ2

4(1− p−1)ρ
+ λW1(mt,m∞) + log‖ht‖p.

For r, λ > 0 we have by Markov’s inequality

mt[f − E f > r] 6 e−λr Emt
eλ(f−Emt

f)

6 exp
(
−λr + λ2

4(1− p−1)ρ
+ λW1(mt,m∞) + log‖ht‖p

)
.

Take λ = 2(1− p−1)ρ. We obtain

mt[f − E f > r]

6 exp
(
−
(
1− 1

p

)
ρr2 + 2

(
1− 1

p

)
ρW1(mt,m∞)r + log‖ht‖p

)
.

The bound on mt[f − E f 6 −r] is obtained by applying the previous inequality
to −f . Given ρ′ ∈ (0, ρ), }nd p > 1 such that (1 − p−1)ρ = ρ′. The desired result
follows from Theorems 1.4 and 1.9.

Remark 1.50. Our proof is based on the standard transport method for concentra-
tion inequalities and we refer readers to [148, Chapter 6] and [27, Chapter 8] for an
introduction to it. In fact, our method allows us to prove a more general perturba-
tive result: if m satis}es a T1 inequality, h ∈ Lp

+(m) for p > 1 and
∫
hm = 1, then

hm also has Gaussian concentration (albeit with a weaker constant).

1.5 Particle system
1.5.1 Proof of Theorem 1.12
Before giving the proof of Theorem 1.12 we }rst show two lemmas on entropies.
Lemma 1.51 (Information inequalities). Let X1, . . . , XN be measurable spaces, µ
be a probability measure on the product space X = X1×· · ·×XN and ν = ν1⊗· · ·⊗νN
be a σ-}nite measure. Then

N∑

i=1

H(µi|νi) 6 H(µ|ν) 6
N∑

i=1

∫
H
(
µi|−i(·|x−i)

∣∣∣νi
)
µ−i(dx−i). (1.56)

Here we set the rightmost term to +∞ if the conditional distribution µi|−i does not
exist µ−i-a.e.
Proof. The inequality is non-trivial only if µ � ν and in this case we denote the
relative density by f = dµ/dν. For I ⊂ {1, . . . , N}, we de}ne the conditional
densities by

f I|−I(xI |x−I) =





f(xI ,x−I)∫
f(xI ,x−I)ν−I(dx−I)

if
∫
f(xI ,x−I)ν−I(dx−I) > 0,

0 otherwise.



100 Chapter 1: Uniform propagation of chaos for MFL

The conditional measures are de}ned via densities

µI|−I(dxI) = f I|−I(xI |x−I)νI(dxI).

In particular, we do not need the regularity of the underlying spaces X1, . . . , XN

in order to apply disintegration theorems. De}ne Ii = {1, . . . , i} for i = 1, . . . , N .
The relative entropy admits the decomposition

H(µ|ν) =
N∑

i=1

∫
H
(
µi|Ii−1(·|xIi−1)

∣∣∣νi
)
µIi−1(dxIi−1).

We conclude by applying Jensen’s inequality to the convex mappings λi 7→ H(λi|νi).

Lemma 1.52. Assume that F satis}es (1.2) and there exists a measure m∞ ∈
P2(R

d) verifying (1.15). Then for all mN ∈ P2(R
dN ) of }nite entropy, we have

H(mN |m⊗N
∞ ) 6 FN (mN )−NF(m∞). (1.57)

Proof. Let X be a random variable distributed as mN . By the convexity of F we
have

FN (mN )−NF(m∞)

= E[NF (µX)−NF (m∞)] +H(mN )−NH(m∞)

> E

[
N

∫
δF

δm
(m∞, x)(µX −m∞)(dx)

]
+H(mN )−NH(m∞)

= −E

[
N

∫
logm∞(x)(µX −m∞)(dx)

]
+H(mN )−NH(m∞)

= −E

[
N

∫
logm∞(x)µX(dx)

]
+H(mN )

= −
∫ N∑

i=1

logm∞(xi)mN (dx) +H(mN ) = H(mN |m⊗N
∞ ).

Proof of Theorem 1.12. Let t0 > 0 be such that mt0 has }nite entropy and }nite
second moment. Since∇iNF (µx) = DmF (µx, x

i) corresponds to the drift of (1.11),
we recognize the particle system ~ow of measure mN

t as a linear Langevin ~ow with
the invariant measure mN

∞, de}ned in (1.17). In particular, Proposition 1.38 applied
to this dynamics yields

dFN (mN
t )

dt
= −I(mN

t |mN
∞) (1.58)

for t > t0 a.e. In the following we establish a lower bound of the relative Fisher
information It := I(mN

t |mN
∞) in order to obtain the desired result. We divide the

proof into several steps.

Step 1: Regularity of conditional distribution. By the elliptic positivity (see e.g.
[22, Theorem 8.2.1]), we know that for all t > t0 and x ∈ RdN , mN

t (x) > 0 with
explicit lower bound. Let i ∈ {1, . . . , N}. De}ne marginal density m

N,−i
t (x−i) =∫

mN
t (x) dxi. It is strictly positive everywhere by the positivity of mN

t and is
lower semicontinuous (in x−i) thanks to the continuity of x 7→ mN

t (x) and Fatou’s
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lemma. Since Fubini gives
∫
m

N,−i
t (x−i) dx−i = 1, we have mN,−i

t (x−i) < +∞
everywhere. We are therefore able to de}ne the conditional probability density

m
N,i|−i
t (xi|x−i) =

mN
t (x)

m
N,−i
t (x−i)

=
mN

t (x)∫
mN

t (x) dxi

which has generalized derivative in xi and is strictly positive everywhere.
Step 2: Decomposing Fisher componentwise. Using the conditional distributions,
we can decompose the relative Fisher information by

It =

∫ ∣∣∣∣∇ log m
N
t (x)

mN∞(x)

∣∣∣∣
2

mN
t (dx) = E

[∣∣∣∣∇ log m
N
t (Xt)

mN∞(Xt)

∣∣∣∣
2]

=

N∑

i=1

E

[∣∣∣∣∇xi log m
N,i|−i
t (Xi

t |X−i
t )mN,−i

t (X−i
t )

mN∞(Xt)

∣∣∣∣
2]

=
N∑

i=1

E

[∣∣∣∣∇xi log m
N,i|−i
t (Xi

t |X−i
t )

mN∞(Xt)

∣∣∣∣
2]

=

N∑

i=1

E
[∣∣∣∇xi logmN,i|−i

t (Xi
t |X−i

t ) +DmF (µXt
, Xi

t)
∣∣∣
2]
.

Step 3: Change of empirical measure and componentwise LSI. We replace the empir-
ical measure µx in DmF by µx−i . De}ne δi1(x; y) = DmF (µx, y)−DmF (µx−i , y).
Take ε ∈ (0, 1). The Fisher information satis}es

It =

N∑

i=1

E

[∣∣∣∇xi logmN,i|−i
t (Xi

t |X−i
t ) +DmF (µX

−i
t
, Xi

t) + δi1(Xt;X
i
t)
∣∣∣
2
]

>

N∑

i=1

E


(1− ε)

∣∣∣∇xi logmN,i|−i
t (Xi

t |X−i
t ) +DmF (µX

−i
t
, Xi

t)
∣∣∣
2

− (ε−1 − 1)|δi1(Xt;X
i
t)|2




= (1− ε)
N∑

i=1

E
[
I
(
m

N,i|−i
t (·|X−i

t )
∣∣∣µ̂X

−i
t

)]
− (ε−1 − 1)

N∑

i=1

E[|δi1(Xt;X
i
t)|2],

where we used the elementary inequality (a+ b)2 > (1− ε)|a|2 − (ε−1 − 1)|b|2 and
µ̂x−i is the probability of density proportional to exp

(
− δF

δm
(µx−i , x)

)
dx. De}ne

the }rst error

∆1 :=

N∑

i=1

E[|δi1(Xt;X
i
t)|2] :=

N∑

i=1

E
[
|DmF (µXt

, Xi
t)−DmF (µX

−i
t
, Xi

t)|2
]
. (1.59)

The previous inequality writes

It > (1− ε)
N∑

i=1

E
[
I
(
m

N,i|−i
t (·|X−i

t )
∣∣∣µ̂X

−i
t

)]
− (ε−1 − 1)∆1. (1.60)

We apply the uniform log-Sobolev inequality for µ̂Xi
t

and obtain

1

4ρ
I
(
m

N,i|−i
t (·|X−i

t )
∣∣∣µ̂X

−i
t

)
> H

(
m

N,i|−i
t (·|X−i

t )
∣∣∣µ̂X

−i
t

)

=

∫ (
logmN,i|−i

t (xi|X−i
t ) +

δF

δm
(µX

−i
t
, xi)

)
m

N,i|−i
t (dxi|X−i

t ) + logZ(µ̂X
−i
t
).
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Then we apply Jensen’s inequality to logZ(µ̂x−i) to obtain

logZ(µ̂X
−i
t
) > −

∫
δF

δm
(µX

−i
t
, xi)m∞(dxi)−

∫
m∞(xi) logm∞(xi) dxi.

Chaining the previous two inequalities and summing over i, we have

1

4ρ

N∑

i=1

I
(
m

N,i|−i
t (·|X−i

t )
∣∣∣µ̂X

−i
t

)
>

N∑

i=1

[∫
δF

δm
(µX

−i
t
, xi)

(
m

N,i|−i
t (dxi|X−i

t )−m∞(dxi)
)
+H

(
m

N,i|−i
t (·|X−i

t )
)
−H(m∞)

]
. (1.61)

Step 4: Another change of empirical measure. We wish to change back µx−i → µx

in (1.61). De}ne δi2(x; y) := δF
δm

(µx−i , y)− δF
δm

(µx, y) and the second error

∆2 :=

N∑

i=1

∫
δi2(x;x

i)mN
t (dx)−

N∑

i=1

∫∫
δi2(x;x

′)m∞(dx′)mN
t (dx). (1.62)

Then we obtain by taking expectations on both sides of (1.61)

1

4ρ

N∑

i=1

E
[
I
(
m

N,i|−i
t (·|X−i

t )
∣∣∣µ̂X

−i
t

)]
> N E

[∫
δF

δm
(µXt

, y)(µXt
−m∞)(dy)

]

+

N∑

i=1

EH
(
m

N,i|−i
t (·|X−i

t )
)
−NH(m∞) + ∆2. (1.63)

Thanks to the convexity of F , the }rst term satis}es the tangent inequality

N E

[∫
δF

δm
(µXt

, y)(µXt
−m∞)(dy)

]
> N E

[
F (µXt

)− F (m∞)
]

= FN (mN
t )−NF (m∞). (1.64)

For the second term we apply the information inequality (1.56) to obtain

N∑

i=1

E−i
[
H
(
m

N,i|−i
t (·|X−i

t )
)]

> H(mN
t ).

Hence,

N∑

i=1

E
[
I
(
m

N,i|−i
t (·|X−i

t )
∣∣∣µ̂X

−i
t

)]

> 4ρ
(
FN (mN

t )−NF (m∞) +H(mN
t )−NH(m∞) + ∆2

)
.

Using (1.60) and recalling the de}nition of free energies F(m) = F (m) + H(m),
FN (mN ) = FN (mN ) +H(mN ), we obtain

It = I(mN
t |mN

∞) > 4ρ(1− ε)
(
FN (mN

t )−NF(m∞) + ∆2

)
− (ε−1 − 1)∆1. (1.65)
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Step 5: Estimate of the errors ∆1, ∆2.. The transport plan between µx and µx−i

πi =
1

N

∑

j 6=i

δ(xj ,xj) +
1

N(N − 1)

∑

j 6=i

δ(xj ,xi) (1.66)

gives the bound
W1(µx, µx−i) 6

1

N(N − 1)

∑

j 6=i

|xj − xi|.

We use this transport plan to bound the errors ∆1, ∆2.
Let us treat the }rst error ∆1. Since m 7→ DmF (m,x) is MF

mm-Lipschitz con-
tinuous in W1 metric, we have

|δi1(x; y)| 6MF
mmW1(µx, µx−i) 6

MF
mm

N(N − 1)

N∑

j=1,j 6=i

|xj − xi|.

Under the L2-optimal transport plan Law
(
(Xi

t)
N
i=1, (X̃

i
∞)Ni=1

)
∈ Π(mN

t ,m
⊗N
∞ ) we

have

∆1 =

N∑

i=1

E[|δi1(Xt;X
i
t)|2] 6 (MF

mm)2
N∑

i=1

E[W 2
1 (µXt

, µX
−i
t
)]

6
(MF

mm)2

N(N − 1)
E

[ ∑

16i,j6N
i 6=j

|Xj
t −Xi

t |2
]

6
3(MF

mm)2

N(N − 1)
E

[ ∑

16i,j6N
i 6=j

(
|Xi

t − X̃i
∞|2 + |X̃i

∞ − X̃j
∞|2 + |Xj

t − X̃j
∞|2
)]

6
3(MF

mm)2

N(N − 1)

(
2(N − 1)E

[ N∑

i=1

|Xi
t − X̃i

∞|2
]
+N(N − 1)E[|X̃1

∞ − X̃2
∞|2]

)
.

The }rst term E[
∑N

i=1 |Xi
t − X̃i

∞|2] is the Wasserstein distance W 2
2 (m

N
t ,m

⊗N
∞ ),

while the second E[|X̃1
∞ − X̃2

∞|2] equals 2Varm∞. Hence the }rst error satis}es
the bound

∆1 6 6(MF
mm)2

(
1

N
W 2

2 (m
N
t ,m

⊗N
∞ ) + Varm∞

)
. (1.67)

Now treat the second error ∆2. The Lipschitz constant of the mapping y 7→
δi2(x; y) =

δF
δm

(µx−i , y)− δF
δm

(µx, y) is controlled by

|∇yδ
i
2(x; y)| = |DmF (µx, y)−DmF (µx−i , y)| 6MF

mmW1(µx, µx−i).

Hence we have

|δi2(x; y)− δi2(x; y′)| 6MF
mmW1(µx, µx−i)|y − y′|.

Use Fubini’s theorem to }rst integrate x′ in the de}nition of the second error (1.62)
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and let X̃ ′
∞ be independent from Xt. Then we obtain

|∆2| 6
N∑

i=1

∫ (∫
|δi2(x;xi)− δi2(x;x′)|m∞(dx′)

)
mN

t (dx)

6

N∑

i=1

∫∫
MF

mm

N(N − 1)

N∑

j=1 j 6=i

|xj − xi||x′ − xi|m∞(dx′)mN
t (dx)

=
MF

mm

N(N − 1)

N∑

i,j=1
i 6=j

E[|Xj
t −Xi

t ||Xi
t − X̃ ′

∞|]

6
MF

mm

2N(N − 1)

( N∑

i,j=1
i 6=j

E |Xi
t −Xj

t |2 + (N − 1)

N∑

i=1

E |Xi
t − X̃ ′

∞|2
)
.

Using the same method we used for ∆1, we control the }rst term by
N∑

i,j=1
i 6=j

E |Xi
t −Xj

t |2 6 6N(N − 1)

(
1

N
W 2

2 (m
N
t ,m

⊗N
∞ ) + Varm∞

)
.

For the second term we work again under the L2-optimal plan

Law
(
(Xi

t)
N
i=1, (X̃

i
∞)Ni=1

)
∈ Π(mN

t ,m
⊗N
∞ )

and let X̃ ′
∞ remain independent from the other variables. We have

N∑

i=1

E |Xi
t − X̃ ′

∞|2 6 2
N∑

i=1

(
E |Xi

t − X̃i
∞|2 + |X̃i

∞ − X̃ ′
∞|2
)

= 2N

(
1

N
W 2

2 (m
N
t ,m

⊗N
∞ ) + 2Varm∞

)
.

As a result,
|∆2| 6MF

mm

(
4

N
W 2

2 (m
N
t ,m

⊗N
∞ ) + 5Varm∞

)
. (1.68)

Step 5: Conclusion. Inserting the bounds on the errors (1.67), (1.68) to the lower
bound of Fisher information (1.65), we obtain

I(mN
t |mN

∞) > 4ρ(1− ε)
(
FN (mN

t )−NF(m∞)
)

−
(
16ρMF

mm + 6(ε−1 − 1)(MF
mm)2

) 1
N
W 2

2 (m
N
t ,m

⊗N
∞ )

−
(
20ρMF

mm + 6(ε−1 − 1)(MF
mm)2

)
Varm∞.

Thanks to the Poincaré inequality (1.8) for m∞ = m̂∞, its variance satis}es

2ρVarm∞
(xi) 6 Em∞

[
|∇xi|2

]
= 1.

So Varm∞ =
∑d

i=1 Varm∞
(xi) 6 d/2ρ. Using the T2-transport inequality (1.9) for

m⊗N
∞ and the entropy sandwich Lemma 1.52 we control the transport cost by

W 2
2 (m

N
t ,m

⊗N
∞ ) 6

1

ρ
H(mN

t |m⊗N
∞ ) 6

1

ρ

(
FN (mN

t )−NF(mt)
)
.
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In the end we obtain

dFN (mN
t )

dt
= −I(mN

t |mN
∞)

6 −
(
4(1− ε)ρ− MF

mm

N

(
16 + 6(ε−1 − 1)

MF
mm

ρ

))(
FN (mN

t )−NF(m∞)
)

+ dMF
mm

(
10 + 3(ε−1 − 1)

MF
mm

ρ

)
.

We conclude by applying Grönwall’s lemma to the dizerential inequality above and
using the entropy inequality of Lemma 1.52.

Remark 1.53. If the initial condition mN
0 of the particle system is a tensor prod-

uct (m0)
⊗N , one may expect the (non-uniform) convergence of the free energy

1
N
F(mN

t )→ F(mt) for all t > 0. If this is true, one can take the limit N →∞ to re-
cover the result of Theorem 1.4. However, while the convergence of the regular part
1
N
F (mN

t ) → F (mt) can be expected from the }nite-time Wasserstein convergence
1
N

supt∈[0,T ]W2(m
N
t ,m

⊗N
t ) → 0, the convergence of entropy H(mN

t ) → H(m⊗N
t )

is more di{cult to obtain.
Remark 1.54. We used the convexity of F to achieve two things in the proof: (i) the
existence of mean }eld invariant measure m∞; and (ii) to derive (1.64) and (1.57).
Under mild assumptions (i) can also be obtained by a Schauder-type }xed point
theorem for the mapping m 7→ m̂, or by }nding stationary points of the mean }eld
free energy F . For (ii), if F is only −κ-semi-convex around m∞, in the sense that

F (m)− F (m∞) >

∫
δF

δm
(m∞, x)(m−m∞)(dx)− κ2

2
W 2

2 (m,m∞),

we can expect our method to apply as long as κ is su{ciently small.

1.5.2 Proofs of Theorem 1.14 and Corollary 1.15
Proof of Theorem 1.14. We separate the proof in two parts, each dealing with
the }nite-time and long-time propagation of chaos respectively. In each part, we
shall }rst control the Wasserstein distance W2(m

N
t ,m

⊗N
t ) between the particle sys-

tem and the tensorized mean }eld system, and then control their relative entropy
H(mN

t |m⊗N
t ).

Part 1: Finite-time behavior. We shall use the synchronous coupling method to
control the Wasserstein distance between mN

t and m⊗N
t and use Girsanov’s theorem

to control their relative entropy on }nite time intervals. This may be considered
folklore by specialists and the method of proof has appeared in the end of Chapter 6
of [35]. We, however, include a proof for the sake of self-containedness.

First let us show the bound on the Wasserstein distance W2(m
N
t ,m

⊗N
∞ ). Re-

call that Xt = (Xi
t)

N
i=1 is the solution of the SDE (1.11) with Brownian motions

(W i)Ni=1. Let X̃i
t = (X̃i

t)
N
i=1 solve

dX̃i
t = −DmF (mt, X̃

i
t) dt+

√
2dW i

t , i = 1, . . . , N

with the initial condition Law(X̃1
0 , . . . , X̃

N
t ) = m⊗N

0 and

W 2
2 (m

N
0 ,m

⊗N
t ) =

N∑

i=1

E
[
|Xi

0 − X̃i
t |2
]
,
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i.e., the couple (Xi
0, X̃

i
0) is distributed as the L2-optimal transport plan between

mN
0 and m⊗N

0 . Then, by subtracting the dynamical equations of Xt and X̃t, we
have

d
( N∑

i=1

|Xi
t − X̃i

t |2
)

= −2
N∑

i=1

(Xi
t − X̃i

t) ·
(
DmF (µXt

, Xi
t)−DmF (mt, X̃

i
t)
)

6

N∑

i=1

|Xi
t − X̃i

t |2 +
N∑

i=1

|DmF (µXt
, Xi

t)−DmF (mt, X̃
i
t)|2,

where the dizerence between the drifts satis}es

|DmF (µXt
, Xi

t)−DmF (mt, X̃
i
t)|

6 |DmF (µXt
, Xi

t)−DmF (µX̃t
, X̃i

t)|+ |DmF (µX̃t
, X̃i

t)−DmF (mt, X̃
i
t)|

6MF
mmW1(µXt

, µX̃t
) +MF

mx|Xi
t − X̃i

t |+MF
mmW1(µX̃t

,mt).

Thus, we have

d
dt

( N∑

i=1

|Xi
t − X̃i

t |2
)

6
(
1+3(MF

mx)
2
) N∑

i=1

|Xi
t − X̃i

t |2 +3N(MF
mm)2W 2

2 (µXt
, µX̃t

)

+ 3N(MF
mm)2W 2

2 (µX̃t
,mt). (1.69)

For the second term, we have

E
[
W 2

2 (µXt
, µX̃t

)
]
6

1

N

N∑

i=1

E
[
|Xi

t − X̃i
t |2
]
,

and for the last term, we have, by the result of Fournier and Guillin [93],

E
[
W 2

2 (µX̃t
,mt)

]
6 C(d)E

[
|Xt − EXt|6

]1/3
δd(N)

= C(d)E
[
|Xt − EXt|6

]1/3 ×





N−1/2 if d < 4,

N−1/2 log(1 +N) if d = 4,

N−2/d if d > 4.

Then, denoting X̃t = X̃1
t , we only need to control E

[
|X̃t − E X̃t|6

]
. Observe that,

by Itō’s formula, we have

d
dt E[|X̃t − E X̃t|6]

= −6E
[
|X̃t − E X̃t|4(X̃t − E X̃t) ·

(
DmF (mt, X̃t)− E[DmF (mt, X̃t)]

)]

+ (6d+ 24)E
[
|X̃t − E X̃t|4

]
.

Then we have the following control of the growth, by using the elementary inequality
x4 6 2

3x
6 + 1

3 for x > 0:

d
dt E

[
|X̃t − E X̃t|6

]
6 (6MF

mx + 4d+ 16)E[|X̃t − E X̃t|6] + (2d+ 8).
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Thus, by Grönwall’s lemma, we have

E
[
|X̃t − E X̃t|6

]
6 e(6M

F
mx+4d+16)t E

[
|X̃0 − E X̃0|6

]

+
d+ 4

3MF
mx + 2d+ 8

(e(6M
F
mx+4d+16)t − 1).

We take expectations on both side of the dizerential inequality (1.69) and obtain

d
dt E

[ N∑

i=1

|Xi
t − X̃i

t |2
]
6
(
1 + 3(MF

mx)
2 + 3(MF

mm)2
)
E

[ N∑

i=1

|Xi
t − X̃i

t |2
]

+ 3N(MF
mm)2C(d)δd(N)E

[
|X̃t − E X̃t|6

]1/3
.

We then use Grönwall’s lemma to show (1.26).
As for the distance under relative entropy, by Girsanov’s theorem we have

H(mN
t |m⊗N

t ) 6 H(mN
0 |m⊗N

0 )+
1

4

N∑

i=1

∫ t

0

E
[
|DmF (µXs

, Xi
s)−DmF (ms, X

i
s)|2
]

ds,

and we can control the last term by

|DmF (µXs
, Xi

s)−DmF (ms, X
i
s)| 6MF

mmW2(µXs
,ms)

6MF
mm

(
W2(µXs,, µX̃s

) +W2(µX̃s
,ms)

)
.

So we can show (1.28) by using the same method as before.
Part 2: Long-time behavior. The triangle inequality for the L2-Wasserstein distance
gives us W 2

2 (m
N
t ,m

⊗N
t ) 6 2

(
W 2

2 (m
N
t ,m

⊗N
∞ ) +W 2

2 (m
⊗N
t ,m⊗N

∞ )
)
. By Talagrand’s

inequality (1.9) for m⊗N
∞ we bound the Wasserstein distances by

ρW 2
2 (m

N
t ,m

⊗N
∞ ) 6 H(mN

t |m⊗N
∞ ) 6 FN (mN

t )−NF(m∞),

ρW 2
2 (m

⊗N
t ,m⊗N

∞ ) = NW 2
2 (mt,m∞) 6 NH(mN

t |m∞) 6 N
(
F(mt)−F(m∞)

)
,

where we applied Lemmas 1.40 and 1.52. We then apply Theorems 1.4 and 1.12 to
obtain (1.25).

Now suppose additionally (1.6) and h0 = m0/m∞ ∈ Lp0(m∞) for p0 > 1. The
relative entropy satis}es

H(mN
t |m⊗N

t ) =

∫
log mN

t (x)

m⊗N
t (x)

mN
t (x) dx

=

∫ (
log mN

t (x)

m⊗N∞ (x)
− log m

⊗N
t (x)

m⊗N∞ (x)

)
mN

t (x) dx

= H(mN
t |m⊗N

∞ )−
N∑

i=1

∫
log mt(x)

m∞(x)
m

N,i
t (x) dx,

where mN,i
t is the i-th marginal of mN

t . We then apply (1.54) in Lemma 1.49 to
summands in the second term with p = 1 to obtain

−
∫

log mt(x)

m∞(x)
m

N,i
t (x) dx 6 H(mN,i

t |m∞)− log‖ht‖−1.
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So we have

−
N∑

i=1

∫
log mt(x)

m∞(x)
m

N,i
t (x) dx 6 −N log‖ht‖−1 +

N∑

i=1

H(mN,i
t |m∞)

6 −N log‖ht‖−1 +H(mN
t |m⊗N

∞ ),

where we used the information inequality (1.56) in the last inequality. Therefore

H(mN
t |m⊗N

t ) 6 −N log‖ht‖−1 + 2H(mN
t |m⊗N

∞ ).

We conclude by applying the results of Theorems 1.9 and 1.12.

Proof of Corollary 1.15. In the Wasserstein case, let C4, C5 be the constants in
Theorem 1.14. We take t0 = logN/(d∨ 4)C4. Then, for t 6 t0, by using (1.26), we
have

1

N
W 2

2 (m
N
t ,m

⊗N
t ) 6 C5(e

C4t − 1)
(
v6(m0)

1/3 + 1
)
δd(N)

6 C5(N
1/(d∨4) − 1)

(
v6(m0)

1/3 + 1
)
δd(N), (1.70)

where N1/(d∨4)δd(N) 6 N−1/(d∨4) log(1 +N) for all d. For t > t0, by using (1.25),
we have

1

N
W 2

2 (m
N
t ,m

⊗N
t ) 6 2

(
F(m0)−F(m∞)

)
N−4ρ/(d∨4)C4

+
2

N

(
FN (m⊗N

0 )−NF(m∞)
)
N−(4ρ′−C1N

−1)/(d∨4)C4

+
2C2

4Nρ′ − C1
, (1.71)

if N > C1/4ρ
′, where ρ′ ∈ (0, ρ) and C1, C2 are de}ned in Theorem 1.12. By

expanding the functional F , we also have

F (µX0
)− F (m0) =

∫
δF

δm
(m0, x)(µX0

−m0)(dx)

+

∫ 1

0

(
δF

δm

(
(1− t)µX0

+ tm0, x
)
− δF

δm
(m0, x)

)
(µX0

−m0)(dx)dt

with
E

[∫
δF

δm
(m0, x)(µX0

−m0)(dx)
]
= 0

and

E

[∫ 1

0

(
δF

δm

(
(1− t)µX0 + tm0, x

)
− δF

δm
(m0, x)

)
(µX0 −m0)(dx) dt

]

6 E

[∫ 1

0

∥∥DmF
(
(1− t)µX0 + tm0, ·

)
−DmF (m0, ·)

∥∥
∞W1(µX0 ,m0) dt

]

6
MF

mm

2
E
[
W 2

2 (µX0
,m0)

]
6MF

mm Varm0.
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Thus, we obtain

FN (m⊗N
0 ) = N E

[
F (µX0

)
]
+H(m⊗N

0 ) 6 NF (m0) +NMF
mm Varm0 +NH(m0)

= NF(m0) +NMF
mm Varm0. (1.72)

Taking ρ′ = ρ/2, we obtain the uniform-in-time Wasserstein bound (1.29) from
(1.70) and (1.71).

Similarly, to control the relative entropy, we take t′0 = τ + log N
(d∨4)C4

, where τ is
the constant in Theorem 1.14. So, for t 6 t′0, by (1.28), we have

1

N
H(mN

t |m⊗N
t ) 6 C5(e

C4τN1/(d∨4) − 1)
(
v6(m0)

1/3 + 1
)
δd(N), (1.73)

and, for t > t′0, by (1.27), we have

1

N
H(mN

t |m⊗N
t ) 6 C3e

−4ρ′τN−4ρ′/(d∨4)

+
2

N

(
FN (m⊗N

0 )−NF(m∞)
)
e−(4ρ′−C1N

−1)τN−(4ρ′−C1N
−1)/(d∨4)C4

+
2C2

4Nρ′ − C1
. (1.74)

So, using again (1.72), we can combine (1.73) and (1.74) to obtain the uniform-in-
time entropic bound (1.30).



Chapter 2

Uniform-in-time propagation
of chaos for kinetic mean
}eld Langevin dynamics

Abstract. We study the kinetic mean }eld Langevin dynamics under the functional
convexity assumption of the mean }eld energy functional. Using hypocoercivity, we
}rst establish the exponential convergence of the mean }eld dynamics and then show
the corresponding N -particle system converges exponentially in a rate uniform in N
modulo a small error. Finally we study the short-time regularization ezects of the
dynamics and prove its uniform-in-time propagation of chaos property in both the
Wasserstein and entropic sense. Our results can be applied to the training of two-
layer neural networks with momentum and we include the numerical experiments.

Based on joint work with Fan Chen, Yiqing Lin and Zhenjie Ren.

2.1 Introduction
Training neural networks by momentum gradient descent has proven to be ezec-
tive in various applications [213, 131, 204]. However, despite their excellent perfor-
mance, the theoretical understanding of those algorithms remains elusive. Recently,
extensive researches have been conducted to model the loss minimization of neural
networks as a mean }eld optimization problem [163, 57, 203, 117], with most char-
acterizing gradient descent algorithms as overdamped mean }eld Langevin (MFL)
dynamics. In this paper, we will focus on kinetic dynamics instead, which cor-
responds to momentum gradient descent in the context of machine learning [185,
133]. Classical studies, such as [221, 157], have explored the exponential conver-
gence of linear kinetic Langevin dynamics based on hypocoercivity and functional
inequalities. The kinetic MFL dynamics is studied in [128] to model the momen-
tum gradient descent for the training of neural networks and its convergence to
the unique invariant measure is proven without a quantitative rate. The present
work studies both the quantitative long-time behavior of the kinetic MFL dynamics
and its uniform-in-time propagation of chaos (POC) property, under a functional
convexity assumption, and we aim to provide a theoretical justi}cation for the mo-
mentum algorithm’s e{ciency in practice.

111
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2.1.1 Settings and main results
We give an informal preview of our settings and main results in this section. Let
F : P2(R

d)→ R be a mean }eld functional and denote byDmF : P2(R
d)×Rd → Rd

its intrinsic derivative. We aim to investigate the long-time behavior of the kinetic
MFL de}ned by

dXt = Vtdt,

dVt = −Vtdt−DmF
(
mx

t , Xt

)
dt+

√
2dWt, where mx

t = Law(Xt),

and its associated N -particle system de}ned by

dXi
t = V i

t dt

dV i
t = −V i

t dt−DmF
(
µXt

, Xi
t

)
dt+

√
2dW i

t , where µXt
=

1

N

N∑

j=1

δ
X

j
t
.

Here Wt, (W i
t )

N
i=1 are independent d-dimensional Brownian motions. Denote mt =

Law(Xt, Vt) and mN
t = Law

(
X1

t , . . . , X
N
t , V

1
t , . . . , V

N
t

)
, and we suppose the initial

conditions m0 and mN
0 have }nite second moments. We wish to show the conver-

gence mN
t → m⊗N

t when N → +∞ in a uniform-in-t way.
We assume

• the mean }eld functional F is convex in the functional sense;

• its intrinsic derivative (m,x) 7→ DmF (m,x) is jointly Lipschitz with respect
to the L1-Wasserstein distance.

• for every measure m ∈ P2(R
d), the probability measure proportional to

exp
(
− δF

δm
(m,x)

)
dx satisfy a logarithmic Sobolev inequality (LSI) with a con-

stant uniform in m.

• its second and third-order functional derivatives satisfy certain bounds.

Under these assumptions, we are able to obtain

• when t → +∞, the mean }eld ~ow mt converges exponentially to the mean
}eld invariant measure m∞;

• when t → +∞, the N -particle ~ow mN
t converges approximately to the N -

tensorized mean }eld invariant measure m⊗N
∞ , with an exponential rate uni-

form in N ;

• if 1
N
W 2

2

(
mN

0 ,m
⊗N
0

)
→ 0 when N → +∞, then supt>0

1
N
W 2

2

(
mN

t ,m
⊗N
t

)
→ 0

and supt>1
1
N
H
(
mN

t

∣∣m⊗N
t

)
→ 0 when N → +∞.

2.1.2 Related works
We give in this section a short review of the recent progresses in the long-time
behavior and the uniform-in-time propagation of chaos property of McKean–Vlasov
dynamics, with an emphasis on kinetic ones. We refer readers to [43, 44] for a more
comprehensive review of propagation of chaos.
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Coupling approaches. The coupling approach involves constructing a joint prob-
ability of the mean }eld and N -particle systems to allow comparisons between them.
The synchronous coupling method is employed in [24] and the uniform-in-time POC
is shown by assuming the strong monotonicity of the drift and the smallness of the
mean }eld interaction. The strong monotonicity is then relaxed by the re~ection
coupling method in [84] and we refer readers to [206, 97, 128] for further develop-
ments. Let us remark that the synchronous coupling gives often sharp contraction
rates under strong convexity assumptions, while the re~ection coupling allows us
to treat dynamics of more general type but gives far-from-sharp contraction rates.

Functional approaches. Another approach to uniform-in-time POC is the func-
tional one, and this is also the major approach of this paper. In this situation in
order to study the long-time behaviors and propagation of chaos properties, we
construct appropriate (Lyapunov) functionals and investigate the change of their
values along the dynamics. The relative entropy is used as the functional in [167]
and its follow-up work [101] to study kinetic McKean–Vlasov dynamics with reg-
ular interactions. It is worth noting that the relative entropy approach has been
successful in handling singular interactions, thanks to the groundbreaking work of
Pierre-Emmanuel Jabin and Zhenfu Wang [124], and we refer the readers to [98,
59, 199] for recent developments. However, we are not aware of any works using
the relative entropy functional (or its modi}cations) to study kinetic dizusions with
singular interactions.

Comparison to Chapter 1. The present paper is a continuation of Chapter 1,
where the overdamped version of mean }eld Langevin dynamics is studied, and they
share a number of key features. We show the exponential convergence of the parti-
cle system using the same componentwise decomposition of Fisher information and
the same componentwise log-Sobolev inequality. The uniform-in-time propagation
of chaos property for both dynamics is then obtained by combining the exponential
convergence of the mean }eld and particle ~ow. This paper is also dizerent from
Chapter 1 in a number of aspects. First, as the dynamics is generated by a hy-
poelliptic operator instead of an elliptic one, we use hypocoercivity to recover the
exponential convergence. Second, since we are not able to show hypercontractivity
of the kinetic dynamics (let alone reverse hypercontractivity), we prove the entropic
propagation of chaos by studying its short-time regularization ezects. In this way
we no longer restrict the initial condition of the mean }eld dynamics, but as a
trade-oz we require a higher-order regularity in measure of the energy functional.
Finally, following in a remark in Chapter 1, we use an approximation argument to
remove the condition on the higher-order spatial derivatives in this work.

2.1.3 Main contributions
Hypocoercivity for mean }eld systems. We extend the studies of the linear
Fokker–Planck equation in [221] to the dynamics with general (but always regular)
mean }eld interactions. In particular, we do not suppose the interaction is in form
of a two-body potential, which stands in contrast with [221, Theorem 56] and [167,
101]. Moreover, in hypocoercive computations, we }nd that the contributions from
the mean }eld interaction can always be dominated by the “diagonal” terms in the
Fisher information, already present in the case of linear dynamics. Hence using the
convexity of energy, we are able to derive the hypocoercivity without restrictions
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on the size of the interaction. Furthermore, our assumptions imply a uniform-in-N
bound on the operator norm of the second-order derivatives of the ezective poten-
tial driving the N -particle system, and the entropic hypocoercivity is consequently
uniform in N . This is dizerent from the situation of L2-hypocoercivity, where the
condition given by Villani [221, (7.3)] gives dimension-dependent constants and
therefore is unsuitable for studies of particle systems, as remarked in [99]. Finally,
let us mention that we derive the entropic hypocoercivity under minimal regularity
assumptions, made possible by our approximation argument (of functions and of
mean }eld functionals) and the calculus in Wasserstein space developed in [4].

Regularization in short time. We obtain two short-time regularization results
for the kinetic mean }eld dynamics. The }rst, from Wasserstein to entropy, is
a consequence of the logarithmic Harnack’s inequality, obtained by applying the
coupling by change of measure method of Panpan Ren and Feng-Yu Wang in [193]
to the mean }eld and N -particle dizusions. We remark also that very recently
a similar inequality ([120, (3.13)]) is proved for the propagation of chaos of non-
degenerate McKean–Vlasov dizusions. The second regularization, from entropy to
Fisher information, is obtained by adapting Hérau’s functional in [221] to our mean
}eld setting and follows from the same hypocoercive computations as we prove
the convergence of the mean }eld ~ow. We stress that although much stronger
regularization phenomena are present, for example from measure initial values to
Lp for every p > 1 and to Hk for every k > 1, our results have the advantage
of growing at most linearly in dimension, making them suitable for studying the
N -particle systems under the limit N → +∞.

Propagation of chaos. Finally, using the exponential convergence and the short-
time regularizations, we derive the propagation of chaos for the kinetic MFL, i.e.
bounds on the distances between the particle system and the mean }eld system. In
particular, the initial value of the both systems can be arbitrary measures of }nite
second moments without any further regularity constraints. Moreover, the error
terms do not have any dimension-dependence. It is noteworthy that our approach
allows us to not rely on a uniform-in-time log-Sobolev inequality for the mean }eld
~ow, and also that the dynamics considered are realized on the whole space instead
of the torus, standing in contrast with previous works, e.g. [98, 142, 70].

2.1.4 Notations
Let d be a positive integer and x, v be elements of Rd. We denote the Euclidean
norm of x and v by |x| and |v| respectively. The letter z = (x, v) then denotes an
element of R2d with its Euclidean norm denoted by |z|2 = |x|2 + |v|2. For a d × d
real matrix M , we denote by |M |op its operator norm with respect to the Euclidean
metric of Rd. Let p > 1. De}ne Pp(R

d) to be the space of probabilities on Rd of
}nite p-moment, i.e. Pp(R

d) = {m ∈ P(Rd) :
∫
|x|pm(dx) < +∞}. We denote the

Lp-Wasserstein metric by Wp and refer readers to [4, Chapter 7] for its de}nition
and elementary properties.

Let F : P2(R
d)→ R be a mean }eld functional. Denote by δF

δm
: P2(R

d)×Rd →
R its linear functional derivative and by DmF = ∇ δF

δm
: P2(R

d) × Rd → Rd its
intrinsic derivative, if they exist. The de}nition of linear functional derivative on
P2(R

d) can be found in [37, De}nition 5.43].
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Let X and Y be random variables. We denote the distribution of X by Law(X)

and say X ∼ m if m = Law(X). We also say X d
= Y if Law(X) = Law(Y ).

The set of couplings between probabilities µ and ν is denoted by Π(µ, ν).
Let N > 2 be integer. The bold letters xN = (x1, . . . , xN ), vN = (v1, . . . , vN )

denote respectively N -tuples of elements in Rd and zN = (z1, . . . , zN ) an N -tuple
of elements in R2d. We omit the subscript N when there are no ambiguities. Given
xN = (x1, . . . , xN ) ∈ RdN , we denote the corresponding empirical measure by

µxN
=

1

N

N∑

i=1

δxi .

For i = 1, . . . , N , we de}ne −i = {1, . . . , N}\{i}, that is, the complementary index
set, and we denote the empirical measures formed by the N − 1 points (xj)j 6=i by

µx
−i
N

=
1

N − 1

∑

j 6=i

δxj .

For an RdN -valued random variable XN = (Xi)Ni=1, we can form the random
empirical measures µXN

, µX
−i
N

.
Let I ⊂ {1, . . . , N} and J = {1, . . . , N}\I be the complementary index set. Let

Z be an R2dN -valued random variable and and mN be its distribution, belonging
to P(R2dN ). We denote the marginal and the (regular) conditional distributions of
mN by

mN,I = Law(Zi)i∈I ,

mN,I|J(zJ) = Law
(
(Zi)i∈I

∣∣Zj
t = zj , j ∈ J

)
,

where the latter is de}ned mN,J -almost surely and zJ denotes the tuple (zj)j∈J .
We identify i with the singleton {i} when working with indices.

Whenever a measure m ∈ P(Rd) has a density with respect to the d-dimensional
Lebesgue measure, we denote its density function by m equally. The relative H(·|·)
between probabilities are always well de}ned and the absolute entropy H(·) is
also well de}ned if the measure in the argument has }nite second moment. If
a measure m ∈ P(Rd) has distributional derivatives Dm representable by a }nite
Borel measure and Dm is absolutely continuous with respect to m, we de}ne its
Fisher information by

I(m) =

∫ ∣∣∣∣
Dm

m

∣∣∣∣
2

m,

where Dm
m

is the Radon–Nikodým derivative. Otherwise we set I(m) = +∞. One
can verify that I(m) is }nite only if m ∈ W 1,1(Rd)1, and in this case I(m) =∫
|∇m|2/m, where ∇m is the weak derivatives in L1(Rd;Rd). The Fisher informa-

tion de}ned in this way corresponds to the functional considered in [3, (2.26)]. If
m is a measure on Rd having }nite Fisher information, and if γ is another measure

1We sketch the proof here. Suppose m has }nite Fisher information. Set mn = m ? ρn for
a mollifying sequence (ρn)n∈N. Then we have ‖mn‖W1,1 6 C for all n ∈ N. By Gagliardo–
Nirenberg, mn is uniformly bounded in Lp for some p > 1, so upon an extraction of subsequence,
(mn)n∈N converges to some m′ ∈ Lp weakly. But mn → m in P. The two limits coincide, i.e.
m = m′. Hence m has density with respect to the Lebesgue and so does Dm.
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on Rd having weakly dizerentiable density with respect to the Lebesgue, we de}ne
the relative Fisher information by

I(m|γ) =
∫ ∣∣∣∣
∇m
m
− ∇γ

γ

∣∣∣∣
2

m.

For nonnegative functions f : Rd → [0,+∞) we de}ne its entropy by

Entm f = Em[f log f ]− Em[f ] logEm[f ],

which is well de}ned in [0,+∞] by Jensen’s inequality.

Organization of paper. In Section 2.2, we introduce our assumptions, de}ne
the kinetic mean }eld Langevin and the particle system, and state our main results.
We provide in Section 2.3 an exemplary dynamics modeling neural networks’ train-
ing and present our numerical experiments. Moving on to the proofs, we }rst show
in Section 2.4 the exponential convergence of the mean }eld and particle system
dynamics. We then study in Section 2.5 }nite-time propagation of chaos and reg-
ularizations of the kinetic MFL before combining all previous results and showing
the propagation of chaos theorem in its full form. Finally, several technical results
are proved in the appendices.

2.2 Assumptions and main results
Assumptions. Let F : P2(R

d) → R be a mean }eld functional. We suppose F
is convex in the sense that for every t ∈ [0, 1] and every m, m′ ∈ P2(R

d),

F
(
(1− t)m+ tm′) 6 (1− t)F (m) + tF (m′). (2.1)

Suppose also its intrinsic derivative DmF : P2(R
d)×Rd → Rd exists and satis}es

∀x, x′ ∈ Rd, ∀m,m′ ∈ P2(R
d),

|DmF (m,x)−DmF (m
′, x′)| 6MF

mmW1(m,m
′) +MF

mx|x− x′| (2.2)

for some constants MF
mm, MF

mx > 0. For each m ∈ P2(R
d) we de}ne a probability

measure Πx(m) on Rd by Πx(m)(dx) ∝ exp
(
− δF

δm
(m,x)

)
dx and suppose Πx(m)

satis}es the ρx-logarithmic Sobolev inequality (LSI), uniformly in m, for some ρx >
0, that is, for every m ∈ P2(R

d),

∀f ∈ C1
b (R

d), ρx EntΠx(m)(f
2) 6 EΠx(m)

[
|∇f |2

]
. (2.3)

Finally for some of the results we suppose additionally that F is third-order dizer-
entiable in measure with supm∈P2(Rd) supx,x′∈Rd

∣∣D2
mF (m,x, x

′)
∣∣
op 6MF

mm and

∀m,m′ ∈ P2(R
d), ∀x ∈ Rd,

∣∣∣∣
∫∫ [

∇x

δ3F

δm3
(m′, x, x′, x′)−∇x

δ3F

δm3
(m′, x, x′, x′′)

]
m(dx′)m(dx′′)

∣∣∣∣
6MF

mmm (2.4)

for some constant MF
mmm.
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De}nition of m̂ and functional inequalities. For each m ∈ P(R2d), we de}ne
m̂ to be the probability on R2d satisfying

m̂(dxdv) ∝ exp
(
− δF
δm

(mx, x)− 1

2
|v|2
)
dxdv, (2.5)

where mx is the spatial marginal of m. Sometimes we will abuse the notation and
de}ne for a measurem′x ∈ P2(R

d), the probability m̂′x(dxdv) ∝ exp
(
− δF

δm
(m′x, x)−

1
2 |v|2

)
dxdv. If F satis}es (2.3) with the LSI constant ρx, then setting

ρ = ρx ∧ 1

2
, (2.6)

we have that the ρ-LSI holds for m̂: for every f ∈ C1
b (R

2d),

ρEntm̂(f2) 6 Em̂

[
|∇f |2

]
. (2.7)

As a consequence, we have the Poincaré inequality: for every f ∈ C1b (R2d),

2ρVarm̂(f) 6 Em̂

[
|∇f |2

]
; (2.8)

and Talagrand’s T2 transport inequality: for every µ ∈ P2(R
2d),

2ρW 2
2 (µ, m̂) 6 H(µ|m̂). (2.9)

Mean }eld and particle system. We study the mean }eld kinetic Langevin
dynamics, that is, the following McKean–Vlasov SDE

dXt = Vtdt,

dVt = −Vtdt−DmF
(
mx

t , Xt

)
dt+

√
2dWt, where mx

t = Law(Xt).
(2.10)

Let N > 2. The corresponding N -particle system is de}ned by

dXi
t = V i

t dt

dV i
t = −V i

t dt−DmF
(
µXt

, Xi
t

)
dt+

√
2dW i

t , where µXt
=

1

N

N∑

j=1

δ
X

j
t
.

(2.11)

Here W and W i are standard Brownian motions in Rd, and (W i)Ni=1 are in-
dependent. Their marginal distributions mt = Law(Xt), mN

t = Law(Xt) =
Law(X1

t , . . . , X
N
t ) solve respectively the Fokker–Planck equations:

∂tm = ∆vm+∇v · (mv)− v · ∇xm+DmF
(
mx

t , x
)
· ∇vm, (2.12)

∂tm
N =

N∑

i=1

(
∆vimN +∇vi · (mNvi)− vi · ∇ximN +DmF (µx, x

i) · ∇vimN
)
,

(2.13)

where on the second line µx := 1
N

∑N
i=1 δxi . The mean }eld equation (2.12) is

non-linear while the N -particle system equation (2.13) is linear. We will show
in Lemma 2.12 the wellposedness of the mean }eld dynamics (2.12) with initial
conditions of }nite second moment.
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Remark 2.1. We have }xed the volatility and the friction constants to simplify the
computations. In order to apply our results to the dizusion process de}ned by

dXt = αVtdt,

dVt = −γVtdt−DmF
(
Law(Xt), Xt

)
dt+ σdWt,

(2.14)

with α, γ, σ > 0, we introduce the new variables:

x′ =
(2γ3)1/2

ασ
x, v′ =

(2γ)1/2

σ
v, t′ = γ−1t,

de}ne m′ to be the push-out of measure m under x 7→ x′, and set

F ′(m′) =

(
2

γσ2

)1/2
F (m).

Then the stochastic process t′ 7→ (X ′
t′ , V

′
t′) satisfy

dX ′
t′ = V ′

t′dt
′,

dV ′
t′ = −V ′

t′dt
′ −DmF

′(Law(X ′
t′), X

′
t′

)
dt+

√
2dW ′

t′ ,

where W ′
t′ := γ1/2Wt is a standard Brownian motion. In the same way we can treat

the particle system de}ned by

dXi
t = αV i

t dt

dV i
t = −γV i

t dt−DmF
(
µXt

, Xi
t

)
dt+ σdW i

t , where µXt
=

1

N

N∑

j=1

δ
X

j
t
.

(2.15)

Free energies and invariant measures. For measures m ∈ P2(R
2d), mN ∈

P2(R
2dN ), we introduce the mean }eld and N -particle free energies:

F(m) = F (mx) +
1

2

∫
|v|2m(dxdv) +H(m), (2.16)

FN (mN ) =

∫ (
NF (µx) +

1

2
|v|2

)
mN (dxdv) +H(mN ). (2.17)

The functionals are well de}ned with values in (−∞,+∞]. We will also work with
probability measures, m∞ ∈ P2(R

2d) and mN
∞ ∈ P2(R

2dN ), satisfying

m∞(dxdv) ∝ exp
(
− δF
δm

(mx
∞, x)−

1

2
|v|2
)
dxdv, (2.18)

mN
∞(dxdv) ∝ exp

(
−NF (µx)−

1

2
|v|2

)
dxdv, (2.19)

and having }nite exponential moments, that is to say, both the integrals
∫

exp
(
α(|x|+ |v|)

)
m∞(dxdv),

∫
exp
(
α(|x|+ |v|)

)
mN

∞(dxdv)

are }nite for every α > 0. We call m∞, mN
∞ invariant measures to the dynamics

(2.12), (2.13) respectively. The existence and uniqueness of the invariant mea-
sures are guaranteed by our assumptions (2.1), (2.2) and (2.3), as will be stated in
Lemma 2.8.
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Main results. Recall that mt and mN
t are the respective marginal distributions

of the mean }eld and the N -particle system (2.10), (2.11). We }rst prove the
exponential entropic convergence result for the MFL dynamics (2.10).

Theorem 2.2 (Entropic convergence of MFL). Assume F satis}es (2.1), (2.2) and
(2.3). If m0 has }nite second moment, }nite entropy and }nite Fisher information,
then there exist constants

C0 = C0

(
MF

mx,M
F
mm

)
, κ = κ

(
ρx,MF

mx,M
F
mm

)

such that for every t > 0,

F(mt)−F(m∞) 6
(
F(m0)−F(m∞) + C0I(m0|m̂0)

)
e−κt. (2.20)

The proof of the theorem is postponed to Section 2.4.2. We note that the proof
only relies on the W2-Lipschitz continuity of m 7→ DmF (m,x), contrary to the W1

one stated in (2.2).
Our second major contribution is the uniform-in-N exponential entropic con-

vergence of the particle systems.

Theorem 2.3 (Entropic convergence of particle systems). Assume F satis}es (2.1),
(2.2) and (2.3). If mN

0 has }nite second moment, }nite entropy and }nite Fisher
information for some N > 2, then there exist constants

C0 = C0

(
MF

mx,M
F
mm

)
, C1 = C1

(
ρx,MF

mx,M
F
mm

)
, κ = κ

(
ρx,MF

mx,M
F
mm

)

such that if N > C1/κ, then for every t > 0,

FN (mN
t )−NF(m∞) 6

(
F
(
mN

0

)
−NF(m∞) + C0I

(
mN

0

∣∣mN
∞
))
e−(κ−C1/N)t

+
C1d

κ− C1/N
. (2.21)

The proof of the theorem is postponed to Section 2.4.3.
Remark 2.4. Strictly speaking, the result (2.21) does not imply that the particle
systems converge uniformly. We only show 1

N
FN
(
mN

t

)
approaches the mean }eld

minimum F(m∞) uniformly quickly until they are O(N−1)-close to each other.
Remark 2.5. Theorems 2.2 and 2.3 state results concerning the convergence of the
respective free energies, which we will also call “convergence of entropy” or “entropic
convergence”, since in both cases the dizerences of free energies are related to
relative entropies, as shown in Lemmas 2.9 and 2.10.

We now present the main theorem, which establishes the uniform-in-time prop-
agation of chaos in both the Wasserstein distance and the relative entropy. The
results are direct consequences of the exponential convergence in Theorems 2.2 and
2.3 and the regularization phenomena to be studied in Section 2.5.

Theorem 2.6 (Wasserstein and entropic propagation of chaos). Assume F satis}es
(2.1), (2.2), (2.3) and (2.4). If m0 belongs to P2(R

d) and mN
0 belongs to P2(R

dN )
for some N > 2, then there exist constants C1 = C1

(
MF

mx,M
F
mm,M

F
mmm

)
, C2 =

C2

(
ρx,MF

mx,M
F
mm

)
and κ = κ

(
ρx,MF

mx,M
F
mm

)
such that if N > C2/κ, then for
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every t > 0,

W 2
2

(
mN

t ,m
⊗N
t

)

6 min
{
C1W

2
2

(
mN

0 ,m
⊗N
0

)
eC1t + C1(e

C1t − 1)(Varm0 + d),

C2N

(t ∧ 1)6
W 2

2 (m0,m∞)e−κt +
C2

(t ∧ 1)6
W 2

2

(
mN

0 ,m
⊗N
∞
)
e−(κ−C2/N)t

+
C2d

κ− C2/N

}
; (2.22)

moreover, for every t and s such that s+ 1 > t > s > 0,

H
(
mN

t

∣∣m⊗N
t

)
6

C1

(t− s)3W
2
2 (m

N
s ,m

⊗N
s )+C1(e

C1(t−s)− 1)(Varms + d). (2.23)

The proof of the theorem is postponed to Section 2.5.4.

Comments on the assumptions. Compared to Chapter 1, we have removed the
technical assumption that x 7→ DmF (m,x) has bounded higher-order derivatives by
a mollifying procedure of the mean }eld functional. However, the spatial Lipschitz
constant MF

mx, appearing in the assumption (2.2), will contribute to the constants,
especially the rate of convergence κ, in our theorems. Nevertheless, this behavior is
expected for kinetic dynamics, as this dependency is already present for the linear
Fokker–Planck dynamics in [221]. Finally, we introduce the new condition (2.4) on
the second and third-order derivatives in measure of the mean }eld functional. The
condition (2.4) is used to obtain O(1) errors in the propagation of chaos bounds
(2.22), (2.23) in Theorem 2.6, which are stronger than the dimension-dependent
errors obtained from the method of Fournier and Guillin [93].

2.3 Application: training neural networks by mo-
mentum gradient descent

We have given in Section 1.3 several examples of mean }eld functionals satisfying
conditions (2.1), (2.2) and (2.3) of our theorems, and the only additional condition
that remains to verify is the bound on the higher-order measure derivative (2.4).
In the following we will recall the mean }eld formulation of the loss of two-layer
neural networks and its corresponding kinetic dynamics (see Examples 1.21 and
1.27), and verify that it satis}es indeed the additional assumption.

2.3.1 Mean }eld formulation of neural network
Recall that the structure of a two-layer neural network is determined by its feature
map:

Rd 3 z 7→ Φ(θ; z) := `(c)ϕ(a · z + b) ∈ Rd′

,

where θ := (c, a, b) ∈ Rd′×Rd×R =: S is the parameter of a single neuron, ϕ : R→
R is a non-linear activation function satisfying the squashing condition (see (1.34)),
and ` : R→ [−L,L] is a truncation function with threshold L ∈ (0,+∞). Here the
action of the truncation is tensorized: `(c) = `(c1, . . . , cd

′

) :=
(
`(c1), . . . , `(cd

′

)
)

for
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a d′-dimensional vector c = (c1, . . . , cd
′

). Then given N neurons with respective
parameters θ1, . . . , θN , the associated network’s output reads

Rd 3 z 7→ ΦN (θ1, . . . , θN ; z) =
1

N

N∑

i=1

Φ(θi; z) ∈ R. (2.24)

Here z should be considered as the input of the network, i.e. the feature, and
the value ΦN (θ1, . . . , θN ; z) should correspond to the label. We wish to }nd the
optimal neuron parameters (θi)

N
i=1 for a possibly unknown distribution of feature-

label tuples µ ∈ P(Rd+d′

). In order to quantify the goodness of networks, we de}ne
the loss:

FN
NNet(θ

1, . . . , θN ) =
N

2

∫
|y − ΦN (θ1, . . . , θN ; z)|2µ(dzdy). (2.25)

It is proposed in [117] and Chapter 1 that instead of minimizing the original loss
(2.25), we consider the mean }eld output function EΘ∼m[Φ(Θ; ·)] and minimize the
mean }eld loss

FN
NNet(m) =

∫ ∣∣y − EΘ∼m[Φ(Θ; z)]
∣∣2µ(dzdy). (2.26)

We also add a quadratic regularizer

FExt(m) =
λ

2

∫
|θ|2m(dθ)

with regularization parameter λ > 0. The }nal optimization problem then reads

inf
m∈P2(S)

F (m) := FNNet(m) + FExt(m). (2.27)

Following the calculations in Chapter 1 we can show that if both the truncation
and activation function are bounded and has bounded derivatives of up-to-second
order, then the conditions (2.1), (2.2), (2.3) are veri}ed. Finally, the third-order
derivatives δ3F

δm3 is a constant thanks to the fact that the loss function is quadratic,
and therefore the condition (2.4) is satis}ed with MF

mmm = 0.
Remark 2.7. Following Remark 1.28, we recognize that the SDE (2.10) describes the
continuous version of the gradient descent algorithm with momentum. Among vari-
ous momentum gradient descent methods commonly used to train neural networks,
the most prevalent ones are RMSProp and Adam algorithms (see [112, 131]), where
the momentum is accumulated and the step size is adapted along the dynamics.
In [154, 208, 189] the authors studied the convergence of these momentum-based
algorithms and compared them to algorithms without momentum based on opti-
mization theory. We note that estimates of the discretization error and optimal
parameters can also be found in these studies.

2.3.2 Numerical experiments
We present our numerical experiments in this section. Our experiments are based
on the discretized version of a particle system dynamics (2.15). We }rst explain the
optimization problem and the numerical algorithm, and then present our two exper-
iments: the }rst investigates the convergence behavior as the number of particles
tends to in}nity, and the second compares the kinetic dynamics to the correspond-
ing overdamped dynamics.
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Figure 2.1: Randomly chosen handwritten digits “4” and “6” from the MNIST
dataset.

Problem setup and momentum algorithm. We aim to solve a supervised
learning problem:uklpoc- our goal is to classify the handwritten digits “4” and “6”
by a two-layer neural network. We randomly choose K = 104 samples from the
MNIST dataset [147] and denote by (zk)

K
k=1 the }gures in 28 × 28 pixel format,

i.e. each zk belongs to R28×28 = R784, and by (yk)
K
k=1 the one-hot vectors for

the two classes of digits, i.e. if the k-th }gure corresponds to the digit “4”, then
yk = (1, 0), otherwise yk = (0, 1). See Figure 2.1 for random samples in the
dataset. We choose N particles and use the sigmoid function as the activation, i.e.
ϕ(x) = 1

/(
1 + exp(−x)

)
. The truncation function is }xed by

`(x) = L tanh(x/L) = L
exp(2x/L)− 1

exp(2x/L) + 1

and its threshold equals L. The quadratic regularization parameter is denoted by
λ. Following the arguments of Chapter 1 and the precedent section, all the con-
ditions of our theorems (2.1), (2.2), (2.3), (2.4) are satis}ed. In the beginning of
training process, the neuron positions (Θi

0)
N
i=1 = (Cx,i

0 , A
x,i
0 , B

x,i
0 )Ni=1 and momenta

(Ψi
0)

N
i=1 = (Cv,i

0 , A
v,i
0 , B

v,i
0 )Ni=1 are sampled independently from a given initial distri-

bution mx
0 , mv

0 ∈ P(R2×R784×R). We update the parameters (Θi
0)

N
i=1 and (Ψi

0)
N
i=1

following the discrete-time version of the underdamped Langevin SDE (2.14) with
}xed set of parameters (α, γ, σ), that is, we calculate the neurons’ evolution by
Algorithm 2.

Convergence when N → +∞. To study the behavior of the momentum train-
ing dynamics when N → +∞ we conduct independent experiments with the an
increasing number of particles: N = 2P for P = 5, 6, . . . , 10 and repeat the exper-
iment 10 times for each N . The hyperparameters for this experiment are listed in
the second column of Table 2.1.

To quantify the convergence, we compute the two losses 1
N
FN

NNet
(
Θ1

t , . . . ,Θ
N
t

)

and 1
N
FN

Kinet
(
Ψ1

t , . . . ,Ψ
N
t

)
, where FN

Kinet(Ψ
1, . . . ,ΨN ) := 1

2

∑N
i=1 |Ψi|2. We then

compute its average of the respective quantities over the 10 repeated runs. The
evolutions of 1

N
FN

NNet and 1
N
FN

NNet +
1
N
FN

Kinet are plotted in Figures 2.2 and 2.3
respectively, and can be characterized by two distinct phases. In the }rst phase,
both the quantities decrease and the second quantity decreases exponentially, for
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every N . We also }nd that in this phase the convergence rates are almost the same
for dizerent N and this is coherent with the behavior indicated by our theoretical
upper bound (2.21). We also observe that 1

N
FN

NNet ~uctuates in a stronger way
than 1

N
FN

NNet +
1
N
FN

Kinet. In the second phase, both the values cease to decrease
but the remnant values dizer for dizerent N .

To investigate the relationship between the remnant values in the second phase
and the number of particles N , we compute the average value of 1

N
FN

NNet+
1
N
FN

Kinet
of the last 500 training epochs for each individual run and plot their values in
Figure 2.4. Motivated by the upper bound (2.21) in Theorem 2.3, we }t the remnant
values by C ′ + C

N
and }nd the values are well }tted by this curve.

Comparison to algorithm without momentum. We also investigate the dif-
ference between gradient descent algorithms with and without momentum by work-
ing on the same set of hyperparameters, listed in the last column of Table 2.1. It is
found that the algorithm with momentum leads to much stronger ~uctuations com-
pared the algorithm without momentum (see Figure 2.5). Both algorithms cease to
decrease after certain training epochs, but the momentum algorithm leads to better
loss in the end. This may be explained by the fact that the presence of momentum
helps the particles to escape local minima.

Hyperparameter First Exp.’s Value Second Exp.’s Value
N [128, 256, 512, 1024, 2048] 256
∆t 0.02 0.01
T 300 500
mx

0 N (0, 0.01) N (0, 0.01)
mv

0 N (0, 0.25) N (0, 0.01)
L 500 500
λ 10−4 10−3

α 1 1
γ 0.1 0.1

σ 0.01
√
2 0.01

√
2

Table 2.1: Hyperparameters of neural networks’ trainings.

2.4 Entropic convergence
2.4.1 Collection of known results
Before moving on to the proofs, we }rst state some elementary results without
proofs. They are either immediate consequences of the corresponding ones in Chap-
ter 1, or easy adaptations thereof.

Lemma 2.8 (Existence and uniqueness of invariant measures). If F satis}es (2.1),
(2.2) and (2.3), then there exist unique measures m∞ and mN

∞ satisfying (2.18),
(2.19) respectively and they have }nite exponential moments.
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Algorithm 2: Noised momentum gradient descent for training a two-layer
neural network

Input: number of particles N , truncation L, data set (zk, yk)
K
k=1, noise σ,

friction γ, l2 regularization λ, initial distribution (mx
0 ,m

v
0), time

step ∆t, time horizon T

Output: (Θi
T )

N
i=1

generate i.i.d. Θi
0 =

(
A

x,i
0 , B

x,i
0 , C

x,i
0

)
∼ mx

0 for i = 1, …, N ;
generate i.i.d. Ψi

0 =
(
A

v,i
0 , B

v,i
0 , C

v,i
0

)
∼ mv

0 for i = 1, …, N ;
for t = 0, ∆t, 2∆t, …, T −∆t do

generate i.i.d. N i
t ∼ N (0, 1) for i = 1, …, N ;

// update particles according to discretized underdamped
Langevin

for i = 1, …, N do
Ψi

t+∆t ← (1− γ∆t)Ψi
t −DmFNNet

(
1
N

∑N
j=1 δΘj

t
,Θi

t

)
∆t

− λΘi
t∆t+ σ

√
∆tN i

t ;
Θi

t+∆t ← Θi
t +Ψi

t+∆t∆t;
// where DmFNNet

(
1
N

∑N
j=1 δΘj

t
,Θi

t

)

= 1
K

∑K
k=1

(
yk −ΨN (Θ1

t , . . . ,Θ
N
t ; zk)

)
∂Ψ
∂θ

(Θi
t; zk)

Figure 2.2: Individual (shadowed)
and 10-averaged (bold) losses without
kinetic energy versus time.

Figure 2.3: Individual (shadowed)
and 10-averaged (bold) losses with ki-
netic energy versus time.
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Figure 2.4: Average values of 1
N
FNNet +

1
N
FKinet over the last 500 epochs. The

mean (black squares) and standard
derivations (error bars) are calculated
from the 10 independent runs. Dashed
curve }ts the data.

Figure 2.5: Target function 1
N
FNNet

for underdamped Langevin (blue)
and overdamped Langevin (red) ver-
sus time.

Lemma 2.9 (Mean }eld entropy sandwich). Assume F satis}es (2.1), (2.2) and
(2.3). Then for every m ∈ P2(R

2d), we have

H(m|m∞) 6 F(m)−F(m∞) 6 H(m|m̂)

6

(
1 +

MF
mm

ρ
+

(MF
mm)2

2ρ2

)
H(m|m∞), (2.28)

where ρ is de}ned by (2.6). Here, the leftmost inequality holds even without the
uniform LSI condition (2.3), once there exists a measure m∞ satisfying (2.18) and
having }nite exponential moments.

Lemma 2.10 (Particle system’s entropy inequality). Assume that F satis}es (2.1)
and that there exists a measure m∞ ∈ P2(R

2d) verifying (2.18). Then for all
mN ∈ P2(R

dN ) of }nite entropy, we have

H(mN |m⊗N
∞ ) 6 FN (mN )−NF(m∞). (2.29)

Lemma 2.11 (Information inequalities). Let X1, . . . , XN be measurable spaces, µ
be a probability on the product space X = X1 × · · · ×XN and ν = ν1 ⊗ · · · ⊗ νN be
a σ-}nite measure. Then

N∑

i=1

H(µi|νi) 6 H(µ|ν) 6
N∑

i=1

∫
H
(
µi|−i(·|x−i)

∣∣νi
)
µ−i(dx−i). (2.30)

Here we set the rightmost term to +∞ if the conditional distribution µi|−i does not
exist µ−i-a.e.

2.4.2 Mean }eld system
In this section we study the mean }eld system described by the Fokker–Planck
equation (2.12) and the SDE (2.10). Our aim is to prove Theorem 2.2. To this end,
we }rst show its wellposedness and regularity.
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Lemma 2.12. Suppose F satis}es (2.2). Then for every initial value m0 of }nite
second moment, the equation (2.12) admits a unique solution in C

(
[0,∞);P2(R

d)
)
.

Moreover, for every t > 0, the measure mt is absolutely continuous with respect to
the Lebesgue measure.

Proof. Since the drift DmF (·, ·) of the SDE system (2.10) is jointly Lipschitz in
measure and in space by our condition (2.2), the existence and uniqueness of the
solution is standard.

To show the existence of density we recall Kolmogorov’s fundamental solution

ρt(x, v;x
′, v′) :=

( √
3

2πt2

)d

exp
(
−3|x− (x′ + tv′)|2

t3

+
3
(
x− (x′ + tv′)

)
· (v − v′)

t2
− |v − v

′|2
t

)

associated to the dizerential operator ∂t−∆v+v ·∇x. Then the Duhamel’s formula
holds in the sense of distributions:

mt =

∫
ρt(·; z′)m0(dz

′)

+

∫ t

0

∫∫
ρs(·;x′, v′)∇v′ ·

(
mt−s(dx

′dv′)
(
v′ +DmF (m

x
t−s, x

′)
))
ds. (2.31)

Since the }rst moment of mt is bounded, that is, for every T > 0, supt∈[0,T ]

∫
(|v|+

|x|)mt(dxdv) < +∞, we can integrate by parts in the second term of (2.31) and
obtain

‖mt‖L1 6 1 + C

∫ t

0

sup
x′,v′

‖∇v′ρs(·;x′, v′)‖L1ds.

By explicit computations we have supx′,v′‖∇v′ρs(·;x′, v′)‖L1 = O(s−1/2), from
which the existence of the density follows.

We now introduce a technical condition on the mean }eld functional: the map-
ping x 7→ DmF (m,x) is fourth-order dizerentiable with derivatives continuous in
measure and in space, and satisfying

sup
m∈P2(Rd)

sup
x∈Rd

∣∣∇kDmF (m,x)
∣∣ < +∞, k = 2, 3, 4. (2.32)

This condition will be used to derive some intermediate results in the following
studies of the mean }eld dynamics.

De}nition 2.13 (Standard algebra). We de}ne the standard algebra A+ to be the
set of C4 functions h : R2d → (0,∞) for which there exists a constant C such that

|logh(x, v)| 6 C(1 + |x|+ |v|) and
4∑

k=1

∣∣∇kh(x, v)
∣∣ 6 exp

(
C(1 + |x|+ |v|)

)

holds for every (x, v) ∈ R2d. For a collection of functions (hι)ι∈I we say hι ∈ A+

uniformly for ι ∈ I or (hι)ι∈I ⊂ A+ uniformly, if there exists a constant C such
that the previous bounds holds for every hι, ι ∈ I.
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Proposition 2.14 (Density of A+). Assume F satis}es (2.2) and (2.32), and there
exists a measure m∞ satisfying (2.18) and having }nite exponential moments. Then
for every m ∈ P2(R

d) with }nite entropy and }nite Fisher information, there exists
a sequence of measures (mn)n∈N such that mn/m∞ ∈ A+ and

W2(mn,m)→ 0, H(mn)→ H(m), I(mn)→ I(m)

when n→ +∞.

Proof. Let ε be arbitrary positive real. Put h = m/m∞. De}ne h′n = (h ∧ n) ∨ 1
n

and the associated probability measure m′
n = h′nm∞

/∫
h′nm∞. Let N ∈ N be big

enough so that
∫
h′Nm∞ > 0. Note that

sup
n>N

|x|2m′
n(x) 6

|x|2m∫
h′Nm∞

,

that is to say, the second moments of (m′
n)n∈N are uniformly bounded. Together

with the fact that the density of m′
n converges to that of m pointwise, we have

m′
n → m in P2. By the dominated convergence theorem, the sequence of measures

m′
n satis}es

H(m′
n) =

∫
log(h′nm∞)h′nm∞∫

h′nm∞
− log

∫
h′nm∞ →

∫
m logm, when n→ +∞.

Moreover, we have the convergence of Fisher information as
∫ |∇(h′nm∞)|2

h′nm∞
=

∫ [ |∇m∞|2h′n
m∞

+

(
2
∇h · ∇m∞
hm∞

+
|∇h|2m∞

h

)
11/n6h6n

]

converges to I(m) when n→ +∞, where we used the fact that the weak derivatives
satisfy ∇h′n = ∇h11/n6h6n. Hence we may choose n0 ∈ N such that

W2(mn0
,m) +

∣∣H(mn0
)−H(m)

∣∣+ |I(mn0
)− I(m)| 6 ε

2
.

Now set m′′
n = m′

n0
?ηn, where (ηn)n∈N is a sequence of smooth molli}ers supported

in the unit ball. We have m′′
n → m′

n0
in P2. By the convexity of entropy and

Fisher information we have H(m′′
n) 6 H

(
m′

n0

)
and I(m′′

n) 6 I
(
m′

n0

)
, and by the

lower semicontinuities in Lemma B.1, we have lim infn→+∞H(m′′
n) > H

(
m′

n0

)
and

lim infn→+∞ I(m′′
n) > I

(
m′

n0

)
. Hence,

W2

(
m′′

n,m
′
n0

)
+
∣∣H
(
m′′

n

)
−H

(
m′

n0

)∣∣+
∣∣I
(
m′′

n

)
− I
(
m′

n0

)∣∣→ 0

when n→ +∞. So we pick another n1 ∈ N such that W2

(
m′′

n1
,m′

n0

)
+
∣∣H
(
m′′

n1

)
−

H
(
m′

n0

)∣∣+
∣∣I
(
m′′

n1

)
− I
(
m′

n0

)∣∣ < ε/2.
It remains to verify that m′′

n1

/
m∞ belongs to A+. By the de}nition we have

m′′
n1

m∞
=

(h′′m∞) ? ρn1

m∞

for some h′′ with 0 < infh′′ 6 suph′′ < +∞. Hence for every z ∈ R2d,

infh′′
infB(z,1)m∞
m∞(z)

6
m′′

n1
(z)

m∞(z)
6 suph′′

supB(z,1)m∞
m∞(z)

.
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On the other hand, the gradient ofm∞ satis}es |∇ logm∞(z)| 6 |DmF (m∞, x)|+|v|
for every z = (x, v) ∈ R2d. In particular, we have

exp
(
−C(1 + |x|+ |v|)

)
6

infB(z,1)m∞
m∞(z)

6
supB(z,1)m∞

m∞(z)
6 exp

(
C(1 + |x|+ |v|)

)
,

for some constant C. Therefore, m′′
n1

/
m∞ veri}es the }rst condition of A+.

Now verify the conditions on the derivatives. The derivatives read

∇k

(
m′′

n1

m∞

)
=

k∑

j=0

(
k

j

)
(h′′m∞) ?∇jρn1

m∞
·m∞∇k−j

(
m−1

∞
)
.

For each term in the sum, we can bound its }rst part by
∣∣∣∣
(h′′m∞) ?∇jρn1(z)

m∞(z)

∣∣∣∣ 6 exp
(
C(1 + |z|)

)
,

using the same method that we used to verify the }rst condition of A+. Moreover,
since our assumptions (2.2), (2.32) imply

|∇ logm∞(z)| 6 C
(
1 + |z|

)
and

∣∣∇k logm∞(z)
∣∣ 6 C for k = 2, 3, 4,

the second part of each term of the sum, m∞∇k−j
(
m−1

∞
)
, is of polynomial growth.

The proof is then complete.

Then we show the stability of the set A+ under the mean }eld ~ow. This
property will be used to justify the computations in the proof of Theorem 2.2, as
is usual in the analysis of PDE.

Proposition 2.15 (Stability of A+ under ~ow). Assume that F satis}es (2.2)
and (2.32), and that there exists a measure m∞ satisfying (2.18) and having }nite
exponential moments. Let (mt)t∈[0,T ] ∈ C([0, T ];P2(R

d)) be a solution in the sense
of distributions to the mean }eld Fokker–Planck equation (2.12). If m0/m∞ ∈ A+,
then mt/m∞ ∈ A+ uniformly for t ∈ [0, T ]. In particular, mt is a classical solution
to the Fokker–Planck equation.

Proof. In the following C will denote a constant depending on MF
mx, MF

mm, the
initial value h0 = h(0, ·) := m0/m∞, the time interval T and the bounds on the
higher-order derivatives maxk=2,3,4 supm,x

∣∣∇kDmF (m,x)
∣∣, and it may change from

line to line. For a given quantity Q, we denote by CQ a constant depending addi-
tionally on Q.

Denote bt(x) = −DmF (mt, x) and b∞(x) = −DmF (m∞, x). We also de}ne
ht(x) = mt(x)/m∞(x). The relative density solves

∂th = ∆vh− v · ∇vh− v · ∇xh− bt · ∇vh+ (bt − b∞) · vh. (2.33)

Fix t ∈ [0, T ]. We construct for every z = (x, v) ∈ R2d, the stochastic process
Zt,z
s = (Xt,z, V t,z), solving

dXt,z
s = −V t,z

s ds,

dV t,z
s = −V t,z

s ds− bt−s

(
Xt,z

s

)
ds+

√
2dWs
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for s ∈ [0, t] with the initial value X
t,z
0 = x, V

t,z
0 = v and the same Brownian

motion (Ws)s∈[0,t].

Regularity of Zt,z
s . Set M t,z = sups∈[0,t]

∣∣Zt,z
s

∣∣. By Itō’s formula and Doob’s maxi-
mal inequality, the processes satisfy for every α > 0,

E
[
exp(αM t,z)

]
6 exp

(
Cα(1 + |z|)

)
. (2.34)

Thanks to the assumption on the uniform boundedness of the higher-order deriva-
tives (2.32), the mapping z 7→ Zt,z

s is C4 and the partial derivatives solve the
Cauchy–Lipschitz SDEs for k = 1, 2, 3, 4:

d∇kXt,z
s = −∇kV t,z

s ds,

d∇kV t,z
s = −∇kV t,z

s ds−
k∑

j=1

∇jbt−s

(
Xt,z

s

)
Bk,j

(
∇Xt,z

s , . . . ,∇k−j+1Xt,z
s

)
ds,

where Bk,j is a k−j+1-variate polynomial and in particular Bk,1(x1, . . . , xk) = xk.
The initial values of the SDEs read

∇Zt,z
0 = Id and ∇kZ

t,z
0 = 0 for k = 2, 3, 4.

By induction we can obtain the almost sure bound

max
k=1,2,3,4

sup
s∈[0,t]

∣∣∇kZt,z
s

∣∣ 6 C. (2.35)

Regularity of h by Feynman–Kac. Denote g(t, z) = g(t, x, v) =
(
bt(x)− b∞(x)

)
· v.

It satis}es
∣∣g(t, z)

∣∣ 6MF
mmW2(mt,m∞)|v| 6MF

mm sup
t∈[0,T ]

W2(mt,m∞)|v| = C|v|

and also
∣∣∇kg(t, z)

∣∣ 6 C
(
1 + |z|

)
for k = 1, 2, 3, 4. The Feynman–Kac formula for

the parabolic equation (2.33) reads

h(t, z) = E

[
exp
(∫ t

0

g
(
t− s, Zt,z

s

)
ds

)
h
(
0, Zt,z

t

)]
. (2.36)

Using the method in the proof of Proposition 1.44, we can prove

|logh(t, z)| 6 C(1 + |z|).

Moreover, thanks to the estimates (2.35), we can apply the dominated convergence
theorem to the Feynman–Kac formula (2.36) and obtain that z 7→ h(t, z) belongs
to C4 with partial derivatives

∇kh(t, z) =

k∑

j=0

E

[
exp
(∫ t

0

g
(
t− s, Zt,z

s

)
ds

)
Pj

(∫ t

0

∇zg
(
t− s, Zt,z

s

)
ds, . . . ,

∫ t

0

∇j
zg
(
t− s, Zt,z

s

)
ds

)
∇k−j

z h
(
0, Zt,z

t

)]
,
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where Pj is a j-variate polynomial. Note that

∇k
zf(Z

t,z
s ) =

k∑

`=1

∇`f
(
Zt,z
s

)
Bk,`

(
∇Zt,z

s , . . . ,∇k−`+1Zt,z
s

)

holds for f = g(t − s, ·), s ∈ [0, t] and for f = h(0, ·). We apply the bounds on∣∣∇kg
∣∣,
∣∣∇kh

∣∣ for k = 0, 1, 2, 3, 4 and the exponential moment bound (2.34) to
obtain that

∣∣∇kh(t, z)
∣∣ 6 exp

(
C(1+ |z|)

)
for k = 1, 2, 3, 4. Finally, the derivatives

∇h,∇2h exist and one can show that they are continuous in time by dizerentiating
(2.33) twice in space. So again by the equation (2.33) we have ∂th is continuous
and therefore exists classically. Thus mt is a classical solution to the Fokker–Planck
equation (2.12).

Remark 2.16. The polynomials appearing in the previous proof belong to the non-
commutative free algebras over R of respective number of indeterminates instead
of the usual polynomial rings, as the tensor product is not commutative.

After the technical preparations we prove Theorem 2.2.

Proof of Theorem 2.2. The proof consists of several steps.

Step 1: Preparations. Suppose }rst that the mean }eld functional F satis}es addi-
tionally (2.32) and the initial value of the dynamics is such that m0/m∞ belongs to
A+, which is the standard algebra de}ned in De}nition 2.13. According to Propo-
sition 2.15, the measure mt belongs to A+ uniformly in t, for every T > 0. Since
we have that z 7→ m̂t(z)/m∞(z) is C4 with

sup
z∈R2d

∣∣∣∇ log m̂t

m∞
(z)
∣∣∣ 6MF

mmW2(mt,m∞)

and

max
k=2,3,4

sup
z∈R2d

∣∣∣∇k log m̂t

m∞
(z)
∣∣∣ 6M,

for some constant M , the alternative relative density ηt(z) := mt(z)/m̂t(z) is C4

in z and there exists a constant MT such that

ηt(z) +
1

ηt(z)
+

4∑

k=1

∣∣∇kηt(z)
∣∣ 6 exp

(
MT (1 + |z|)

)
(2.37)

for every (t, z) ∈ [0, T ] × R2d. The constant MT may change from line to line in
the following.

In the following we will adopt the abstract notations introduced by Villani in
his seminal work on the hypocoercivity [221]. De}ne Ht = L2(m̂t), At = ∇v and
Bt = v ·∇x−DmF (mt, x) ·∇v. The adjoint of At in Ht is therefore A∗

t = −∇v +v,
while Bt is antisymmetric: B∗

t = −Bt. De}ne the commutator Ct = [At, Bt] =
AtBt − BtAt = ∇x. Finally de}ne Lt = A∗

tAt + Bt and ut = log ηt. The Fokker–
Planck equation (2.12) now reads

∂tmt

m̂t

= −Ltηt = −(A∗
tAt +Bt)ηt. (2.38)
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Step 2: Adding anisotropic Fisher. Let a, b, c be positive reals to be determined.
We de}ne the hypocoercive Lyapunov functional

E(m) = F(m) + a

∫ ∣∣∣∇v log m
m̂
(z)
∣∣∣
2

m(dz)

+ 2b

∫
∇v log m

m̂
(z) · ∇x log m

m̂
(z)m(dz) + c

∫ ∣∣∣∇x log m
m̂
(z)
∣∣∣
2

m(dz), (2.39)

where F(m) = F (m) + 1
2

∫
|v|2m + H(m) is the free energy. We also denote the

sum of the last three terms in (2.39) by Ia,b,c(mt|m̂t), so that

E(m) = F(m) + Ia,b,c(mt|m̂t).

Thanks to Proposition 2.15 and in particular the bound (2.37), we can show that
the quantity E(mt) is well de}ned for every t > 0 and is continuous in t. We will
show in the following that t 7→ E(mt) is in fact absolutely continuous and calculate
its almost everywhere derivative. To this end, for every t > 0 and every h > −t,
we de}ne

E(mt+h)− E(mt) =
(
F(mt+h)−F(mt)

)

+
(
Ia,b,c(mt+h|m̂t+h)− Ia,b,c(mt|m̂t+h)

)

+
(
Ia,b,c(mt|m̂t+h)− Ia,b,c(mt|m̂t)

)

=: ∆1 +∆2 +∆3.

Step 3: Contributions from ∆1 and ∆2. We }rst calculate the contributions from
∆1. Using the Fokker–Planck equation (2.12) and the bounds (2.37), one has
|∆1| 6MTh for every t, h such that t and t+ h belong to [0, T ]; moreover, by the
dominated convergence theorem one has for almost every t > 0,

lim
h→0

∆1

h
=
dF(mt)

dt
= −

∫ ∣∣∣∇v log mt

m̂t

(z)
∣∣∣
2

mt(z)dz = −
∫
|Atut|2mt,

where the right hand side is continuous in t. The above inequality then holds for
every t > 0. De}ne the 4× 4 matrix

K1 =




1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 ,

and denote the Hilbertian norm by ‖·‖ = ‖·‖L2(mt). Introduce the four-dimensional
vector

Yt =
(
‖Atut‖,

∥∥A2
tut
∥∥, ‖Ctut‖, ‖CtAtut‖

)T
. (2.40)

Then we have for almost every t > 0, limh→0 ∆1/h = −Y T
t K1Yt.

Next calculate the contributions from ∆2. Arguing as we did for ∆1, again we
have |∆2| 6 MTh. Applying the dominated convergence theorem and compute as
in the proofs of [221, Lemma 32 and Theorem 18], we obtain that for almost every
t > 0, the limit limh→0 ∆2/h exists and is upper bounded by −Y T

t K2Yt, where

K2 :=




2a− 2MF
mxb −2b −2a 0

0 2a −2MF
mxc −4b

0 0 2b 0
0 0 0 2c


 .
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Step 4: Contributions from ∆3. Now we calculate the last term

∆3 := Ia,b,c(mt|m̂t+h)− Ia,b,c(mt|m̂t).

Note that ∇v log m̂t(z) = −v and, by the W2-Lipschitz continuity of the mapping
m 7→ DmF (m,x), we have
∣∣∇x log m̂t+h(z)−∇x log m̂t(z)

∣∣ =
∣∣DmF

(
mx

t+h, x
)
−DmF

(
mx

t , x
)∣∣

6MF
mmW2

(
mx

t+h,m
x
t

)
.

So for each z ∈ R2d, we know that ∇ log m̂t(z) is continuous in t, and is absolutely
continuous once t 7→ mx

t is absolutely continuous with respect to the W2 distance
in the sense of [4, De}nition 1.1.1]. Let us show the latter. Integrating the speed
component in the Fokker–Planck equation (2.12), we obtain

∂tm
x
t +∇x ·

(
vxtm

x
t

)
= 0, (2.41)

where
vxt (x) :=

∫
vmt(x, v)dv∫
mt(x, v)dv

=

∫
∇v log mt

m̂t
(x, v)mt(x, v)dv∫

mt(x, v)dv

is the average speed at the spatial point x. The L2 norm of the vector }eld in the
continuity equation (2.41) satis}es

‖vxt ‖L2(mx
t )

=

(∫ ∣∣∣∣∣

∫
∇v log mt

m̂t
(x, v)mt(x, v)dv∫

mt(x, v)dv

∣∣∣∣∣

2

mx
t (x)dx

)1/2

6

(∫ ∣∣∣∇v log mt

m̂t

(z)
∣∣∣
2

mt(dz)

)1/2
= ‖Atut‖ 6MT ,

where the }rst inequality is due to Cauchy–Schwarz. Applying [4, Proposition 8.3.1]
to the ~ow t 7→ mx

t and its continuity equation (2.41), and using [4, Theorem 1.1.2],
we obtain

W2

(
mx

t+h,m
x
t

)
6

∫ t+h

t

‖Asus‖ds 6MTh

for every t, h such that t and t+h belong to [0, T ]. So the mapping t 7→ ∇ log m̂t(z)
is absolutely continuous with almost everywhere derivatives satisfying

∂t∇v log m̂t(z) = 0,

|∂t∇x log m̂t(z)| 6MF
mm‖Atut‖ 6MT .

Then we obtain |∆3| 6 MTh. Moreover, by the dominated convergence theorem,
we have for almost every t > 0,

lim
h→0

|∆3|
|h| 6 2MF

mm

∫ (
|Atut(z)|, |Ctut(z)|

)(a b

b c

)(
0

‖Atut‖

)
mt(dz)

6 2MF
mm(b‖Atut‖‖Atut‖+ c‖Atut‖‖Ctut‖) = Y T

t K3Yt

by applying Cauchy–Schwarz again, where

K3 := 2MF
mm




b 0 c 0
0 0 0 0
0 0 0 0
0 0 0 0


 .
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Step 5: Hypocoercivity. Our previous bounds on ∆k, k = 1, 2, 3 establish that t 7→
E(mt) is absolutely continuous (locally Lipschitz, in fact) with its almost everywhere
derivative satisfying d

dt
E(mt) 6 −Y T

t KYt, where K is de}ned by K1+K2−K3 and
is equal to




1 + 2MF
mma− 2

(
MF

mx +MF
mm

)
b −2b −2a− 2MF

mmc 0
0 2a −2MF

mxc −4b
0 0 2b 0
0 0 0 2c


 .

As in the end of the proof of [221, Theorem 18], we can pick constants a, b, c > 0,
depending only on MF

mx and MF
mm, such that ac > b2 and the matrix K is a

positive-de}nite. Let α be the smallest eigenvalue of K. Then we have

dE(mt)

dt
6 −α

(
‖Atut‖2 + ‖Ctut‖2 + ‖A2

tut‖2 + ‖CtAtut‖2
)

6 −α
(
‖Atut‖2 + ‖Ctut‖2

)
= −αI(mt|m̂t).

Hence for every t, s such that t > s > 0,

E(mt) 6 E(ms)− α
∫ t

s

I(mu|m̂u)du. (2.42)

Step 6: Approximation. We now show that the inequality (2.42) holds without
additional assumptions on the mean }eld functional F and the initial value m0.

First, suppose still that F satis}es (2.32) but no longer suppose m0 is such
that m0/m∞ ∈ A+. The initial value m0 belongs to P2(R

d) and both H(m0) and
I(m0) are }nite, so thanks to Proposition 2.14, we can pick a sequence of measures(
m′

n,0

)
n∈N

, each of which belongs to A+, such that

lim
n→∞

W2

(
m′

n,0,m0

)
+
∣∣H
(
m′

n,0

)
−H(m0)

∣∣+
∣∣I
(
m′

n,0

)
− I(m0)

∣∣ = 0.

As proved above, the inequality (2.42) holds for the ~ow
(
m′

n,t

)
t>0

, that is,

E
(
m′

n,t

)
6 E

(
m′

n,0

)
− α

∫ t

0

I
(
m′

n,s

∣∣m̂′
n,s

)
ds.

By the continuity with respect to the initial value of the SDE system (2.10), we
have also m′

n,t → mt in the weak topology of P2. We recall in Lemma B.1 that
both the entropy and the Fisher information are lower semicontinuous with respect
to the weak topology of P2. Taking the lower limit on both sides of the inequality
above, we obtain (2.42) with s = 0 for the original ~ow (mt)t>0.

Second, we no longer require F to satisfy (2.32) and set Fk(m) = F (m ? ρk)
for a sequence of smooth and symmetric molli}ers (ρk)k∈N in Rd with supp ρk ⊂
B(0, 1/k). The linear derivative of the regularized mean }eld functional reads
δFk

δm
(m, ·) = δF

δm
(m ? ρk, ·) ? ρk, and its intrinsic derivative reads DmFk(m, ·) =

DmF (m ? ρk, ·) ? ρk. Consequently,

|DmFk(m
′, x′)−DmF (m,x)| 6MF

mmW2(m
′,m) +MF

mx|x′ − x|

+
MF

mx +MF
mm

k
. (2.43)
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Moreover, ∇DmFk(m, ·) = ∇DmF (m ? ρk, ·) ? ρk and

∇kDmFk(m, ·) = DmF (m ? ρk, ·) ?∇kρk = ∇DmF (m ? ρk, ·) ?∇k−1ρk

is continuous for k > 0 and bounded for k > 1. In particular Fk satis}es (2.32).
De}ne Ek(m) = Fk(m) + 1

2

∫
|v|2m + H(m) + Ia,b,c(m|m̂) and here m̂ should be

understood as the Gibbs-type measure de}ned with Fk instead of F . Let (m′′
k,t)t>0

be the ~ow of measures driven by Fk with the initial value m′′
k,0 = m0. Our previous

result yields for every t > 0,

Ek
(
m′′

k,t

)
6 Ek(m0)− α

∫ t

0

I
(
m′′

k,s

∣∣m̂′′
k,s

)
ds,

where m̂′′
k,s is the probability measure proportional to

exp
(
−δFk

δm

(
m′′

k,s, x
)
− 1

2
|v|2
)
dxdv.

From the bound (2.43) we deduce that m′′
k,t → mt in P2 for every t > 0 by the

synchronous coupling result in Lemma 2.22. So taking the lower limit on both
sides of the previous inequality, we obtain the inequality (2.42) with s = 0 holds
for general initial values and general mean }eld functionals. In particular, for every
t > 0, the measure mt has }nite entropy and }nite Fisher information. Then we
apply the same argument to the ~ow with the initial value ms and obtain the
inequality (2.42) for general s > 0.

Step 7: Conclusion. De}ne the matrix

S =

(
a b

b c

)

and denote by |S| its largest eigenvalue. The Fisher information satis}es for every
t > 0,

I(mt|m̂t) =
1

2
I(mt|m̂t) +

1

2
I(mt|m̂t)

> 2ρH(mt|m̂t) +
1

2
I(mt|m̂t)

> 2ρ
(
F(mt)−F(m∞)

)
+

1

2|S|Ia,b,c(mt|m̂t)

>

(
2ρ ∧ 1

2|S|

)(
E(mt)− E(m∞)

)
,

where on the second line we applied the uniform LSI (2.7), with ρ de}ned by (2.6),
and on the third line we used Lemma 2.9, m∞ = m̂∞ and S � λ2. Applying
Grönwall’s lemma2 to (2.42), we obtain the desired contractivity (2.20) with κ :=
α
(
2ρ ∧ (2|S|)−1

)
.

2The mapping t 7→ E(mt) is lower semicontinuous by Lemma B.1 and non-increasing by the
inequality (2.42). So it is càdlàg. It then su{ces to convolute the mapping t 7→ E(mt) by a
sequence of molli}ers compactly supported in (0, 1), apply the classical Grönwall’s lemma and
take the limit.
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Remark 2.17. Our Theorem 2.2 can be compared to [221, Theorem 56], where
kinetic mean }eld Langevin dynamics with two-body interaction are studied and
O(t−∞) entropic convergence to equilibrium is shown, under the assumption that
the mean }eld dependence is small. This restriction is lifted by our method which
leverages the functional convexity.
Remark 2.18. The regularized energy functional Fk is such that x 7→ DmFk(m,x)
has bounded derivatives of every order. However m 7→ DmFk(m,x) remains only
Lipschitz continuous and we are not aware of any approximation argument that
allows us to obtain dizerentiability in the measure argument. Consequently we use
still the result from [4] to treat this low regularity.

2.4.3 Particle system
In this section we study the system of particles described by the linear Fokker–
Planck equation (2.13) and the SDE (2.11). Note that since the dynamics is linear,
its wellposedness is classical and we omit its proof.

We }rst show that for our model we can construct hypocoercive functionals
whose constants are independent of the number of particles.

Lemma 2.19 (Uniform-in-N hypocoercivity). Assume F satis}es (2.2) and there
exists a measure mN

∞ satisfying (2.19) and having }nite exponential moments.
Let t 7→ mN

t be a solution to the N -particle Fokker–Planck equation (2.13) in
C
(
[0, T ];P2(R

2dN )
)

whose initial value mN
0 has }nite entropy and }nite Fisher

information. Then there exist constants a, b, c, α > 0 depending only on MF
mx and

MF
mm such that ac > b2 and the functional

EN (mN ) := FN (mN ) + Ia,b,c
(
mN

∣∣mN
∞
)

:= FN (mN ) +

N∑

i=1

(
a

∫ ∣∣∇vi loghN (z)
∣∣2mN (dz)

+ 2b

∫
∇vi loghN (z) · ∇xi loghN (z)mN (dz)

+ c

∫ ∣∣∇xi loghN (z)
∣∣2mN (dz)

)
, (2.44)

where hN := mN
/
mN

∞, is }nite on mN
t for t > 0; moreover, the mapping t 7→

EN
(
mN

t

)
satis}es

EN
(
mN

t

)
6 EN

(
mN

s

)
− α

∫ t

s

I
(
mN

u

∣∣mN
∞
)
du (2.45)

for every t, s such that t > s > 0.

Remark 2.20. The constants a, b, c are possibly dizerent from those appearing in
the proof of Theorem 2.2.

Proof. We }rst show that the condition (2.2) implies a bound on the second-order
derivatives of x 7→ UN (x) := NF (µx). The }rst-order derivatives satisfy
∣∣∇iU

N (x)−∇iU
N (x′)

∣∣ =
∣∣DmF (µx, x

i)−DmF (µx′ , x′i)
∣∣

6MF
mmW2(µx, µx′) +MF

mx|xi − x′i|.
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Summing over i, we obtain for every ε > 0,
∣∣∇UN (x)−∇UN (x′)

∣∣2 6 (1+ε)
(
MF

mm

)2
NW 2

2 (µx, µx′)+(1+ε−1)
(
MF

mx

)2|x−x′|2

6
(
(1 + ε)

(
MF

mm

)2
+ (1 + ε−1)

(
MF

mx

)2)|x− x′|2.

Optimizing ε yields
∣∣∇UN (x)−∇UN (x′)

∣∣ 6
(
MF

mm +MF
mx

)
|x− x′|. De}ne

∥∥∇2UN
∥∥
∞ =

∥∥∇2UN
∥∥

op,∞ = ess sup
x∈RdN

sup
x′∈RdN :|x′|2=1

∣∣∇2UN (x)x′∣∣
2
.

From the Lipschitz bound we obtain
∥∥∇2UN

∥∥
op,∞ 6MF

mx +MF
mm. (2.46)

Now suppose there exist a constant M such that UN satis}es

x 7→ UN (x) is C4 and
4∑

k=3

∥∥∇kUN
∥∥
∞ 6M, (2.47)

and that hN0 = mN
0

/
mN

∞ satis}es

hN0 (z) +
1

hN0 (z)
+

4∑

k=1

∣∣∇khNt (z)
∣∣ 6M (2.48)

for every z ∈ R2dN . We apply Proposition 2.15 to show that under our assumptions,
there exists a constant MT such that

hNt (z) +
1

hNt (z)
+

4∑

k=1

∣∣∇khNt (z)
∣∣ 6 exp

(
MT (1 + |z|)

)
(2.49)

for every (t, z) ∈ [0, T ] × R2dN (in fact, z 7→ hNt (z) remains lower and upper
bounded and its up-to-fourth-order derivatives grow at most polynomially).

We denote uNt = loghNt . In view of the regularity bound (2.49), we have

−dF
N
(
mN

t

)

dt
=

N∑

i=1

∫
|∇viuNt |2mN

t ,

− d

dt

∫ ∣∣∇viuNt
∣∣2mN

t = 2

∫ (
∇xiuNt · ∇viuNt +

∣∣∇2
viu

N
t

∣∣2

+∇viuNt · ∇viuNt

)
mN

t ,

− d

dt

∫
∇viuNt · ∇xiuNt m

N
t =

∫ (
−

N∑

j=1

∇viuNt ∇2
ijU

N∇vjuNt +
∣∣∇xiuNt

∣∣2

+ 2∇2
viu

N
t · ∇vi∇xiuNt +∇viuNt · ∇xiuNt

)
mN

t ,

− d

dt

∫
∇xiuNt · ∇xiuNt m

N
t =

∫ (
−2

N∑

j=1

∇xiuNt ∇2
ijU

N∇vj∇vjuNt

+ 2
∣∣∇xi∇viuNt

∣∣2
)
mN

t ,
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as is computed in [221]. Denote the Hilbertian norm by ‖·‖ = ‖·‖L2(mN
t ) and de}ne

the four-dimensional vector

Y N
t =

(∥∥∇vu
N
t

∥∥,
∥∥∇2

vu
N
t

∥∥,
∥∥∇xu

N
t

∥∥,
∥∥∇x∇vu

N
t

∥∥)T
. (2.50)

By Cauchy–Schwarz we have − d
dt
EN
(
mN

t

)
> (Y N

t )TKY N
t where

K :=




1 + 2a− 2
∥∥∇2UN

∥∥
op,∞b −2b −2a 0

2a −2
∥∥∇2UN

∥∥
op,∞c −4b

2b 0
2c


 ,

where ‖∇2UN‖op,∞ is bounded by (2.46). We then apply the same argument as in
the proof of Theorem 2.2 to pick a, b, c such that ac > b2 and K is positive-de}nite
with its smallest eigenvalue α > 0. Then,

−dE
N
(
mN

t

)

dt
> (Y N

t )TKY N
t > αI

(
mN

t

∣∣mN
∞
)
,

from which the desired inequality (2.45) follows.
We then show the inequality (2.45) holds for general mean }eld functional F and

initial value mN
0 . First, suppose still that UN satis}es additionally the bound (2.47)

but no longer suppose mN
0 satis}es additionally (2.48). As mN

0 has }nite second
moment, }nite entropy and }nite Fisher information, we can }nd a sequence of
measures (m′N

n,0)n∈N, each of which satis}es the bound (2.48), such that

lim
n→+∞

W2

(
m′N

n,0,m
N
0

)
+
∣∣H
(
m′N

n,0

)
−H

(
m′N

0

)∣∣+
∣∣I
(
m′N

n,0

)
− I
(
m′N

0

)∣∣ = 0,

by the procedure in the proof of Proposition 2.14. We have the convergence m′N
n,t →

mN
t in P2. So taking the lower limit on both sides of

EN
(
m′N

n,t

)
− EN

(
m′N

n,0

)
+ α

∫ t

0

I
(
m′N

n,s

∣∣mN
∞
)
ds 6 0

yields (2.45) for s = 0, thanks to the continuity of F and the lower-semicontinuity
of entropy and Fisher information with respect to the topology of P2, proved in
Lemma B.1.

Second, we no longer suppose UN satis}es the bound (2.47) and set

UN
k = UN ? ρk

for a sequence of smooth molli}ers (ρk)k∈N in RdN . Then UN
k is C4 and satis}es

its second and fourth-order derivatives ∇νUN
k = ∇2UN ? ∇ν−2ρk with ν = 3, 4

are bounded as
∥∥∇2UN

∥∥
∞ 6 MF

mx +MF
mm. Moreover, from the bound (2.46) on

∇2UN we deduce ∥∥∇(UN
k − UN )

∥∥
∞ → 0 (2.51)

and
∥∥∇2UN

k

∥∥
∞ 6

∥∥∇2UN
∥∥
∞ 6 MF

mx + MF
mm. Let

(
m′′N

k,t

)
t>0

be the ~ow of
measures driven by the regularized potential UN

k with the initial value m′′N
k,0 = mN

0

and denote its invariant measure by m′′N
k,∞. That is to say, m′′N

k,∞ is the probability
measure proportional to exp

(
−UN

k (x)− 1
2 |v|2

)
dxdv. Thanks to the bound (2.51),
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we can apply the synchronous coupling result in Lemma 2.22 and obtain m′′N
k,t →

mN
t in P2 for every t > 0. The result obtained in the previous paragraph writes

H
(
m′′N

k,t

∣∣m′′N
k,∞
)
+ Ia,b,c

(
m′′N

k,t

∣∣m′′N
k,∞
)
−H

(
mN

0

∣∣m′′N
k,∞
)
− Ia,b,c

(
mN

0

∣∣m′′N
k,∞
)

+ α

∫ t

0

I
(
m′′N

k,s

∣∣m′′N
k,∞
)
ds 6 0

for every t > 0 and we take the lower limit on both sides to obtain (2.45) with
s = 0 for general initial values and general mean }eld functional. In particular, this
implies for every t > 0, mN

t has }nite entropy and }nite Fisher information. Then
we apply the same argument to the ~ow with mN

s as the initial value and obtain
(2.45) for general s > 0.

Remark 2.21. If we additionally assume a uniform-in-N LSI for mN
∞, then we can

directly establish
dEN

(
mN

t

)

dt
6 −κEN

(
mN

t

)
,

for a constant κ > 0 independent of N . This approach has been explored in a
number of previous works. We do not impose such an assumption or su{cient
conditions for it, as they often requires the mean }eld interaction to be small
enough or (semi-)convex enough, excluding the application to neural networks in
Section 2.3.

We then give the proof of Theorem 2.3. The method of proof is similar to
Theorem 1.12 and we only need to take into account of the additional kinetic
terms. We give a complete proof only for the sake of self-containedness.

Proof of Theorem 2.3. We pick the positive constants a, b, c, α depending only on
MF

mx and MF
mm such that ac > b2 and (2.45) holds for every t > 0, according

to Lemma 2.19. Then, as in the proof of Theorem 1.12, we will establish a lower
bound of the relative Fisher information It := I

(
mN

t

∣∣mN
∞
)

in order to obtain the
desired result.

Step 1: Regularity of conditional distribution. By local hypoelliptic positivity (see
e.g. [221, Theorem A.19 and Corollary A.21]), we know that for every t > 0 and
every z ∈ R2dN , mN

t (z) > 0. Let i ∈ {1, . . . , N}. De}ne the marginal density
m

N,−i
t (z−i) =

∫
mN

t (z)dzi, which is strictly positive by the local positivity of mN
t

and is lower semicontinuous by Fatou’s lemma. By the Fubini theorem, we have∫
m

N,−i
t (z−i)dz−i = 1. Together with the lower semicontinuity, we obtain that

m
N,−i
t (z−i) is }nite everywhere. We are therefore able to de}ne the conditional

probability density

m
N,i|−i
t (zi|z−i) =

mN
t (z)

m
N,−i
t (z−i)

=
mN

t (z)∫
mN

t (z)dzi
,

which is weakly dizerentiable in zi and strictly positive everywhere. We can also
de}ne the conditional density mN,i|−i

∞ for the invariant measure mN
∞, and the reg-

ularity follows directly from its explicit expression.
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Step 2: Decomposing Fisher componentwise. Using the conditional distributions,
we can decompose the relative Fisher information as

It =

∫ ∣∣∣∣∇ log m
N
t (z)

mN∞(z)

∣∣∣∣
2

mN
t (dz) = E

[∣∣∣∣∇ log m
N
t (Zt)

mN∞(Zt)

∣∣∣∣
2
]

=

N∑

i=1

E

[∣∣∣∣∇zi log
m

N,i|−i
t

(
Zi
t

∣∣Z−i
t

)
m

N,−i
t

(
Z−i

t

)

mN∞(Zt)

∣∣∣∣
2
]

=
N∑

i=1

E

[∣∣∣∣∇zi log
m

N,i|−i
t

(
Zi
t

∣∣Z−i
t

)

mN∞(Zt)

∣∣∣∣
2
]

=

N∑

i=1

E

[∣∣∣∇zi logmN,i|−i
t

(
Zi
t

∣∣Z−i
t

)
+DmF

(
µXt

, Xi
t

)
+ V i

t

∣∣∣
2
]
.

Step 3: Change of empirical measure and componentwise LSI. We replace the em-
pirical measure µx in DmF by µx−i . De}ne the dizerence δi1(x; y) = DmF (µx, y)−
DmF (µx−i , y) and denote by µ̂x−i the probability on R2d such that

µ̂x−i(dxdv) ∝ exp
(
− δF
δm

(µx−i , x)− 1

2
|v|2
)
dxdv.

For every ε ∈ (0, 1), the Fisher information satis}es

It =
N∑

i=1

E

[∣∣∣∇xi logmN,i|−i
t

(
Zi
t

∣∣Z−i
t

)
+DmF

(
µX

−i
t
, Xi

t

)
+ V i

t + δi1
(
Xt;X

i
t

)∣∣∣
2
]

>

N∑

i=1

E


(1− ε)

∣∣∣∇xi logmN,i|−i
t

(
Xi

t

∣∣X−i
t

)
+DmF

(
µX

−i
t
, Xi

t

)
+ V i

t

∣∣∣
2

− (ε−1 − 1)
∣∣δi1(Xt;X

i
t)
∣∣2




= (1− ε)
N∑

i=1

E
[
I
(
m

N,i|−i
t

(
·
∣∣Z−i

t

)∣∣∣µ̂X
−i
t

)]
− (ε−1 − 1)

N∑

i=1

E
[∣∣δi1

(
Xt;X

i
t

)∣∣2
]
,

where we used the elementary inequality (a+b)2 > (1−ε)|a|2−(ε−1−1)|b|2. De}ne
the }rst error

∆1 :=

N∑

i=1

E
[∣∣δi1

(
Xt;X

i
t

)∣∣2
]
:=

N∑

i=1

E
[∣∣DmF

(
µXt

, Xi
t

)
−DmF

(
µX

−i
t
, Xi

t

)∣∣2
]
.

(2.52)
The previous inequality writes

It > (1− ε)
N∑

i=1

E
[
I
(
m

N,i|−i
t

(
·
∣∣Z−i

t

)∣∣∣µ̂X
−i
t

)]
− (ε−1 − 1)∆1. (2.53)

We apply the uniform ρ-log-Sobolev inequality (2.7) for µ̂Xi
t

with ρ de}ned by (2.6)
and obtain

1

4ρ
I
(
m

N,i|−i
t

(
·
∣∣Z−i

t

)∣∣∣µ̂X
−i
t

)
> H

(
m

N,i|−i
t

(
·
∣∣Z−i

t

)∣∣∣µ̂X
−i
t

)

=

∫ (
logmN,i|−i

t

(
xi
∣∣Z−i

t

)
+
δF

δm

(
µX

−i
t
, xi
)
+

1

2
|vi|2

)
m

N,i|−i
t

(
dzi
∣∣Z−i

t

)

+ logZ
(
µ̂X

−i
t

)
,
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where the last quantity is the normalization factor

Z
(
µ̂X

−i
t

)
:=

∫
exp
(
− δF
δm

(
µX

−i
t
, x
)
− 1

2
|v|2
)
dxdv.

Then we apply Jensen’s inequality to logZ(µ̂x−i) to obtain

logZ(µ̂X
−i
t
) > −

∫ (
δF

δm

(
µX

−i
t
, xi
)
+

1

2
|vi|2

)
m∞(dzi)−

∫
m∞(zi) logm∞(zi)dzi.

Chaining the previous two inequalities and summing over i, we have

1

4ρ

N∑

i=1

I
(
m

N,i|−i
t

(
·
∣∣Z−i

t

)∣∣∣µ̂X
−i
t

)
>

N∑

i=1

[∫ (
δF

δm
(µX

−i
t
, xi) +

1

2
|vi|2

)

(
m

N,i|−i
t

(
dzi
∣∣Z−i

t

)
−m∞(dzi)

)
+H

(
m

N,i|−i
t

(
·
∣∣Z−i

t

))
−H(m∞)

]
. (2.54)

Step 4: Another change of empirical measure. We are going to replace µx−i by µx

in (2.54). De}ne δi2(x; y) := δF
δm

(µx−i , y)− δF
δm

(µx, y) and the second error

∆2 :=

N∑

i=1

∫
δi2(x;x

i)mN
t (dz)−

N∑

i=1

∫∫
δi2(x;x

′)m∞(dz′)mN
t (dz). (2.55)

Taking expectations on both sides of (2.54), we obtain

1

4ρ

N∑

i=1

E
[
I
(
m

N,i|−i
t

(
·
∣∣Z−i

t

)∣∣∣µ̂X
−i
t

)]

> N E

[∫ (
δF

δm
(µXt

, x) +
1

2
|v|2
)
(µZt

−m∞)(dz)

]
+

N∑

i=1

E
[
H
(
m

N,i|−i
t

(
·
∣∣Z−i

t

))]

−NH(m∞) + ∆2. (2.56)

Thanks to the convexity of F , the }rst term satis}es the tangent inequality

N E

[∫ (
δF

δm
(µXt

, x) +
1

2
|v|2
)
(µZt

−m∞)(dz)

]

> N E
[
F
(
µXt

)
− F

(
mx

∞
)]

+
1

2

∫
|v|2mN

t (dz)− N

2

∫
|v2|m∞(dz)

= FN
(
mN

t

)
−NF (m∞) +

1

2

∫
|v|2mN

t (dz)− N

2

∫
|v2|m∞(dz). (2.57)

For the second term we apply the information inequality (2.30) to obtain
N∑

i=1

E−i
[
H
(
m

N,i|−i
t

(
·
∣∣Z−i

t

))]
> H

(
mN

t

)
.

Hence,
N∑

i=1

E
[
I
(
m

N,i|−i
t

(
·
∣∣Z−i

t

)∣∣∣µ̂X
−i
t

)]
> 4ρ

(
FN
(
mN

t

)
−NF(m∞) + ∆2

)
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by the de}nition of free energies F(m) = F (m) + H(m) + 1
2

∫
|v|2m, FN (mN ) =

FN (mN ) +H(mN ) + 1
2

∫
|v|2mN . Using (2.53), we obtain

It = I
(
mN

t

∣∣mN
∞
)
> 4ρ(1− ε)

(
FN
(
mN

t

)
−NF(m∞) +∆2

)
− (ε−1 − 1)∆1. (2.58)

Step 5: Bounding the errors ∆1, ∆2. The transport plan between µx and µx−i

πi =
1

N

∑

j 6=i

δ(xj ,xj) +
1

N(N − 1)

∑

j 6=i

δ(xj ,xi) (2.59)

gives the bound W1(µx, µx−i) 6 1
N(N−1)

∑
j 6=i |xj−xi|. We use this transport plan

to bound the errors ∆1, ∆2.
Let us treat the }rst error ∆1. Since m 7→ DmF (m,x) is MF

mm-Lipschitz con-
tinuous in W2 metric, we have

∣∣δi1(x; y)
∣∣ 6MF

mmW2(µx, µx−i).

Under the L2-optimal transport plan Law
(
(Zi

t)
N
i=1, (Z̃

i
∞)Ni=1

)
∈ Π(mN

t ,m
⊗N
∞ ) we

have

∆1 =

N∑

i=1

E
[∣∣δi1(Xt;X

i
t)
∣∣2
]
6
(
MF

mm

)2 N∑

i=1

E
[
W 2

1

(
µXt

, µX
−i
t

)]

6

(
MF

mm

)2

N(N − 1)
E

[ ∑

16i,j6N
i 6=j

∣∣Xj
t −Xi

t

∣∣2
]

6
3
(
MF

mm

)2

N(N − 1)
E

[ ∑

16i,j6N
i 6=j

(∣∣Xi
t − X̃i

∞
∣∣2 +

∣∣X̃i
∞ − X̃j

∞
∣∣2 +

∣∣Xj
t − X̃j

∞
∣∣2
)]

6
3
(
MF

mm

)2

N(N − 1)

(
2(N − 1)E

[ N∑

i=1

∣∣Xi
t − X̃i

∞
∣∣2
]
+N(N − 1)E

[∣∣X̃1
∞ − X̃2

∞
∣∣2
])
.

The }rst term E
[∑N

i=1 |Xi
t − X̃i

∞|2
]
, being only the transport cost in the X di-

rections, is bounded by the Wasserstein distance W 2
2

(
mN

t ,m
⊗N
∞
)
, while the second

E
[
|X̃1

∞ − X̃2
∞|2
]

equals 2Varmx
∞. Hence the }rst error satis}es the bound

∆1 6 6
(
MF

mm

)2
(

1

N
W 2

2

(
mN

t ,m
⊗N
∞
)
+ Varm∞

)
. (2.60)

Now treat the second error ∆2. The Lipschitz constant of y 7→ δi2(x; y) =
δF
δm

(µx−i , y)− δF
δm

(µx, y) is controlled by
∣∣∇yδ

i
2(x; y)

∣∣ = |DmF (µx, y)−DmF (µx−i , y)| 6MF
mmW1(µx, µx−i).

Hence
∣∣δi2(x; y) − δi2(x; y

′)
∣∣ 6 MF

mmW1(µx, µx−i)|y − y′|. Use Fubini’s theorem
to }rst integrate z′ in the de}nition of the second error (2.55) and let Z̃ ′

∞ be
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independent from Zt. We obtain

|∆2| 6
N∑

i=1

∫ (∫ ∣∣δi2(x;xi)− δi2(x;x′)
∣∣m∞(dz′)

)
mN

t (dz)

6

N∑

i=1

∫∫
MF

mmW1(µx, µx−i)|x′ − xi|m∞(dz′)mN
t (dz)

6

N∑

i=1

∫∫
MF

mm

N(N − 1)

N∑

j=1, j 6=i

|xi − xj ||x′ − xi|m∞(dz′)mN
t (dz)

6
MF

mm

2N(N − 1)

N∑

i=1

∫∫ N∑

j=1, j 6=i

(
|xi − xj |2 + |x′ − xi|2

)
m∞(dz′)mN

t (dz)

6
MF

mm

2N(N − 1)

( N∑

i,j=1
i 6=j

E
[∣∣Xi

t −Xj
t

∣∣2
]
+ (N − 1)

N∑

i=1

E
[∣∣Xi

t − X̃ ′
∞
∣∣2
])
.

Using the same method we used for ∆1, we control the }rst term by

N∑

i,j=1
i 6=j

E
[∣∣Xi

t −Xj
t

∣∣2
]
6 6N(N − 1)

(
1

N
W 2

2

(
mN

t ,m
⊗N
∞
)
+ Varmx

∞

)
.

For the second term we work again under the L2-optimal plan

Law
(
(Zi

t)
N
i=1, (Z̃

i
∞)Ni=1

)
∈ Π(mN

t ,m
⊗N
∞ )

and let Z̃ ′
∞ remain independent from the other variables. We have

N∑

i=1

E
[∣∣Xi

t − X̃ ′
∞
∣∣2
]
6 2

N∑

i=1

(
E
[∣∣Xi

t − X̃i
∞
∣∣2
]
+ E

[∣∣X̃i
∞ − X̃ ′

∞
∣∣2
])

6 2N

(
1

N
W 2

2

(
mN

t ,m
⊗N
∞
)
+ 2Varmx

∞

)
.

As a result,
|∆2| 6MF

mm

(
4

N
W 2

2

(
mN

t ,m
⊗N
∞
)
+ 5Varmx

∞

)
. (2.61)

Step 6: Conclusion. Inserting the bounds on the errors (2.60), (2.61) to the lower
bound of Fisher information (2.58), we obtain

I
(
mN

t

∣∣mN
∞
)
> 4ρ(1− ε)

(
FN
(
mN

t

)
−NF(m∞)

)

−
(
16ρMF

mm + 6(ε−1 − 1)
(
MF

mm

)2) 1

N
W 2

2

(
mN

t ,m
⊗N
∞
)

−
(
20ρMF

mm + 6(ε−1 − 1)
(
MF

mm

)2)Varmx
∞.

Thanks to the Poincaré inequality (2.8) for m∞ = m̂∞, its spatial variance satis}es

2ρVarm∞
(xi) 6 Em∞

[
|∇xi|2

]
= 1. (2.62)
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So Varmx
∞ =

∑d
i=1 Varm∞

(xi) 6 d/2ρ. Using the T2-transport inequality (2.9) for
m⊗N

∞ and the entropy sandwich Lemma 2.10 we bound the transport cost by

W 2
2

(
mN

t ,m
⊗N
∞
)
6

1

ρ
H
(
mN

t

∣∣m⊗N
∞
)
6

1

ρ

(
FN
(
mN

t

)
−NF(mt)

)
.

In the end we obtain EN
(
mN

T

)
6 EN

(
mN

s

)
− α

∫ T

s
Itdt where

It =
1

2
I
(
mN

t

∣∣mN
∞
)
+

1

2
I
(
mN

t

∣∣mN
∞
)

>
1

2

[
4(1− ε)ρ− MF

mm

N

(
16 + 6(ε−1 − 1)

MF
mm

ρ

)](
FN
(
mN

t

)
−NF(m∞)

)

+
1

2
I
(
mN

t

∣∣mN
∞
)
− dMF

mm

2ρ

(
10ρ+ 3(ε−1 − 1)MF

mm

)
.

We conclude by applying Grönwall’s lemma, as in the end of the proof of Theo-
rem 2.2.

2.5 Short-time behaviors and propagation of chaos
Our proof of the main theorem on the uniform-in-time propagation of chaos (The-
orem 2.6) relies on the exponential convergence in Theorems 2.2 and 2.3, where
the initial conditions are required to have }nite entropy and }nite Fisher informa-
tion. We aim to demonstrate in this section that the non-linear kinetic Langevin
dynamics exhibits the same regularization ezects in short time as the linear ones,
where the contributions from the non-linearity can be controlled. We will }rst
show the short-time Wasserstein propagation of chaos using synchronous coupling.
Then we adapt the regularization results for the linear dynamics to our setting and
show that for measure initial values of }nite second moment, the entropy and the
Fisher information are }nite for the ~ow at every positive time, where the short-
time Wasserstein propagation of chaos also plays a role. Finally we combine all the
estimates obtained to derive Theorem 2.6.

2.5.1 Synchronous coupling
We }rst show a lemma where synchronous coupling is applied to general McKean–
Vlasov dizusions. This lemma is also used to justify the approximation arguments
in the proof of Theorems 2.2 and 2.3.
Lemma 2.22. Let T > 0 and β, β′ : [0, T ] × P2(R

d) × Rd → Rd be measurable
and uniformly Lipschitz continuous in the last two variables and σ be a d × d real
matrix. Suppose the integral

∫ T

0
(|β(t, δ0, 0)|+|β′(t, δ0, 0)|)dt is }nite. Let (Zt)t∈[0,T ],

(Z ′
t)t∈[0,T ] be respective solutions to

dZt = β
(
t,Law(Zt), Zt

)
dt+ σdWt,

dZ ′
t = β′(t,Law(Z ′

t), Z
′
t

)
dt+ σdW ′

t ,

where W , W ′ are d-dimensional Brownians. If there exist constants Mm, Mz and
a progressively measurable δ : Ω × [0, T ] → R such that for every t ∈ [0, T ], every
m, m′ ∈ P2(R

d) and every x, x′ ∈ Rd,

|β(t,m,Zt)− β′(t,m′, Z ′
t)| 6MmW2(m,m

′) +Mz|Zt − Z ′
t|+ δt (2.63)
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almost surely, then for every t ∈ [0, T ],

W 2
2

(
Law(Zt),Law(Z ′

t)
)
6 e(2Mm+2Mz)t+1W 2

2

(
Law(Z0),Law(Z ′

0)
)

+ e2t

∫ t

0

e(2Mm+2Mz)(t−s) E
[
δ2s
]
ds.

Proof. From the uniformly Lipschitz continuity of b and b′ we have the uniqueness
in law and the existence of strong solution for both dizusions. So we can construct
(Zt, Z

′
t)t∈[0,T ] such that they share the same Brownian motion and satisfy

E
[
|Z0 − Z ′

0|2
]
=W 2

2

(
Law(Z0),Law(Z ′

0)
)
.

Consequently,

d(Zs − Z ′
s) =

[
b
(
s,Law(Zt), Zs

)
− b′

(
s,Law(Z ′

s), Z
′
s

)]
dt

and by Itō’s formula,

d|Zs − Z ′
s|2 = 2(Zs − Z ′

s) ·
[
β
(
s,Law(Zs), Zs

)
− β′(s,Law(Z ′

s), Z
′
s

)]
ds.

By (2.63) we have
∣∣β
(
s,Law(Zs), Zs

)
− β′(s,Law(Zs), Zs

)∣∣ 6MmW2

(
Law(Zs),Law(Z ′

s)
)

+Mz|Zs − Z ′
s|+ δs 6Mm E

[
|Zs − Z ′

s|2
]1/2

+Mz|Zs − Z ′
s|+ δs.

Hence
1

2
d|Zs − Z ′

s|2 6Mz|Zs − Z ′
s|2 +Mm E

[
|Zs − Z ′

s|2
]1/2|Zs − Z ′

s|+ |Zs − Z ′
s|δs.

By Cauchy–Schwarz,

d|Zs − Z ′
s|2 6 (2Mz +Mm + t−1)|Zs − Z ′

s|2 +Mm E
[
|Zs − Z ′

s|2
]
+ tδ2s .

Taking expectations on both sides and applying Grönwall’s lemma, we obtain

E
[
|Zt −Z ′

t|2
]
= e2(Mz+Mm)t+1 E

[
|Z0 −Z ′

0|2
]
+ t

∫ t

0

e2(Mz+Mm+t−1)(t−s) E
[
δ2s
]
ds

6 e2(Mz+Mm)t+1 E
[
|Z0 − Z ′

0|2
]
+ e2t

∫ t

0

e2(Mz+Mm)(t−s) E
[
δ2s
]
ds,

from which the desired inequality follows.

Since the }nite-time propagation of chaos does not depend on the gradient
structure of the dizusions, we introduce a more general setting. Let b : P2(R

2d)×
Rd × Rd → R be a mapping that is Lipschitz in space and velocity: there exist
positive constants M b

x, M b
v such that

∀x, x′, v, v′ ∈ Rd, ∀m ∈ P2(R
2d),

|b(m,x, v)− b(m,x′, v′)| 6M b
x|x− x′|+M b

v |v − v′|. (2.64)
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We suppose also that the functional derivatives δb
δm
, δ2b
δm2 exist with the following

bounds: there exist positive constants M b
m, M b

mm such that

∀m ∈ P2(R
2d), ∀z, z′ ∈ R2d, |Dmb(m, z, z

′)|op 6M b
m, (2.65)

and

∀m,m′ ∈ P2(R
2d), ∀z ∈ R2d,

∣∣∣∣
∫∫ [

δ2b

δm2
(m′, z, z′, z′)− δ2b

δm2
(m′, z, z′, z′′)

]
m(dz′)m(dz′′)

∣∣∣∣ 6M b
mm. (2.66)

We consider the following mean }eld dynamics:

dXt = Vtdt,

dVt = b
(
Law(Xt, Vt), Xt, Vt

)
dt+

√
2dWt,

(2.67)

and the corresponding particle system:

dXi
t = V i

t dt,

dV i
t = b

(
µ(Xt,Vt), X

i
t , V

i
t

)
dt+

√
2dW i

t , where µ(Xt,Vt) =
1

N

N∑

i=1

δ(Xi
t ,V

i
t )

,
(2.68)

and i = 1, . . . , N . In both equations Wt, W i
t are standard Brownians and (W i

t )
N
i=1

are independent from each other. The dynamics (2.67), (2.68) are well de}ned
globally in time thanks to the Lipschitz continuity (2.64) and we denote by P and
PN the respective associated semigroups. That is to say, if (Xt, Vt) solves (2.67)
and Law(X0, V0) = µ, then P ∗

t µ := Law(Xt, Vt) and (Ptf)(µ) :=
〈
f, (Pt)

∗µ
〉

for
bounded measurable f : R2d → R; if (Xi

t , V
i
t )

N
i=1 solves (2.68) and Law(X0,V0) =

µN , then
(
PN
t

)∗
µN := Law(Xt,Vt) and

(
PN
t f

N
)
(µN ) :=

〈
fN ,

(
PN
t

)∗
µN
〉

for
bounded measurable fN : R2dN → R. We also de}ne the tensor product of the
mean }eld semigroup:

(
P⊗N
t fN

)
(µ) :=

〈
fN , (P ∗

t µ)
⊗N
〉
.

Using the previous Lemma 2.22 as a building block, we now show the }nite-time
propagation of chaos result.

Proposition 2.23 (Finite-time propagation of chaos). Assume b satis}es (2.64)
and (2.65), (2.66), and let N > 2. Then there exist a positive constant C depending
on M b

x, M b
v , M b

m and M b
mm such that for every m ∈ P2(R

2d) and mN ∈ P2(R
2dN ),

and every T > 0,

W 2
2

((
PN
T

)∗
mN , (P ∗

Tm)⊗N
)
6 CeCTW 2

2

(
mN ,m⊗N

)
+ C(eCT − 1)(Varm0 + d).

(2.69)

Proof. We apply Lemma 2.22 with

βi(t,mN , z) =
(
vi, b(µ(x,v), x

i, vi)
)T
,

β′i(t,mN , z) =
(
vi, b(P ∗

t m,x
i, vi)

)T
,

δ2t :=
N∑

i=1

∣∣δit
∣∣2 :=

N∑

i=1

∣∣b
(
µ(Xt,Vt), X

i
t , V

i
t

)
− b
(
P ∗
t m,X

i
t , V

i
t

)∣∣2,
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and Mz :=
√
2M b

x ∨
√

2(M b
v)

2 + 1, Mm := 0. We then obtain

W 2
2

((
PN
t

)∗
mN , (P ∗

t m)⊗N
)
6 e2Mzt+1W 2

2

(
mN

0 ,m
⊗N
0

)
+ e2t

∫ t

0

e2Mz(t−s) E
[
δ2t
]
ds.

So it remains to bound E[δ2t ]. By enlarging the underlying probability space, we
construct the random variable Z̃t =

(
X̃ ′

t, Ṽ
′
t

)
∼ (P ∗

t m)⊗N such that

N∑

i=1

E
[∣∣Zi

t − Z̃
′i
t

∣∣2
]
=W 2

2

((
PN
t

)∗
mN , (P ∗

t m)⊗N
)
.

This implies in particular

E
[
W 2

2

(
µ(Xt,Vt), µ(X̃′

t,Ṽ
′

t )

)]
6

1

N
W 2

2

(
mN

t ,m
⊗N
t

)
. (2.70)

For each i, we decompose

δit =
(
b
(
P ∗
t m,Z

i
t

)
− b
(
µZ̃

′−i
t
, Zi

t

))
+
(
b
(
µZ̃

′−i
t
, Zi

t

)
− b
(
µZ̃′

t
, Zi

t

))

+
(
b
(
µZ̃′

t
, Zi

t

)
− b
(
µZt

, Zi
t

))
=: (I) + (II) + (III).

According to the assumption (2.4) we can apply Lemma B.3 to the }rst term and
obtain

E
[
(I)2

]
= E

[
E
[
(I)2

∣∣Zi
t

]]
6

(
M b

m

)2 Varmt

N − 1
+

M b
mm

4(N − 1)2
.

We then bound the second term by the M b
m-Lipschitz continuity:

E
[
(II)2

]
6
(
M b

m

)2
E
[
W 2

2

(
µZ̃

′−i
t
, µZ̃′

t

)]

6

(
M b

m

)2

N(N − 1)

∑

j:j 6=i

E
[∣∣Z̃ ′j

t − Z̃ ′i
t

∣∣2
]
=

2
(
M b

m

)2

N
VarP ∗

t m.

Finally by (2.70), we have

E
[
(III)2

]
6 (M b

m)2 E
[
W 2

2

(
µZt

, µZ̃′

t

)]
6

(
M b

m

)2

N
W 2

2

((
PN
t

)∗
mN , (P ∗

t m)⊗N
)
.

Hence

E
[
δ2t
]
=

N∑

i=1

E
[
|δit|2

]
6 C

[
1 + Varmt +W 2

2

((
PN
t

)∗
mN , (P ∗

t m)⊗N
)]

for some constant C = C
(
M b

m,M
b
mm

)
. By Itō’s formula the variance Varmt satis-

}es

d

dt
Varmt = 2

(
E
[
Ṽ 2
t

]
− E[Ṽt]

2
)
+ 2E

[
X̃t · b(P ∗

t m, Z̃t)
]

− 2E[X̃t] · E
[
b(P ∗

t m, Z̃t)
]
+ 2d 6 C ′(Varmt + d)
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for some C ′ = C ′(M b
z ,M

b
m

)
. Then Grönwall’s lemma yields Varmt 6 eC

′t Varm0+

(eC
′t − 1)d. Upon rede}ning the constants, we obtain for every t > 0,

W 2
2

((
PN
t

)∗
mN , (P ∗

t m)⊗N
)
6 e2Mzt+1W 2

2

(
mN ,m⊗N

)

+ Ct

∫ t

0

e2Mz(t−s)
[
W 2

2

((
PN
s

)∗
mN , (P ∗

sm)⊗N
)
+ eCs(Varm0 + d)

]
ds.

We then conclude by applying the integral version of Grönwall’s lemma.

2.5.2 From Wasserstein metric to entropy
We study in this section a logarithmic Harnack’s inequality for kinetic McKean–
Vlasov dynamics and the corresponding particle system. This inequality then im-
plies the regularization from Wasserstein to entropy.

Lemma 2.24 (Log-Harnack inequality for propagation of chaos). Assume b satis}es
(2.64), (2.65) and (2.66), and let N > 2. Then there exist a positive constant C
depending on M b

x, M b
v , M b

m and M b
mm such that for every m ∈ P2(R

2d) and
mN ∈ P2(R

2dN ), every measurable function fN : R2dN → (0,+∞) that is lower
bounded away from 0 and upper bounded, and every T > 0,

(
PN
T log fN

)
(mN ) 6 log

(
P⊗N
T fN

)
(m) + C

(
1

(T ∧ 1)3
+ eCT

)
W 2

2

(
mN ,m⊗N

)

+ C(eCT − 1)(Varm+ d). (2.71)

Consequently,

H
((
PN
T

)∗
mN

∣∣∣(P ∗
Tm)⊗N

)
6 C

(
1

(T ∧ 1)3
+ eCT

)
W 2

2

(
mN ,m⊗N

)

+ C(eCT − 1)(Varm+ d). (2.72)

Proof. Let us }rst prove the log-Harnack inequality (2.71) for compactly supported
m and mN .
Constructing a bridge. Fix T > 0 and let (X̃i

t , Ṽ
i
t )

N
i=1 be N independent duplicates

of the solution to (2.67) with the initial condition Law(X̃i
0, Ṽ

i
0 ) = m for i = 1, . . . ,

N . We denote the N -independent Brownians by W̃ i
t . By enlarging the underlying

probability space, we construct random variables X0,V0 such that
N∑

i=1

E
[∣∣Xi

0 − X̃i
0

∣∣2 +
∣∣V i

0 − Ṽ i
0

∣∣2
]
=W 2

2

(
mN ,m⊗N

)
.

De}ne for i = 1, . . . , N the stochastic processes

dXi
t = V i

t dt, (2.73)

dV i
t =

(
b
(
P ∗
t m, X̃

i
t , Ṽ

i
t

)
− V i

0 − Ṽ i
0

T
+
d

dt

(
t(T − t)

)
vi
)
dt+

√
2dW̃ i

t , (2.74)

where
vi :=

6

T 3

(
−
(
Xi

0 − X̃i
0

)
+
T

2

(
V i
0 − Ṽ i

0

))
. (2.75)
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The dizerence processes
(
Xi

t − X̃i
t , V

i
t − Ṽ i

t

)
satisfy

d
(
V i
t − Ṽ i

t

)
= −V

i
0 − Ṽ i

0

T
dt+ d

(
t(T − t)

)
vi,

d
(
Xi

t − X̃i
t

)
=
t− T
T

(
V i
0 − Ṽ i

0

)
dt+ t(T − t)vidt,

so that

V i
t − Ṽ i

t =
T − t
T

(
V i
0 − Ṽ i

0

)
+

6t(T − t)
T 3

(
−
(
Xi

0 − X̃i
0

)
+
T

2

(
V i
0 − Ṽ i

0

))
, (2.76)

Xi
t − X̃i

t = −
t(t− T )2

T

(
V i
0 − Ṽ i

0

)
+
T 3 − 3Tt2 + 2t3

T 3

(
Xi

0 − X̃i
0

)
. (2.77)

In particular Xi
T = X̃i

T and V i
T = Ṽ i

T .

Change of measure. De}ne

ξit :=
1√
2

(
b
(
P ∗
t m, X̃

i
t , Ṽ

i
t

)
− b
(
µ(Xt,Vt), X

i
t , V

i
t

)
+
Ṽ i
0 − V i

0

T
+
d

dt

(
t(T − t)

)
vi
)

and δbit := b
(
P ∗
t m,Z

i
t

)
− b
(
µZt

, Zi
t

)
. It satis}es

∣∣ξit
∣∣ 6 C

∣∣δbit
∣∣+ C

(
M b

x +
M b

v

T
+

1

T 2

)(∣∣Xi
0 − X̃i

0

∣∣+ T
∣∣V i

0 − Ṽ i
0

∣∣) (2.78)

for some universal constant C. In the following C may change from line to line and
depend on the constants M b

x, M b
v , M b

m and M b
mm. Set W i

· := W̃ i
· +

∫ ·
0
ξitdt and

R· := exp
[
−

N∑

i=1

(∫ ·

0

ξitdW̃
i
t +

1

2

∫ ·

0

∣∣ξis
∣∣2dt

)]

which is a local martingale. Then (Xi, V i,W i) solves (2.68). Since m, mN are
both compactly supported,

∣∣Xi
0 − X̃i

0

∣∣,
∣∣V i

0 − Ṽ i
0

∣∣ are bounded almost surely. The
dizerence in drift δbit has uniform linear growth in Xt, Vt, and therefore uniform
linear growth in X̃t, Ṽt. We then apply Lemma B.4 in Appendix B.3 to obtain that
R· is really a martingale. By Girsanov’s theorem W i

t are independent Brownians
under the new probability Q = RP. Since X0, V0, X̃0, Ṽ0 are independent from
the Brownian motions we have

N∑

i=1

EQ
[∣∣Xi

0 − X̃i
0

∣∣2 +
∣∣V i

0 − Ṽ i
0

∣∣2
]
=W 2

2

(
mN ,m⊗N

)
.

Hence for measurable functions fN : R2dN → R that are lower bounded away from
0 and upper bounded, we have

(
PN
T log fN

)
(mN ) = E

[
RT log fN (XT ,VT )

]

6 E[RT logRT ] + logE
[
fN (XT ,VT )

]

= E[RT logRT ] + logE
[
fN (X̃T , ṼT )

]

= E[RT logRT ] + log
(
P⊗N
T fN

)
(m).
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So it remains to bound E[RT logRT ]. We observe

E[RT logRT ] = EQ[logRT ] =
1

2
EQ

[ N∑

i=1

∫ T

0

∣∣ξit
∣∣2dt

]

6 CT

(
M b

x+
M b

v

T
+

1

T 2

)2
EQ
[∣∣Xi

0− X̃i
0

∣∣2+T 2
∣∣V i

0 − Ṽ i
0

∣∣2
]
+C EQ

[∫ T

0

N∑

i=1

∣∣δbit
∣∣2dt

]

6
C(T ∨ 1)3

(T ∧ 1)3
W 2

2

(
mN ,m⊗N

)
+ C EQ

[∫ T

0

N∑

i=1

∣∣δbit
∣∣2dt

]
.

Arguing as in the proof of Proposition 2.23, we have
N∑

i=1

EQ
[∣∣δbit

∣∣2
]
6 CeCt

(
W 2

2

(
mN ,m⊗N

)
+ Varm+ d

)
,

So the log-Harnack inequality (2.71) is proved for compactly supported mN and m.
Approximation. Now treat general mN , m of }nite second moment, but not nec-
essarily compact supported. Take two sequences (mN

k )k∈N, (mk)k∈N of compactly
supported measures such that mN

k → mN and mk → m in respective topologies of
P2. For continuous fN such that log fN is bounded, we have
(
PN
t log fN

)(
mN

k

)
→
(
PN
t log fN

)
(mN ),

(
P⊗N
t fN

)
(mk)→

(
P⊗N
t fN

)
(m)

by the P2-continuities of
(
PN
t

)∗ and P ∗
t . So the log-Harnack inequality (2.71)

is shown for every continuous fN which is both lower and upper bounded, and
for general mN and m of }nite second moment. For a doubly bounded but not
necessarily continuous fN we take a sequence of continuous and uniformly bounded
(fNk )k∈N that converges to fN in the σ(L∞, L1) topology. We have
(
PN
t log fNk

)
(mN )→

(
PN
t log fN

)
(mN ),

(
P⊗N
t fNk

)
(m)→

(
P⊗N
t fN

)
(m)

since both (PN
t )∗mN and P ∗

t m are absolutely continuous with respect to the
Lebesgue measure according to Lemma 2.12. So the desired inequality (2.71) is
shown in full generality. Finally, to obtain (2.72) we de}ne another sequence

gNk :=

((
PN
T

)∗
mN

(P ∗
Tm)⊗N

∧ k
)
∨ 1

k

for k ∈ N. We apply the Harnack’s inequality (2.71) to gNk and take the limit
k → +∞.

Using the known results on log-Harnack inequalities we can also obtain the
regularization in the beginning of the dynamics.

Proposition 2.25. Assume F satis}es (2.2) and there exist probabilities m∞,
mN

∞ satisfying (2.18), (2.19) respectively and having }nite exponential moments.
Let m0 (resp. mN

0 ) be the initial value of the mean }eld dynamics (2.12) (resp.
the particle system dynamics (2.13)) of }nite second moment. Then there exist a
positive constant C depending on MF

mm and MF
mx such that for every t ∈ (0, 1],

H(mt|m∞) 6
C

t3
W 2

2 (m0,m∞) (resp. H
(
mN

t

∣∣mN
∞
)
6
C

t3
W 2

2

(
mN

0 ,m
N
∞
)
). (2.79)
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Proof. Note that mt = P ∗
t m0 and mN

t =
(
PN
t

)∗
mN

0 where Pt and PN
t are the

McKean–Vlasov and the linear semigroup corresponding to the SDEs (2.10), (2.11),
respectively. We then apply the log-Harnack inequality for McKean–Vlasov dizu-
sions [193, Proposition 5.1] and obtain

H(mt|m∞) 6
C

t3
W 2

2 (mt,m∞)

for t ∈ (0, 1]. For the particle system we apply the classical log-Harnack inequality
(which corresponds to the case where M b

m and M b
mm are both equal to 0 in our

Lemma 2.24, i.e. no mean }eld dependence) and obtain

H
(
mN

t

∣∣mN
∞
)
6
C

t3
W 2

2

(
mN

t ,m
N
∞
)

for t ∈ (0, 1] and it is clear from the computations in Lemma 2.24 that the constant
C can be chosen to depend only on MF

mx and MF
mm.

2.5.3 From entropy to Fisher information
We then adapt Hérau’s functional to our setting to obtain the regularization from
entropy to Fisher information.

Proposition 2.26. Assume that F satis}es (2.2) and (2.1), and that there exist
probabilities m∞, mN

∞ satisfying (2.18), (2.19) respectively and having }nite expo-
nential moments. Let m0 (resp. mN

0 ) be the initial value of the mean }eld dynamics
(2.12) (resp. the particle system dynamics (2.13)) of }nite second moment and }nite
entropy. Then there exist a positive constant C depending on MF

mm and MF
mx such

that for every t ∈ (0, 1],

I(mt|m̂t) 6
C

t3

(
F(m0)−F(m∞)

)
(resp. I

(
mN

t

∣∣mN
∞
)
6
C

t3
H
(
mN

0

∣∣mN
∞
)
). (2.80)

Proof. First derive the bound for the mean }eld system. We suppose additionally
F satis}es (2.32) and m0/m∞ ∈ A+ without loss of generality, as they can be
removed by the approximation argument in the end of the proof of Theorem 2.2.
Let a, b, c be positive constants to be determined. Motivated by [221, Theorem
A.18], we de}ne Hérau’s Lyapunov functional for mean }eld measures:

E(t,m) = F (m) +
1

2

∫
|v2|m+H(m) + at

∫
|∇v log η|2m

+ 2bt2
∫
∇x log η · ∇v log ηm+ ct3

∫
|∇x log η|2m

where η := m/m̂. From the argument of Theorem 2.2, we know that E(t,mt) is
well de}ned and t 7→ E(t,mt) admits derivative satisfying d

dt
E(t,mt) 6 −Y T

t K
′
tYt,

where K ′
t is equal to




1− a+ 2at− 2
(
MF

mx +MF
mm

)
bt2 −2bt2 −2at− 4bt− 2MF

mmct
3 0

0 2at −2MF
mxct

3 −4bt2
0 0 2bt2 − 3ct2 0
0 0 0 2ct3






2.5 Short-time behaviors and propagation of chaos 151

and Yt is de}ned by (2.40). We then choose the constants a, b, c depending only
on MF

mx and MF
mm such that ac > b2 and K ′

t � 0 for t ∈ [0, 1]. Hence t 7→ E(t,mt)
is non-increasing on [0, 1] and the Fisher bound follows: for every t ∈ (0, 1],

I(mt|m̂t) 6
C

t3

(
E(t,mt)−F(mt)

)

6
C

t3

(
E(t,mt)−F(m∞)

)

6
C

t3

(
E(0,m0)−F(m∞)

)

=
C

t3

(
F(m0)−F(m∞)

)
.

Here, in the second inequality, we use F(mt) > F(m∞) which is a consequence of
Lemma 2.9. Note that this inequality relies on the convexity of F .

For the particle system we suppose additionally UN satis}es (2.47) and mN
0

/
mN

∞
satis}es (2.48) without loss of generality, as they can be removed by the argument
in the end of the proof of Lemma 2.19. We de}ne

EN (t,mN ) = FN (mN ) +
1

2

∫
|v2|mN +H(mN ) + at

∫ ∣∣∇v loghN
∣∣2mN

+ 2bt2
∫
∇x loghN · ∇v loghNmN + ct3

∫ ∣∣∇x loghN
∣∣2mN

where hN := mN
/
mN

∞. By the computations in Lemma 2.19, we have

d

dt
EN
(
t,mN

t

)
6 −(Y N

t )TK ′′
t Y

N
t ,

where K ′′
t is equal to




1− a+ 2at− 2
(
MF

mx +MF
mm

)
bt2 −2bt2 −2at− 4bt 0

2at −2
(
MF

mx +MF
mm

)
ct3 −4bt2

2bt2 − 3ct2 0
2ct3




and Y N
t is de}ned by (2.50). We choose again the constants a, b, c depending only

on MF
mx and MF

mm such that ac > b2 and t 7→ HN (t,mN
t ) is non-increasing on

[0, 1]. Hence we have for every t ∈ (0, 1],

I
(
mN

t

∣∣mN
∞
)
6
C

t3

(
EN
(
t,mN

t

)
−FN

(
mN

t

))

6
C

t3

(
EN
(
t,mN

t

)
−FN

(
mN

∞
))

6
C

t3

(
EN
(
0,mN

0

)
−FN

(
mN

∞
))

=
C

t3

(
FN
(
mN

0

)
−FN

(
mN

∞
))

=
C

t3
H
(
mN

0

∣∣mN
∞
)
.

Similarly, we use the fact that FN
(
mN

t

)
−FN

(
mN

∞
)
= H

(
mN

t

∣∣mN
∞
)
> 0 to get the

second inequality. Here the dizerence is that the N -particle system is linear and
this fact does not rely on the convexity of F .
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2.5.4 Propagation of chaos
Using all the regularization results proved in Sections 2.5.2 and 2.5.3, we can }nally
give the proof of the main theorem.

Proof of Theorem 2.6. Let m0 and mN
0 be the respective initial values for the dy-

namics (2.12), (2.13) and suppose they have }nite second moment. The }rst claim
of the theorem (2.22) can be written as two bounds on W 2

2

(
mN

t ,m
⊗N
t

)
, the }rst of

which follows directly from the }nite-time bound in Proposition 2.23. The second
claim (2.23) is nothing but Lemma 2.24. It remains to }nd some C2, κ depending
only on ρx, MF

mx, MF
mm and prove

W 2
2

(
mN

t ,m
⊗N
t

)
6

C2N

(t ∧ 1)6
W 2

2 (m0,m∞)e−κt

+
C2

(t ∧ 1)6
W 2

2

(
mN

0 ,m
⊗N
∞
)
e−(κ−C2/N)t +

C2d

κ− C2/N
(2.81)

for t > 0. Set t1 = t∧1
2 and t2 = t∧1. By the Wasserstein to entropy regularization

result in Proposition 2.25, we can }nd a constant C depending on MF
mx and MF

mm

such that

H(mt1 |m∞) 6
C

t31
W 2

2 (m0,m∞) and H
(
mN

t1

∣∣mN
∞
)
6
C

t31
W 2

2

(
mN

0 ,m
N
∞
)
.

In the following C may change from line to line and may depend additionally
on the LSI constant ρ. Applying the regularization in Proposition 2.26 to the
dynamics with mt1 and mN

t1
as respective initial values and noting that t2 − t1 6 1

by de}nition, we obtain

I(mt2 |m̂t2) 6
C

(t2 − t1)3
(
F(mt1)−F(m∞)

)
,

I
(
mN

t2

∣∣m̂N
t2

)
6

C

(t2 − t1)3
H
(
mN

t1

∣∣mN
∞
)
,

whereas F(mt1)−F(m∞) is bounded by the entropy sandwich in Lemma 2.9:

F(mt1)−F(m∞) 6 CH(mt1 |m∞).

Consequently, both the measures mt2 and mN
t2

have }nite entropy and }nite Fisher
information, and we can apply respectively Theorems 2.2 and 2.3 to the dynamics
with initial values mt2 and mN

t2
. We then obtain

F(mt)−F(m∞) 6
C

t61
W 2

2 (m0,m∞)e−κ(t−t2)

and

FN
(
mN

t

)
−NF(m∞) 6

C

t61
W 2

2

(
mN

0 ,m
⊗N
∞
)
e−(κ−C/N)(t−t2) +

Cd

κ− C/N .
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Using consecutively the triangle inequality, Talagrand’s inequality (2.9) for m⊗N
∞

and the entropy inequalities in Lemmas 2.9 and 2.10, we have

W 2
2

(
mN

t ,m
⊗N
t

)
6 2W 2

2

(
mN

t ,m
⊗N
∞
)
+ 2NW 2

2 (mt,m∞)

6
2

ρ

(
H
(
mN

t

∣∣m⊗N
∞
)
+NH(mt|m∞)

)

6
2

ρ

(
FN
(
mN

t

)
−NF(m∞) +N

(
F(mt)−F(m∞)

))

So the inequality (2.81) is proved by combining the above three inequalities.
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Chapter 3

Logarithmic Sobolev
inequalities for
non-equilibrium steady states

Abstract. We consider two methods to establish log-Sobolev inequalities for the in-
variant measure of a dizusion process when its density is not explicit and the curva-
ture is not positive everywhere. In the }rst approach, based on the Holley–Stroock
and Aida–Shigekawa perturbation arguments [J. Stat. Phys., 46(5-6):1159–1194,
1987; J. Funct. Anal., 126(2):448–475, 1994], the control on the (non-explicit) per-
turbation is obtained by stochastic control methods, following the comparison tech-
nique introduced by Conforti [Ann. Appl. Probab., 33(6A):4608–4644, 2023]. The
second method combines the Wasserstein-2 contraction method, used in [Ann. Henri
Lebesgue, 6:941–973, 2023] to prove a Poincaré inequality in some non-equilibrium
cases, with Wang’s hypercontractivity results [Ann. Probab., 37(4):1587–1604,
2009].

Based on joint work with Pierre Monmarché.

3.1 Introduction
3.1.1 Overview
A probability measure µ on Rd is said to satisfy a logarithmic Sobolev inequality
(LSI) with constant CLS > 0 if for all smooth and compactly supported function f
on Rd with

∫
f2 dµ = 1, we have

∫

Rd

f2 ln f2 dµ 6 2CLS

∫

Rd

|∇f |2 dµ .

It is related to the long-time convergence of dizusion processes and concentration
inequalities, see [12] and references therein for general considerations on this topic.
The main question addressed here is to establish such an LSI in cases where µ has
no explicit density but is de}ned as the invariant measure of a dizusion process
(Zt)t>0 satisfying

dZt = b(Zt) dt+ σ dBt , (3.1)
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where b ∈ C1(Rd,Rd), σ is a constant matrix and B is a d-dimensional Brownian
motion. Among other applications, this is motivated by non-equilibrium statistical
physics models, such as [122, 123, 67]. In this literature, these non-explicit invariant
measures are referred to as Non-Equilibrium Steady States (NESS).

Many criteria to establish LSI are known, but most of them require an explicit
expression for µ (for instance in order to use bounded or Lipschitz perturbation
arguments) or the process (3.1) to be reversible with respect to µ (for instance the
Lyapunov-based results of [10, 42]). In fact, denoting by

L = b · ∇+Σ : ∇2

the generator of (3.1) (where Σ = σσT/2 and Σ : ∇2 =
∑

i,j Σij∂zi∂zj ), some
arguments based on reversibility (such as those of [10, 42]) may sometimes be
extended to non-reversible cases when the dual L∗ of L in L2(µ) is known. Since

L∗ = (2Σ∇ lnµ− b) · ∇+Σ : ∇2 ,

knowing L∗ requires an explicit expression of µ. A notable exception is the use
of Bakry–Émery curvature conditions: if there exists ρ > 0 such that, for all x,
y ∈ Rd, (

b(x)− b(y)
)
· (x− y) 6 −ρ|x− y|2 , (3.2)

then the dizusion (3.1) admits a unique invariant measure that satis}es an LSI with
constant |Σ|/ρ, see [41, 165], even when the process is neither reversible nor elliptic.
However, such a contraction condition is very restrictive. If (3.2) holds only for x,
y outside some compact set, we can decompose b = b0 + b1 where b0 satis}es a
similar condition on the whole Rd and b1 is compactly supported. Then, we know
that the invariant measure µ0 of the process with generator L0 = b0 · ∇ + Σ : ∇2

satis}es an LSI, but to the best of our knowledge it is not known how to transfer
the result to µ in this general case.

In this work, we will consider two cases:

• In the }rst one, µ is a perturbation of an explicit measure µ0, invariant
for L0 = b0 · ∇ + Σ : ∇2 for some b0. Our method relies on the bounded
perturbation result of Holley and Stroock [113] and the Lipschitz perturbation
result of Aida and Shigekawa [1]. In other words, the key point is to prove
that ln(µ/µ0) is the sum of a bounded function and a Lipschitz function.
This is done by seeing this quantity as the long-time limit of the solution of a
(parabolic) Hamilton–Jacobi–Bellman (HJB) equation and using a stochastic
control representation for the solution together with a coupling argument,
following the method introduced by Conforti in [61]. This approach is applied
to the elliptic case and to a non-elliptic kinetic case.

• In the second one, we consider the high-dizusivity elliptic framework of [168],
namely (3.2) holds for every y once x lies outside some compact set and
σ = σ̄Id where σ̄ > 0 is large enough. Under these conditions, on the one
hand, it is proven in [168] that µ satis}es a Poincaré inequality, using the
large-time contraction of the Wasserstein-2 distance along the dizusion semi-
group. On the other hand, as established by Wang in [228] (in the reversible
case but we will see that the proof applies without any change in the non-
reversible case), the semi-group is hypercontractive, which implies a so-called
defective LSI (which is well known in the reversible case and turns out to be
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true in general). The Poincaré inequality together with the defective LSI is
equivalent to the LSI.

In fact, thanks to the powerful [223, Corollary 1.2], the defective LSI alone is
already equivalent to a tight LSI for irreducible dizusion processes. This has been
used in subsequent works [226, 225, 121] for both elliptic and kinetic processes.
However this argument is non-constructive and thus does not provide explicit con-
stants, similarly to the tightening argument based on weak Poincaré inequalities
in [198, Proposition 1.3]. This is in our contrast to our approach, as illustrated in
Chapter 4 which is based on the present work.

The rest of this work is organized as follows. The results are stated in the
remainder of Section 3.1. The results based on perturbation, Theorems 3.1 and
3.6, are proven in Section 3.2. Section 3.3 is devoted to the proofs for the defective
LSI. A coupling construction for the kinetic Langevin process, used in the proof of
Theorem 3.6, is postponed to Appendix 3.4.

3.1.2 Perturbation approach: the elliptic case
In the elliptic case where Σ = Id, we get the following, proven in Section 3.2.1.

Theorem 3.1. Assume that Σ = Id and b = b0 + b1 for some b0, b1 ∈ C1(Rd,Rd)
with bounded derivatives such that the generator L0 = b0 ·∇+∆ admits a unique C2

and positive invariant probability density µ0 satisfying an LSI with constant C0 > 0.
Write b̃ := 2∇ lnµ0 − b and ϕ := −∇ · b1 + b1 · ∇ lnµ0. Assume that there exist L,
R, Mϕ, Lϕ > 0 and ρ > 0 such that ϕ = ϕ1 + ϕ2 with ϕ1 being Mϕ-bounded and
ϕ2 being Lϕ-Lipschitz, and for all x, y ∈ Rd,

(
b̃(x)− b̃(y)

)
· (x− y) 6

{
−ρ|x− y|2 if |x− y| > R,

L|x− y|2 otherwise.
(3.3)

Finally, assume that the law of Zt solving (3.1) converges weakly for all initial
condition as t → ∞ to a unique invariant measure µ on Rd. Then µ satis}es an
LSI with constant CLS = CLS(C0, ρ, L,R, d;M

ϕ, Lϕ).

Notice that, when Σ = Id, the carré du champ operator Γ(f) = 1
2L(f2)− fLf

is equal to |∇f |2 and is the same for the dual operator L∗. In particular, the LSI
is equivalent to the constant-rate decay of the relative entropy,

∀ν � µ , H(P ∗
t ν|µ) 6 e−t/CLSH(ν|µ) , (3.4)

where Pt = exp(tL) is the semi-group generated by L, and the relative entropy H
is de}ned by H(ν|µ) =

∫
ln(dν/dµ) dν (see e.g. [12, Theorem 5.2.1]; reversibility is

not used in the proof).
Example 3.2. Consider on R2 the SDE

dXt =
(
f(|Xt|)X⊥

t −Xt −∇V (Xt)
)

dt+
√
2dBt ,

where (u, v)⊥ = (v,−u), f ∈ C1(R+,R) and V ∈ C2(R2). We can decompose the
drift b = b0 + b1 as

b0(x) = x⊥f(|x|)− x , b1(x) = −∇V (x) , (3.5)
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or, alternatively,

b0(x) = −∇V (x)− x , b1(x) = f(|x|)x⊥ . (3.6)

In the }rst case (3.5), the invariant measure of b0 · ∇+∆ is the standard Gaussian
measure µ0(x) = (2π)−d/2 exp(−|x|2/2) and, using the notations of Theorem 3.1,

b̃(x) = −f(|x|)x⊥ − x+∇V (x) , ϕ(x) = ∆V (x) +∇V (x) · x .
For instance, if f(|x|) is constant for |x| large enough, then the rotating part does
not intervene in the condition (3.3) outside some compact set, which means that this
condition is satis}ed as soon as (x−y) ·

(
∇V (x)−∇V (y)

)
6 η|x−y|2 outside some

compact set for some η < 1. In this situation, ergodicity for (3.1) is easily shown
using Harris Theorem. Then Theorem 3.1 applies as soon as ϕ is Lipschitz, which
is for instance the case if V is compactly supported (which implies the previous
condition). Notice that here we do not use the fact that the perturbative term
b1 = −∇V is a gradient.

If, alternatively, we use the decomposition (3.6), then µ0 is the probability
density proportional to exp

(
−|x|2/2− V (x)

)
and

b̃(x) = −f(|x|)x⊥ − x−∇V (x) , ϕ(x) = f(|x|)x⊥ · ∇V (x) .

Then, Theorem 3.1 applies for instance if f is compactly supported and (x − y) ·(
∇V (x)−∇V (y)

)
> −η|x− y|2 for some η < 1 outside some compact set.

Example 3.3. Let us check how Theorem 3.1 reads in the classical reversible case,
namely taking

b0(x) = −∇U(x) , b1(x) = −∇W (x)

for some U , W ∈ C2(Rd), so that µ0 ∝ e−U , µ ∝ e−U−W and, with the notations
of Theorem 3.1,

b̃(x) = −∇U(x) +∇W (x) , ϕ(x) = ∆W (x) +∇U(x) · ∇W (x) .

Hence, the conditions in Theorem 3.1 does not seem to be similar to those of
classical perturbation results in the reversible case. However, for instance, if we
take U(x) = |x|2/2 outside some compact set, then to get that x 7→ ∇U(x) ·∇W (x)
is Lipschitz one will typically require ∇W to be bounded, in which case the LSI for
µ follows from [1].
Example 3.4. We now consider a non-linear McKean-Vlasov equation on Rd:

∂tµt = ∇ ·
(
(∇V + λbµt

)µt +∇µt

)
(3.7)

where x 7→ µt(x) is a probability density on Rd (which we identify with the corre-
sponding probability measure), V ∈ C2(Rd) is a con}ning potential, λ ∈ R encodes
the non-linearity amplitude, ∇· stands for the divergence operator and, for all prob-
ability measure ν, bν ∈ C1(Rd). If µ∗ is a stationary measure for (3.7), it is the
invariant measure of the dizusion process with generator Lµ∗

where

Lµ = −(∇V + λbµ) · ∇+∆ .

Among other examples of interest where, for a given µ, bµ is not the gradient of
some potential, we can mention the competition models considered in [156], where
x = (x1, x2) ∈ R2p and

bµ(x1, x2) =

( ∫
Rp ∇x1K(x1, y2)µ(y1, y2) dy1 dy2
−
∫
Rp ∇x2K(y1, x2)µ(y1, y2) dy1 dy2

)
(3.8)
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for some K ∈ C2(R2p). In other words, the population is divided in two types
of individuals, the }rst type (resp. second) tends to maximize (resp. minimize) its
value of K averaged with respect to the population distribution of the other type.

In order to get an LSI for µ∗, for instance, it is straightforward to check that
the assumptions of Theorem 3.1 are met (with µ0 ∝ e−V ) under the following
condition:

Assumption 3.5. The potential V is strictly convex outside a compact, and its
hessian is bounded. There exists L′, C ′ > 0 such that, for all µ, bµ is L′-Lipschitz
and for all x ∈ Rd,

bµ(x) 6 C ′ 1 +
∫
Rd |y|µ(dy)
1 + |x| . (3.9)

In particular, the condition (3.9) is used to get that, for a given µ with }nite
expectation, ϕ is bounded (as |∇ lnµ0(x)| = |∇V (x)| 6 C(1+ |x|) for some C > 0).
The condition that ∇2V is bounded can be lifted if (3.9) is replaced by a stronger
decay of bµ(x).

For instance, in the case (3.8), the condition (3.9) holds when |∇xK(x, y)| 6
C/(1 + |x − y|2) for some constant C > 0 (and similarly for ∇yK). Indeed, then,
considering the }rst coordinate of (3.8) (the second one being similar), we bound

∣∣∣∣
∫

Rp

∇x1K(x1, y2)µ(y1, y2) dy1 dy2
∣∣∣∣ 6 C

∫

Rp

1

1 + |x− y2|2
µ(y1, y2) dy1 dy2

6
C

1 + |x| + CPµ[|Y2| > |x| −
√
|x|]

and the Markov inequality concludes. The fact that a stationary solution of (3.7)
has a }nite expectation is implied by Assumption 3.5 for λ small enough, as e.g.
w(x) = |x|2 is a Lyapunov function for (3.7).

Contrary to the linear case, obtaining an LSI for µ∗ is however not su{cient
to get the exponential convergence of the solution of (3.7) toward µ∗, as, even
under Assumption 3.5, several stationary solutions may exist [110]. However, this
is su{cient to conclude in the weak interaction regime (i.e. when λ is small enough),
provided the interaction drift is Lipschitz in terms of the non-linearity:

∃B > 0 s.t. ∀ν, ν′, ‖bν − bν′‖∞ 6 BW2(ν, ν
′) , (3.10)

where the W2-Wasserstein distance between two probability measures ν, ν′ is de-
}ned as

W2(ν, ν
′) = inf

π∈C(ν,ν′)

(∫

(Rd)2
|x− x′|2π(dx, dx′)

)1/2
,

with C(ν, ν′) the set of probability measures on (Rd)2 with marginal ν and ν′.
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Indeed, in that case, by a classical computation,

∂tH(µt|µ∗) =
∫

Rd

∂t(lnµt)µt + ln µt

µ∗
∂tµt

= ∂t

∫

Rd

µt +

∫

Rd

Lµt

(
ln µt

µ∗

)
µt

=

∫

Rd

Lµ∗

(
ln µt

µ∗

)
µt +

∫

Rd

(Lµt
− Lµ∗

)

(
ln µt

µ∗

)
µt

= −
∫

Rd

∣∣∣∣∇ ln µt

µ∗

∣∣∣∣
2

µt + λ

∫

Rd

∇ ln µt

µ∗
· (bµ∗

− bµt
)µt

6 −1

2

∫

Rd

∣∣∣∣∇ ln µt

µ∗

∣∣∣∣
2

µt +
1

2
B2λ2W2

2 (µt, µ∗) ,

where we used Cauchy–Schwarz and (3.10). Now, the LSI satis}ed by µ∗ implies
the Talagrand inequality

W2
2 (µt, µ∗) 6 CH(µt|µ∗)

(where C is the LSI constant of µ∗), see [180]. As a consequence, using that the
LSI constant of µ∗ is uniformly bounded over small values of λ (since Theorem 3.1
can be applied with the same constants Lϕ and Mϕ for all values of λ ∈ [0, λ0] for
any λ0 > 0), we get that

∂tH(µt|µ∗) 6 −εH(µt|µ∗)

for some ε > 0 for λ small enough. As a conclusion, we obtain that µ∗ is the unique
stationary solution of (3.7) and globally attractive.

Notice that (3.10) holds for the model (3.8) as soon as ∇2K is bounded, since
in that case,
∣∣∣∣
∫

Rp

∇x1
K(x1, y2)ν(y1, y2) dy1 dy2 −

∫

Rp

∇x1
K(x1, y2)ν

′(y1, y2) dy1 dy2
∣∣∣∣

6 ‖∇2K‖∞
∫

(Rp)2
|y2 − y′2|π(dy1 dy2, dy1 dy′1) ,

where π is any coupling of ν and ν′, so that conclusion follows by Cauchy–Schwarz
and taking the in}mum over all couplings (the second coordinate of bν − bν′ being
treated similarly).

3.1.3 Perturbation approach: the kinetic case
We consider in this section a non-equilibrium Langevin dizusion Z = (X,V ) on
Rd ×Rd solving

{
dXt = Vt dt
dVt = −∇U(Xt) dt+G(Xt, Vt) dt− γVt dt+

√
2γ dBt

(3.11)

for some γ > 0, U ∈ C2(Rd), G ∈ C1(R2d,Rd), as studied in [122, 169]. The
particular case where G depends only on V correspond to non-linear friction models,
see e.g. [160, 137].
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Contrary to the elliptic case, now, the LSI is not equivalent to the entropy decay
(3.4). However, from the LSI, the (hypocoercive) decay of the entropy along (Pt)t>0

(rather than (P ∗
t )t>0) can be obtained applying Theorems 9 and 10 of [166] even

without the explicit knowledge of the invariant measure.

Theorem 3.6. Assume that e−U is integrable and that the probability measure with
density proportional to e−U satis}es an LSI with constant C0. Let

ϕ(x, v) = −∇vG(x, v) +G(x, v) · v .

Assume that ϕ is Lϕ-Lipschitz and the drift writes

−∇U(x) +G(x,−v) = −Kx+ g(x, v)

for a positive-de}nite matrix K whose smallest eigenvalue is k > 0, and a function
g : R2d → R satisfying

|g(x, v)− g(x′, v′)| 6
{
L1|z − z′| if |x− x′|+ |v − v′| 6 R,

L2|z − z′| otherwise,

where |z − z′| =
√
|x− x′|2 + |v − v′|2 is the Euclidean distance, for some con-

stants R, L1, L2 > 0. If additionally 19max(1, γ)L2 6 min(1, k) and the law
of (Xt, Vt) solving (3.11) converges weakly for all initial condition as t → ∞ to
a unique invariant measure µ on R2d, then µ satis}es an LSI with a constant
CLS = CLS(C0,K, L1, L2, R, γ;L

ϕ).

The proof of this result is given in Section 3.2.2.
Remark 3.7. The assumptions of the kinetic perturbation theorem seem to be more
restrictive than the elliptic one. First, the drift in the kinetic case must be the sum
of a positive linear transform plus a perturbation term whose oscillation “grows
slowly enough” compared to the linear term, while in the elliptic case it only needs
to satisfy a weak convexity condition. This is because our proof is based on W1-
contraction of dizusion processes and in the kinetic case such contraction is harder
to establish (e.g. compare Theorem 3.20 to [83]). Second, the function ϕ in the
kinetic case must be Lipschitz while in the elliptic case it can be the sum of a
Lipschitz and a bounded function, due to the fact that the coupling of Theorem 3.20
does not allow us to obtain total variation bounds (dual to bounded functions) as
is done for the elliptic case.

3.1.4 Defective LSI approach
A measure µ ∈ P(Rd) is said to satisfy a defective log-Sobolev inequality if for all
f > 0 with

∫
f dµ = 1,

∫

Rd

f ln f dµ 6 A

∫

Rd

|∇f |2
f

dµ+B , (3.12)

for some constants A, B > 0. From [12, Proposition 5.1.3], such a defective LSI,
together with a Poincaré inequality

∀f ∈ L2(µ),

∫

Rd

(
f −

∫

Rd

f dµ
)2

dµ 6 C

∫

Rd

|∇f |2 dµ (3.13)
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for some constant C > 0, implies an LSI for µ with constant A′ = A+C(B + 2)/4
(i.e. (3.12) but with A replaced by A′ and B replaced by 0).

In some non-reversible elliptic cases, a Poincaré inequality has been established
in [168] (see Proposition 3.12 below). To improve this result into an LSI, it is thus
enough to obtain a defective LSI.

In the following for α, β > 1 we write ‖f‖α = (
∫
|f |α dµ)1/α and

‖Pt‖α→β = sup{‖Ptf‖β : f ∈ Lα(µ), ‖f‖α = 1} ,

where µ is the invariant measure of the semi-group Pt considered. The semi-group
is said to be hypercontractive if there exist t0 > 0, α < β such that ‖Pt0‖α→β <

∞. In that case without loss of generality we can assume that α = 1, as the
following easily follows from Hölder’s inequality (the proof is given in Section 3.3.1
for completeness):

Lemma 3.8. For all α, γ > 1,

‖Pt‖1→α 6 ‖Pt‖γα−1
α→(γα−1)/(γ−1) .

In the reversible settings, it is well-known that hypercontractivity implies a
defective LSI, see [12]. We show that it is also true in the non-reversible case. For
simplicity, we only consider the case where the dizusion matrix Σ is constant, since
this is anyway the case in [168]. In the reversible case, the proof relies on [12,
Proposition 5.2.6], whose proof requires reversibility. In the non-reversible case, we
replace this result by the following (proven in Section 3.3):

Proposition 3.9. Let (Pt)t>0 be a dizusion semi-group with invariant measure µ
and generator b · ∇+Σ : ∇2 where Σ is a constant dizusion matrix and b satis}es
the one-sided Lipschitz condition

∀x, y ∈ Rd,
(
b(x)− b(y)

)
· (x− y) 6 L|x− y|2 . (3.14)

Then, for all f > 0 with
∫
Rd f dµ = 1, all α > 0 and all t > 0,

∫

Rd

f ln f dµ 6
α+ 1

α
ln ‖Pt‖1→1+α + |Σ|e

2Lt − 1

2L

∫

Rd

|∇f |2
f

dµ .

In the remaining of this section, we focus on the following elliptic case.

Assumption 3.10. The semi-group (Pt)t>0, whose generator reads b · ∇+ σ∆ for
σ > 0, admits an invariant measure µ and there exist L, ρ, R > 0 such that

∀x, y ∈ Rd,
(
b(x)− b(y)

)
· (x− y) 6

{
−ρ|x− y|2 if |x| > R,

L|x− y|2 otherwise.
(3.15)

Note that this assumption is dizerent from (3.3), which we imposed for the
perturbation result in the elliptic case. Under this assumption, hypercontractivity
follows from the Harnack inequality established by Wang in [228] (originally stated
in the reversible case but the proof, recalled in Section 3.3.2, is unchanged in the
non-reversible one). More speci}cally, we get the following.
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Proposition 3.11. Let β > α > 1. Under Assumption 3.10, set

t0 =
2β

σ2ρ(α− 1)
.

Then, for all t > t0,

‖Pt‖α→β 6
(
1 + 4d+ 2(L+ ρ)R2

)
exp
(

βLRt

2σ2(α− 1)
+

1

8
max

(
1 + 4d

t/t0 − 1
, 2ρR2

))
.

Combining Propositions 3.9 and 3.11 gives a defective LSI (see Corollary 3.19).
As a conclusion, we recall the following result from [168, Theorems 1 and 2].
Proposition 3.12. Under Assumption 3.10, assume furthemore that

σ > σ0 := (2L+ ρ)
(2L+ ρ/2)R2

∗ + 2 sup{−x · b(x), |x| 6 R∗}
ρd

, (3.16)

where R∗ = R(2 + 2L/ρ)1/d. Then µ satis}es the Poincaré inequality (3.13) with
constant

C =
4σ

ρ

(
1 +

α(2L+ ρ)R2
∗

4dσ

)
. (3.17)

Thanks to [12, Proposition 5.1.3], the defective LSI of Corollary 3.19 and the
Poincaré inequality of Proposition 3.12 yields the following.
Corollary 3.13. Under Assumption 3.10, provided furthemore (3.16), µ satis}es
an LSI with constant CLS = A+ C(B + 2)/4 where A, B, C are respectively given
in (3.27), (3.28), (3.17).

As in Section 3.1.2, in the present elliptic case, the LSI is equivalent to the
entropy decay (3.4).

3.2 Proofs
3.2.1 The elliptic case
Before proving the theorem, let us }rst show a key lemma on the value function of
stochastic optimal control problems.
Lemma 3.14. Let U ⊂ Rd. Under the conditions of Theorem 3.1, consider the
stochastic optimal control problem,

V (T, x) = sup
ν

sup
α:αt∈U

E

[∫ T

0

(
ϕ(Xα,x

t )− |αt|2
)

dt
]
,

where ν =
(
Ω, F, (F·),P, (B·)

)
stands for a }lter probability space with the usual

conditions and an (F·)-Brownian motion, α is an Rd-valued progressively measur-
able process such that

∫ T

0
E
[
|αt|m

]
dt is }nite for every m ∈ N, and Xα,x solves

X
α,x
0 = x , dXα,x

t =
(
b̃(Xα,x

t ) + 2αt

)
dt+

√
2dBt .

Then there exists C ′ > 0, depending only on ρ, L, R, such that for every x, y ∈ Rd,
every T > 0 and every t ∈ (0, T ], we have

|V (T, x)− V (T, y)| 6 2Mϕt+ C ′
(
2Mϕ

t
+ Lϕ

)
|x− y| .
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Proof. The method has been demonstrated in [61] and we give a proof for the sake
of completeness. Fix ε > 0 and (T, x) ∈ (0,+∞) ×Rd. Take an ε-optimal control
(νε, αε) such that

V (T, x) 6 E

[∫ T

0

(
ϕ(Xt)− |αε

t |2
)

dt
]
+ ε ,

where we denote X = Xαε,x. Construct the process Y solving

Y0 = y , dYt =
(
b̃(Yt) + 2αε

t

)
dt+

√
2(1− 2ete

T
t ) dBt ,

until τ := inf{t : Xt = Yt} and Yt = Xt henceforth, where et is de}ned by

et =

{
Xt−Yt

|Xt−Yt| if Xt 6= Yt,

(1, 0, . . . , 0)T otherwise.

Then the dizerence process δXt := Xt − Yt solves

dδXt =
(
b̃(Xt)− b̃(Yt)

)
dt+ 2

√
2ete

T
t dBt .

Thanks to the weak convexity condition (3.3), there exist C > 0 and κ > 0 such
that

E
[
|Xt − Yt|

]
6 Ce−κt|x− y| ,

P
[
Xt 6= Yt

]
6
Ce−κt

t
|x− y| ,

where the }rst inequality is due to Eberle [83] and the second to the sticky coupling
[86, Theorem 3]. By the de}nition of V , we have

V (T, y) > E

[∫ T

0

(
ϕ(Yt)− |αε

t |2
)

dt
]
.

Hence by subtracting the expressions for V (T, x) and V (T, y), we obtain

V (T, x)− V (T, y) 6

(∫ t

0

+

∫ T

t

)
E
[
ϕ1(Xs)− ϕ1(Ys)

]
ds+

∫ T

0

E
[
ϕ2(Xs)− ϕ2(Ys)

]
ds

6 2Mϕt+
C

κ

(
2Mϕ

t
+ Lϕ

)
|x− y|+ ε .

Taking ε→ 0 gives the desired upper bound for V (T, x)−V (T, y). The lower bound
follows by exchanging x and y.

Now we present the proof for the perturbation result in the elliptic case. We
will use the notion of viscosity solution and we refer readers to [64, Section 8] for
its de}nition.

Proof of Theorem 3.1. Under the conditions of Theorem 3.1, considermt = Law(Zt)
where Z solves (3.1) with initial distribution m0 = µ0. Then mt, µ0 solve respec-
tively

∂tmt = −∇ · (bmt) + ∆mt ,

0 = ∂tµ0 = −∇ · (b0µ0) + ∆µ0
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where the }rst equation holds in the sense of distributions a priori. By approxi-
mation arguments, we can show that (t, x) 7→ mt(x) is continuous and a viscosity
solution to the }rst equation. De}ne the relative density ht = mt/µ0. Then, it is a
viscosity solution to

∂tht = ∆ht + b̃t · ∇ht + ϕht , (3.18)

where ϕ = −∇ · b1 + b1 · ∇ lnµ0 and b̃ = −b+2∇ lnµ0. Notice that the value of ht
can be given by the Feynman–Kac formula

ht(x) = E

[
exp
(∫ t

0

ϕ(Xt,x
s ) ds

)
h0(X

t,x
t )

]
,

where Xt,x solves

X
t,x
0 = x, dXt,x

s = b̃t−s(X
t,x
s ) ds+

√
2dBt for s ∈ [0, t].

Suppose additionally that ϕ is bounded and Lipschitz continuous. Then apply-
ing synchronous coupling to the Feynman–Kac formula above, we obtain a constant
M > 0 such that

M−1 6 h(t, x) 6M and |h(t, x)− h(s, y)| 6M
(
|t− s|1/2 + |x− y|

)

for every t, s ∈ [0, T ] and every x, y ∈ Rd. Taking the logarithm ut := lnht and
using the fact that h 7→ lnh is a strictly increasing and C2 mapping, we obtain that
ut is a bounded and uniformly continuous viscosity solution to the HJB equation,

∂tut = ∆ut + |∇ut|2 + b̃t · ∇ut + ϕ . (3.19)

The rest of the proof then amounts to linking the HJB equation to the stochastic
optimal control problem considered in Lemma 3.14.

For N ∈ N, consider the approximative HJB equation,

∂tu
N
t = ∆uNt + sup

α:|α|6N

{2α · ∇uNt − |α|2}+ b̃ · ∇uN + ϕ , (3.20)

and the associated control problem,

V N (T, x) = sup
ν

sup
α:|αt|6N

E

[∫ T

0

(
ϕ(Xα,x

t )− |αt|2
)

dt
]
, (3.21)

where ν, α satisfy the conditions in the statement of Lemma 3.14. By Theorem
IV.7.1 and the results in Sections V.3 and V.9 of [91], the value function V N

de}ned by (3.21) is a bounded and uniformly continuous viscosity solution to (3.20).
Applying Lemma 3.14 to the approximative problem (3.21), we obtain a constant
C ′ > 0 such that

|V N (t, x)− V N (t, y)| 6 C ′‖ϕ‖Lip|x− y| ,

|V N (T, x)− V N (T, y)| 6 2Mϕt+ C ′
(
2Mϕ

t
+ Lϕ

)
|x− y|

for every t ∈ (0, T ] and every x, y ∈ Rd. Hence if w ∈ C1,2
(
[0, T ) × Rd

)
is such

that V N − w attains a local maximum or a local minimum at (t, x) ∈ [0, T )×Rd,
then |∇w(t, x)| 6 C ′‖ϕ‖Lip by the }rst inequality above. This implies that V N is
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actually a viscosity solution to the original (3.19) for N > C ′‖ϕ‖Lip. Since both u

and V N are bounded and uniformly continuous on [0, T ] × Rd, we can apply the
parabolic comparison for viscosity solutions on the whole space [72, Theorem 1] to
obtain V N (T, x) = uT (x) for N su{ciently large. Therefore, for every T > 0, every
t ∈ (0, T ] and every x, y ∈ Rd, we have

|uT (x)− uT (y)| 6 2Mϕt+ C ′
(
2Mϕ

t
+ Lϕ

)
|x− y| . (3.22)

Now we remove the additional assumption on ϕ and take a sequence of ϕn =
ϕn,1 + ϕn,2 such that each of ϕn is bounded and Lipschitz continuous, ‖ϕn,1‖∞ 6

Mϕ, ‖ϕn,2‖Lip 6 Lϕ for all n ∈ N, and ϕn → ϕ locally uniformly. For each n,
consider the equation

∂th
n
t = ∆hnt + b̃ · ∇hnt + ϕnhnt

and let hn be the solution given by the Feynman–Kac formula with the initial
condition hn0 = 1. Taking the limit n → +∞ in the Feynman–Kac formulas and
using the dominated convergence theorem, we obtain that hnT → hT pointwise. Yet,
each unT := lnhnT satis}es the bound (3.22) when u is replaced by un. So taking the
limit, we obtain that (3.22) still holds without the additional assumption on ϕ.

Denote the Gaussian kernel in Rd by gε = (2πε)−d/2 exp(−|x|2/2ε). We decom-
pose uT in the following way:

uT = uT ? g
ε + (uT − uT ? gε).

Thanks to (3.22), we }nd that the }rst term is uniformly Lipschitz, and the second
term is uniformly bounded. Then we apply successively the Holley–Stroock and
Aida–Shigekawa perturbation lemmas [113, 1], and obtain that the ~ow of measures

(mT )T>1 = (µ0 expuT )T>1

satis}es a uniform log-Sobolev inequality (see [40, Theorem 2.7] for an explicit
constant for Aida–Shigekawa). Noticing that the LSI is stable under the weak
convergence of measures, we take the limit T → +∞ and conclude.

Remark 3.15. We exploit the properties of viscosity solution to the HJB equation
(3.19) instead of classical solution, contrary to what is done by Conforti [61]. The
main reason for this is that we wish to be able to treat the kinetic, therefore
degenerate elliptic, case in the same framework, for which the existence of classical
solution, despite the system’s hypoellipticity, is lacking in classical literatures of
stochastic optimal control to our knowledge.

3.2.2 The kinetic case
As in the previous section, we }rst establish a lemma on the kinetic stochastic
optimal control problem.

Lemma 3.16. Let U ⊂ Rd. Under the conditions of Theorem 3.6, consider the
stochastic optimal control problem,

V (T, z) = sup
ν

sup
α:αt∈U

E

[∫ T

0

(
ϕ(Zα,z

t )− γ|αt|2
)

dt
]
,
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where ν =
(
Ω, F, (F·),P, (B·)

)
stands for a }lter probability space with the usual con-

ditions and an (F·)-Brownian motion, α is an Rd-valued progressively measurable
process such that

∫ T

0
E
[
|αt|m

]
dt is }nite for every m ∈ N, and Zα,z = (Xα,z, Y α,z)

solves

Z
α,x
0 = z ,

{
dXα,z

t = V
α,z
t dt ,

dV α,z
t =

(
−γV α,z

t −∇U(Xα,z
t ) +G(Xα,z

t ,−V α,z
t ) + 2γαt

)
dt+

√
2γ dBt .

Then there exists C ′ > 0, depending only on K, L1, L2, R, γ, such that for every
z, z′ ∈ Rd, we have

|V (T, z)− V (T, z′)| 6 C ′Lϕ|z − z′| .

Proof. Fix ε > 0 and (T, z) ∈ (0,+∞) × R2d. Take an ε-optimal control (νε, αε)
such that

V (T, z) 6 E

[∫ T

0

(
ϕ(Zt)− γ|αε

t |2
)

dt
]
+ ε ,

where we denote (X,V ) = Z = Zαε,z. Using γt as the new time variable and
γ−1X as the new space variable, and noticing that −∇U(x) +G(x,−v) = −Kx+
g(x, v), we can apply Theorem 3.20 in the appendix to construct the processes
Z ′
n = (X ′

n, Y
′
n) solving

Z ′
n,0 = z′ ,

{
dX ′

n,t = V ′
n.t dt ,

dV ′
n,t =

(
−γV ′

n,t −KX ′
n,t + g(Z ′

n,t) + 2γαt

)
dt+

√
2γ dB′

n,t ,

where B′
n are Brownian motions, and there exist constant C1 > 1, κ > 0 such that

lim sup
n→+∞

E
[
|Zt − Z ′

n,t|
]
6 C1e

−κtρ(z, z′) for t > 0.

By the de}nition of V , we have

V (T, z′) > E

[∫ T

0

(
ϕ(Z ′

n,t)− γ|αε
t |2
)

dt
]
.

Hence by subtracting the expressions for V (T, z) and V (T, z′), we obtain

V (T, z)−V (T, z′) 6
∫ T

0

E
[
ϕ(Zs)−ϕ(Z ′

n,s)
]

ds+ ε 6 Lϕ

∫ T

0

E
[
|Zs−Z ′

n,s|
]

ds+ ε ,

By Fatou’s lemma we have

lim inf
n→+∞

∫ T

0

E
[
|Zs−Z ′

n,s|
]

ds 6
∫ T

0

lim inf
n→+∞

E
[
|Zs−Z ′

n,s|
]

ds 6
∫ T

0

C1e
−κtρ(z, z′) ds

<
C1

κ
ρ(z, z′) .

So taking ε→ 0 and exchanging x and y, we obtain

|V (T, z)− V (T, z′)| 6 C1L
ϕ

κ
ρ(z, z′) .
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Setting the interpolation zs = (1− s)z + sz′, by the previous inequality we have

|V (T, z)− V (T, z′)| =
N−1∑

i=0

∣∣V
(
T, z(i+1)/N

)
− V

(
T, zi/N

)∣∣

6
C1L

ϕ

κ

N−1∑

i=0

ρ
(
z(i+1)/N , zi/N

)

=
C1L

ϕ|z − z′|
κ

1

N

N−1∑

i=0

ρ
(
z(i+1)/N , zi/N

)
∣∣z(i+1)/N − zi/N

∣∣ .

As the uniform convergence lim supz→z′ ρ(z, z′)/|z − z′| 6 C2 holds, we have

lim sup
N→+∞

1

N

N−1∑

i=0

ρ
(
z(i+1)/N , zi/N

)
∣∣z(i+1)/N − zi/N

∣∣ 6 C2 .

Thus taking the limit N → +∞ in the inequality above concludes the proof.

Proof of Theorem 3.6. Under the conditions of Theorem 3.6, considermt = Law(Zt)
where Z solves (3.11) with the initial distribution

m0(dx dv) = µ0(dx dv) ∝ exp
(
−U(x)− 1

2
|v|2
)

dx dv ,

which is the unique invariant measure of the dizusion (3.11) when G = 0. By the
tensorization property, µ0 satis}es an LSI with constant max(1, C0). The measures
mt, µ0 solve respectively

∂tmt = γ∆vmt +∇v ·
[
mt

(
γv +∇U −G(x, v)

)]
− v · ∇xmt ,

0 = ∂tµ0 = γ∆vµ0 +∇v · [µ0(γv +∇U)]− v · ∇xµ0 ,

where the }rst equation holds in the sense of viscosity. De}ne the relative density
ht = mt/µ0. Then, it is a viscosity solution to

∂tht = γ∆vht +
(
−γv +∇U(x)−G(x, v)

)
· ∇vh− v · ∇xh+ ϕh , (3.23)

where ϕ = −∇vG(x, v) + G(x, v) · v. Taking the logarithm ut := lnht and using
the fact that h 7→ lnh is a strictly increasing and C2 mapping, we obtain that ut
is a viscosity solution to the kinetic HJB equation,

∂tut = γ∆vut + γ|∇vut|2 +
(
−γv +∇U(x)−G(x, v)

)
· ∇vu− v · ∇xu+ ϕ . (3.24)

Now, on the formal level the kinetic HJB equation (3.24) is related to the optimal
control problem considered in Lemma 3.16: if the domain of control in the lemma
is unrestricted, i.e. U = Rd, then we expect to have

uT (x, v) = V (T, x,−v) .

We then argue as in the proof of Theorem 3.1 (suppose ϕ is regular enough, then
restrict the domain of control, }nally approximate for general ϕ) to validate this
claim. Then by Lemma 3.16, for every z, z′ ∈ R2d, we have

|uT (z)− uT (z′)| 6 C ′Lϕ|z − z′| .

We conclude as in the end of the proof of Theorem 3.1.
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3.3 Defective log-Sobolev inequality
3.3.1 From Hypercontractivity to defective LSI
Proof of Proposition 3.9. From [165, Theorem 1], the one-sided Lipschitz condition
(3.14) implies that |∇Ptf | 6 etLPt|∇f | for all t > 0 for all f . Then, classically, for
f > 0 with

∫
f dµ = 1,

∫

Rd

Ptf lnPtf dµ =

∫

Rd

f ln f dµ−
∫ t

0

∫

Rd

|Σ1/2∇Psf |2
Psf

dµ ds

>

∫

Rd

f ln f dµ− |Σ|
∫ t

0

∫

Rd

e2sL(Ps|∇f |)2
Psf

dµ ds

>

∫

Rd

f ln f dµ− |Σ|
∫ t

0

∫

Rd

e2sL|∇f |2
f

dµ ds ,

where
(
Ps(|∇f |)

)2
6 Ps(|∇f |2/f)Ps(f) (by Cauchy–Schwarz) and the invariance

of µ by Ps were used in the last inequality. In other words,
∫

Rd

f ln f dµ 6

∫

Rd

Ptf lnPtf dµ+ |Σ|e
2Lt − 1

2L

∫

Rd

|∇f |2
f

dµ

=
1

α

∫

Rd

Ptf ln(Ptf)
α dµ+ |Σ|e

2Lt − 1

2L

∫

Rd

|∇f |2
f

dµ ,

for every α > 0. By Jensen’s inequality applied to the probability measure Ptfµ,
∫

Rd

Ptf ln(Ptf)
α dµ 6 ln

∫

Rd

(Ptf)
1+α dµ 6 (1 + α) ln ‖Pt‖1→1+α ,

since ‖Ptf‖1 = 1.

Proof of Lemma 3.8. Using Hölder’s inequality, for f > 0 with
∫
f dµ = 1 (so that

‖Ptf‖1 = 1 since µ is invariant by Pt),

‖Ptf‖αα 6 ‖Ptf‖1/γ1 ‖Ptf‖(γα−1)/γ
(γα−1)/(γ−1)

6 ‖Pt‖(γα−1)/γ
α→(γα−1)/(γ−1)‖Ptf‖(γα−1)/γ

α .

Dividing by ‖Ptf‖(γα−1)/γ
α concludes.

3.3.2 Hypercontractivity in the elliptic case
Next, we recall (here in a non-reversible settings – which doesn’t change the proof
– and only in the ~at space ; also with explicit constants) the Harnack inequality
of [228].

Proposition 3.17. Assume that there exists K > 0 such that

∀x, y ∈ Rd, (x− y) ·
(
b(x)− b(y)

)
6 K|x− y| . (3.25)

Then, for all t > 0, all x, y ∈ Rd and all α > 1,

(
Ptf(y)

)α
6 (Ptf

α)(x) exp
(

α

2σ2(α− 1)

(
K2t+

|x− y|2
t

))
.
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Notice that, in particular, Assumption 3.10 implies (3.25) with K = LR.

Proof. For two initial conditions x 6= y and a }nal time T > 0, let X, Y solve

X0 = x , dXt = b(Xt) dt+ σ dBt ,

Y0 = y , dYt = b(Yt) dt+ σ dBt + ξet dt ,

where et = (Xt − Yt)/|Xt − Yt| for t < τ := inf{s > 0, Xs = Ys} and et = 0 for
t > τ (so that in particular Xt = Yt for t > τ) and ξ = K + |x− y|/T .

Since the norm is C2 outside the origin, we can apply Itō’s formula up to time
τ to get, for t < τ ,

d|Xt − Yt| = et ·
(
b(Xt)− b(Yt)

)
dt− ξt dt

6 −|x− y|
T

dt .

This implies that τ 6 T , and thus XT = YT . By Girsanov’s theorem,

PT f(y) = E[f(YT )R] , with R = e
ξ
σ

∫
τ

0
et·dBt− ξ2

2σ2 τ ,

so that, by Hölder’s inequality, for f > 0 and α > 1, using that YT = XT ,
(
PT f(y)

)α
6 (PT f

α)(x)
(
ERα/(α−1)

)α−1

with

(
ERα/(α−1)

)α−1
6 exp

(
α

4σ2(α− 1)
ξ2T

)
6 exp

(
α

2σ2(α− 1)

(
K2T+

|x− y|2
T

))
.

Lemma 3.18. Under Assumption 3.10,
∫

Rd

eδ|x−y|2µ(dx)µ(dy) 6
(
1 + 4d+ (2L+ 8δ)R2

)
exp
(
δmax

(
1 + 4d

2(ρ− 4δ)
, R2

))
,

for all δ ∈ (0, ρ/4).

Proof. Let L2 be the generator of two independent dizusion processes satisfying
(3.1), so that µ ⊗ µ is invariant by L2. For δ ∈ (0, ρ/4), consider the function
V (x, y) = eδ|x−y|2 . Then

L2V (x, y)

V (x, y)
= 2δ(x− y) ·

(
b(x)− b(y)

)
+ 4δd+ 8δ2|x− y|2

6

{
4δd+ (8δ2 − 2δρ)|x− y|2 if |x− y| > R

4δd+ (2δL+ 8δ2)R2 otherwise
6 −δ1|x−y|>R∗

+ δ
(
4d+ (2L+ 8δ)R2

)
1|x−y|<R∗

with
R2

∗ = max
(

1 + 4d

2(ρ− 4δ)
, R2

)
.
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Hence

L2V (x, y) 6 −δV (x, y) + δ
(
1 + 4d+ (2L+ 8δ)R2

)
1|x−y|6R∗

V (x, y)

6 −δV (x, y) + δ
(
1 + 4d+ (2L+ 8δ)R2

)
eδR

2
∗ .

Integrating with respect to µ⊗ µ, the left hand side vanishes and we get
∫

Rd

V (x, y)µ(dx)µ(dy) 6
(
1 + 4d+ (2L+ 8δ)R2

)
eδR

2
∗ ,

as announced.

Proof of Proposition 3.11. Let f > 0 be such that µ(fα) = 1. By Proposition 3.17
(with K = LR), for any y ∈ Rd,

1 =

∫

Rd

Pt(f
α)(x)µ(dx)

>
(
Ptf(y)

)α ∫

Rd

exp
(

−α
2σ2(α− 1)

(
K2t+

|x− y|2
t

))
µ(dx) .

As a consequence, for β > α,
∫

Rd

(
Ptf(y)

)β
µ(dy) 6

∫

Rd

[∫

Rd

exp
(

−α
2σ2(α− 1)

(
Kt+

|x− y|2
t

))
µ(dx)

]−β/α

µ(dy)

6

∫

Rd

∫

Rd

exp
(

β

2σ2(α− 1)

(
Kt+

|x− y|2
t

))
µ(dx)µ(dy) .

Conclusion follows from (3.18) and using that t/t0 6 1.

To conclude, gathering Propositions 3.9 and 3.11, we get the following:
Corollary 3.19. Assume (3.15) for some L, R > 0 and ρ > 0. Then for all f > 0
with

∫
Rd f dµ = 1, we have

∫

Rd

f ln f 6 A

∫

Rd

|∇f |2
f

dµ+B (3.26)

with

A =
σ2

2L

(
exp
(
24L

σ2ρ

)
− 1

)
, (3.27)

B = 6 ln
(
1 + 4d+ 2(L+ ρ)R2

)
+

108LR

σ4ρ
+

3

4
max

(
1 + 4d, 2ρR2

)
(3.28)

(taking for A the limit as L→ 0 of this expression if L = 0).
Proof. For simplicity, take α = 1 in Proposition 3.9, α = γ = 2 in Lemma 3.8 and
t = 2t0 in Proposition 3.11, we end up with

∫

Rd

f ln f 6 2 ln ‖Pt‖1→2 + σ2 e
2Lt − 1

2L

∫

Rd

|∇f |2
f

dµ

6 6 ln ‖Pt‖2→3 + σ2 e
2Lt − 1

2L

∫

Rd

|∇f |2
f

dµ ,

and conclusion follows the expression given in Proposition 3.11.
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3.4 Re~ection coupling for kinetic dizusions
Theorem 3.20 (Coupling by re~ection for kinetic dizusions). Let

(
Ω,F , (Ft)t>0,P

)

be a }ltered probability space satisfying the usual conditions. Let X, V be Rd-valued
continuous and adapted processes, and α be an Rd-valued progressively measurable
process solving

dXt = Vt dt ,
dVt = αt dt+

(
−Vt −KXt + g(Xt, Vt)

)
dt+

√
2dBt ,

(3.29)

for t > 0, where K is a d× d symmetric and positive-de}nite matrix, g : R2d → Rd

is a Lipschitz continuous function, and (Bt)t>0 is an (F·)-Brownian motion in d

dimensions. Let X ′
0, V ′

0 be Rd-valued and F0-measurable random variables. Denote
by k the smallest eigenvalue of K. Suppose that

∫ T

0
E
[
|αt|2

]
dt is }nite for every

T > 0, and X0, V0, X ′
0, V ′

0 are all square-integrable. If there exist nonnegative
constants R, L1, L2 such that for every z, z′ ∈ R2d, we have

∣∣g(z)− g(z′)
∣∣ 6

{
L1|z − z′| if |x− x′|+ |v − v′| 6 R,

L2|z − z′| otherwise,

with L2 <
1
19 min(1, k) and L2 6 L1, then upon enlarging the probability space, we

can construct a sequence of continuous and adapted processes X ′
n, V ′

n such that

1. their initial values are given by X ′
0, V ′

0 , that is, X ′
n,0 = X ′

0 and V ′
n,0 = V ′

0 ;

2. they solve

dX ′
n,t = V ′

n,t dt ,
dV ′

n,t = αt dt+
(
−V ′

n,t −KX ′
n,t + b(X ′

n,t, V
′
n,t)
)

dt+
√
2dB′

n,t ,
(3.30)

for (F·)-Brownians (B′
n,t)t>0;

3. and }nally, there exists constants C1, C2 > 1, κ > 0 and a continuous function
of quadratic growth ρ : R2d×R2d → R, all explicitly expressible by K, R, L1,
L2, such that

lim sup
n→+∞

E
[
|Zt − Z ′

n,t|
]
6 C1e

−κt E
[
ρ(Z0, Z

′
0)
]

for t > 0, (3.31)

and uniformly in z′, we have

lim sup
z→z′

ρ(z, z′)
|z − z′| 6 C2 .

Remark 3.21. We develop a translation-invariant version of the additive metric
constructed in [84] under which the dizerence processes, δX = X − X ′, δV =
V −V ′, are contractive in average. Our assumptions are an improvement over [128,
Theorem 2.16] although we do not elaborate on mean }eld dependence. Also, we
can recover the contraction in W1 distance from the transport cost ρ by a limiting
procedure (as is done in the proof of Lemma 3.16). So our approach can be used
to achieve the W1-contraction of [206, Theorem 5] with simpler calculations.
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Proof. For x, x′, v, v′ ∈ Rd, introduce the variables q = x + v, q′ = x′ + v′ and
denote δx = x− x′, δv = v − v′, δq = q − q′. De}ne

r(z, z′) = θ|δx|+ |δq| = θ|x− x′|+ |q − q′|

where
θ := 2max

(
|K|+ L1, 1

)
.

Denote r0 = (θ + 1)R.

Re~ection-synchronous coupling. Fix an n ∈ N. Let us construct the desired
processes Z ′

n = (X ′
n, V

′
n). Find Lipschitz-continuous rcn, scn : R2d × R2d → R

satisfying rc2n + sc2n = 1 and

rcn(z, z′) =
{
0 if r(z, z′) > r0 + n−1 or |δq| 6 n−1,

1 if r(z, z′) 6 r0 and |δq| > 2n−1.

Upon enlarging the }ltered probability space, we can also }nd another (F·)-Brownian
motion B′′ that is independent from B. 1 Let Z ′

n = (X ′
n, V

′
n) solve

dX ′
n,t = V ′

n,t dt ,
dV ′

n,t = αt dt+
(
−V ′

n,t −KX ′
n,t + g(X ′

n,t, V
′
n,t)
)

dt
+ rcn(Zt, Z

′
n,t)(1− 2en,te

T
n,t)
√
2dBrc

n,t + scn(Zt, Z
′
n,t)
√
2dBsc

n,t ,

with initial value Z ′
n,0 = (X ′

0, V
′
0), where en,t is de}ned by

en,t =

{
Qt−Q′

n,t

|Qt−Q′

n,t| if Qt 6= Q′
n,t,

(1, 0, . . . , 0)T otherwise,

for Qt := Xt + Vt and Q′
n,t := X ′

n,t + V ′
n,t, and Brc

n , Bsc
n are de}ned by

dBrc
n,t = rcn(Zt, Z

′
n,t) dBt + scn(Zt, Z

′
n,t) dB′′

t ,

dBsc
n,t = scn(Zt, Z

′
n,t) dBt − rcn(Zt, Z

′
n,t) dB′′

t .

The solution Z ′
n to this system of equations is well de}ned: they have Lipschitz-

continuous coe{cients in Z ′
n, or in X ′

n and V ′
n (although the Lipschitz constants

explode when n → +∞), so the existence and uniqueness of (strong) solution
follow from Cauchy–Lipschitz arguments. By Lévy’s characterization, Brc

n , Bsc
n are

independent Brownian motions and therefore if we de}ne B′
n by

dB′
n,t = rcn(Zt, Z

′
n,t)(1− 2en,te

T
n,t) dBrc

n,t + scn(Zt, Z
′
n,t) dBsc

n,t ,

then B′
n is also a Brownian motion. Hence Z ′

n satis}es indeed (3.30) and it remains
only to verify the last claim.

Dizerence process. Denote rcn,t = rcn(Zt, Z
′
n,t), scn,t = scn(Zt, Z

′
n,t), δXn,t =

Xt −X ′
n,t, δVn,t = Vt − V ′

n,t, δQn,t = Qt −Q′
n,t, δgn,t = g(Zt) − g(Z ′

n,t), dWn,t =

eT
n,t dBrc

n,t and rn,t = r(Zt, Z
′
n,t) = θ|δXn,t|+ |δQn,t|. In the following we will omit

the subscript n in the variables de}ned above to simplify the notation and recover
1The additional Brownian motion B′′ can be shared between stochastic processes Z′

n with
dizerent index n, so we do not need to extend the probability space in}nitely.



176 Chapter 3: LSI for non-equilibrium steady states

it if necessary. By our construction of Brownian motions, the original Brownian B
admits the decomposition

dBt = rc(Zt, Z
′
t) dBrc

t + sc(Zt, Z
′
t) dBsc

t .

Therefore, by taking the dizerence between the two systems of equations (3.29) and
(3.30), we }nd the dizerence process δZ = (δX, δV ) satisfy

dδXt = δVt dt ,
dδVt = (−δVt −KδXt + δgt) dt+ 2

√
2 rct et dWt .

We note that the process α disappears in the equations above. Using Itō’s formula,
we further obtain

d(δXt)
2 = 2δXt · δVt dt ,

d(δVt)2 = 2δVt · (−δVt −KδXt + δgt) dt+ 8(rct)2 dt+ 4
√
2 rct δVt · et dWt ,

d(δXt · δVt) = |δVt|2 dt+ δXt · (−δVt −KδXt + δgt) dt+ 2
√
2 rct δXT · et dWt .

We have the semimartingle decomposition drt = dAr
t +dMr

t where Ar is absolutely
continuous with

dAr
t 6

(
|K|+ L1 − θ

)
|δXt| dt+ θ|δQt| dt ,

and Mr
t = 2

√
2
∫ t

0
rcs dWs is a martingale. Consequently, if f : [0,+∞) → R is a

piecewise C2, non-decreasing and concave function, then the Itō–Tanaka formula
yields df(rt) = dAf

t + dMf
t where Af is absolutely continuous with

dAf
t 6 f ′−(rt)

[(
|K|+ L1 − θ

)
|δXt| dt+ θ|δQt|

]
dt+ 4f ′′(rt)(rct)2 dt ,

and Mf is a martingale.
Choice of the Lyapunov function G. De}ne G(z, z′) = 1

2δx
TKδx+ 1

2 |δv|2+ηδx ·δv,
where we set η = 1

2 min(1, k), and denote Gt = G(Zt, Z
′
t). The function G satis}es

the mutual bound

λ
(
|δx|2 + |δv|2

)
6 G(z, z′) 6

θ

2

(
|δx|2 + |δv|2

)
,

where
λ :=

1

4
min(1, k) .

We have also

dGt = −
(
(1− η)|δVt|2 + ηδXt · δVt + ηδXT

t KδXt

)
dt

+ (δVt + ηδXt) · (δgt dt+ 2
√
2 rct et dWt) + 4(rct)2 dt =: dAG

t + dMG
t ,

where AG, MG are the }nite-variation and the martingale part respectively. In
particular, if |δXt|+ |δVt| > R, then

dAG
t 6 −(δVt, δXt)

(
1− L2 − η −L2 − (1 + L2)η

0 η(K − L2)

)(
δVt
δXt

)
dt+ 4(rct)2 dt

=: −δZT
t MGδZt dt+ 4(rct)2 dt .
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We choose η = 1
2 min(1, k) and the symmetric part of the matrix MG is positive-

de}nite as its determinant is lower bounded by

(1− L2 − η) · η(k − L2)−
1

4

(
L2 + (1 + L2)η

)2
>

(
min(1, k)− 19L2

)
k

16
.

By the same computation we obtain

MG �
(
min(1, k)− 19L2

)
k

16max
(
1− L2 − η, η(k − L2)

) �
(
min(1, k)− 19L2

)
k

8max
(
1− L2, k − L2

) .

As a result,

dAG
t − 4(rct)2 dt 6 −δZT

t MGδZt dt 6 −
(
min(1, k)− 19L2

)
k

8max
(
1− L2, k − L2

) |δZt|2 dt

6 −
(
min(1, k)− 19L2

)
k

8max
(
1− L2, k − L2

)
max

(
1, |K|

)Gt dt =: −κ2Gt dt .

To summarize, if |δXt| + |δVt| > R, then dAG
t 6 −κ2Gt dt + 4(rct)2 dt. In the

general case, we have

dAG
t 6

(
|δVt|, |δXt|

)(|1− η|+ L1 L1 + (1 + L1)η
0 η|K|+ L1

)(
|δVt|
|δXt|

)
dt+ 4(rct)2 dt

6 θ
(
|δXt|2 + |δYt|2

)
dt+ 4(rct)2 dt .

Choice of ρ and f . Now recover the subscript n. Set

ρn(z, z
′) = εnG(z, z

′) + fn
(
θ|δx|+ |δq|

)

for εn > 0, and piecewise C2, non-decreasing and concave fn : [0,+∞)→ [0,+∞),
to be determined below. Denote ρn,t = ρn(Zn,t, Z

′
n,t). Then by the previous com-

putations dρn,t = dAρn

t + dMρn

t where Mρn is a martingale and Aρn is absolutely
continuous with

dAρn

t 6 εn dAG
t +
[(
|K|+L1−θ

)
|δXn,t|+θ|δQn,t|

]
f ′n,−(rn,t) dt+4f ′′n (rn,t)(rcn,t)2 dt .

De}ne the functions

ϕ(r) = exp
(
−θr

2

8

)
,

Φ(r) =

∫ r

0

ϕ(u) du ,

gn(r) = 1− κn,1

2

∫ r

0

Φ(u)ϕ(u)−1 du− εn

2

∫ r

0

[(
1 +

κ1

2

)
θu2 + 4

]
ϕ(u)−1 du

for r > 0, where κn,1, εn are positive constants de}ned by

κn,1 =
1

2

(∫ r0+n−1

0

Φ(u)ϕ(u)−1 du
)−1

,

εn =
1

2

(∫ r0+n−1

0

[(
1 +

κn,1

2

)
θu2 + 4

]
ϕ(u)−1 du

)−1

∧ 4

9R
.
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We choose

fn(r) =

∫ r∧(r0+n−1)

0

ϕ(u)g(u) du .

Note that κn,1, εn, gn and fn all converge when n → +∞, and we denote their
limit by

(κ∗,1, ε∗, g∗, f∗) = lim
n→+∞

(κ1, ε, g, f) .

Denote also
ρ∗(z, z

′) = ε∗G(z, z
′) + f∗

(
θ|δx|+ |δq|

)
.

Since G is a quadratic form and f ′∗(0) = ϕ(0)g(0) = 1, we have the uniform upper
limit

lim sup
z→z′

ρ∗(z, z′)
|z − z′| = lim sup

z→z′

θ|x− x′|+ |x− x′ + v − v′|√
|x− x′|2 + |v − v′|2

6 θ +
√
2 =: C2 ,

validating the last property of the last claim. By elementary calculations, we also
have

lim
n→+∞

sup
z,z′∈R2d

|ρn(z, z′)− ρ∗(z, z′)|
1 + |z − z′|2 = 0 . (3.32)

The function fn is C2 on [0, r0+n
−1) and (r0+n

−1,+∞), non-decreasing, concave,
and satis}es

4f ′′n (r) + θf ′n(r)r + κn,1fn(r) + εn

[(
1 +

κn,1

2

)
θr2 + 4

]
6 0

for r ∈ [0, r0 + n−1]. Moreover if r ∈ [0, r0 + n−1], then 1
2 6 gn(r) 6 1. Therefore

for every r > 0, we have

r

2
6

Φ(r)

2
6 fn(r) 6 Φ(r) .

Proof of contraction. We now prove the contraction by investigating the following
three cases. We temporarily omit the subscript n.

1. Suppose rt > r0. Then we have |δXt|+ |δVt| > R and therefore

|δXt|2 + |δVt|2 >
R2

2
=

R2

2f(r0 + n−1)
f(r0 + n−1)

>
R2

2Φ(r0 + n−1)
f(r0 + n−1)

>
R2

2Φ(r0 + n−1)
f(rt) .

As a result, Gt > λR2
(
2Φ(r0 + n−1)

)−1
f(rt). Hence,

dAρ
t 6 −εκ2Gt dt+

(
4f ′′(rt) + θf ′−(rt)rt + 4ε

)
(rct)2 dt 6 −εκ2Gt dt

6 −
(
ε+

2Φ(r0 + n−1)

λR2

)−1

εκ2
(
f(rt) + εGt

)
dt

= − λR2ε

λR2ε+ 2Φ(r0 + n−1)
κ2ρt dt .
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2. Suppose rt 6 r0 and |δQt| > 2n−1. Then we have rct = 1 and therefore

dAρ
t 6 εθ

(
|δVt|2 + |δXt|2

)
dt+

(
4f ′′(rt) + θf ′−(rt)rt + 4ε

)
dt

6 εθr2t dt+
(
4f ′′(rt) + θf ′−(rt)rt + 4ε

)
dt

6
(
4f ′′(rt) + θf ′−(rt)rt + ε(θr2t + 4)

)
dt

6 −κ1
(
f(rt) +

εθ

2
r2t

)
dt

6 −κ1
(
f(rt) + εGt

)
dt = −κ1ρt dt .

3. Suppose rt 6 r0 and |δQt| < 2n−1. Then we have

|δVt|2 6 2|δXt|2 + 2|δQt|2 6 2|δXt|2 + 8n−2 .

and
|δXt| 6 θ−1rt 6 θ−1r0 =

θ + 1

θ
R 6

3

2
R .

Consequently,

dAρ
t 6 εθ

(
|δVt|2 + |δXt|2

)
dt− θ

2
|δXt| dt+ 2θn−1 dt+

(
4f ′′(rt) + 4ε

)
(rct)2 dt

6 εθ
(
3|δXt|2 + 8n−2

)
dt− θ

2
|δXt| dt+ 2θn−1 dt

6 −θ
4
|δXt| dt+ (2θn−2 + 8θεn−2) dt .

Since

f(rt) 6 sup
r∈(0,r0]

f(r)

r
rt = rt 6 θ|δXt|+ 2n−1 ,

Gt 6 θ
(
|δXt|2 + |δVt|2

)
6 θ|δXt|2 + 4θn−2 6

3θR

2
|δXt|+ 4θn−2 ,

we have

dAρ
t 6 − 1

4 + 6εR

(
f(rt) + εGt − 2n−1 − 4θεn−1

)
dt+ (2θn−2 + 8θεn−2) dt

= − ρt

4 + 6εR
dt+O(n−1) dt .

Recovering the subscript n and combining the three cases above, we obtain

E
[
ρn(Zt, Z

′
n,t)
]
= E[ρn,t] 6 e−κnt E[ρn,0]+O(n−1) = e−κnt E

[
ρn(Z0, Z

′
0)
]
+O(n−1)

for

κn := min
(
κn,1,

λR2εnκ2

λR2εn + 2Φ(r0 + n−1)
,

1

4 + 6εnR

)
.

Thanks to the uniform convergence of ρn to ρ∗ in (3.32) and the square-integrability
of the processes Zt, Z ′

n,t, we can take the limit n→ +∞ to derive

lim sup
n→+∞

E
[
ρ∗(Zt, Z

′
n,t)
]
= lim sup

n→+∞
E[ρ∗,t] 6 e−κ∗t E[ρ∗,0] = e−κ∗t E

[
ρ∗(Z0, Z

′
0)
]
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for

κ := min
(
κ∗,1,

λR2ε∗κ2
λR2ε∗ + 2Φ

(
(θ + 1)R

) , 1

4 + 6ε∗R

)

> min
(
κ∗,1,

λR2ε∗κ2
λR2ε∗ + 2Φ

(
(θ + 1)R

) , 3

20

)
,

where the inequality is due to ε∗ 6 4
9R . If r(z, z′) 6 r0, then

|z − z′| 6
√
2
(
|x− x′|+ |v − v′|

)

6
√
2
(
2|x− x′|+ |q − q′|

)

6
√
2 r 6

2
√
2 r0

Φ(r0)
f∗(r) ;

otherwise |δx|+ |δv| > R, and then

|z − z′| = |δx|
2 + |δv|2
|z − z′| 6

√
2

λR
G(z, z′) .

Therefore for every z, z′ ∈ R2d, we have

|z − z′| 6 C1

[
ε∗G(z, z

′) + f∗
(
θ|x− x′|+ |q − q′|

)]
= C1ρ∗(z, z

′)

with
C1 =

√
2max

(
2(θ + 1)R

Φ
(
(θ + 1)R

) , 1

λε∗R

)
.

As a consequence,

lim sup
n→+∞

E
[
|Zt − Z ′

n,t|
]
6 lim sup

n→+∞
E
[
ρ∗(Zt, Z

′
n,t)
]
6 C1e

−κt E
[
ρ(Z0, Z

′
0)
]
.



Chapter 4

Time-uniform log-Sobolev
inequalities and applications
to propagation of chaos

Abstract. Time-uniform log-Sobolev inequalities (LSI) satis}ed by solutions of
semi-linear mean-}eld equations have recently appeared to be a key tool to obtain
time-uniform propagation of chaos estimates. This work addresses the more gen-
eral settings of time-inhomogeneous Fokker–Planck equations. Time-uniform LSI
are obtained in two cases, either with the bounded-Lipschitz perturbation argument
with respect to a reference measure, or with a coupling approach at high tempera-
ture. These arguments are then applied to mean-}eld equations, where, on the one
hand, sharp marginal propagation of chaos estimates are obtained in smooth cases
and, on the other hand, time-uniform global propagation of chaos is shown in the
case of vortex interactions with quadratic con}nement potential on the whole space.
In this second case, an important point is to establish global gradient and Hessian
estimates, which is of independent interest. We prove these bounds in the more
general situation of non-attractive logarithmic and Riesz singular interactions.

Based on joint work with Pierre Monmarché and Zhenjie Ren.

4.1 Introduction
We are interested in families (mt)t>0 of probability distributions solving time-
inhomogeneous Fokker–Planck equations on Rd of the form

∂tmt = ∇ · (σ2∇mt − btmt) , (4.1)

where σ2 > 0 and bt : R
d → Rd for t > 0. This describes the evolution of the law

of the dizusion process

dXt = bt(Xt) dt+
√
2σ dBt , (4.2)

where B is a standard d-dimensional Brownian motion. We have particularly in
mind McKean–Vlasov equations, where bt is in fact a function of mt itself, namely

bt(x) = F (x,mt) , (4.3)
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for some suitable function F . Other examples are time-integrated McKean–Vlasov
equations where bt(x) = F

(
x,
∫ t

0
mskt(ds)

)
for some kernel kt (as in [46]).

Denoting by C1c (Rd) the set of compactly supported C1 functions from Rd to R,
a probability measure µ on Rd is said to satisfy a log-Sobolev inequality (LSI) with
constant C > 0 if

∀h ∈ C1c (Rd) with
∫

Rd

h2 dµ = 1 ,

∫

Rd

h2 ln(h2) dµ 6 C

∫

Rd

|∇h|2 dµ . (4.4)

Equivalently, for all probability measure ν ∈ P(Rd) such that ν is absolutely con-
tinuous with respect to µ and

√
dν/dµ ∈ C1c , we have

H(ν|µ) 6 C

4
I(ν|µ) ,

where H, I are the relative entropy and Fisher information de}ned respectively as
follows:

H(ν|µ) :=
∫

Rd

ln dν
dµ dν ,

I(ν|µ) :=
∫

Rd

∣∣∣∣∇ ln dν
dµ

∣∣∣∣
2

dν .

We want to determine suitable conditions under which the family (mt)t>0 solving
(4.1) satis}es a uniform LSI, in the sense that (4.4) holds with µ = mt and a
constant C independent from t. As will be discussed below in details (in Sections 4.3
and 4.4), for McKean–Vlasov equations, this is an important tool to get uniform-
in-time Propagation of Chaos (PoC) estimates [98, 142].

The paper is organized as follows. In the rest of this introduction we state our
main results concerning time-uniform LSI (Theorem 4.3 and 4.4), which are proven
in Section 4.2. In Section 4.3 we use them to extend the range of the work [142]
of Lacker and Le Flem, obtaining sharp uniform in time PoC for McKean–Vlasov
equations in cases of smooth interaction. Section 4.4 addresses the question of
uniform-in-time LSI and PoC for singular (log or Riesz) interactions in Rd.

Before stating our main results, we recall }rst the following result of Malrieu
[159], based on the classical Bakry–Émery approach.
Proposition 4.1. Assume that there exist T > 0, L ∈ R such that for all t ∈ [0, T ]
and x, y ∈ Rd, (

bt(x)− bt(y)
)
· (x− y) 6 L|x− y|2 , (4.5)

and that m0 satis}es an LSI with constant C0 > 0. Then, for all t ∈ [0, T ], the
measure mt satis}es an LSI with constant

Ct = e2LtC0 + σ2

∫ t

0

e2Ls ds .

For completeness, the proof is recalled in Section 4.2.1.
Remark 4.2. When the curvature lower-bound L in (4.5) is negative, this already
gives an LSI uniform in t, but we are mostly interested in cases where (4.5) only
holds with L > 0. Nevertheless, this }rst proposition means that, in the next
results (Theorems 4.3 and 4.4), in fact, if the assumptions are only satis}ed for
t > t0 for some t0 > 0 large enough (for instance the condition (4.8)), we can apply
Proposition 4.1 for times t ∈ [0, t0] and then apply the other results to (mt+t0)t>0.
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The next result addresses the high-dizusivity regime, namely when σ2 is high
enough (see (4.8)). It is proven in Section 4.2.2.

Theorem 4.3. Assume that there exist ρ, L, R, K > 0 such that, for all t > 0,

(
bt(x)− bt(y)

)
· (x− y) 6

{
−ρ|x− y|2 ∀x, y ∈ Rd with |x| > R ,

L|x− y|2 ∀x, y ∈ Rd ,
(4.6)

and, setting R∗ = R(2 + 2L/ρ)1/d,

sup
|x|6R∗

{−x · bt(x)} 6 K . (4.7)

Then, provided m0 satis}es an LSI and

σ2 > σ2
0 := 2(2L+ ρ)

(L+ ρ/4)R2
∗ +K

ρd
, (4.8)

the family (mt)t>0 satis}es a uniform LSI.
Moreover, there exists C∗ > 0 which depends on L, R, d and ρ but not on m0,

K nor σ such that, provided (4.8), for t large enough, the measure mt satis}es an
LSI with constant σ2C∗.

More precisely, for any ε > 0, there exists σ′
0 > 0 which depends only on L, R,

d, ρ and ε such that for all σ > σ′
0, for t large enough, the measure mt satis}es an

LSI with constant σ2(ρ−1 + ε).

The next result is the adaptation in the time-inhomogeneous settings of the
bounded-Lipschitz perturbation argument of Chapter 3. Its proof is given in Sec-
tion 4.2.3.

Theorem 4.4. Assume that, for all t > 0, the drift writes bt = a0+gt for some a0,
gt ∈ C1(Rd,Rd) with bounded derivatives such that the generator L0 = a0 ·∇+σ2∆
admits a unique C2 invariant probability density µ0 satisfying an LSI. Write b̃t :=
2∇ lnµ0 − bt and ϕt := −∇ · gt + gt · ∇ lnµ0. Assume that there exist L, R, Mϕ,
Lϕ > 0 and ρ > 0 such that, for all t > 0, we have ϕt = ϕ1,t+ϕ2,t with Mϕ-bounded
ϕ1,t and Lϕ-Lipschitz ϕ2,t and for all x, y ∈ Rd,

(
b̃t(x)− b̃t(y)

)
· (x− y) 6

{
−ρ|x− y|2 if |x− y| > R,

L|x− y|2 otherwise.
(4.9)

Finally, assume that m0 admits a density eu0 with respect to µ0, with u0 being the
sum of a bounded and a Lipschitz continuous functions. Then (mt)t>0 satis}es a
uniform LSI.

Moreover there exists C∗ > 0 which depends on L, R, Mϕ, Lϕ, σ2, ρ and the
LSI constant of µ0 but not on m0 such that, for some t∗ > 0, mt satis}es an LSI
with constant C∗ for all t > t∗.

Finally, denoting by C0 the LSI constant of µ0, the following holds. For any
ε > 0, there exists η > 0 (which depends only on ρ, L, R and ε) such that, if
Mϕ + Lϕ 6 η, there exists t∗ such that mt satis}es an LSI with constant C0 + ε

for all t > t∗.
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4.2 Proofs of the general results
In this section we write (Ps,t)t>s>0 the inhomogeneous Markov semi-group associ-
ated to (4.2), given by

Ps,tf(x) = E[f(Xt)|Xs = x] .

In particular, the solution of (4.1) is then given by mt = m0P0,t. In the proofs
of Proposition 4.1 and Theorem 4.3, we can additionally assume that bt is smooth
with all derivatives being bounded, and consider functions f which are for instance
the sum of a positive constant and a compactly supported smooth non-negative
function, which enable to justify the computations based on ∂tPs,tf = Ps,tLtf and
∂sPs,tf = −LsPs,tf (using e.g. Proposition C.2). The conclusion is then obtained
by approximation (as in e.g. Chapter 1).

4.2.1 Proof of Proposition 4.1
Proof of Proposition 4.1. Considering X and X ′ two solutions of (4.2) driven by
the same Brownian motion, the condition (4.5) gives

d|Xt −X ′
t|2 6 2L|Xt −X ′

t|2 dt , (4.10)

so that |Xt −X ′
t|2 6 e2L(t−s)|Xs −X ′

s|2 for all t > s > 0, which by [139] implies

|∇Ps,tf | 6 eL(t−s)Ps,t|∇f | . (4.11)

Fix a function f ∈ C∞(Rd,R+), globally Lipschitz continuous and lower bounded
by a positive constant (it is su{cient to prove the LSI with these functions and
conclude by approximation). For t > s > 0, we consider the interpolation Ψ(u) =
Ps,u(Pu,tf lnPu,tf) for u ∈ [s, t], so that

Ps,t(f ln f)− Ps,tf lnPs,tf = Ψ(t)−Ψ(s)

=

∫ t

s

Ψ′(u) du

= σ2

∫ t

s

Ps,u

|∇Pu,tf |2
Pu,tf

du

6 σ2

∫ t

s

e2L(t−u) duPs,t

( |∇f |2
f

)
,

where we used that (Pu,t|∇f |)2 6 Pu,t(|∇f |2/f)Pu,t(f) by Cauchy–Schwarz. Inte-
grating with respect to ms gives

mt(f ln f) 6 ms(Ps,tf lnPs,tf) +mt

( |∇f |2
f

)
σ2

∫ t

s

e2L(t−u) du . (4.12)

The proof is concluded by applying this with s = 0 and using the LSI for m0, (4.11)
and Cauchy–Schwarz to bound

m0(P0,tf lnP0,tf) 6 mtf ln(mtf) + C0m0

( |∇P0,tf |2
P0,tf

)

6 mtfmt(ln f) + C0e
2Ltmt

( |∇f |2
f

)
.
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4.2.2 Proof of Theorem 4.3
Proof of Theorem 4.3. The dizerent steps of the proof are the following. First,
using the coupling argument of [168] (at high dizusivity), we get a long-time L2

contraction along the synchronous coupling of two solutions of (4.2). By contrast
to the almost sure contraction (4.10), this L2 contraction is not enough to get
an LSI, but it gives a uniform Poincaré inequality following arguments similar to
the proof of Proposition 4.1. It remains then to prove a so-called defective LSI,
which together with the Poincaré inequality yields the desired LSI. The proof of
the defective LSI follows the arguments of Chapter 3, except that in the present
case the measure for which the LSI is proven is not an invariant measure of a time-
homogeneous semi-group (which would solve µ = µPt, which in our case is replaced
by mt = m0P0,t). These arguments combine a Wang–Harnak inequality for the
operator P0,t with a Gaussian moment bound.

Step 1: Poincaré inequality. Let X, X ′ be two solutions of (4.2) driven by the same
Brownian motion. Following the proof of [168, Theorem 1] (which is concerned with
time-homogeneous processes, but the proof works readily in the non-homogeneous
case under the time-uniform assumptions made in Theorem 4.3), we get for all
t > s > 0,

E
[
|Xt −X ′

t|2
]
6Me−λ(t−s)E

[
|Xs −X ′

s|2
]
,

where
λ =

ρ

2
, M = 1 +

2(2L+ ρ)R2
∗

4dσ2
. (4.13)

This implies, by [139],

|∇Ps,tf |2 6Me−λ(t−s)Ps,t|∇f |2 .

Since m0 satis}es a LSI, it satis}es a Poincaré inequality, and thus,

m0(P0,tf)
2 − (m0P0,tf)

2 6 C0m0|∇P0,tf |2 6 C0Me−λtmt|∇f |2 .

Besides, for }xed t > 0 and f ∈ C1(Rd,R) globally Lipschitz continuous, considering
the interpolation Ψ(u) = P0,u(Pu,tf)

2 for u ∈ [0, t], we get

P0,t(f
2)− (P0,tf)

2 = Ψ(t)−Ψ(0)

=

∫ t

0

Ψ′(u) du

= σ2

∫ t

0

P0,u|∇Pu,tf |2 du

6 σ2

∫ t

0

Me−λ(t−u) duP0,t|∇f |2 .

Combining these last two inequalities, we get

mt(f
2)−

(
mt(f)

)2
= m0

(
P0,t(f

2)− (P0,tf)
2
)
+m0(P0,tf)

2 − (m0P0,tf)
2

6M

(
σ2

λ
+ e−λtC0

)
mt|∇f |2 , (4.14)

which is a uniform Poincaré inequality for (mt)t>0.



186 Chapter 4: Uniform LSI and applications to propagation of chaos

Step 2: Gaussian moment. Since m0 satis}es an LSI, there exists δ0 > 0 such that
∫

Rd×Rd

eδ0|x−y|2m0(dx)m0(dy) <∞ .

Write V (x, y) = eδ|x−y|2 for some 0 < δ < min(δ0, ρ/5) and L2,t the generator on
Rd ×Rd of two independent dizusion processes (4.2), namely

L2,tg(x, y) = bt(x) · ∇x + bt(y) · ∇y + σ2∆x + σ2∆y .

Using (4.6) (and that |x− y| > 2R implies that either |x| > R or |y| > R),
L2,tV (x, y)

V (x, y)
= 2δ(x− y) ·

(
bt(x)− bt(y)

)
+ 4δd+ 8δ2|x− y|2

6

{
4δd+ (8δ2 − 2δρ)|x− y|2 if |x− y| > 2R

4δd+ 4(8δ2 + 2δL)R2 otherwise
6 −δ1|x−y|>R∗

+ C∗1|x−y|<R∗

with
R2

∗ = max
(

1 + 4d

2(ρ− 4δ)
, 4R2

)
, C∗ = δ

(
4d+ (2L+ 8δ)R2

)
.

Hence,
L2,tV (x, y) 6 −δV (x, y) + C∗e

δR2
∗ ,

and thus,
∂t(mt ⊗mt)(V ) 6 −δ(mt ⊗mt)(V ) + C∗e

δR2
∗ .

As a conclusion, for all t > 0,
∫

Rd×Rd

eδ|x−y|2mt(dx)mt(dy) 6 δ−1C∗e
δR2

∗ + e−δt

∫

Rd×Rd

eδ|x−y|2m0(dx)m0(dy) .

(4.15)
Step 3: Wang–Harnack inequality. In the following, }x f > 0 such that mtf = 1.
Using the Röckner–Wang argument for the dizusion (4.2) we get, for all x, y ∈ Rd,
α > 1 and t > 0,

(
P0,tf(y)

)α
6 (P0,tf

α)(x) exp
(

α

2σ2(α− 1)

(
L2t+

|x− y|2
t

))
, (4.16)

so that
∫

Rd

(P0,tf
α)(x)m0(dx)

>
(
P0,tf(y)

)α ∫

Rd

exp
(
− α

2σ2(α− 1)

(
L2t+

|x− y|2
t

))
m0(dx) ,

and thus, for any β > α,

m0(P0,tf)
β

6
(
mt(f

α)
)β/α ∫

Rd

[∫

Rd

exp
(
−α
(
L2t+ |x−y|2

t

)

2σ2(α− 1)

)
m0(dx)

]−β/α

m0(dy)

6
(
mt(f

α)
)β/α ∫

R2d

exp
(
β
(
L2t+ |x−y|2

t

)

2σ2(α− 1)

)
m0(dx)m0(dy) . (4.17)
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Using Jensen’s inequality for the probability with density P0,tf with respect to m0,
taking α = 3/2 so that x 7→ xα−1 is concave, we get

mt(f
α) = m0P0,tf

α 6
(
m0(P0,tf)

2
)α−1

.

Using (4.17) with β = 2 to bound the right hand side then gives

mt(f
α) 6

(
mt(f

α)
)2/3

[∫

R2d

exp
(

4

2σ2

(
L2t+

|x− y|2
t

))
m0(dx)m0(dy)

]1/2
.

and we can divide by (mtf
α)2/3 to end up with

mt(f
α) 6

[∫

R2d

exp
(

2

σ2

(
L2t+

|x− y|2
t

))
m0(dx)m0(dy)

]3/2
.

Applying this result to (mt+t0)t>0 for some t0 > 0 we get that for all t > 0 and all
f > 0 with mt+t0f = 1,

mt+t0

(
f3/2

)
6

[∫

R2d

exp
(

2

σ2

(
L2t0 +

|x− y|2
t0

))
mt(dx)mt(dy)

]3/2
.

Taking t0 = 2/(δσ2), the right hand side is bounded uniformly in t > 0 thanks to
(4.15). As a conclusion, we have determined t0, C > 0 such that

∀t > t0, ∀f > 0, mt

(
f3/2

)
6 C(mtf)

3/2 . (4.18)

Moreover, in view of (4.15), we can }nd C > 0 which depends on m0 only through δ
such that (4.18) holds with this C for all t large enough. To see that we can take δ
independent from m0, we can replace the function V above by the time-dependent
Vt(x, y) = eδt|x−y|2 where t 7→ δt is slowly and smoothly increasing starting from
some small δ0 > 0 (depending on m0) and reaching ρ/5 after some time. Following
similar computations as above we get that (mt ⊗mt)(Vt) is non-increasing (taking
dδt/dt su{ciently small), from which, replacing (mt)t>0 by (mt0+t)t>0 for some
su{ciently large t0, we can assume that (4.15) holds for δ = ρ/5. As a conclusion,
for times large enough, (4.18) holds with a constant C independent from m0.

Step 4: Conclusion. For t > t0, applying (4.12) with s = t− t0 gives, for f > 0,

mt(f ln f) 6 2ms

(
Ps,tf ln(Ps,tf)

1/2
)
+mt

( |∇f |2
f

)
σ2

∫ t0

0

e2Lu du .

Assume that f is such that mtf = 1. Applying Jensen’s inequality twice (}rst with
the probability measure with density Ps,tf with respect to ms) gives

ms

(
Ps,tf ln(Ps,tf)

1/2
)
6 ln

(
ms(Ps,tf)

3/2
)
6 lnmt

(
f3/2

)
.

Thanks to (4.18), we have thus obtained that for all t > t0 and all f > 0 with
mtf = 1,

mt(f ln f) 6 2 lnC +mt

( |∇f |2
f

)
σ2

∫ t0

0

e2Lu du , (4.19)
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which is called a defective LSI (and is uniform over t > t0). According to [12,
Proposition 5.1.3], combining this inequality with the (time uniform) Poincaré in-
equality (4.14) gives an LSI for mt uniformly over t > t0. For t ∈ [0, t0] we apply
Proposition 4.1, which concludes the proof of the uniform LSI.

Finally, as mentioned above, the constant C may be taken independent from m0,
in which case the defective LSI (4.19) holds for su{ciently large times. Similarly,
we see that the Poincaré inequality (4.14) holds with constant Mσ2/λ + 1 (which
is independent from m0) for t large enough. This shows that there exists C ′

∗ > 0
independent from m0 such that mt satis}es an LSI with constant C ′

∗ for t large
enough. The fact that C ′

∗ 6 σ2C∗ for some C∗ > 0 independent from σ can be
checked in the explicit expressions above. More precisely, taking δ = ρ/5 and
t0 = 2/(δσ2), we get that, in (4.19) the constant C is uniformly bounded over
σ > σ0 by a constant that depends only on ρ, L, R, d, and similarly we can bound

σ2

∫ t0

0

e2Lu du 6 σ2t0e
2Lt0 6

10

ρ
e20L/ρ

in (4.19) uniformly over σ > 1. As a consequence, for large values of σ2, the leading
term in the LSI constant for large times is σ2M/λ from the Poincaré constant, with
M and λ in (4.13). As σ → ∞, M goes to 1, so we may take the LSI constant
(for large times) to be σ2(λ−1 + ε) for any arbitrary ε > 0 for σ large enough.
This estimate (with λ = ρ/2) is not sharp, as we expect an LSI of order σ2/ρ
(which is the Gaussian behavior). This is due to the 1/2 factor in the de}nition of
λ in [168], which is in fact arbitrary, in the sense that the computations of [168]
work if we take λ = αρ for an arbitrary α < 1 (see the two }rst equations of [168,
Section 2.1.2]), provided the lower bound on the temperature σ2

0 is su{ciently large
(depending on α). As a conclusion, we can get a Poincaré constant, and thus an
LSI constant, equal to σ2(ρ−1 + ε) for an arbitrary ε for large times, provided σ is
large enough.

4.2.3 Proof of Theorem 4.4
Proof of Theorem 4.4. The proof closely follows the one of Theorem 3.1 (in the
time-homogeneous settings and with m0 = µ0, i.e. u0 = 0), the time dependencies
appearing along the proof being dealt with the uniform-in-time assumptions of
Theorem 4.4. We recall the main arguments and refer to Chapter 3 for details.
Starting from

∂tmt = −∇ · (btmt) + ∆mt ,

0 = ∂tµ0 = −∇ · (a0µ0) + ∆µ0 ,

we get that ht = mt/µ0 is a viscosity solution to

∂tht = ∆ht + b̃t · ∇ht + ϕtht . (4.20)

This gives the Feynman–Kac representation

ht(x) = E

[
h0
(
X

t,x
t

)
exp
(∫ t

0

ϕs

(
Xt,x

s

)
ds
)]

,

where Xt,x solves

X
t,x
0 = x , dXt,x

s = b̃t−s

(
Xt,x

s

)
ds+

√
2dBt for s ∈ [0, t].
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Suppose additionally that ϕt, h0 and 1/h0 are bounded and Lipschitz continuous
(the general case being obtained afterwards by an approximation argument, which
we omit here, referring to Chapter 3). Then, applying synchronous coupling to the
Feynman–Kac formula above, for any T > 0 we obtain a constant M > 0 such that
for every t, s ∈ [0, T ] and every x, y ∈ Rd,

M−1 6 h(t, x) 6M and |h(t, x)− h(s, y)| 6M
(
|t− s|1/2 + |x− y|

)
.

Taking the logarithm we obtain that ut := lnht is a bounded and uniformly con-
tinuous viscosity solution to the HJB equation,

∂tut = ∆ut + |∇ut|2 + b̃t · ∇ut + ϕt . (4.21)

In order to use a stochastic control representation of the solutions of such equations,
for N ∈ N, consider the approximative HJB equation,

uN0 = u0 , ∂tu
N
t = ∆uNt + sup

α:|α|6N

{2α · ∇uNt − |α|2}+ b̃ · ∇uN + ϕt , (4.22)

and the associated control problem,

V N (T, x) = sup
ν

sup
α:|αt|6N

E

[
u0
(
X

α,x
T

)
+

∫ T

0

(
ϕt

(
X

α,x
t

)
− |αt|2

)
dt
]
, (4.23)

where ν =
(
Ω, F, (F·),P, (B·)

)
stands for a }lter probability space with the usual

conditions and an (F·)-Brownian motion B, α is an Rd-valued progressively mea-
surable process such that

∫ T

0
E
[
|αt|m

]
dt is }nite for every m ∈ N, and Xα,x solves

X
α,x
0 = x , dXα,x

t =
(
b̃
(
X

α,x
t

)
+ 2αt

)
dt+

√
2dBt . (4.24)

By Theorem IV.7.1 and the results in Sections V.3 and V.9 of [91], the value function
V N de}ned by (4.23) is a bounded and uniformly continuous viscosity solution to
(4.22).

Suppose u0 = ln(m0/µ0) is the sum of an Mu0 -bounded and an Lu0 -Lipschitz
function. As shown in Lemma 3.14, using a re~ection coupling of two solutions of
(4.24) with dizerent initial conditions but using the same control α, we get that
there exist C ′, κ > 0, depending only on ρ, L, R, such that for every x, y ∈ Rd,
N ∈ N, T > 0 and t > 0, we have

|V N (T, x)− V N (T, y)| 6 2Mϕt+ 2Mu01T<1

+ C ′
(
1t<T

Mϕ

t
+ Lϕ + e−κT

(
Lu0 + 1T>1M

u0
))
|x− y| . (4.25)

We simply take t = 1. Since both u and V N are bounded and uniformly continuous
on [0, T ]×Rd, we can apply the parabolic comparison for viscosity solutions on the
whole space [72, Theorem 1] to obtain V N (T, x) = uT (x) for N su{ciently large.
Therefore, we have obtained that there exists C > 0 such that for every T > 0 and
every x, y ∈ Rd, we have

|uT (x)− uT (y)| 6 C(1 + |x− y|) . (4.26)
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Besides, in view of (4.25), we can }nd C > 0 independent from m0 such that (4.26)
holds with this C for all T large enough. Moreover this C can be taken arbitrarily
small provided Mϕ + Lϕ is small enough.

We can then decompose uT as the sum of a bounded and a Lipschitz continuous
functions (with time uniform bounds for both functions). For instance we can
consider a 2C(1 +

√
d)-Lipschitz function vT that coincides with uT at all points

x ∈ Zd (thanks to (4.26)) and then uT − vT is uniformly bounded (thanks to
(4.26) again) uniformly in T . The proof is concluded by applying successively the
Holley–Stroock and Aida–Shigekawa perturbation lemmas [113, 1].

4.3 Sharp PoC for McKean–Vlasov dizusions
4.3.1 Settings and notations
In this section, we consider the non-linear McKean–Vlasov equation on Rd:

∂tmt = ∇ ·
(
σ2∇mt − F (·,mt)mt

)
, (4.27)

which corresponds to (4.1) in the case (4.3). In fact, since we want to apply the
results of [142], we consider its settings, which reads

F (x,m) = b0(x) +

∫

Rd

b(x, y)m(dy)

for some b0 : Rd → Rd and b : Rd ×Rd → Rd (which additionally may depend on
time in [142], which we don’t consider here for simplicity as it is not the case in the
examples were are interested in, although it would work similarly). It is associated
to the system of interacting particles X = (X1, . . . , XN ) solving

∀i ∈ J1, NK, dXi
t = b0

(
Xi

t

)
dt+ 1

N − 1

∑

j∈J1,NK\{i}
b
(
Xi

t , X
j
t

)
dt+

√
2σ dBi

t ,

(4.28)
where B1, …, BN are independent d-dimensional Brownian motions. Denote by
mN

t the law of
(
X1

t , . . . , X
N
t

)
and by mk,N

t the law of
(
X1

t , . . . , X
k
t

)
for k 6 N .

The PoC phenomenon describes the fact that, in the system of interacting par-
ticles, as N → ∞, particles become more and more independent, so that mk,N

t

converges to m⊗k
t for a }xed k. Up to recently, known results were typically that,

under suitable conditions, for a }xed t > 0,
∥∥mk,N

t −m⊗k
t

∥∥
TV = O

(√
k/N

)
. This

can be for instance obtained by showing the global estimate H
(
mN

t

∣∣m⊗N
t

)
= O(1)

(which is optimal) using then that H
(
mN

t

∣∣m⊗N
t

)
= (N/k)H

(
m

k,N
t

∣∣m⊗k
t

)
(assum-

ing for simplicity that n/k ∈ N) and concluding with Pinsker’s inequality. This
k/N rate for the marginal relative entropy (hence

√
k/N in TV) was thought to

be optimal until Lacker showed in [140] that it is possible to get a rate k2/N2 by
working with a BBGKY hierarchy of entropic bounds instead of simply with the
full entropy of the N particles system. We refer to such entropic estimates with
a rate k2/N2 as sharp PoC, by comparison with other results (the k2/N2 rate be-
ing optimal, as it is reached, e.g., in Gaussian cases). The work [140] deals with
}nite-time intervals, and the technique is then re}ned by Lacker and Le Flem in
[142] to get uniform-in-time sharp PoC in some cases (small interaction in the torus
or convex potentials in Rd). A crucial ingredient in their result is a uniform LSI
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for the solution of the non-linear equation (4.27). Our results can thus be applied
to extend their results to more general cases, allowing for instance for non-convex
potentials on Rd.

The rest of this section is organized as follows. In Section 4.3.2 for the reader’s
convenience we give a brief overview of the general result of Lacker and Le Flem.
In Sections 4.3.3 and 4.3.4 we apply respectively Theorems 4.4 and 4.3 to get,
under suitable conditions, uniform-in-time LSI for solutions of the McKean–Vlasov
equation, and thus uniform-in-time sharp PoC as a corollary, in cases which are not
covered by [142].

4.3.2 Lacker and Le Flem’s result
First, for the reader’s convenience, we recall [142, Theorem 2.1]. There are two sets
of assumptions to apply this result: Assumption E of [142] is technical conditions
related to well-posedness of m and mN and we omit them as they are not important
in our discussion (see Proposition 4.9 below). The second set of assumptions of [142]
is the following.

Assumption 4.5 (Assumption A of [142]). The following holds.

1. (mt)t>0 satis}es a uniform LSI with constant η > 0.

2. (mt)t>0 satis}es a uniform transport inequality: there exists γ > 0 such that,
for all t > 0, x ∈ Rd and ν ∈ P(Rd),

∣∣ν
(
b(x, ·)

)
−mt

(
b(x, ·)

)∣∣26 γH(ν|mt) . (4.29)

3. (mt)t>0 and
(
mN

t

)
t>0 satisfy this uniform L2 boundedness:

sup
N∈N

sup
t>0

∫

RdN

∣∣b(x1, x2)−mt

(
b(x1, ·)

)∣∣2mN
t (dx) <∞ . (4.30)

When b is bounded, (4.30) is trivial and (4.29) follows from Pinsker’s inequal-
ity. When y 7→ b(x, y) is Lipschitz continuous uniformly in x, (4.30) follows from
time-uniform second moment bounds, which are classically obtained by Lyapunov
arguments, and (4.29) is implied by the uniform LSI.

Theorem 4.6 (From Theorem 2.1 of [142]). Under Assumptions A and E of [142],
assume moreover that σ4 > 8γη and that

∃C0 > 0, ∀N > 2, ∀k ∈ J1, NK, H
(
m

k,N
0

∣∣m⊗k
0

)
6 C0

k2

N2
. (4.31)

Then,

∃C > 0, ∀N > 2, ∀k ∈ J1, NK, ∀t > 0, H
(
m

k,N
t

∣∣m⊗k
t

)
6 C

k2

N2
. (4.32)

Remark 4.7. As in Remark 4.2, it is in fact su{cient to enforce Assumption A
with the condition σ4 > 8γη for times t > t0 for some t0 and apply Theorem 4.6
to (mt+t0)t>0. More precisely, for some t0, assume that (4.29) and (4.30) holds
uniformly over t ∈ [0, t0]. Then, assuming the initial chaos (4.31), [140, Theorem
2.2] gives (4.32) for some constant C > 0 uniformly over t ∈ [0, t0]. In particular,
the initial chaos (4.31) holds for (mt+t0)t>0.
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In [142], the assumptions of Theorem 4.6 are shown to hold in two cases: either
convex potentials on Rd, or models on the torus. In any cases, the condition
σ4 > 8γη (corresponding to rc > 1 with the notation of [142, Theorem 2.1]) means
that the PoC estimates require that either the temperature σ2 is high enough or the
strength of the interaction is small enough. In Sections 4.3.3 and 4.3.4 we extend the
range of application of [142, Theorem 2.1] to some cases with non-convex potentials
on Rd.

Before that, in order to focus on the uniform LSI afterwards, let us state a
result concerning the other technical conditions, which is su{cient for the cases
considered in the two next sections.

Assumption 4.8. The initial conditions m0 and mN
0 have }nite moments of all

orders, mN
0 is exchangeable and there exists C independent from N such that∫

Rd |x1|2m1,N
0 (dx1) 6 C.

We omit the proof of the next result, the arguments are the same as in [142,
Corollary 2.7].

Proposition 4.9. Assume that b0 are b are C1, that |b0| grows at most polynomially,
that b is the sum of a bounded and a Lipchitz continuous function, and that there
exists c, C > 0 such that for all x, y ∈ Rd,

(
b0(x) + b(x, y)

)
· x 6 −c|x|2 + C(1 + |y|) .

Then, under Assumption 4.8, (mt)t>0 and
(
mN

t

)
t>0 are well de}ned and Assump-

tion E of [142] and the uniform L2 boundedness (4.30) holds.

4.3.3 Convergent trajectories
In this section we focus on the cases where mt converges as t → ∞ towards a
stationary solution m∗ of the non-linear equation (4.27). This is known to hold in
various cases of interest, like the granular media equation with convex potentials, or
repulsive interaction, or high temperature, or small interaction, or other models like
the adaptive biasing force method [150] or the mean-}eld gradient descent ascent
[156]. So, assume that

‖mt −m∗‖TV −→
t→∞

0 . (4.33)

Remark 4.10. Under suitable conditions, [192, Theorem 4.1] allows to obtain (4.33)
from a W2 convergence.

We now discuss suitable conditions to apply Theorem 4.4 with Mϕ, Lϕ arbi-
trarily small for large times, where we decompose the drift F (x,mt) = a0(x)+gt(x)
with a0(x) = F (x,m∗) and gt(x) = F (x,mt) − F (x,m∗). For simplicity we focus
on the case where

F (x,m) = −∇V (x)−
∫

Rd

∇xW (x, y)m(dy) , (4.34)

for some V ∈ C2(Rd,R) and W ∈ C2(Rd × Rd,R). The next result would be
easily adapted to other cases where the density of the stationary solutions of (4.27)
are explicit or solve an explicit }xed-point equation (namely when the invariant
measure of σ2∆+ F (·,m) · ∇ is explicit for each m), which is for instance the case
in [150, 156].
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Proposition 4.11. Let (mt)t>0 be a solution to (4.27) (in the case (4.34)) which
converges in TV in long time towards a stationary solution m∗. Assume that m0

admits a density eu0 with respect to m∗, with u0 being the sum of a bounded and a
Lipschitz continuous function. Assume furthermore that there exists L, α > 0 such
that, for all x, y ∈ Rd,

|∆xW (x, y)| 6 L , |∇xW (x, y)| 6 L

1 + |x− y|α , |∇V (x)| 6 L(1 + |x|α) .
(4.35)

Finally, assume that V is strongly convex outside of a compact set. Then, (mt)t>0

satis}es a uniform LSI. Moreover, as t → ∞, the optimal LSI constant of mt

converges to the optimal LSI constant of m∗.

Notice that, V being strongly convex outside a compact set, the last condition
of (4.35) can only hold with some α > 1. Hence, the second condition of (4.35) on
∇W means that we only consider local interactions.

Proof. Considering the decomposition F (x,mt) = a0(x) + gt(x) with a0(x) =
F (x,m∗) and gt(x) = F (x,mt) − F (x,m∗), we have to show that Theorem 4.4
applies to (mt+t0)t>0 with Mϕ, Lϕ arbitrarily small provided t0 is large enough.
Indeed, the last part of Theorem 4.4 will then give that, for any ε > 0, the optimal
LSI constant of mt is less than C0 + ε for t large enough, where C0 is the optimal
LSI constant of m∗. On the other hand, for any ε > 0, there exists a non-constant
C∞ function f with compact support such that

m∗(f
2 ln f2)−m∗(f

2) lnm∗(f
2) > (C0 − ε)m∗|∇f |2 .

The weak convergence implied by (4.33) leads to

mt(f
2 ln f2)−mt(f

2) lnmt(f
2) > (C0 − 2ε)mt|∇f |2

for t large enough, which implies that the optimal LSI constant of mt is larger than
C0 − 2ε.

Hence, we turn to the application of Theorem 4.4 using its notations. We write
m?W (x) =

∫
Rd W (x, y)m(dy). The invariant measure of a0 · ∇+ σ2∆ is µ0 = m∗,

with ∇ lnm∗ = −∇(V +m∗ ? W ) = F (·,m∗), so that

b̃t(x) = −∇(V + 2m∗ ? W −mt ? W ) .

Since ∇xW is bounded by (4.35), the contribution of W in b̃t is bounded (uniformly
in t) and thus (4.9) holds thanks to the convexity of V outside a compact set. From
(4.35),

|∇ · gt(x)| = |(mt −m∗) ?∆xW (x)| 6 L‖mt −m∗‖TV ,

and, given (Y, Y ′) an optimal TV coupling of mt and m∗ and using the Cauchy–
Schwarz inequality,

|gt(x) · ∇ lnm∗(x)|
6
∣∣E[∇xW (x, Y )−∇xW (x, Y ′)]

∣∣L(2 + |x|α)

6 E

[
1Y 6=Y ′

(
1

1 + |x− Y |α +
1

1 + |x− Y ′|α
)]
L2(2 + |x|α)

6 ‖mt −m∗‖1/2TV E

[(
1

1 + |x− Y |α +
1

1 + |x− Y ′|α
)2]1/2

L2(2 + |x|α) .
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Then we bound, for the }rst term in the expection,

E

[
1

(1 + |x− Y |α)2
]
6

1

(1 + |x/2|α)2 + P[|Y | > |x|/2]

6
1

(1 + |x/2|α)2 +
1 + E[|Y |2α]
1 + |x/2|2α ,

and similarly for the second term involving m∗. Using that V is convex outside a
compact set and that ∇xW is bounded we easily get by Lyapunov arguments that
the moments of mt are bounded uniformly in time. As a consequence, we have
obtained, for ϕt := −∇ · gt + gt · ∇ lnµ0, a bound

‖ϕt‖∞ 6 L′‖mt −m∗‖1/2TV

for some L′ independent from t. The TV convergence (4.33) concludes the proof.

Corollary 4.12. Under Assumption 4.8 and the settings of Proposition 4.11, as-
sume furthermore that W is bounded and V = V1+V2 where V1 is ρ-strongly convex
and V2 is bounded. Assume that

σ2 >
4

ρ
‖∇xW‖2∞ exp

(‖V2‖∞ + ‖W‖∞
σ2

)
. (4.36)

Then, provided the initial PoC (4.31) holds, so does the uniform in time sharp PoC
(4.32).

This applies to cases on Rd where V is not convex, which are not covered by
[142]. In general cases where V may have several local minima, a condition in the
spirit of (4.36), that states that either temperature is large enough or interaction is
small enough, is necessary to have a uniform-in-time propagation of chaos estimate.

Proof. The assumptions of Proposition 4.11 imply those of Proposition 4.9. Since
∇xW is bounded, Pinsker’s inequality gives the transport inequality (4.29) with
γ = ‖∇xW‖2∞/2. Proposition 4.11 provides the uniform LSI for (mt)t>0. Moreover,
for large times, the LSI constant ofmt converges to the LSI constant C∗ ofm∗, which
by the Bakry–Émery and Holley–Stroock results is less than σ2ρ−1 exp

(
(‖V2‖∞ +

‖W‖∞)/σ2
)
. Corollary 4.12 thus follows from Theorem 4.6 (since, as noticed in

Remark 4.7, the condition σ4 > 8γη only has to be veri}ed for su{ciently long
times).

4.3.4 High temperature regime
Instead of Corollary 4.12, using Theorem 4.3, we can get an alternative result,
which doesn’t require the a priori knowledge that mt converges in large time and
with weaker assumptions on W , but which only works at high temperature and is
less explicit (an explicit condition on σ2 can be obtained in principle by checking
the proofs, but it wouldn’t be as nice as (4.36)). In the next statement we consider
a solution (mt)t>0 of (4.27) in the case (4.34).
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Proposition 4.13. Under Assumption 4.8, assume furthemore that |∇U | grows
at most polynomially, that there exist ρ, L, R > 0 such that, for all z ∈ Rd,
ψz := −∇U −∇xW (·, z) satis}es

(
ψz(x)− ψz(y)

)
· (x− y) 6

{
−ρ|x− y|2 ∀x, y ∈ Rd with |x| > R ,

L|x− y|2 ∀x, y ∈ Rd ,
(4.37)

and that ∇xW = F1 + F2 where F1 is bounded and y 7→ F2(x, y) is LW -Lipschitz
with 8L2

W < ρ, uniformly in x. Then, there exists σ2
∗ > 0 (which depends on U , W

and d) such that, assuming σ2 > σ2
∗ and the initial sharp PoC (4.31), we have that

the uniform in time sharp PoC (4.32) holds.

In particular, if U is strongly convex outside a compact set and x 7→ W (x, z)
is convex for all z with ∇xW being bounded (e.g. W (x, z) = a

√
1 + |x− z|2 for

a > 0), then Proposition 4.13 applies without requiring the interaction to be small
(although the temperature threshold σ2

∗ can become large when the interaction is
strong).

Proof. We verify the conditions of Theorem 4.6. Using (4.37) with y = 0 we see that
Proposition 4.9 holds. The uniform LSI in the high temperature regime σ2 > σ2

0

is ensured by Theorem 4.3, and for times large enough it holds with a constant
η = σ2η′ for some η′ > 0 independent from σ, and which can be taken arbitrarily
close to 1/ρ for σ2 large enough. Here we have used that sup{−x · bt(x) : |x| 6 R∗}
can be bounded by a constant K independent from t and such that (4.8) holds for
σ large enough (for t large enough). Indeed, we can bound

|bt(x)| 6 |∇U(x)|+ ‖F1‖∞ + |F2(x, 0)|+ LW

∫

Rd

|y|mt(dy) .

Then, the condition (4.37) implies that st :=
∫
Rd |y|2mt(dy) satis}es dst/dt 6

−ρst/2+ q+2dσ2 for some q > 0 independent from t and σ2. From this, for t large
enough, we get

∫
Rd |y|mt(dy) 6 C(1 + σ) where C depends only on d, ρ, L, R. As

a consequence, in (4.7) we can take K = C ′(1 + σ) for some C ′ (independent from
t and σ), so that (4.8) holds for σ large enough, as claimed.

It remains to check the transport inequality (4.29). For any θ > 0 we can bound,
for all t > 0, x ∈ Rd and ν ∈ P(Rd),
∣∣ν
(
b(x, ·)

)
−mt

(
b(x, ·)

)∣∣2

6 (1 + θ)
∣∣ν
(
F1(x, ·)

)
−mt

(
F1(x, ·)

)∣∣2 + (1 + θ−1)
∣∣ν
(
F2(x, ·)

)
−mt

(
F2(x, ·)

)∣∣2

6 (1 + θ)‖F1‖2∞‖ν −mt‖2TV + (1 + θ−1)L2
WW2

2 (ν,mt)

6 γH(ν|mt) ,

where we used Pinsker’s and Talagrand’s inequalities, and γ on the last line is
de}ned by

γ =
1 + θ

2
‖F1‖2∞ + σ2η′(1 + θ−1)L2

W .

Fixing θ (independent from σ) large enough so that 8(1+θ−1)L2
W < ρ, the condition

σ4 > 8γη holds for σ large enough, which concludes.
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4.4 Application to log and Riesz interactions
In this section, we still consider McKean–Vlasov equations (4.27), but now we
impose the following condition on the non-linear drift.

Assumption 4.14. We have d > 2, s ∈ [0, d− 1) and the McKean–Vlasov drift in
(4.27) reads

F (x,m) = −∇U(x) +M∇gs ? m(x) ,

where U , M , gs satisfy the following conditions:

• the function U : Rd → R has bounded Hessian ∇2U ∈ L∞ and satis}es the
weak convexity condition: there exist κU > 0 and R > 0 such that for all x,
y ∈ Rd with |x− y| > R, we have

〈∇U(x)−∇U(y), x− y〉 > κU |x− y|2 ;

• gs : R
d → R is the logarithmic or Riesz potential:

gs(x) =

{
− ln|x| when s = 0,

|x|−s when s > 0;

• in the sub-Coulombic case where s < d − 2, M is a d × d real matrix such
that M : ∇2g(x) > 0 for x 6= 0; in the Coulombic and the super-Coulombic
cases where s ∈ [d− 2, d− 1), M is anti-symmetric.

These models have raised a high interest over the recent years, in particular
with a series of work by Rosenzweig, Serfaty and coauthors on the one hand (see
e.g. [199, 59, 200] and references within) and Bresch, Jabin, Wang and coauthors
on the other hand (see e.g. [124, 32, 31] and references within). The main result of
the section, to be stated in Theorem 4.25 in Section 4.4.4, addresses the McKean–
Vlasov drift force above with d > 2, s = 0, M being anti-symmetric and U being
isotropically quadratic. We show that in this case the dynamics exhibits the time-
uniform propagation of chaos. This result is a continuation of a recent work of
Guillin, Le Bris and one of the author [98], where the uniform PoC is shown for the
dynamics on the torus (thus in a periodic setting). We also note that a non-time-
uniform result on the whole space have also been obtained very recently by Feng
and Wang [90]. In terms of methodology, the main addition of our work is that we
employ the re~ection coupling technique of Conforti [61] to get regularity bounds
for the mean }eld ~ow on the whole space (Theorems 4.19 and 4.24), which enable
to apply the Jabin–Wang method.

We will write g = gs if that does not lead to ambiguities. For simplicity, we also
set σ = 1 in this section. Under the assumptions above, we denote K =M∇g, and
the McKean–Vlasov dynamics writes

∂tmt = ∆mt −∇ ·
(
mt(K ?mt −∇U)

)
. (4.38)

Consider now the system of N particles in interaction:

dXi
t = −∇U

(
Xi

t

)
dt+ 1

N − 1

∑

j∈J1,NK\{i}
K
(
Xi

t −Xj
t

)
dt+

√
2dW i

t , i = 1, …, N ,

(4.39)



4.4 Application to log and Riesz interactions 197

where W i
t are N independent Brownian motions. The ~ow mN

t = Law(Xt) =
Law(X1

t , . . . , X
N
t ) of probabilities in RdN satis}es the Fokker–Planck equation at

least formally:

∂tm
N
t =

N∑

i=1

(
∆im

N
t −∇i ·

(( 1

N − 1

∑

j∈J1,NK\{i}
K(xi − xj)−∇U(xi)

)
mN

t

))
.

(4.40)
In this section, ηε denotes a C∞ molli}er with support in B(0, ε) that is also

invariant by rotation. We set gε := g ? ηε and Kε := M∇gε = M∇g ? ηε. Since
under Assumption 4.14, we are restricted to the case where s < d−1, the interaction
potential g ∝ |x|−s is integrable around zero, so gε is in}nitely dizerentiable with
bounded derivatives. Notice that the rotational invariance of ηε implies that the
value gε(x) depends only on |x| and thus, ∇gε(x) is parallel to x. We also work
with the approximation of the con}nement Uε := U ? ηε.

Sometimes, in the rest of this section, for conciseness, we write A . B when
there exists a constant C such that A 6 CB.

4.4.1 Well-posedness of the mean }eld and particle systems
For a function f : Rd → R and θ ∈ (0, 1], we denote the homogeneous θ-Hölder
(semi-)norm of f by

[f ]Cθ = sup
x,y∈Rd : x 6=y

|f(x)− f(y)|
|x− y|θ .

In order to study the singular interaction kernel K, we use the following crucial
estimate. This generalizes the estimate in (2.9) of [199] (which corresponds to
the case p = ∞). We refer readers to Lemma 4.5.4 and Theorem 4.5.10 of [114]
for the proof, where the statement of the latter should be accompanied with an
interpolation.

Proposition 4.15. Let s > 0. For all m ∈ L1 ∩ Lp(Rd) with
(
1− s

d

)−1
< p 6∞,

we have ∥∥|·|−s ? m
∥∥
L∞

. ‖m‖1−qs/d
L1 ‖m‖qs/dLp ,

where p−1 + q−1 = 1. If additionally, for some θ ∈ (0, 1), we have
(
1 − s+θ

d

)−1
<

p 6∞, then [
|·|−s ? m

]
Cθ . ‖m‖1−q(s+θ)/d

L1 ‖m‖q(s+θ)/d
Lp .

Then, we present the well-posedness results for the mean }eld and the particle
system.

Proposition 4.16 (Well-posedness of the mean }eld system). Let Assumption 4.14
hold. Then we have the following results:

• For each initial value m0 ∈ L1 ∩ L∞ ∩ P(Rd), there exists a unique solution
to the mean }eld ~ow (4.38) in C

(
[0,∞);L1(Rd)∩P

)
∩L∞([0,∞);L∞(Rd)

)

depending continuously on the initial value. In particular, we have the time-
uniform bound:

sup
t∈[0,∞)

‖mt‖L∞ 6 C1(U, ‖m0‖L∞) <∞ . (4.41)
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• If additionally the initial value m0 has }nite k-th moment for some k > 0,
then the mean }eld ~ow mt has }nite k-th moment, uniformly in time:

sup
t∈[0,∞)

∫

Rd

|x|kmt(dx) 6 C2

(
U,K, k, ‖m0‖L∞ ,

∫

Rd

|x|km0(dx)
)

• Finally, let Kε = K?ηε, Uε = U ?ηε be the molli}ed kernel and con}nement.
If mε

0 converges to m0 in L1 and if supε‖mε
0‖L∞ < ∞, then the solution mε

t

of the approximate mean }eld ~ow

∂tm
ε
t = ∆mε

t −∇ ·
(
mε

t (K
ε ? mε

t −∇Uε)
)

(4.42)

converges to mt in L1 for all t > 0. Moreover, the L∞ norm and the k-th
moment bounds above hold when we replace m by mε.

Proposition 4.17 (Well-posedness of the particle system). Let Assumption 4.14
hold with s 6 d − 2 and suppose that for all x ∈ Rd, we have x>Mx 6 0. Then,
for any initial value X0 =

(
X1

0 , . . . , X
N
0

)
such that Xi

0 6= X
j
0 almost surely for

i 6= j, the SDE system (4.39) has a global unique strong solution. Moreover, setting
Kε = K ? ηε, Uε = U ? ηε, and considering the approximate SDE system

dXε,i
t = −∇Uε

(
X

ε,i
t

)
dt+ 1

N − 1

∑

j∈J1,NK\{i}
Kε
(
X

ε,i
t −Xε,j

t

)
dt+

√
2dW i

t , (4.43)

for i ∈ J1, NK, with the initial condition X
ε,i
0 = Xi

0, we have, for all t > 0 and
i = 1, …, N ,

X
ε,i
t → Xi

t a.s., when ε→ 0 .

These results may be considered mathematical folklore and we do not claim
originality from them. Their proofs are postponed to Appendix C.1.

4.4.2 Uniform Lipschitz and Hessian bounds, and LSI
We introduce the invariant measure µ0 of the reversible dizusion generated by
∆−∇U · ∇, whose density is explicit:

µ0(x) = Z(µ0)
−1 exp

(
−U(x)

)
, Z(µ0) =

∫

Rd

exp
(
−U(x)

)
dx .

Note that, under Assumption 4.14, using the HJB ~ow method of Conforti (see
Theorem 1.3 and Remark 1.7 of [62]), we can show that the measure µ0 is the
image of a Gaussian measure under a transport mapping with an explicit Lipschitz
constant, and thus satis}es an LSI with an explicit constant.

We use the following result on the Lipschitz and Hessian bounds on the solution
to a class of HJB equations.

Theorem 4.18. Let T > 0. Suppose that b̃ ∈ C0,∞([0, T ]×Rd;Rd), ϕ ∈ C0,∞([0, T ]×
Rd;R), u0 ∈ C∞(Rd;R), and their space derivatives ∇k b̃, ∇kϕ, ∇ku0 are bounded
for all k > 1. Then there exists a spatially C2 solution u to the HJB equation

∂tut = ∆ut − |∇ut|2 + b̃t · ∇ut + ϕt

and this solution is unique within the class of spatially Lipschitz functions.
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Furthermore, suppose the drift b̃ satis}es the weak convexity condition
(
b̃t(x)− b̃t(y), x− y

)
6 κb̃(|x− y|)|x− y|

for some C1-continuous κb̃ : (0,∞) → R such that
∫ 1

0
r
(
κb̃(r) ∨ 0

)
dr < ∞ and

lim infr→∞ κb̃(r) < 0. Then, we have the following quantitative estimates on u:

• If ϕt ∈ L∞ for all t ∈ [0, T ], then, we have, for all t ∈ [0, T ],

‖∇ut‖L∞ 6 Ce−ct‖∇u0‖L∞ +

∫ t

0

Ce−cv

√
v ∧ 1

‖ϕt−v‖L∞ dv , (4.44)

where C, c > 0 and depend only on κb̃.

• If additionally, ∇ϕt ∈ L∞ for all t ∈ [0, T ], then we have, for all t ∈ [0, T ],

‖∇2ut‖L∞ 6
C ′e−c′t

√
t ∧ 1

‖∇u0‖L∞

+

∫ t

0

C ′e−c′v

√
v ∧ 1

(
‖∇ϕt−v‖L∞ + ‖∇b̃t−v · ∇ut−v‖L∞

)
dv , (4.45)

where C ′, c′ > 0 and depend only on κb̃, ‖∇u0‖L∞ and supt∈[0,T ]‖ϕt‖L∞ .

The theorem is only an enhancement to the result of Conforti [61] by using the
short-time gradient estimates obtained by Priola and Wang [187], and by Porretta
and Priola [186]. Thus we only provide a sketch of proof here.

Sketch of proof of Theorem 4.18. The existence and uniqueness of the classical so-
lution follow from standard arguments; for details, we refer readers to [61, Proof of
Proposition 3.1]. The quantitative results dizer from the main result of [61], specif-
ically Theorem 1.3 therein, in only two respects: }rst, our analysis is conducted in
a time-inhomogeneous setting; second, the uniform gradient estimate employed in
our proof exhibits a blow-up rate of t−1/2, as opposed to t−1, as t→ 0.

Following the method in the proof of Theorem 4.4 (and ignoring technical issues
about the correspondance to stochastic control problems), for every x, y ∈ Rd and
t ∈ [0, T ], we can }nd stochastic processes Xα,x

· , Xα,y
· , α, all de}ned on [0, t] and

taking values in Rd, such that

X
α,z
0 = z , dXα,z

v =
(
b̃
(
Xα,z

v

)
+ 2αv

)
dv +

√
2dBz

v , for z = x, y ,

u(t, x) = E

[∫ t

0

(
|αv|2 + ϕt−v

(
Xα,x

v

))
dv + u

(
0, Xα,x

t

)]
,

u(t, y) 6 E

[∫ t

0

(
|αv|2 + ϕt−v

(
Xα,y

v

))
dv + u

(
0, Xα,y

t

)]
,

where Bx, By are Brownian motions coupled by re~ection until Xα,x, Xα,y collide:

dBα,y
v =

(
1− 2

(
Xα,y

v −Xα,x
v

)(
Xα,y

v −Xα,x
v

)T

∣∣Xα,y
v −Xα,x

v

∣∣2
)

dBα,x
v ,

for v 6 τ := inf
{
w > 0 : Xα,x

w = Xα,y
w

}
, and dBα,x

v = dBα,y
v for v > τ . Then, by

subtracting the dynamics of Xα,x and Xα,y, we }nd that their dizerence process
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∣∣Xα,x
· −Xα,y

·
∣∣ is stochastically dominated by a one-dimensional Itō process (rt)t>0

solving
drv = −rvκb̃(rv) dv + 2

√
2dWv

with an absorbing boundary at 0 with initial value r0 = |x−y|. It is shown in [187]
that

P[rv > 0] 6
Cr0√
v ∧ 1

for some C depending only on κb̃. Then, by combining the result above with the
long-time Wasserstein contraction studied in [83], we get, for all v ∈ [0, t],

P[rv > 0] 6
C ′e−c′vr0√

v ∧ 1

for some C ′, c′ > 0 depending only on κb̃. Therefore, by subtracting the stochastic
representation for u(t, x), u(t, y) and applying the bound above on rv, we get the
}rst claim.

For the second-order estimate, we take spatial derivatives in the HJB and }nd
that ∇ut solves the Rd-valued equation

∂t∇ut = ∆∇ut + (b̃t − 2∇ut) · ∇2ut +∇b̃t · ∇ut +∇ϕt .

Thus, ∇ut solves a second-order equation with the weakly semi-monotone drift
term b̃t − 2∇ut (as b̃t is weakly semi-monotone and ∇ut is bounded by the }rst
claim), and a bounded source term ∇b̃t · ∇ut + ∇ϕt. Writing the Feynman–Kac
formula for ∇ut and using the coupling by re~ection as above, we get the second
claim.

Theorem 4.19. Let Assumption 4.14 hold. Let m0 ∈ P(Rd) be such that

u0 := − ln dm0

dµ0
= − lnm0 − U − lnZ(µ0)

is Lipschitz continuous and let (mt)t>0 be the solution to (4.38). Denote ut :=
− ln dmt/dµ0. Then we have, for all t > 0,

sup
x∈Rd

∣∣K ?mt(x)(1 + |x|)
∣∣ 6 C , ‖∇ut‖L∞ 6 C , ‖∇2ut‖L∞ 6

C√
t ∧ 1

for some C depending only on d, s, U , |M |, ‖m0‖L∞ and ‖∇u0‖L∞ . Moreover,
when |M | increases and all other dependencies are kept constant, C increases.
Consequently, the ~ow (mt)t>0 satis}es a uniform LSI whose constant has the
same dependency as above and is increasing in |M |.

The proof of Theorem 4.19 is postponed to Section 4.4.5.
Remark 4.20 (Modulated free energy and LSI, and kinetic case). We remark that
since we have obtained the L∞ bound of ∇2ut in the theorem above (and also in
Theorem 4.24 below), we can control the Lipschitz norm of the time-dependent
vector }eld

x 7→ σ2∇ ln mt(x)

e−U(x)
−K ?mt(x). (4.46)
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The control of this quantity, as remarked in [59, Section 1.2], is crucial for the
modulated free energy method since it appears in the “commutator estimates”. See
e.g. [209, Proposition 1.1] or [59, Proposition 2.13]. We note that unfortunately
our method to obtain this control exploits the long-time contractivity of Brownian
motions coupled by re~ection, and relies fundamentally on the dizusivity of the
dynamics, so it is not useful for deterministic dynamics (i.e. σ = 0) considered
originally in [209]. Nevertheless, since similar results for the kinetic case in the time-
homogeneous setting have been established by two of the authors in Theorems 3.6
and 3.20, our method provides bounds on ∇2 lnmt, which is of interest in the
perspective of applying the arguments [124, Theorem 2] in such hypoelliptic cases.

Besides, together with the control of the Lipschitz norm of (4.46), a key ingredi-
ent to get uniform-in-time estimates when using modulated free energy instead of
relative entropy is the modulated log-Sobolev inequalities discussed in [200]. These
modulated LSI are in fact classical LSI satis}ed uniformly over a speci}c family
of measures (called the modulated Gibbs measures, and distinct from the law mt

that we consider in Theorem 4.19; but a similar time-uniformity is required). The
arguments of the time-uniform LSI of Theorem 4.19 may thus be useful to establish
time-uniform modulated LSI (although additional di{culties appear in the latter
case, in particular a uniformity in the number of particles is required). On the topic
of modulated free energy and modulated LSI, we mention that an upcoming work
[119] is announced in [59].
Remark 4.21 (Non-conservative ~ow and more singularity). Two natural extensions
to the setting considered in Assumption 4.14 are to consider a not necessarily anti-
symmetric M (notably M = −Id×d which corresponds to the gradient ~ow) and a
more singular interaction with s ∈ [d − 1, d). We note that in the }rst case, a not
anti-symmetric M poses challenges in mathematical analysis since the divergence
term

∇ · (K ?mt) =M : ∇2g ? mt

appears and is more singular than the ~ow mt itself when s > d − 2. By re-
examining the proof, we }nd that the method of Theorem 4.19 will continue to
work if (mt)t>0 satis}es a uniform θ-Hölder bound for some θ > s− d+ 3 without
the anti-symmetry of M , or for some θ > s−d+2 with an anti-symmetric M . The
authors are unfortunately unaware of such results for Riesz ~ows with con}nement
in the whole space, which are possibly worthy of independent studies in the future.

4.4.3 Global PoC for log interaction with general con}ne-
ment potential

As a consequence of Theorem 4.19, we get the strong uniform-in-time propagation
of chaos result.

Theorem 4.22. Let Assumption 4.14 hold and suppose additionally that s = 0 and
M is anti-symmetric. Let (mt)t>0 be a solution to (4.38) whose initial value m0

satis}es the conditions of Theorem 4.19 and let (mN
t )t>0 be a solution to (4.40).

Then, there exist C, ρ > 0, depending only on d, U , |M | and m0, such that

H
(
mN

t

∣∣m⊗N
t

)
6 C exp

(
−(ρ−C|M |)t

)
H
(
mN

0

∣∣m⊗N
0

)
+C

(
1+ exp

(
−(ρ−C|M |)t

))

(4.47)
for all t > 0, once H

(
mN

0

∣∣m⊗N
0

)
<∞. Moreover, when |M | increases and all other

dependencies are kept constant, C increases and ρ decreases.
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By the monotonicity of C and ρ in |M |, we }nd C|M | < ρ when |M | is su{-
ciently small, and in this case the bound (4.47) becomes uniform in time. Even when
|M | is not small, we get a global PoC estimate for the dissipative log-interaction on
Rd with a con}nement potential, which is new to our knowledge (the case U = 0
is addressed in [90]).

The proof of Theorem 4.22 is postponed to Section 4.4.5.

4.4.4 Uniform PoC for log interaction with quadratic con-
}nement potential

In this subsection, we impose the additional assumption.

Assumption 4.23. The con}nement potential reads U(x) = κU |x|2/2 for some
κU > 0.

Under Assumptions 4.14 and 4.23, we easily verify that the Gaussian measure
m∗ with density

m∗(x) = exp
(
−U(x)

)
= exp

(
−κU |x|

2

2

)

is invariant to the mean }eld ~ow (4.38). The }rst result that we obtain is the
exponential convergence of the mean }eld ~ow towards m∗.

Theorem 4.24. Let Assumptions 4.14 and 4.23 hold and suppose additionally that
M is anti-symmetric. Let m0 ∈ P(Rd) satisfy the conditions of Theorem 4.19 and
let (mt)t>0 be the solution to (4.38). Then, we have, for all t > 0,

H(mt|m∗) 6 exp(−2κU t)H(m0|m∗) .

Moreover, setting ut = − ln dmt/dm∗, we have, for all t > 0,

sup
x∈Rd

|x ·K ? (mt −m∗)| 6 Ce−ct , ‖∇u‖L∞ 6 Ce−ct , ‖∇2u‖L∞ 6
Ce−ct

√
t ∧ 1

for some C, c > 0 that depend only on d, s, κU , M and ‖∇u0‖L∞ .

The proof of Theorem 4.24 is postponed to Section 4.4.5.
Building upon the exponential convergence above, we obtain the uniform-in-

time propagation of chaos without restriction on the strength of the interaction.

Theorem 4.25. Let Assumptions 4.14 and 4.23 hold and suppose additionally that
s = 0 and M is anti-symmetric. Let (mt)t>0 be a solution to (4.38) whose initial
value m0 satis}es the conditions of Theorem 4.19 and let (mN

t )t>0 be a solution to
(4.40). Then, there exists C > 0, depending only on d, κU , M and m0, such that

H
(
mN

t

∣∣m⊗N
t

)
6 C exp(−2κU t)

(
H
(
mN

0

∣∣m⊗N
0

)
+ 1
)

(4.48)

for all t > 0, once H
(
mN

0

∣∣m⊗N
0

)
<∞.

The proof of Theorem 4.25 is postponed to Section 4.4.5. Notice that, as dis-
cussed in e.g. [200], this result describes a generation of chaos property (not only
propagation) since it implies that H

(
mN

t

∣∣m⊗N
t

)
is of order 1 (in terms of N) for

large times even if it is not the case at time t = 0. Here, moreover, and more sur-
prisingly, the right hand side of (4.48) vanishes at t→∞, which is due to the fact
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that in the speci}c case of an isotropic Gaussian con}ning potential, the invariant
measure of the system of interacting particles is a tensorized Gaussian distribution,
which is thus also the long-time limit of the product of solutions of the non-linear
equation. Finally, in contrast with the results stated in Section 4.3, here (as in
Theorem 4.22) we only state a result on the relative entropy of the full system,
and thus by sub-additivity of the relative entropy this yields PoC estimates on the
k-particles marginals which are not sharp in the sense of [140, 142].

4.4.5 Proofs
Proofs of uniform bounds and LSI

Proof of Theorem 4.19. Set µ0 = Z−1 exp(−U) with Z =
∫

exp(−U).

Step 1: Construction of a regular approximation. Recall that the initial condition
m0 is such that

u0 = − ln dm0

dµ0
= − lnm0 − lnZ − U

is Lipschitz continuous. We construct, for ε > 0, the approximative initial value

mε
0 =

exp(−u0 ? ηε)µ0∫
exp(−u0 ? ηε)µε

0

,

where µε
0 ∝ exp(−Uε). Construct as well the approximative dynamics (4.42) with

the molli}ed kernel Kε = K ? ηε and molli}ed con}nement Uε = U ? ηε. By
construction, the initial value mε

0 converges to m0 in L1 and is uniformly bounded
in L∞, thus the last claim of Proposition 4.16 indicates that mε

t → mt in L1 for
all t > 0. Using the uniqueness of the solution of the Fokker–Planck equation
satis}ed by the relative density dmε

t/dµε
0 and a Feynman–Kac argument similar to

that of Proposition C.2, we obtain that uεt := − ln dmε
t/dµε

0 is C2 in space. As a
consequence, uεt is a classical solution to the HJB equation

∂tu
ε
t = ∆uεt − |∇uεt |2 + b̃εt · ∇uεt + ϕε

t ,

where b̃εt , ϕε
t are given by

b̃εt = −∇Uε −Kε ? mε
t ,

ϕε
t = −∇ · (Kε ? mε

t )− (Kε ? mε
t ) · ∇Uε .

Let u′ε0 = uε0, and let u′εt denote the unique classical solution to this equation as
established by Theorem 4.18. By considering the Fokker–Planck equation satis}ed
by µε

0 exp(−u′εt ) and invoking the uniqueness of its solution, it follows that u′εt = uεt .
Consequently, the regularity bounds stated in Theorem 4.18 are applicable to uεt .

Step 2: Uniform bound on K?mt and∇ut, and uniform LSI. We verify that the drift
b̃εt satis}es the semi-monotonicity condition of Theorem 4.18, as the contribution
from the interaction Kε ? mε

t is controlled by Proposition 4.15:

‖Kε ? mε
t‖L∞ 6 ‖K ?mε

t‖L∞ . ‖mε
t‖1−(s+1)/d

L1 ‖mε
t‖(s+1)/d

L∞ ,

and U (along with its approximation Uε) is already weakly convex. Now we focus
on proving the uniform L∞ bound on ϕε

t . For the }rst term in ϕε
t , we }nd that in
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the Coulombic and the super-Coulombic cases, due to the anti-symmetry of M , we
have

∇ · (Kε ? mε
t ) = ∇ · (M∇g ? mε

t ? η
ε) =M : g ?∇2(mε

t ? η
ε) = 0 ;

for the sub-Coulombic case where s < d−2, applying Proposition 4.15 with p =∞,
we get

‖∇ · (Kε ? mε
t )‖L∞ . ‖mε

t‖1−(s+2)/d
L1 ‖mε

t‖(s+2)/d
L∞ ,

so the }rst term is uniformly bounded in L∞ in both cases. To treat the second
term, we note that

|Kε ? mε(x)| 6 sup
x′∈B(x,ε)

|K ?mε(x′)| ,

so it su{ces to prove the bound uniformly:

|K ?mε(x′)| . (1 + |x|)−1 .

Decompose the kernel in the following way:

K(x) = K(x)1|x|<R +K(x)1|x|>R =: K1(x) +K2(x) .

For the exploding part K1, we have

|K1 ? m
ε
t (x)| =

∣∣∣∣
∫

B(x,R)

K(x− y)mε
t (y) dy

∣∣∣∣

.

∫

B(x,R)

|x− y|−s−1mε
t (y) dy

6

(∫

B(x,R)

|x− y|−p(s+1) dy
)1/p
‖mε

t1B(x,R)‖Lq

. Rd/p−s−1‖mε
t1B(x,R)‖Lq ,

where p ∈
(
1, d

s+1

)
and p−1 + q−1 = 1. For |x| > R, we observe

∫

B(x,R)

(mε
t )

q 6 ‖mε
t‖q−1

L∞

∫

B(x,R)

mε
t 6 ‖mε

t‖q−1
L∞ (|x| −R)−q

∫

Rd

|x|qmε
t (x) dx .

For the non-exploding part K2, we have

|K2 ? m
ε
t (x)| =

∣∣∣∣
∫

Rd\B(x,R)

K(x− y)mε
t (y) dy

∣∣∣∣

.

∫

Rd\B(x,R)

|x− y|−s−1mε
t (y) dy

= |x|−s−1

∫

Rd\B(x,R)

|x|s+1

|x− y|s+1
mε

t (y) dy

. |x|−s−1

∫

Rd\B(x,R)

|x− y|s+1 + |y|s+1

|x− y|s+1
mε

t (y) dy

6 |x|−s−1

∫

Rd

(1 +R−s−1|y|s+1)mε
t (y) dy .
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Thanks to Proposition 4.16, the mean }eld ~ow (mε
t )t>0 enjoys uniform bounds

on its L∞ norm and its moments, as all moments of its initial value mε
0 are }nite.

Thus, we have, uniformly in t,

sup
t>0
|K ?mε

t (x)| 6 sup
t>0
|K1 ? m

ε
t (x) +K2 ? m

ε
t (x)| . (1 + |x|)−1 .

So we have obtained supt>0‖ϕε
t‖L∞ < ∞, and the }rst claim of Theorem 4.18

implies that ‖∇uεt‖L∞ is uniformly bounded. Taking the limit ε → 0, we recover
the uniform spatial Lipschitz bound on ut and thus by the perturbation lemma of
Aida–Shigekawa, the ~ow (mt)t>0 satis}es a uniform LSI.
Step 3: Uniform bound on ∇2ut. We want to apply the second claim of Theo-
rem 4.18 to the HJB solution uεt , and it su{ces to control uniformly in time the
following quantities:

∇b̃εt · ∇uεt = (−∇2Uε −Kε ?∇mε
t ) · ∇uεt ,

∇ϕε
t = −∇2 · (Kε ? mε

t )−∇(Kε ? mε
t ) · ∇Uε − (Kε ? mε

t ) · ∇2Uε .

The }rst quantity can be bounded by

‖∇b̃εt · ∇uεt‖L∞ 6 ‖∇b̃εt‖L∞‖∇uεt‖L∞ 6
(
‖∇2U‖L∞ + ‖Kε ?∇mε

t‖L∞

)
‖∇uεt‖L∞ ,

where ‖Kε ?∇mt‖L∞ is uniformly bounded as

∇mε
t = mε

t (−∇Uε +∇uεt ) =
exp(−Uε − uεt )∫
exp(−Uε − uεt )

(−∇Uε +∇uεt ) ∈ L1 ∩ L∞

uniformly in time, thanks to the uniform bound on ∇uεt . Now consider the second
quantity ∇ϕε

t . In the case s ∈ [d − 2, d − 1), we have K = M∇g with an anti-
symmetric M , so the }rst term ∇2 · (Kε ? mε

t ) vanishes. In the case s < d− 2, we
have

‖∇2 · (Kε ? mε
t )‖L∞ 6 ‖∇K ?∇mε

t‖L∞ . ‖∇mε
t‖1−(s+2)/d

L1 ‖∇mε
t‖(s+2)/d

L∞ ,

and by the uniform L1 and L∞ bound on ∇mε
t , this term is uniformly bounded.

That is to say, in both cases, the }rst term ∇2 · (Kε ? mε
t ) is uniformly bounded

in L∞. As we have ‖∇2U‖L∞ < ∞, the third term (Kε ? mε
t ) · ∇2U is equally

uniformly bounded. So it remains to obtain a uniform bound on the second term
∇(Kε ? mε

t ) · ∇U . Since ∇Uε is of linear growth, it su{ces to prove

∇(K ?mε
t )(x) = (K ?∇mε

t )(x) . (1 + |x|)−1

uniformly in time. For this, we use again the decomposition K = K1 + K2 in
the end of the previous step, and redoing all the computations, we }nd that it is
su{cient to uniformly control

∫

Rd

|x|q|∇mε
t (x)| dx =

∫

Rd

|x|q|−∇U(x) +∇uεt (x)|mε
t (x) dx

.

∫

Rd

|x|q(1 + |x|)mε
t (x) dx

for some q >
(
1− s+1

d

)−1. But from Proposition 4.16 we know that the q and (q+1)-
th moments of mε

t are uniformly bounded. Hence, ∇ϕε
t is uniformly bounded in

L∞ and by the second claim of Theorem 4.18, we get that ‖∇2uεt‖L∞ is uniformly
bounded. Thus ∇2 lnmε

t = −∇2Uε − ∇2uεt is uniformly bounded as well, and
taking the limit ε→ 0, we get the desired result for ut.
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Proof of Theorem 4.24. The proof is similar to that of Theorem 4.19, except that
now the Lipschitz and Hessian bounds converge to zero. Thus, we }rst show that
the mean }eld ~ow mt converges to the invariant measure m∗ and then redo the
estimates on the log-density.
Step 1: Convergence in entropy. For the initial value m0 such that

∇u0 = −∇ lnm0 −∇U ∈ L∞,

we }nd, as in the beginning of the proof of Theorem 4.19, an approximation mε
0

de}ned by the following:

mε
0 =

exp(−u0 ? ηε − U)∫
exp(−u0 ? ηε − U)

.

Set uεt := − ln dmε
0/dm∗. We also consider the approximative ~ow (mε

t )t>0 solving
the mean }eld Fokker–Planck equation (4.42). Notice that, in the case of quadratic
potential, the molli}ed potential Uε = U ? ηε is nothing but U translated by a
constant, due to the symmetry of ηε. By Feynman–Kac arguments, we get that
mε

t is a classical solution to the Fokker–Planck and ∇iuεt grows at most linearly for
i = 0, 1, 2. Thus, we can derive t 7→ H(mε

t |m∗) and get

dH(mε
t |m∗)

dt = −I(mε
t |m∗) +

∫

Rd

∇ ln m
ε
t (x)

m∗(x)
·Kε ? (mε

t −m∗)(x)m
ε
t (dx)

= −I(mε
t |m∗)−

∫

Rd

∇ lnm∗(x) ·Kε ? (mε
t −m∗)(x)m

ε
t (dx)

= −I(mε
t |m∗)−

∫

Rd

∇ lnm∗(x) ·Kε ? mε
t (x)m

ε
t (dx)

= −I(mε
t |m∗) + κU

∫
x ·Kε ? mε

t (x)mt(dx)

= −I(mε
t |m∗) + κU

∫∫

Rd×Rd

x ·Kε(x− y)mε
t (dx)mε

t (dy)

= −I(mε
t |m∗) +

κU

2

∫∫

Rd×Rd

(x− y) ·Kε(x− y)mε
t (dx)mε

t (dy)

= −I(mε
t |m∗) 6 −2κUH(mε

t |m∗) .

Here the second inequality is due to the integration by parts and the fact that
∇ ·Kε = 0; the third to the fact that ∇ lnm∗(x) is parallel to x and Kε ?m∗(x) =
K ? (m∗ ? ηε)(x) is always orthogonal to x, as m∗ ? ηε is invariant by rotation; the
sixth due to the oddness of Kε; and the last due to

x ·Kε(x) = x>M∇gε(x)

and ∇gε(x) is parallel to x. Then applying Grönwall’s lemma and the log-Sobolev
inequality for m∗, we get

H(mε
t |m∗) 6 H(mε

0|m∗) exp(−2κU t) ,

and taking the limit ε→ 0 and using the lower semi-continuity of relative entropy,
we recover the }rst claim.
Step 2: Decaying bound on x · K ? mt(x) and ∇ut. In the following, C, c will
denote positive reals that has the same dependency as stated in the theorem and
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may change from line to line. Working again with the approximation mε
t , we get

by Pinsker’s inequality,

‖mε
t −m∗‖L1 6 exp(−κU t)

√
2H(mε

0|m∗)

6 exp(−κU t)
√
2κ−1

U I(mε
0|m∗)

6 exp(−κU t)
√

2κ−1
U ‖∇uε0‖2L∞ = C exp(−κU t) .

Then, applying Proposition 4.15, we get

‖Kε ? (mε
t −m∗)‖L∞ 6 C‖mε

t −m∗‖1−(s+1)/d
L1 ‖mε

t −m∗‖(s+1)/d
L∞ 6 Ce−ct .

We know that uεt = − ln dmε
t/dm∗ solves the HJB equation

∂tu
ε
t = ∆uεt − |∇uεt |2 + b̃εt · ∇ut + ϕε

t

for b̃εt (x) = −κUx − Kε ? mε
t (x) and ϕε

t (x) = −κUx · Kε ? mε
t (x). Note that ϕt

satis}es
ϕε
t (x) = −κUx ·Kε ? (mε

t −m∗)(x) ,

since x ·Kε ? m∗(x) = 0 according to the argument in Step 1. Thus, we have

ϕε
t (x) = −κU

∫

Rd

x>M∇gε(x− y)(mε
t −m∗)(dy)

= −κU
∫

Rd

y>M∇gε(x− y)(mε
t −m∗)(dy) ,

as x>M∇gε(x) = 0 for all x ∈ Rd. So ϕε
t satis}es the bound

‖ϕε
t‖L∞ =

∣∣∣∣
∫

Rd

y>Kε(x− y)(mε
t −m∗)(dy)

∣∣∣∣

.

∫

B(0,1)

|y|
|x− y|s+1

|mε
t −m∗|(dy) + sup

y:|y−x|>1

|y>Kε(x− y)| ‖mε
t −m∗‖L1

. ‖(mε
t −m∗)1B(x,1)‖Lq + ‖mε

t −m∗‖L1

for q >
(
1− s+1

d

)−1, according to the argument in the proof of Theorem 4.19. For
the Lq norm we have, by interpolation,

‖(mε
t−m∗)1B(x,1)‖Lq 6 ‖mε

t−m∗‖Lq 6 ‖mε
t−m∗‖1/qL1 ‖mε

t−m∗‖1/pL∞ . ‖mε
t−m∗‖1/qL1

for p−1 + q−1 = 1. Thus, ‖ϕε
t‖L∞ 6 Ce−ct, and applying the }rst claim of Theo-

rem 4.18, we get ‖∇uεt‖L∞ 6 Ce−ct. The }rst claim is then proved by taking the
limit ε→ 0.

Step 3: Decaying bound on ∇2ut. First, we have

‖∇b̃εt · ∇uεt‖L∞ 6 ‖∇b̃εt‖L∞ · Ce−ct 6
(
‖∇2U‖L∞ + ‖Kε ?∇mε

t‖L∞

)
· Ce−ct ,

where
‖Kε ?∇mε

t‖L∞ . ‖∇mε
t‖1−(s+1)/d

L1 ‖∇mε
t‖(s+1)/d

L∞ .
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As we have

∇mε
t = −(∇U +∇uεt )mε

t = −
∇U exp(−U − uεt )∫

exp(−U − uεt )
−∇uεt mε

t

with ∇U of linear growth and ∇uεt being uniformly bounded, we }nd that ∇mε
t ∈

L1 ∩ L∞ uniformly. Thus,

‖∇b̃εt · ∇uεt‖L∞ 6 Ce−ct .

The gradient of ϕε
t reads

∇ϕε
t (x) = −∇

(
κUx ·Kε ? (mε

t −m∗)(x)
)

= −κUKε ? (mε
t −m∗)(x)− κUx ·Kε ?∇(mε

t −m∗)(x) .

The }rst term on the right hand side is already controlled:

|Kε ? (mt −m∗)(x)| . ‖mt −m∗‖1−(s+1)/d
L1 ‖mt −m∗‖(s+1)/d

L∞ 6 Ce−ct ,

and in the following we show that the same is true for the second term. Again,
using the fact that x ·Kε(x) = 0, we get

x ·Kε ?∇(mε
t −m∗)(x) =

∫

Rd

x>M∇gε(x− y)∇(mε
t −m∗)(dy)

=

∫

Rd

y>M∇gε(x− y)∇(mε
t −m∗)(dy) .

Following the argument in Step 2, we separate the two cases |y − x| < 1 and > 1,
and get

sup
x∈Rd

|x ·Kε ?∇(mε
t −m∗)(x)| . ‖∇(mε

t −m∗)‖Lq + ‖∇(mε
t −m∗)‖L1

for q >
(
1− s+1

d

)−1. Using the explicit density of mε
t , we get

∇mε
t −∇m∗ = −∇uεt mε

t −∇U(mε
t −m∗) .

The }rst term satis}es

‖∇uεt mε
t‖L1 6 ‖∇uεt‖L∞‖mε

t‖L1 6 Ce−ct ,

and the second satis}es

‖∇U(mε
t −m∗)‖L1 6 ‖∇2U‖L∞W1(m

ε
t ,m∗) .

√
H(mε

t |m∗) 6 Ce−ct .

Finally, their densities have the L∞ bounds:

‖∇uεt mε
t‖L∞ 6 ‖∇uεt‖L∞‖mε

t‖L∞ 6 C ,

‖∇U(mε
t −m∗)‖L∞ . sup

x∈Rd

(1 + |x|)
(exp

(
−U(x)

)
∫

exp(−U)
+

exp
(
−uεt (x)− U(x)

)
∫

exp(−uεt − U)

)
6 C .

Then, by the same interpolation as in Step 2, we get ‖∇ϕε
t‖L∞ 6 Ce−ct. Applying

the second claim of Theorem 4.18, we get

‖∇2uεt‖L∞ 6
Ce−ct

√
t ∧ 1

+

∫ t

0

Ce−cv

√
v ∧ 1

· Ce−c(t−v) dv 6
Ce−ct

√
t ∧ 1

.

Taking the limit ε → 0, we recover the second claim and this concludes the proof.
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Proofs of propagation of chaos

Proof of Theorem 4.22. According to Propositions 4.16 and 4.17, given the initial
values m0, mN

0 , we }nd respectively approximating sequences mε
0, mε,N

0 such that
lnmε

0+U
ε ∈ C∞b and x 7→ lnmε,N

0 (x)+
∑N

i=1 U
ε(xi) ∈ C∞b . The solutions of (4.42)

and of the forward Kolmogorov equation associated to (4.43) being unique, we can
use the Feynman–Kac representation of Proposition C.2 to }nd that the densities
and their classically derivatives

∇i
(
lnmε

t + Uε
)
, ∇i

(
lnmε,N

t (x) +

N∑

i=1

Uε(xi)

)
, i > 1

exist and grow at most linearly in space (locally in time). Then in the following we
can justify all the exchanges between limit and integration, and all the integrations
by parts. Taking the derivative of the relative entropy Hε

t = H
(
m

ε,N
t

∣∣(mε
t )

⊗N
)
,

and denoting the relative Fisher information by

Iεt = I
(
m

ε,N
t

∣∣(mε
t )

⊗N
)
=

∫

RdN

∣∣∣∣∇ ln m
ε,N
t (x)

(mε
t )

⊗N (x)

∣∣∣∣
2

m
ε,N
t (dx) ,

we get

dHε
t

dt = −Iεt +
1

N − 1

∑

i 6=j

∫

RdN

∇i ln m
ε,N
t (x)

mε
t (x

i)

·
(
Kε(xi − xj)−Kε ? mε

t (x
i)
)
m

ε,N
t (dx)

= −Iεt −
1

N − 1

∑

i 6=j

∫

RdN

∇ lnmε
t (x

i)

·
(
Kε(xi − xj)−Kε ? mε

t (x
i)
)
m

ε,N
t (dx) ,

where i, j are summed over J1, NK and the second equality is due to integration by
parts and the fact that ∇·Kε = 0. Noting that the regularized N -particle measure
m

ε,N
t has density and has no mass on the sets {x : xi = xj} for i 6= j, we }nd that

the second term is equal to, by symmetrization,

− 1

N − 1

N∑

i,j=1

∫

RdN

φt(x
i, xj)mε,N

t (dx) ,

where the function φt(·, ·) is given by

φt(x, y) =
1

2
Kε(x− y) ·

(
∇ lnmε

t (x)−∇ lnmε
t (y)

)
1x 6=y

− 1

2
Kε ? mε

t (x) · ∇ lnmε
t (x)−

1

2
Kε ? mε

t (y) · ∇ lnmε
t (y) . (4.49)

The function φt satis}es
∫

Rd

φt(x, y)m
ε
t (dy) = 0 ,

∫

Rd

φt(y, x)m
ε
t (dy) = 0
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for all x ∈ Rd. From now on, the symbols Ci, i ∈ N denote a positive number that
has the same dependency as C, ρ have in the statement of the theorem. For the
}rst term in (4.49), we have by Theorem 4.19,

sup
x,y : x 6=y

∣∣Kε(x− y) ·
(
∇ lnmε

t (x)−∇ lnmε
t (y)

)∣∣ 6 C1|M |‖∇2 lnmt‖L∞ 6
C2|M |√
t ∧ 1

.

For the last two terms in the de}nition (4.49) of φt, we have by the same theorem,

|K ?mε
t (x)| 6 C3|M |(1 + |x|)−1 ,

|∇ lnmε
t (x)| = |∇uεt (x)|+ |∇U(x)| 6 C4(1 + |x|) .

Thus,
|K ?mε

t (x) · ∇ lnmε
t (x)| 6 C6|M | .

So the functions φt satis}es

‖φt‖L∞ 6
C7|M |√
t ∧ 1

.

Therefore, using the convex duality for relative entropy, we get

dHε
t

dt = −Iεt + δtHε
t + δt ln

∫

RdN

exp
(

1

δt(N − 1)

N∑

i,j=1

φt(x
i, xj)

)
(mε

t )
⊗N (dx) ,

where we set
δt =

3(16002 + 36e4)C7|M |√
t ∧ 1

.

Then, applying the “concentration” estimate [124, Theorem 4] (whose constant is
given explicitly in [98, Theorem 5]), we obtain

dHε
t

dt 6 −Iεt +
C8|M |√
t ∧ 1

Hε
t +

C8|M |√
t ∧ 1

6 −C9Hε
t +

C8|M |√
t ∧ 1

Hε
t +

C8|M |√
t ∧ 1

.

We conclude by applying Grönwall’s lemma and taking the limit ε→ 0.

Proof of Theorem 4.25. The argument is largely the same as the proof above, i.e.
the proof of Theorem 4.22. So here we only indicate the dizerences. De}ning
the same φt function as in (4.49), we }nd that in the quadratic case, we have the
following bounds by Theorem 4.24:

∥∥∥∥∇ ln m
ε
t

m∗

∥∥∥∥
L∞

6 C1e
−ct ,

∥∥∥∥∇2 ln m
ε
t

m∗

∥∥∥∥
L∞

6
C1e

−ct

√
t ∧ 1

,

sup
x
|x ·Kε ? (mε

t −m∗)(x)| 6 C1e
−ct .

So for the }rst term in the de}nition (4.49) of φ, we have, for all x 6= y,
∣∣Kε(x− y) ·

(
∇ lnmε

t (x)−∇ lnmε
t (y)

)∣∣

=

∣∣∣∣Kε(x− y) ·
(
∇ ln m

ε
t (x)

m∗(x)
−∇ ln m

ε
t (y)

m∗(y)

)∣∣∣∣

.

∥∥∥∥∇2 ln m
ε
t

m∗

∥∥∥∥
L∞

6
C1e

−ct

√
t ∧ 1

.
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For the second term, we have

Kε ?mε
t (x) · ∇ lnmε

t (x) = Kε ? (mε −m∗)(x) · ∇ lnm∗ +Kε ?mε
t (x) · ∇ ln m

ε
t (x)

m∗(x)
,

therefore,

‖Kε?mε
t ·∇ lnmε

t‖L∞ 6 κU sup
x
|x·Kε?(mε

t−m∗)(x)|+‖Kε?mε
t‖L∞

∥∥∥∥∇ ln m
ε
t

m∗

∥∥∥∥
L∞

6 C2e
−ct .

Combining the two results above, we derive the decaying L∞ bound for φt:

‖φt‖L∞ 6
C3e

−ct

√
t ∧ 1

.

Thus, taking the alternative

δt =
3(16002 + 36e4)C3e

−ct

√
t ∧ 1

,

we get
dHε

t

dt 6 −Iεt +
C4e

−ct

√
t ∧ 1

Hε
t +

C4e
−ct

√
t ∧ 1

.

Finally, we note that, as the Lipschitz constant of lnmε
t/m∗ tends to zero exponen-

tially, the perturbed measure mε
t satis}es a kt-LSI with

kt = 2κU exp(−C5e
−c′t) .

Thus, for all t > 0, we have

Iεt > 2κU exp(−C5e
−c′t)Hε

t .

We conclude by applying Grönwall’s lemma and taking the limit ε→ 0.



Chapter 5

Sharp local propagation of
chaos for mean }eld particles
with W−1,∞ kernels

Abstract. We present two methods to obtain O(1/N2) local propagation of chaos
bounds for N dizusive particles in W−1,∞ mean }eld interaction. This extends the
recent }nding of Lacker [Probab. Math. Phys., 4(2):377–432, 2023] to the case of
singular interactions. The }rst method is based on a hierarchy of relative entropies
and Fisher informations, and applies to the 2D viscous vortex model in the high
temperature regime. Time-uniform local chaos bounds are also shown in this case.
In the second method, we work on a hierarchy of L2 distances and Dirichlet energies,
and derive the desired sharp estimates for the same model in short time without
restrictions on the temperature.

5.1 Introduction and main results
In this work, we are interested in the following system of N > 2 interacting particles
on the d-dimensional torus Td = (R/Z)d:

dXi
t =

1

N − 1

∑

j∈[N ]:j 6=i

K
(
Xi

t −Xj
t

)
dt+

√
2dW i

t , for i ∈ [N ], (5.1)

where K is a singular interaction kernel, W i
· are independent Brownian motions.

and [N ] := J1, NK = {1, . . . , N}. To be precise, we will consider kernels admitting
the decomposition K = K1 + K2 such that K1 is divergence-free and belongs
to W−1,∞(Td;Rd), in the sense that K1,α =

∑d
β=1 ∂βVβα for some matrix }eld

V ∈ L∞(Td;Rd×d), and K2 ∈ L∞(Td;Rd). We then write the particle system’s
formal mean }eld limit when N →∞:

dXt = (K ?mt) dt+
√
2dWt, mt = Law(Xt), (5.2)

and wish to show that the system (5.1) converges to (5.2) when N → ∞ in an
appropriate sense.
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The main example of the system in singular interaction is the 2D viscous vortex
model, where d = 2 and K is a periodic version of the following kernel de}ned on
R2:

K ′(x) =
1

2π

x⊥

|x|2 =
1

2π

(
− x2

|x|2 ,
x1

|x|2
)>
, x = (x1, x2)

>.

Notice that we have K ′ = ∇ · V ′ for

V ′(x) =
1

2π

(
− arctan(x2/x1) 0

0 arctan(x1/x2)

)
.

The model originates from the studies of 2D incompressible Navier–Stokes equations
and we refer readers to the work of Jabin and Z. Wang [124] and the expository
article [205] (and references therein) for details.

Throughout the paper, we suppose that the N particles in the dynamics (5.1)
are exchangeable, that is, for all permutation σ of the index set [N ], we have
Law

(
X1

t , . . . , X
N
t

)
= Law

(
X

σ(1)
t , . . . , X

σ(N)
t

)
, and denotemN,k

t = Law
(
X1

t , . . . , X
k
t

)
.

The aim of this paper is then to investigate quantitatively the behavior of the dis-
tance between mN,k

t and m⊗k
t when N →∞ and k remains }xed, that is, a quanti-

tative propagation of chaos (PoC) phenomenon. The distances with which we work
are the relative entropy

H(m1|m2) =

∫
log m1(x)

m2(x)
m1(dx)

and the so-called χ2 distance

D(m1|m2) =

∫ (
m1(x)

m2(x)
− 1

)2
m2(dx)

The second distance will also be called the L2 distance colloquially, if that leads to
no confusion. In both of the two equations above, we have identi}ed the probability
laws m1, m2 with their density functions (with respect to the appropriate Lebesgue
measure). The results of this paper are thus upper bounds on

Hk
t = H

(
m

N,k
t

∣∣m⊗k
t

)
, Dk

t = D
(
m

N,k
t

∣∣m⊗k
t

)

that are diminishing when N → ∞. In the case of dizusion processes, the two
crucial quantities

I(m1|m2) =

∫ ∣∣∣∣∇ log m1(x)

m2(x)

∣∣∣∣
2

m1(dx),

E(m1|m2) =

∫ ∣∣∣∣∇
m1(x)

m2(x)

∣∣∣∣
2

m2(dx),

called respectively (relative) Fisher information and Dirichlet energy, also appear
when we study the time-evolution of the relative entropy and the L2 distance. In
fact, the inclusion of these quantities in the analysis is the main novelty of this
work.

Recently, the propagation of chaos phenomenon of singular mean }eld dynamics
has raised high interests, and the main technique to overcome the singularity in the
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interaction is to study the evolution PDE describing the joint probability distribu-
tion of the N particles mN

t := m
N,N
t := Law

(
X1

t , . . . , X
N
t

)
, i.e. the Liouville or the

Fokker–Planck equation of the particle system (5.1):

∂tm
N
t =

∑

i∈[N ]

∆im
N
t −

1

N − 1

∑

i,j∈[N ]:i 6=j

∇i ·
(
mN

t K(xi − xj)
)
. (5.3)

Notice that the N -tensorization m⊗N
t of the mean }eld system (5.2) solves

∂tm
⊗N
t =

∑

i∈[N ]

∆im
⊗N
t −

∑

i∈[N ]

∇i ·
(
m⊗N

t (K ?mt)(x
i)
)
. (5.4)

Then it remains to }nd the appropriate functionals measuring the distance be-
tween mN

t and m⊗N
t , and study the functionals’ evolution. For W−1,∞ kernels

with W−1,∞ divergences, Jabin and Z. Wang [124] have revealed that the relative
entropy is the right functional and derived global-in-time PoC in this case.1 For de-
terministic dynamics with repulsive or conservative Coulomb and Riesz interactions,
Serfaty constructed the modulated energy in [209] and derived their global-in-time
PoC. Then, Bresch, Jabin and Z. Wang [32, 31] extended the method of Serfaty
to dizusive (and possibly attractive) Coulomb and Riesz systems and showed the
global-in-time PoC by marrying relative entropy with modulated energy, the new
functional being called modulated free energy. We mention here also another work
[69] on the attractive case with logarithmic potentials. More recently, re}nements of
the methods above allow for uniform-in-time PoC estimates [98, 59] and extensions
to the whole space have been done in [90, 201] and Chapter 4.

The main result of [124] applied to our dynamics (5.1), (5.2) already indicates

H
(
mN

t

∣∣m⊗N
t

)
6 CeCt

for some C > 0, if the initial distance is zero: mN
0 = m⊗N

0 . Then by the super-
additivity of relative entropy, we get

H
(
m

N,k
t

∣∣m⊗k
t

)
6

CeCt

bN/kc ,

and this is already a quantitative PoC estimate. However, the }ndings of Lacker
in [140] reveal that the O(k/N)-order bound obtained above is sub-optimal for
regular interactions (where K is e.g. bounded), and the sharp order in this case
is O(k2/N2). The method of Lacker is to consider the BBGKY hierarchy of the
marginal distrbutions (mN,k

t )k∈[N ], where the evolution of mN,k
t depends on itself

and the higher-level marginal mN,k+1
t , namely

∂tm
N,k
t =

∑

i∈[k]

∆im
N,k
t − 1

N − 1

∑

i,j∈[k]:i 6=j

∇i ·
(
m

N,k
t K(xi − xj)

)

− N − k
N − 1

∑

i∈[k]

∇i ·
(∫

Td

K(xi − x∗)mN,k+1
t (x[k], x∗) dx∗

)
,

(5.5)

and then to calculate the evolution ofHk
t = H

(
m

N,k
t

∣∣m⊗k
t

)
, which yields a hierarchy

of ODE where dHk
t /dt depends on Hk

t and Hk+1
t . Solving this ODE system allows

1This work will be referred as “Jabin–Wang” in the following of this paper without including
the name initial of the second author.
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for the sharp O(k2/N2) bounds on Hk
t . This method of Lacker is local in the sense

that the quantity of interest describes the behavior of a }xed number of particles
even when N →∞, and stand in contrast with the global approaches mentioned in
the paragraph above, where the N -particle joint law is instead considered. Then,
together with Le Flem, Lacker [142] strengthened his result and proved uniform-
in-time O(k2/N2) rate in a high temperature regime, with the help of log-Sobolev
inequalities. Very recently, Hess-Childs and Rowan [111] extended this hierarchical
method to the L2 distance and obtained sharp convergence rates for higher-order
expansions in the case of bounded interactions (the convergence of mN,k

t to the
tensorized law m⊗k

t being merely zeroth-order). One limitation of the entropy
and L2 methods is that we require the dizusivity of the dynamics to be non-zero,
thus excluding deterministic Vlasov dynamics considered in the recent work of
Duerinckx [78]. Still, two improvements are made possible via the entropy and L2

methods. First, the norm-distance between m
N,k
t and m⊗k

t (which scales as the
square root of relative entropy) can be shown to be of order O(k/N), while directly
applying the correlation bounds in [78] gives only an O(k2/N)-order control. Note
that this is also the order obtained in [182] for dynamics with collision terms.
Second, we do not need to assume high regularity for the kernel and work with
weaker norms for higher-order corrections as in [78], thanks to the fact that the
Laplace operator prevents loss of derivatives in the BBGKY hierarchy. Finally, we
note that Bresch, Jabin and coauthors have also applied hierarchical methods to
study second-order dynamics of singular interaction in recent works [30, 29], and
have shown respectively short-time strong PoC and global-in-time weak PoC under
dizerent regularity assumptions. This is signi}cant progress, as the previous best
PoC results for second-order systems, to the knowledge of the author, apply only
to mildly singular kernels satisfying K(x) = O(|x|−α) for α < 1.

In this work, we extend the entropic hierarchy of Lacker and the L2 hierarchy of
Hess-Childs–Rowan (only in the zeroth-order) to the case of W−1,∞ interactions. In
the new hierarchies of ODE, which describe the evolution ofHk

t andDk
t respectively,

Fisher information and Dirichlet energy of the next level appear, and we develop
new methods to solve the ODE systems. In the }rst entropic case, we show that
Hk

t = O(k2/N2) globally in time, if the temperature of the system is high enough (or
equivalently, upon a rescaling of time, the interaction is weak enough). Moreover,
in the case of 2D vortex model, we show that and Hk

t = O(k2e−rt/N2) for some
r > 0, thanks to the exponential decay established in [98, 59]. We also provide a
simple way to solve Lacker’s ODE system, based on a comparison principle. In the
second L2 case, we remove the restriction on the temperature by working with L2

distances Dk
t and show that Dk

t = O(1/N2) for k = O(1) but only in a short time
interval.

We state the main results and discuss them in the rest of this section, and give
their proof in Section 5.2. The studies of the ODE hierarchies, which are the }nal
steps of the proof and the main technical contributions of this work, are postponed
to Section 5.3. We present some other technical results in Section 5.4.

Throughout the paper, we will work with solution mN
t of the Liouville equation

(5.3) for which we can }nd a sequence of kernels Kε ∈ C∞(Td) and probability
densities mN,ε

t ∈ C∞(Td) such that they satis}es (5.3) when K, mN
t are respectively

replaced by Kε, mN,ε
t ; that Kε → K almost everywhere and mN,ε

t → mN
t weakly as

probability measures; and }nally that mN,ε
t is lower bounded from 0. We suppose



5.1 Introduction and main results 217

also that the mean }eld ~ow mt is the weak limit of C∞ approximations mε
t that

correspond to the McKean–Vlasov SDE (5.2) driven by the regularized kernel Kε,
and that each mε

t has also strictly positive density. In particular, the 2D viscous
vortex model veri}es this assumption. See e.g. Chapter 4 for details. (Although the
setting there is on Rd instead of Td but the argument is the same.) We impose this
technical assumption in order to avoid subtle well-posedness issues in the singular
PDE (5.3) and we mention that it is also possible to work with entropy solutions
for the same purpose. See [124] for details.

The main assumption of this paper is the following.

Assumption. The interaction kernel admits the decomposition K = K1 + K2,
where K1 = ∇ · V for some V ∈ L∞(Td;Rd × Rd) and satis}es ∇ · K1 = 0, and
K2 ∈ L∞.

We then state our main results.

Theorem 5.1 (Entropic PoC). Let the main assumption hold. Suppose that the
marginal relative entropies at the initial time satisfy

Hk
0 6 C0

k2

N2

for all k ∈ [N ], for some C0 > 0. If ‖V ‖L∞ < 1, then for all T > 0, there exists
M , depending on

C0, ‖V ‖L∞ , ‖K2‖L∞ , sup
t∈[0,T ]

‖∇ logmt‖2L∞+ ‖∇2 logmt‖L∞ ,

such that for all t ∈ [0, T ],

Hk
t 6MeMt k

2

N2
.

If additionally K2 = 0 and

‖∇ logmt‖2L∞ + ‖∇2 logmt‖L∞ 6Mme
−ηt

for all t > 0, for some Mm > 0 and η > 0, then for all r such that 0 < r < r∗ :=
min

(
η, (1− ‖V ‖L∞)8π2

)
, there exists M ′, depending on

C0, ‖V ‖L∞ , Mm, η, r, d,

such that for all t > 0, we have

Hk
t 6M ′e−rt k

2

N2
.

Theorem 5.2 (L2 PoC). Let the main assumption hold. Suppose that the marginal
L2 distances at the initial time satisfy

Dk
0 6 C0

k2

N2

for all k ∈ [N ], for some C0 > 0. Let T > 0 be arbitrary. If the matrix }eld V

satis}es
MV := sup

t∈[0,T ]

sup
x∈Td

∫

Td

|V (x− y)|2mt(dy) < 1,
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then there exists T∗ > 0, depending on

‖V ‖L∞ , MV , ‖K2‖L∞ , sup
t∈[0,T ]

‖∇ logmt‖2L∞+ ‖∇2 logmt‖L∞ ,

such that for all t ∈ [0, T∗ ∧ T ), we have

Dk
t 6

MeMk

(T∗ − t)3N2
.

for some M depending additionally on C0.

We discuss some consequences of the two theorems above.

∇ · K1 = 0 is not restrictive. First, as noted in [124], the condition that
the singular part K1 is divergence-free is not restrictive. Indeed, if the interaction
kernel K admits the decomposition K = K ′

1+K
′
2, where both K ′

1 and ∇·K ′
1 belong

to W−1,∞ (which is the regularity assumption of [124]), and K ′
2 ∈ L∞, we can }nd,

by de}nition, a bounded vector }eld S such that ∇ ·K ′
1 = ∇ · S. By shifting the

components of S by constants, we can also suppose without loss of generality that
this vector }eld veri}es

∫
Td S = 0. Thus, we have the alternative decomposition

K = (K ′
1 − S) + (K ′

2 + S),

where the }rst part K ′
1−S is divergence-free and the second part K ′

2+S is bounded.
Since S ∈ L∞ and

∫
Td S = 0, we can }nd a bounded matrix }eld VS such that

∇·VS = S and ‖VS‖L∞ 6 Cd‖S‖L∞ for some Cd depending only on the dimension
d.2 So the new decomposition satis}es the main assumption and it only remains
to verify the respective “smallness” conditions of the two theorems for the kernel
K ′

1 − S.

2D vortex at high temperature. Second, Theorem 5.1 applies to the 2D vis-
cous vortex model if the vortex interaction is weakly enough. Indeed, in the vortex
case, we have K = ∇ · V for some V ∈ L∞ and ∇ ·K = 0 so the main assumption
is satis}ed with K2 = 0. The required regularity bounds for the mean }eld ~ow
mt have been established in [98, 59]. More precisely, it is shown in [59, Section 3.2]
that if the initial value m0 of the mean }eld equation belongs to W 2,∞(Td) and
veri}es the lower bound infm0 > 0, then we have the required decaying bound on
the regularity:

‖∇ logmt‖2L∞ + ‖∇2 logmt‖L∞ 6Mme
−ηt.3

2For example one can take V 1i
S (x1, x2, . . . , xd) =

∫ x1

0
Si(y, x2, . . . , xd) dy for i ∈ [d] and V

ji
S

= 0
for j 6= 1.

3The rate of convergence stated in [59] is not explicit. However, it seems to the author that
we can take η = 4π2 by the following argument. First by computing the evolution of the en-
tropy H(mt) and integrating by parts à la Jabin–Wang, we }nd that dH(mt)/dt = −I(mt) 6
−8π2H(mt) thanks to the log-Sobolev inequality (see also the proof of Theorem 4.24), and there-
fore H(mt) . e−8π2t. This implies that ‖mt − 1‖L1 . e−4π2t by Pinsker. Then we use the
hypercontractivity [59, Corollary 2.4] and the regularization [59, Proposition 2.6] to }nd that
‖∇mt‖L∞ , ‖∇2mt‖L∞ . e−4π2t so the desired bound follows with η = 4π2. This rate is optimal
as it is veri}ed by the heat equation (K = 0) with initial data m0(x) = 1+a sin(2πx)+b cos(2πx).
With η = 4π2, the minimum for the rate in the second assertion of Theorem 5.1 is equal to
min(1, 2− 2‖V ‖L∞ )4π2.
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So Theorem 5.1 applies if ‖V ‖L∞ < 1. Upon a time-rescaling, this result can be
extended to 2D viscous vortex at any temperature τ > 0 (where the dizusion coef-
}cient in (5.1) is

√
τ instead of

√
2), once ‖V ‖L∞ < τ/2. In this high temperature

regime, the second assertion of Theorem 5.1 provides a }ner long-time convergence
estimate on the relative entropies for the 2D viscous vortex model compared to the
global results in [98, 59]. These results seems to be new, but it is unclear to the
author if the high-temperature restriction can be lifted. (See also the discussion on
L2 results in below.)

Ld interaction at any temperature. On the contrary, if the interaction kernel
K is of the slightly higher regularity class

K ∈ Ld, ∇ ·K ∈ Ld,

then Theorem 5.1 can be applied without any restriction on the strengh of K. To
this end, we consider Kε = K ? ρε where ρε is a sequence of C∞ molli}ers on Td.
Since

∫
Td K−Kε = 0 and

∫
Td ∇·K−∇·Kε = 0, the result of Bourgain and Brezis

[28] indicates that we can }nd a matrix }eld V and a vector }eld S on Td solving
the equations ∇ · V = K −Kε and ∇ · S = ∇ ·K −∇ ·Kε with the bounds

‖V ‖L∞ 6 Cd‖K −Kε‖L∞ ,

‖S‖L∞ 6 Cd‖∇ ·K −∇ ·Kε‖L∞

for some Cd > 0 depending only on d. By shifting the components of S, we can
suppose that

∫
Td S = 0 and this does not alter the L∞ bound on S above. We }nd

again a matrix }eld VS such that ∇ · VS = S and ‖VS‖L∞ 6 Cd‖S‖L∞ . Then we
decompose the kernel K in the following way:

K = (K −Kε) +Kε = ∇ · V +Kε = ∇ · (V − VS) + (Kε + S).

By construction, the singular part is divergence-free:

∇2 : (V − VS) = ∇ · (K −Kε)−∇ · S = 0,

and the remaining part Kε + S is bounded, so the main assumption is satis}ed.
The W−1,∞ norm of the singular part is controlled by

‖V − VS‖L∞ 6 ‖V ‖L∞ + ‖VS‖L∞ 6 Cd

(
‖K −Kε‖Ld + ‖∇ ·K −∇ ·Kε‖Ld

)
.

Yet, the molli}cation is continuous in Ld:

‖K −Kε‖Ld , ‖∇ ·K −∇ ·Kε‖Ld → 0, when ε→ 0.

So in order to apply Theorem 5.1, it su{ces to take an ε small enough. In a previous
work, Han [105, Theorem 1.2] derived global O(1/N2) PoC under the assumption
that K is divergence-free and belongs to Lp for some p > d, and the N -particle
initial measure satis}es the density bound λ−1 6 mN

0 6 λ uniformly in N . In
comparison to this work, our method achieves two major improvements: }rst, the
critical Krylov–Röckner exponent p = d is treated [136]; and second, the rather
demanding condition on mN

0 (which excludes non-trivial chaotic data mN
0 = m⊗N

0

for m0 6= 1) is lifted. These improvements are made possible by our consideration of
the new hierarchy involving Fisher information (see Proposition 5.5) and a Jabin–
Wang type large deviation estimate (see Corollary 5.10).
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2D vortex at any temperature through L2. By a similar regularity trick,
the L2 result of Theorem 5.2 can be applied to the 2D viscous vortex model at
any temperature (or equivalently, without restriction on the interaction strength).
Indeed, as in the case, K = ∇ · V for V ∈ L∞ and ∇ ·K = 0, we can decompose

K = (K −Kε) +Kε = ∇ · (V − V ε) +Kε,

where Kε = K ?ρε and V ε = V ?ρε. Then the L2 constant in Theorem 5.2 satis}es

MV−V ε := sup
t∈[0,T ]

sup
x∈Td

∫

Td

|(V − V ε)(x− y)|2mt(dy) 6 ‖V − V ε‖2L2 sup
t∈[0,T ]

‖mt‖L∞ ,

and can be arbitrarily small as ε → 0. Thus Theorem 5.2 gives an O(1/N2) PoC
estimate in short time. Since our treatment of the L2 hierarchy in Proposition 5.6 is
rather crude, it seems possible to the author that the explosion in }nite time is sub-
optimal. Here, the major technical di{culty is that we cannot force the hierarchy
to stop at a certain level k ∼ Nα, α < 1 as done in Hess-Child–Rowan [111]. And
this is due to the fact that we do not have a priori bounds on L2 distances and
Dirichlet energies that are strong enough.

Dynamics on the whole space. As a concluding remark, we could also expect
that similar results on O(1/N2) PoC hold for dynamics on the whole space, since
the Jabin–Wang results have been migrated to that case ([90, 201] and Chapter 4),
and the original theorem of Lacker [140] is already on Rd.

5.2 Proof of Theorems 5.1 and 5.2
5.2.1 Setup and proof outline
In the proof we will work with regularized solutions introduced in Section 5.1 and
prove the bounds in both theorems for these approximations. Then the result holds
for the original solutions by lower semi-continuity. See Chapter 4 for details.

In the following, we will perform the entropic and L2 computations at the same
time in order to exploit the similarity between them. We set p = 1 for the entropic
computations and p = 2 for the L2 computations. Then, we can write the relative
entropy and the L2 distance between m

N,k
t and m⊗k

t formally as

Dk
p := Dp

(
m

N,k
t

∣∣m⊗k
t

)
:=

1

p− 1

(∫

Tkd

(
h
N,k
t

)p dm⊗k
t − 1

)
, where hN,k

t :=
m

N,k
t

m⊗k
t

.

The expression makes sense classically in the L2 case where p = 2. In the entropic
case, this notation is motivated by the fact that

lim
p↘1

1

p− 1

(∫
hp dm− 1

)
=

∫
h logh dm

for all postive h that is upper and lower bounded (away from zero) and all proba-
bility measure m such that

∫
hdm = 1.
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Then, we use the BBGKY hierarchy (5.5) and the tensorized mean }eld equation
(5.4) to calculate the time derivative of Dk

p . We }nd

1

p

dDk
p

dt = −
∫

Tkd

(
h
N,k
t

)p−2∣∣∇hN,k
t

∣∣2 dm⊗k
t

+
1

N − 1

∑

i,j∈[k]:i 6=j

∫

Tkd

(
h
N,k
t

)p−1∇ih
N,k
t

·
(
K(xi − xj)−K ?mt(x

i)
)
m⊗k

t (dx[k])

+
N − k
N − 1

∑

i∈[k]

∫

Tkd

(
h
N,k
t

)p−1∇ih
N,k
t

·
〈
K(xi − ·),mN,(k+1)|k

t (·|x[k])−mt

〉
m⊗k

t (dx[k]),

where the conditional measure mN,(k+1)|k
t (·|·) is de}ned as

m
N,(k+1)|k
t (x∗|x[k]) :=

m
N,k+1
t (x[k], x∗)

m
N,k
t (x[k])

De}ne also
Ekp :=

∫

Tkd

(
h
N,k
t

)p−2∣∣∇hN,k
t

∣∣2 dm⊗k
t .

This expression makes sense for both p = 1 and 2, and is the relative Fisher informa-
tion Ikt = I

(
m

N,k
t

∣∣m⊗k
t

)
for p = 1, and the Dirichlet energy Ek

t = E
(
m

N,k
t

∣∣m⊗k
t

)
for

p = 2. Denote by A and B the last two terms in the equality above for p−1 dDk
p/dt.

We }nd that A = A1 +A2 and B = B1 +B2 where

Aa :=
1

N − 1

∑

i,j∈[k]:i 6=j

∫

Tdk

(
h
N,k
t

)p−1∇ih
N,k
t ·

(
Ka(x

i−xj)−Ka?mt(x
i)
)
m⊗k

t (dx[k])

and

Ba :=
N − k
N − 1

∑

i∈[k]

∫

Tdk

(
h
N,k
t

)p−1∇ih
N,k
t

·
〈
Ka(x

i − ·),mN,(k+1)|k
t (·|x[k])−mt

〉
m⊗k

t (dx[k]),

for a = 1, 2, since the expressions are linear in K and the kernel admits the
decomposition K = K1 +K2. Thus, the evolution of Dk

p writes

1

p

dDk
p

dt = −Ekp +A1 +A2 +B1 +B2.

We call A1, A2 the inner interaction terms, and B1, B2 the outer interaction terms,
as the }rst two terms correspond to the interaction between the }rst k particles
themselves, and the last two terms to the interaction between the }rst k and the
remaining N − k particles.

We aim to }nd appropriate upper bounds for the last four interaction terms A1,
A2, B1, B2 in the rest of the proof. To be precise, we will show in the entropic case
p = 1 the following system of dizerential inequalities:

dHk
t

dt 6 −c1Ikt + c2I
k+1
t 1k<N +M1H

k
t +M2k

(
Hk+1

t −Hk
t

)
1k<N +M3

kβ

N2
,
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where β is an integer > 2 and c1, c2, Mi, i ∈ [3] are nonnegative constants such
that c1 > c2. And in the L2 case p = 2, we show that

dDk
t

dt 6 −c1Ek
t + c2E

k+1
t 1k<N +M2kD

k+1
t 1k<N +M3

k2

N2
,

where again c1 > c2 > 0 and M2, M3 > 0. We will then apply the results from the
following section (Propositions 5.5 and 5.6) to solve the hierarchies and this will
conclude the proof.

5.2.2 Two lemmas on inner interaction terms
We establish two lemmas that will be useful for controlling the inner interactions
terms A1, A2.
Lemma 5.3. Let p ∈ {1, 2} and k be an integer > 2. Let m ∈ P(Td) and
h : Tkd → R>0 be exchangeable. Suppose additionally that

∫
Tkd h dm⊗k = 1. Let

U : T2d → Rd be bounded. For i ∈ [k], denote

a :=
∑

j∈[k]:j 6=i

∫

Tkd

hp−1∇ih ·
(
U(xi, xj)− 〈U(xi, ·),m〉

)
m⊗k(dx[k]),

where 〈U(xi, ·),m〉 =
∫
Td U(xi, y)m(dy). Then in the case p = 1, we have for all

ε > 0,4

a 6 ε

∫

Tkd

|∇ih|2
h

dm⊗k +
‖U‖2L∞

ε
×
{
(k − 1)2

(k − 1) + (k − 1)(k − 2)
√
2H(m3|m⊗3)

where m3 is the 3-marginal of the probability measure hm⊗k:

m3(dx[3]) =
∫

T(k−3)d

hm⊗k dx[k]\[3].

And in the case p = 2, we have for all ε > 0,

a 6 ε

∫

Tkd

|∇ih|2 dm⊗k +
2(k − 1)2‖U‖2L∞

ε
D +

2(k − 1)‖U‖2L∞

ε
,

where D =
∫
Tkd(h− 1)2 dm⊗k.

Proof of Lemma 5.3. This estimate with p = 1 has already been established in
[140], and with p = 2 it is done implicitly in [111]. Nevertheless, we give a full
proof here for self-containedness. In the simpler case p = 2, using the Cauchy–
Schwarz inequality

h∇ih · ξ =
(
(h− 1) + 1

)
∇ih · ξ 6 ε|∇ih|2 +

1

2ε

(
(h− 1)2 + 1

)
|ξ|2,

we get
∑

j∈[k]:j 6=i

h∇ih ·
(
U(xi, xj)− 〈U(xi, ·),m〉

)

6 ε|∇ih|2 +
1

2ε

(
(h− 1)2 + 1

)∣∣∣∣
∑

j∈[k]:j 6=i

(
U(xi, xj)− 〈U(xi, ·),m〉

)∣∣∣∣
2

4Here, and in the following, if a bracket without conditions appears in a math expression, it
means that both alternatives are valid.



5.2 Proof of Theorems 5.1 and 5.2 223

Thus, integrating against m⊗k, we get
∑

j∈[k]:j 6=i

∫

Tkd

hp−1∇ih ·
(
U(xi, xj)− 〈U(xi, ·),m〉

)
m⊗k(dx[k])

6 ε

∫

Tkd

|∇ih|2 dm⊗k

+
1

2ε

∫

Tkd

(
(h− 1)2 + 1

)∣∣∣∣
∑

j∈[k]:j 6=i

(
U(xi, xj)− 〈U(xi, ·),m〉

)∣∣∣∣
2

m⊗k(dx[k])

6 ε

∫

Tkd

|∇ih|2 dx[k] +
(k − 1)2‖U‖2L∞

2ε
D

+
1

2ε

∫

Tkd

∣∣∣∣
∑

j∈[k]:j 6=i

(
U(xi, xj)− 〈U(xi, ·),m〉

∣∣∣∣
2

m⊗k(dx[k]).

The integral in the last term is equal to
∑

j1,j2∈[k]\{i}

∫

Tkd

(
U(xi, xj1)− 〈U(xi, ·),m〉

)
·
(
U(xi, xj2)− 〈U(xi, ·),m〉

)
m⊗k(dx[k]),

and we notice that by independence, the integral above does not vanish only if
j1 = j2. Thus we get the upper bound

∫

Tkd

∣∣∣∣
∑

j∈[k]:j 6=i

(
U(xi, xj)− 〈U(xi, ·),m〉(xi)

∣∣∣∣
2

m⊗k(dx[k]) 6 4(k − 1)‖U‖2L∞ ,

and this }nishes the proof for the p = 2 case.
Now treat the entropic case where p = 1. Using Cauchy–Schwarz, we get
∑

j∈[k]:j 6=i

∇ih ·
(
U(xi, xj)− 〈U(xi, ·),m〉

)

6 εh−1|∇ih|2 +
1

4ε

∣∣∣∣
∑

j∈[k]:j 6=i

(
U(xi, xj)− 〈U(xi, ·),m〉

)∣∣∣∣
2

.

Then integrating against m⊗k, we }nd
∑

i,j∈[k]:j 6=i

∫

Tkd

∇ih ·
(
U(xi, xj)− 〈U(xi, ·),m〉

)
m⊗k(dx[k])

6 ε

∫

Tkd

|∇ih|2
h

dm⊗k

+
1

4ε

∫

Tkd

∣∣∣∣
∑

j∈[k]:j 6=i

(
U(xi, xj)− 〈U(xi, ·),m〉

)∣∣∣∣
2

hm⊗k(dx[k]).

So it remains to upper bound the last integral. Employing the crude bound
∣∣∣∣
∑

j∈[k]:j 6=i

(
U(xi, xj)− 〈U(xi, ·),m〉

)∣∣∣∣
2

6 4(k − 1)2‖U‖2L∞
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and the fact that hm⊗k is a probability measure, we get
∫

Tkd

∣∣∣∣
∑

j∈[k]:j 6=i

(
U(xi, xj)− 〈U(xi, ·),m〉

)∣∣∣∣
2

hm⊗k(dx[k]) 6 4(k − 1)2‖U‖2L∞ .

This yields the }rst claim for the case p = 1. For the }ner bound, we again expand
the square in the integrand:
∫

Tkd

∣∣∣∣
∑

j∈[k]:j 6=i

(
U(xi, xj)− 〈U(xi, ·),m〉

)∣∣∣∣
2

hm⊗k(dx[k])

=
∑

j∈[k]\{i}

∫

Tkd

|U(xi, xj)− 〈U(xi, ·),m〉|2hm⊗k(dx[k])

+
∑

j1,j2∈[k]\{i}:j1 6=j2

∫

Tkd

(
U(xi, xj1)− 〈U(xi, ·),m〉

)

·
(
U(xi, xj2)− 〈U(xi, ·),m〉

)
hm⊗k(dx[k]).

The }rst term can be bounded crudely by 4(k−1)‖U‖2L∞ as before. For the second
term, we notice that the integration against the measure hm⊗k can be replaced by
the integration against the 3-marginal

m3(dxi dxj1 dxj2) =
∫

T(k−3)d

hm⊗k dx[k]\{i,j1,j2}.

Notice that, by independence, we have
∫

T3d

(
U(xi, xj1)−〈U(xi, ·),m〉

)
·
(
U(xi, xj2)−〈U(xi, ·),m〉

)
m⊗3(dxi dxj1 dxj2) = 0.

Using the Pinsker inequality between m3 and m⊗3, we }nd for j1 6= j2,
∫

T3d

(
U(xi, xj1)− 〈U(xi, ·),m〉

)
·
(
U(xi, xj2)− 〈U(xi, ·),m〉

)
m3(dxi dxj1 dxj2)

6 4‖U‖2L∞

√
2H(m3|m⊗3),

and this concludes the proof for the case p = 1.

Lemma 5.4. Under the same setting as in Lemma 5.3, let φ : T2d → R be
a bounded function verifying φ(x, x) = 0 for all x ∈ Td and the (second-order)
cumulant property:

∫

Td

φ(x, y)m(dy) =
∫

Td

φ(y, x)m(dx) = 0, for all x ∈ Td.

Then we have
∑

i,j∈[k]

∫

Tkd

hpφ(xi, xj)m⊗k(dx[k])

6 ‖φ‖L∞

[√
2CJWN

(
Dp +

3k2

N2

)
+ k2Dp1p=2

]
,
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where CJW is a universal constant to be de}ned in Section 5.4.2 and Dp is de}ned
by

Dp :=

{∫
Tkd h loghdm⊗k when p = 1,∫
Tkd(h− 1)2 dm⊗k when p = 2.

Proof of Lemma 5.4. In the case p = 1, thanks to the convex duality of entropy,
we have
∑

i,j∈[k]

∫

Tkd

hφ(xi, xj)m⊗k(dx[k])

=
∑

i,j∈[k]

∫

Tkd

(h− 1)φ(xi, xj)m⊗k(dx[k])

6 η−1

∫

Tkd

h loghdm⊗k + η−1 log
∫

Tkd

exp
(
η
∑

i,j∈[k]

φ(xi, xj)

)
m⊗k(dx[k]),

for all η > 0. Then taking η such that
√
2CJW‖φ‖L∞Nη = 1 and applying the

modi}ed Jabin–Wang estimates in Corollary 5.10, we get
∑

i,j∈[k]

∫

Tkd

hφ(xi, xj)m⊗k(dx[k]) 6
√

2CJW‖φ‖L∞N

(
D1 +

3k2

N2

)
.

In the case p = 2, we use the elementary equality

h2 = (h− 1)2 + 2(h− 1) + 1

and get
∑

i,j∈[k]

∫

Tkd

h2φ(xi, xj)m⊗k(dx[k])

=
∑

i,j∈[k]

∫

Tkd

(h− 1)2φ(xi, xj)m⊗k(dx[k])

+ 2
∑

i,j∈[k]

∫

Tkd

(h− 1)φ(xi, xj)m⊗k(dx[k])

6 k2‖φ‖L∞

∫

Tkd

(h− 1)2 dm⊗k

+ 2

(∫

Tkd

(h− 1)2 dm⊗k

)1/2[∫

Tkd

( ∑

i,j∈[k]

φ(xi, xj)

)2
dm⊗k

]1/2

The last integral has already been estimated in the intermediate (and in fact the
easiest) step of the Jabin–Wang large deviation lemma (see Proposition 5.9):

∫

Tkd

( ∑

i,j∈[k]

φ(xi, xj)

)2
dm⊗k 6 2k2CJW‖φ‖2L∞ .

Thus we have
∫

Tkd

h2φ(xi, xj)m⊗k(dx[k]) 6 k2‖φ‖L∞D2 + 2k‖φ‖L∞

√
2CJWD2,

so the desired result follows from the Cauchy–Schwarz inequality.
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5.2.3 Control of the inner interaction terms
In this step, we aim to }nd appropriate upper bounds for the inner interactions
terms

Aa :=
1

N − 1

∑

i,j∈[k]:i 6=j

∫

Tdk

(
h
N,k
t

)p−1∇ih
N,k
t ·

(
Ka(x

i−xj)−Ka?mt(x
i)
)
m⊗k

t (dx[k]),

where p = 1, 2 and a = 1, 2.

Control of the regular part A2

First start with the regular part. In this case, we directly invoke Lemma 5.3 with
U(x, y) = K2(x− y) and ε = (N − 1)ε1 for some ε1 > 0. Summing over i ∈ [k], we
get

A2 6 ε1I
k
t +

C‖K2‖2L∞k

ε1(N − 1)2
×
{
(k − 1)2

(k − 1) + (k − 1)(k − 2)
√
H3

t

for the case p = 1, and

A2 6 ε1E
k
t +

C‖K2‖2L∞k(k − 1)2

ε1(N − 1)2
Dk

t +
C‖K2‖2L∞k(k − 1)

ε1(N − 1)2

for the case p = 2. In both inequalities above, C denotes a universal constant that
may change from line to line, and we adopt this convention in the rest of the proof.

Control of the singular part A1

Recall that K1 = ∇·V and ∇·K1 = 0. Then we perform the integrations by parts:

p(N − 1)A1

= p
∑

i,j∈[k]:i 6=j

∫

Tkd

(
h
N,k
t

)p−1∇ih
N,k
t ·

(
K1(x

i − xj)− (K1 ? mt)(x
i)
)
m⊗k

t (dx[k])

=
∑

i,j∈[k]:i 6=j

∫

Tkd

∇i

(
h
N,k
t

)p ·
(
K1(x

i − xj)− (K1 ? mt)(x
i)
)
m⊗k

t (dx[k])

= −
∑

i,j∈[k]:i 6=j

∫

Tkd

(
h
N,k
t

)p∇ logmt(x
i)

·
(
K1(x

i − xj)− (K1 ? mt)(x
i)
)
m⊗k

t (dx[k])

=
∑

i,j∈[k]:i 6=j

∫

Tkd

∇i

((
h
N,k
t

)p∇ logmt(x
i)m⊗k

t

)

:
(
V (xi − xj)− (V ? mt)(x

i)
)

dx[k].

Noticing that ∇ logmt(x
i)m⊗k

t = ∇i

(
m⊗k

t

)
, we get

∇i

((
h
N,k
t

)p∇ logmt(x
i)m⊗k

t

)

= p
(
h
N,k
t

)p−1∇ih
N,k
t ⊗∇ logmt(x

i)m⊗k
t +

(
h
N,k
t

)p∇2mt(x
i)

mt(xi)
m⊗k

t .
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Hence,

p(N − 1)A1

= p
∑

i,j∈[k]:i 6=j

∫

Tkd

(
h
N,k
t

)p−1∇ih
N,k
t ⊗∇ logmt(x

i)

:
(
V (xi − xj)− (V ? mt)(x

i)
)
m⊗k

t (dx[k])

+
∑

i,j∈[k]:i 6=j

∫

Tkd

(
h
N,k
t

)p∇2mt(x
i)

mt(xi)
:
(
V (xi − xj)− (V ? mt)(x

i)
)
m⊗k

t (dx[k])

=: p(N − 1)(A11 +A12).

For the }rst part A11, we invoke Lemma 5.3 with U(x, y) = ∇ logmt(x)·V (x−y)
and ε = (N − 1)ε2 for some ε2 > 0. Summing over i ∈ [k], we get

A11 6 ε2I
k
t +

C‖∇ logmt‖2L∞‖V ‖2L∞k

ε2(N − 1)2
×
{
(k − 1)2

(k − 1) + (k − 1)(k − 2)
√
H3

t

for the case p = 1, and

A11 6 ε2E
k
t +

C‖∇ logmt‖2L∞‖V ‖2L∞k(k − 1)2

ε2(N − 1)2
Dk

t +
C‖∇ logmt‖2L∞‖V ‖2L∞k(k − 1)

ε2(N − 1)2

for the case p = 2.
For the second part A12, we invoke Lemma 5.4 with

φ(x, y) =

{
∇2mt(x)
mt(x)

:
(
V (x− y)− (V ? mt)(x)

)
if x 6= y,

0 if x = y.

Note that the cumulant condition∫

Td

φ(x, y)mt(dy) =
∫

Td

φ(y, x)mt(dy) = 0

is veri}ed due to the de}nition of convolution and the fact that ∇2 :V = ∇·K1 = 0.
Thus, we get

A12 6
‖∇2mt/mt‖L∞‖V ‖L∞

N − 1

[
CN

(
Dk

p +
k2

N2

)
+ k2Dk

p1p=2

]

where C is a universal constant.
Denote

MV,mt
:= ‖∇ logmt‖2L∞‖V ‖2L∞ + ‖∇2mt/mt‖L∞‖V ‖L∞ ,

and note that here, since ∇2mt/mt = (∇ logmt)
⊗2+∇2 logmt, the constant MV,mt

is }nite by the assumptions of the theorems. Summing up A11 and A12, we get

A1 6 ε2I
k
t + CMV,mt

(
Hk

t +
k2

N2

)
+
CMV,mt

k

ε2N2
×
{
k2

k + k2
√
H3

t

for the case p = 1, and

A1 6 ε2E
k
t + CMV,mt

(
1 +

k2

N
+

k3

ε2N2

)
Dk

t + CMV,mt
(1 + ε−1

2 )
k2

N2

for the case p = 2.
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5.2.4 Control of the outer interaction terms
Now we move on to the upper bounds for the terms B1, B2. Recall that they are
de}ned by

Ba :=
N − k
N − 1

∑

i∈[k]

∫

Tdk

(
h
N,k
t

)p−1∇ih
N,k
t

·
〈
Ka(x

i − ·),mN,(k+1)|k
t (·|x[k])−mt

〉
m⊗k

t (dx[k]),

where p = 1, 2 and a = 1, 2.

Control of the regular part B2

For the term B2, we notice that in the entropic case, we have by the Pinsker
inequality
∣∣∣
〈
K2(x

i − ·),mN,(k+1)|k
t (·|x[k])−mt

〉∣∣∣ 6 ‖K2‖L∞

√
2H
(
m

N,(k+1)|k
t (·|x[k])

∣∣mt

)
,

and in the L2 case, we have
∣∣∣
〈
K2(x

i − ·),mN,(k+1)|k
t (·|x[k])−mt

〉∣∣∣ 6 ‖K2‖L∞

√
D
(
m

N,(k+1)|k
t (·|x[k])

∣∣mt

)
.

In both cases, we apply the Cauchy–Schwarz inequality
(
h
N,k
t

)p−1∇ih
N,k
t ·

〈
Ka(x

i − ·),mN,(k+1)|k
t (·|x[k])−mt

〉

6
ε3(N − 1)

N − k
(
h
N,k
t

)p−2∣∣∇ih
N,k
t

∣∣2

+
(N − k)

4ε3(N − 1)

∣∣∣
〈
K2(x

i − ·),mN,(k+1)|k
t (·|x[k])−mt

〉∣∣∣
2

.

Integrating against the measure m⊗k
t and summing over i ∈ [k], we get

B2 6 ε3Ekp +
‖K2‖2L∞(N − k)2k

4ε3(N − 1)2

×
{∫

Tkd 2H
(
m

N,(k+1)|k
t (·|x[k])

∣∣mt

)
m⊗k

t (dx[k]) when p = 1∫
Tkd D

(
m

N,(k+1)|k
t (·|x[k])

∣∣mt

)
m⊗k

t (dx[k]) when p = 2

= ε3Ekp +
‖K2‖2L∞(N − k)2k

2pε3(N − 1)2
(
Dk+1

p −Dk
p

)
.

The last equality is a “towering” property of relative entropy and χ2 distance, which
can be veri}ed directly from the de}nition of conditional density.

Control of the singular part B1

By the same Cauchy–Schwarz inequality as in the previous step, the term B1 sat-
is}es

B1 6 ε4Ekp +
(N − k)2k
4ε4(N − 1)2

×
∫

Tkd

(
h
N,k
t

)p∣∣∣
〈
K1(x

i − ·),mN,(k+1)|k
t (·|x[k])−mt

〉∣∣∣
2

m⊗k
t (dx[k]).
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In the entropic case where p = 1, applying the }rst inequality of Proposition 5.7
in Section 5.4 with m1 → m

N,(k+1)|k
t (·|x[k]), m2 → mt, we get

∣∣∣
〈
K1(x

i − ·),mN,(k+1)|k
t (·|x[k])−mt

〉∣∣∣
2

6 ‖V ‖2L∞(1 + ε5)I
(
m

N,(k+1)|k
t (·|x[k])

∣∣mt

)

+ 2‖V ‖2L∞(1 + ε−1
5 )‖∇ logmt‖2L∞H

(
m

N,(k+1)|k
t (·|x[k])

∣∣mt

)
.

Noticing that the conditional entropy and Fisher information satisfy the towering
property:

∫

Tkd

H
(
m

N,(k+1)|k
t (·|x[k])

∣∣mt

)
m

N,k
t (dx[k]) = Hk+1

t −Hk
t ,

∫

Tkd

I
(
m

N,(k+1)|k
t (·|x[k])

∣∣mt

)
m

N,k
t (dx[k]) =

Ik+1
t

k + 1
,

we integrate the equality above with respect to mN,k
t and obtain

B1 6 ε4I
k
t +

(1 + ε5)‖V ‖2L∞(N − k)2k
4ε4(N − 1)2(k + 1)

Ik+1
t

+
(1 + ε−1

5 )‖V ‖2L∞‖∇ logmt‖2L∞(N − k)2k
2ε4(N − 1)2

(
Hk+1

t −Hk
t

)
.

In the L2 case where p = 2, we apply the second inequality of Proposition 5.7
in Section 5.4 with m1 → m

N,(k+1)|k
t (·|x[k]), m2 → mt, and get

∣∣∣
〈
K2(x

i − ·),mN,(k+1)|k
t (·|x[k])−mt

〉∣∣∣
2

6MV (1 + ε5)E
(
m

N,(k+1)|k
t (·|x[k])

∣∣mt

)

+MV (1 + ε−1
5 )‖∇ logmt‖2L∞D

(
m

N,(k+1)|k
t (·|x[k])

∣∣mt

)
.

for MV := supt∈[0,T ] supx∈Td

∫
Td |V (x − y)|2mt(dy). Noticing that the towering

property holds for χ2 distance and Dirichlet energy:
∫

Tkd

(
h
N,k
t

)2
D
(
m

N,(k+1)|k
t,x[k]

∣∣mt

)
m⊗k

t (dx[k]) = Dk+1
t −Dk

t ,

∫

Tkd

(
h
N,k
t

)2
E
(
m

N,(k+1)|k
t,x[k]

∣∣mt

)
m⊗k

t (dx[k]) =
Ek+1

t

k + 1
,

we integrate against m⊗k
t and get

B1 6 ε4E
k
t +

(1 + ε5)MV (N − k)2k
4ε4(N − 1)2(k + 1)

Ek+1
t

+
(1 + ε−1

5 )MV ‖∇ logmt‖2L∞(N − k)2k
4ε4(N − 1)2

(
Dk+1

t −Dk
t

)
.
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5.2.5 Conclusion of the proof
By combining the upper bounds on A1, A2, B1, B2 obtained in the previous steps,
we get

dHk
t

dt 6 −
(
1−∑4

n=1 εn
)
Ikt +

(1 + ε5)‖V ‖2L∞

4ε4
Ik+1
t 1k<N

+ CMV,mt
Hk

t

+

(
C‖K2‖2L∞

ε3
+

(1 + ε−1
5 )‖V ‖2L∞‖∇ logmt‖2L∞

2ε4

)
k
(
Hk+1

t −Hk
t

)
1k<N

+ CMV,mt

k2

N2
+ C

(‖K2‖2L∞

ε1
+
MV,mt

ε2

)
k2

N2
×
{
k

1 + k
√
H3

t

for the entropic case p = 1, and

1

2

dDk
t

dt 6 −
(
1−∑4

n=1 εn
)
Ek

t +
(1 + ε5)MV

4ε4
Ek+1

t 1k<N

+ C

[
MV,mt

(
1 +

k2

N
+

k3

ε2N2

)
+
‖K2‖2L∞k3

N2

]
Dk

t

+

(
C‖K2‖2L∞

ε3
+

(1 + ε−1
5 )MV ‖∇ logmt‖2L∞

4ε4

)
k
(
Dk+1

t −Dk
t

)
1k<N

+ C

(‖K2‖2L∞

ε1
+MV,mt

(1 + ε−1
2 )

)
k2

N2

for the L2 case p = 2.
Since ‖V ‖2L∞ , MV are respectively supposed to be smaller than 1 in Theo-

rems 5.1 and 5.2, we can take

ε4 =

{
‖V ‖L∞/2 when p = 1,√
MV /2 when p = 2.

so that for ε1, ε2, ε3, ε5 small enough, we have

1−
4∑

n=1

εn >
(1 + ε5)

4ε4
·
{
‖V ‖2L∞ when p = 1,
MV when p = 2.

Additionally, for the second assertion of Theorem 5.1, since we have
r∗

8π2(1− ‖V ‖L∞)
6 1,

we can pick the εi, for i ∈ [3] and i = 5, such that

1−
4∑

n=1

εn −
(1 + ε5)

4ε4
‖V ‖2L∞ = 1− 2 + ε5

2
‖V ‖L∞ −

3∑

i=1

εi >
r∗
8π2

.

Fix these choices of εi for i ∈ [5] in the respective situations.
Then, for the }rst assertion of Theorem 5.1, we choose the }rst alternative in

the upper bound of dHk
t /dt, and get

dHk
t

dt 6 −c1Ikt + c2I
k+1
t 1k<N +M ′

1H
k
t +M ′

2k
(
Hk+1

t −Hk
t

)
1k<N +M ′

3

k3

N2
,
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for c1 > c2 > 0 and some set of constants M ′
i , i ∈ [3]. Applying the }rst case of

Proposition 5.5 in Section 5.3 to the system of dizerential inequalities of Hk
t , Ikt ,

we get an M ′ such that Hk
t 6M ′eM

′tk3/N2. So taking k = 3, we get the bound on
the 3-marginal’s relative entropy: H3

t 6 27M ′eM
′t/N2. Plugging this bound into

the second alternative in the upper bound of dHk
t /dt, we get

dHk
t

dt 6 −c1Ikt + c2I
k+1
t 1k<N +M1H

k
t +M2k

(
Hk+1

t −Hk
t

)
1k<N +M3e

M3t
k2

N2
,

for some other set of constants Mi, i ∈ [3]. We apply again the }rst case of
Proposition 5.5 to obtain the desired result Hk

t 6MeMtk2/N2.
For the second assertion of Theorem 5.1, we have K2 = 0 and

‖∇ logmt‖2L∞ + ‖∇2 logmt‖L∞ 6Mme
−ηt.

Taking the }rst alternative in the upper bound of dHk
t /dt, we get

dHk
t

dt 6 −c1Ikt + c2I
k+1
t 1k<N

+ CMme
−ηtHk

t + C(1 + ε−1
5 )Mme

−ηtk
(
Hk+1

t −Hk
t

)
1k<N

+ C(1 + ε−1
2 )Mme

−ηt k
3

N2
.

Notice that by our choice of constants, we have

c1 − c2 >
r∗
8π2

.

On the other hand, according to [12, Proposition 5.7.5], the uniform measure 1 on
T = R/Z veri}es a log-Sobolev inequality:

∀m ∈ P(T) regular enough, 8π2H(m|1) 6 I(m|1),

and the inequality with the same 8π2 constant for the uniform measure on Td by
tensorization property. By the gradient bound ‖∇ logmt‖2L∞ 6 Mme

−ηt, we can
control the oscillation of logmt:

sup
Td

logmt − inf
Td

logmt 6
Mm

√
d

2
e−ηt.

Thus, by Holley–Stroock’s perturbation result [113], the measure mt satis}es a
log-Sobolev inequality with constant

8π2 exp
(
−Mm

√
d

2
e−ηt

)
,

which implies
Ikt >

r∗
c1 − c2

Hk
t ,

for su{ciently large t. Let r ∈ (0, r∗) be arbitrary. We can apply the second case
of Proposition 5.5 and get

Hk
t 6M ′′e−rt k

3

N2
.
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We then plug the bound for H3
t back to the second alternative in the upper bound

for dHk
t /dt to get

dHk
t

dt 6 −c1Ikt + c2I
k+1
t 1k<N

+ CMme
−ηtHk

t + C(1 + ε−1
5 )Mme

−ηtk
(
Hk+1

t −Hk
t

)
1k<N

+ C(1 + ε−1
2 )Mm(1 +M ′′)e−ηt k

2

N2
.

Applying again the second case of Proposition 5.5, we obtain the desired control

Hk
t 6M ′e−rt k

2

N2
.

Finally, in the L2 case, we apply the crude bounds k2/N 6 k, k3/N2 6 k, Dk
t 6

Dk+1
t in the second line of the upper bound for dDk

t /dt, and k
(
Dk+1

t −Dk
t

)
6 kDk+1

t

in the third line. So we get
dDk

t

dt 6 −c1Ek
t + c2E

k+1
t 1k<N +M2kD

k+1
t 1k<N +M3

k2

N2

for some c1 > c2 > 0 and M2, M3 > 0. We conclude the proof by applying
Proposition 5.6 in Section 5.3 to the system of Dk

t , Ek
t .

5.3 ODE hierarchies
5.3.1 Entropic hierarchy
Now we move on to solving the ODE hierarchy that is “weaker” than that considered
in [140]. As we have seen in the previous section, in the time-derivative of the k-th
level entropy dHk

t /dt, we allow the Fisher information of the next level, i.e. Ik+1
t ,

to appear. In this section, we show that as long as the extra term’s coe{cient
is controlled by the heat dissipation, the hierarchy still preserves the O(k2/N2)
order globally in time. This is achieved by choosing a weighted mix of entropies at
all levels > k so that when we consider its time-evolution, a telescoping sequence
appears and cancels all the Fisher informations.
Proposition 5.5. Let T ∈ (0,∞] and let xk· , yk· : [0, T ) → R>0 be C1 functions,
for k ∈ [N ]. Suppose that xk+1

t > xkt for all k ∈ [N − 1]. Suppose that there exist
integer β > 2, real numbers c1 > c2 > 0 and C0 > 0, and functions M1, M2,
M3 : [0, T )→ [0,∞) such that for all t ∈ [0, T ) and k ∈ [N ], we have

xk0 6
C0k

2

N2
,

dxkt
dt 6 −c1ykt + c2y

k+1
t 1k<N +M1(t)x

k
t +M2(t)k

(
xk+1
t − xkt

)
1k<N +M3(t)

kβ

N2
.

(5.6)
Then we have the following results.

1. If M1, M2 are constant functions and M3(t) 6 LeLt for some L > 0, then
there exists M > 0, depending only on β, c1, c2, C0, M1, M2 and L, such
that for all t ∈ [0, T ), we have

xkt 6MeMt k
β

N2
.
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2. If T =∞, the functions M1, M2, M3 are non-increasing and satisfy

Mi(t) 6 Le−ηt

for all t ∈ [0,∞) and all i ∈ [3], for some L > 0, η > 0 and if ykt > ρxkt for all
t ∈ [t∗,∞) for some ρ > 0 and some t∗ > 0, then for all r ∈

(
0, ρ(c1 − c2)

)
,

there exists M ′ > 0, depending only on r, η, β, c1, c2, C0, L, ρ and t∗, such
that for all t ∈ [0,∞), we have

xkt 6M ′e− min(r,η)t k
β

N2
.

Proof. We prove the proposition by considering the two cases at the same time.
Notice that the relation

ykt > ρxkt

trivially holds for ρ = 0. We set t∗ = ∞ in the }rst case. Allowing ρ to be a
function of time, we simply set ρ(·) = 0 in the }rst situation and in the second
situation on the interval [0, t∗] for the rest of the proof. So formally we can write

ρ(t) = ρ1t>t∗ .

To avoid confusion we will always write ρ(·) for the time-dependent function and ρ
for the constant.

Step 1: Reduction to M1 = 0. We }rst notice that, by de}ning the new variables

x′kt = xkt exp
(
−
∫ t

0

M1(s) ds
)
, y′kt = ykt exp

(
−
∫ t

0

M1(s) ds
)
,

we can reduce to the case where M1 = 0 upon rede}ning M3 (and therefore L in
the second case, but not η). This transform does not change the relations

xk+1
t > xkt , ykt > ρxkt

and the initial values of xk, so we can suppose M1 = 0 without loss of generality.

Step 2: Reduction to k 6 N/2. Second, by taking k = N in the hierarchy (5.6), we
}nd

dxNt
dt 6 −ρ(t)xNt +M3(t)N

β−2

and thus the a priori bound follows:

xNt 6

(
C0e

−
∫

t

0
ρ +

∫ t

0

e−
∫

t

s
ρM3(s) ds

)
Nβ−2 =:MN

t N
β−2 (5.7)

In the second case where ρ(·) is eventually constant: ρ(·) = ρ > 0, the quantity
MN

t is exponentially decreasing in t with rate min(ρ, η). By the monotonicity of
k 7→ xkt , we get that for all k > N/2,

xkt 6 xNt 6MN
t N

β−2 < 2βMN
t

kβ

N2
.

So it only remains to establish the upper bound of xkt for k 6 N/2.



234 Chapter 5: Sharp local propagation of chaos for W−1,∞ kernels

Step 3: New hierarchy. Let α be an arbitrary real number > β + 3. Recall that in
the second case, r ∈

(
0, ρ(c1 − c2)

)
and in the }rst case we simply set r = 0 and

adopt the convention 0/0 = 0. Let

i0 := max
(
1, inf

{
i > 0 :

iα

(i+ 1)α
>
c2 + r/ρ

c1

})
.

The number i0 is always well de}ned, as limi→∞ iα/(i + 1)α = 1 > (c2 + r/ρ)
/
c1.

Thus, for any i > i0, we have
c1

(i+ 1)α
>
c2

iα
+

r

ρiα
.

De}ne, for k ∈ [N ] and t > 0, the following new variable:

zkt :=

N∑

i=k

xit
(i− k + i0)α

.

By summing up the ODE hierarchy (5.6) (with M1 = 0), we }nd

dzkt
dt 6 −

N∑

i=k

c1y
i
t

(i− k + i0)α
+

N−1∑

i=k

c2y
i+1
t

(i− k + i0)α

+
M3(t)

N2

N∑

i=k

iβ

(i− k + i0)α
+M2(t)

N−1∑

i=k

i

(i− k + i0)α
(
xi+1
t − xit

)
.

The sum of the }rst two terms satisfy

−
N∑

i=k

c1y
i
t

(i− k + i0)α
+

N−1∑

i=k

c2y
i+1
t

(i− k + i0)α

= −c1y
k
t

iα0
+

N∑

i=k

(
− c1

(i+ 1− k + i0)α
+

c2

(i− k + i0)α

)
yit

6 −
N∑

i=k

rρ(t)yit
ρ(i− k + i0)α

6 −
N∑

i=k

rxit
(i− k + i0)α

= −rzkt 1t>t∗ ,

thanks to our choice of i0. For the third term, we }nd

N∑

i=k

iβ

(i− k + i0)α
6 Cβ

N∑

i=k

(i− k)β + kβ

(i− k + 1)α
6 Cβ

∞∑

i=1

(i− 1)β

iα
+ Cβk

β

∞∑

i=1

1

iα

6 Cα,βk
β , (5.8)

where Cβ > 0 (resp. Cα,β > 0) depends only on β (resp. α and β). In the following,
we allow these constants to change from line to line. For the last term, we perform
the summation by parts:
N−1∑

i=k

i

(i− k + i0)α
(
xi+1
t − xit

)

= − k

iα0
xkt +

N

(N − k + i0)α
xNt +

N−1∑

i=k

(
i

(i− k + i0)α
− (i+ 1)

(i+ 1− k + i0)α

)
xi+1
t .
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The coe{cient in the last summation satis}es

i

(i− k + i0)α
− (i+ 1)

(i+ 1− k + i0)α

=

(
1

(i− k + i0)α−1
− 1

(i+ 1− k + i0)α−1

)

+ (k − i0)
(

1

(i− k + i0)α
− 1

(i+ 1− k + i0)α

)

6
α− 1

(i− k + i0)α
+ k

(
1

(i− k + i0)α
− 1

(i+ 1− k + i0)α

)
,

where the last inequality is due to j−α+1− (j+1)−α+1 6 (α− 1)j−α for α > 1 and
j > 0. Thus, we have

N−1∑

i=k

i

(i− k + i0)α
(
xi+1
t − xit

)

6 − k

iα0
xkt +

N

(N − k + i0)α
xNt + (α− 1)

N−1∑

i=k

xi+1
t

(i− k + i0)α

+ k

N−1∑

i=k

(
1

(i− k + i0)α
− 1

(i+ 1− k + i0)α

)
xi+1
t

The dizerence between zk+1
t and zkt reads

zk+1
t − zkt =

N−1∑

i=k

(
1

(i− k + i0)α
− 1

(i+ 1− k + i0)α

)
xi+1
t − xkt

iα0
.

Then, rewriting in terms of zkt and zk+1
t , we }nd that, for k ∈ [N − 1], the last

summation satis}es
N−1∑

i=k

i

(i− k + i0)α
(
xi+1
t − xit

)

6

N−1∑

i=k

α− 1

(i− k + i0)α
xi+1
t + k

(
zk+1
t − zkt

)
+

N

(N − k + i0)α
xNt

6
(α− 1)c1

c2

N∑

i=k+1

xit
(i− k + i0)α

+ k
(
zk+1
t − zkt

)
+

N

(N − k + i0)α
xNt

=
(α− 1)c1

c2
zkt + k

(
zk+1
t − zkt

)
+

N

(N − k + i0)α
xNt .
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Then for k 6 N/2, we have

N−1∑

i=k

i

(i− k + i0)α
(
xi+1
t − xit

)

6
(α− 1)c1

c2
zkt + k

(
zk+1
t − zkt

)
+

N

(N/2)α
xNt

6
(α− 1)c1

c2
zkt + k

(
zk+1
t − zkt

)
+

2α

Nα−1
MN

t N
β−2

6
(α− 1)c1

c2
zkt + k

(
zk+1
t − zkt

)
+

2αMN
t

N2
,

where the last inequality is due to α > β + 3. Combining the upper bounds for all
the terms, we get, for k 6 N/2,

dzkt
dt 6 −rzkt 1t>t∗ +

(α− 1)c1M2(t)

c2
zkt +M2(t)k

(
zk+1
t − zkt

)

+ Cα,βM3(t)
kβ

N2
+

2αMN
t M2(t)

N2
, (5.9)

For k = k̄ := bN/2c+ 1, we have by the a priori bound (5.7),

zk̄t =

N∑

i=k̄

xit
(i− k̄ + i0)α

6 xNt

N∑

i=k

1

(i− k̄ + i0)α
6 CαM

N
t N

β−2.

According to the computations in (5.8), the initial values of zk0 , for k 6 N/2, satisfy

zk0 6 CαC0
k2

N2
=: C ′

0

k2

N2
.

So the new hierarchy in terms of zkt is derived.

At this point, we can already apply the Grönwall iteration method of Lacker
[140] and, in the time-uniform case, of Lacker and Le Flem [142], to solve the system
of dizerential inequalities (5.9). However, we take a much simpler approach here
based on the following observation. If the variable k in (5.9) is no longer discrete
but continuous, then the term M2(t)k

(
zk+1
t − zkt

)
becomes the transport term

M2(t)k
∂zk+1

t

∂k
,

and zkt becomes a subsolution to a transport equation

∂zkt
∂t

6 −rzkt 1t>t∗ +M2(t)k
∂zkt
∂k

+ source terms.

Since the transport equation veri}es a comparison principle, it su{ces to construct a
supersolution to the equation that dominates zkt on the parabolic boundary, in order
to obtain an upper bound for zkt in the continuous case. The crucial observation
here, which we prove in Proposition 5.11 in Section 5.4.3, is that the comparison
still holds for the discretization scheme (5.9). So in the following we construct
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supersolutions for the system of dizerential inequalities in the two cases of the
proposition.
Step 4.1: Global-in-time estimates. In the }rst case, we can control MN

t de}ned in
(5.7) by

MN
t 6 C0 + eLt − 1.

Thus, by the last step,

zk̄t 6 Cα(C0 + eLt − 1)Nβ−2.

where k̄ = bN/2c+ 1 as we recall. Now we set, for k 6 N/2,

wk
t =MeMt k

β

N2

for some M to be determined. For M large enough, we have the domination

wk
t > zkt

on the parabolic boundary

{(t, k) ∈ [0,∞)× [N ] : t = 0 or k = k̄}.

In the interior, wk
t is an upper solution for (5.9) if and only if

M2eMt k
β

N2
>

(α− 1)c1M2

c2
MeMt k

β

N2
+M2

k
(
(k + 1)β − kβ

)

N2
+ Cα,β

kβ

N2

+ 2αM2
C0 + eLt − 1

N2
.

Noting that (k+1)β−kβ 6 β(k+1)β−1 6 2β−1βkβ−1, we can let the inequality hold
by taking an M large enough. We conclude in this case by applying the comparison
principle of Proposition 5.11 to wk

t − zkt .
Step 4.2: Exponentially decaying estimate. In this case, the a priori bound MN

t

veri}es, for some M ′′ > 0,

MN
t 6M ′′e− min(r,η)t.

We set, for k 6 N/2,

wk
t =M ′(t)

kβ

N2

for some M ′ : [0,∞) → [0,∞) to be determined. The domination wk
t > zkt on the

boundary is satis}ed if

M ′(0) > C ′
0

M ′(t) > CαM
N
t ,

In the interior, wk
t is an upper solution for (5.9) if and only if

dM ′(t)
dt > −r1t>t∗M

′(t) +
(α− 1)c1M2(t)

c2
M ′(t) +M2(t)

k
(
(k + 1)β − kβ

)

kβ
M ′(t)

+ Cα,βM3(t) +
2αMN

t M2(t)

kβ
.



238 Chapter 5: Sharp local propagation of chaos for W−1,∞ kernels

Note that the source terms on the second line can be bounded by L′′e−ηt for some
L′′ > 0. Set

ρ′(t) = r1t>t∗ −
(
(α− 1)c1

c2
+ 2β−1β

)
M2(t)

and
M ′(t) =M ′

0e
−

∫
t

0
ρ′

+

∫ t

0

e−
∫

t

s
ρ′

L′′e−ηs ds.

We }nd that all conditions are satis}ed for an M ′
0 su{ciently large. We }x such

M ′
0 and apply again Proposition 5.11 to wk

t − zkt to conclude.

5.3.2 L2 hierarchy
For the ODE system obtained from the L2 hierarchy, we only show that the
O(1/N2)-order bound holds until some }nite time. We note that similar hierarchies
have appeared recently in [30, 29].

Proposition 5.6. Let T > 0 and let xk· , yk· : [0, T ] → R>0 be C1 functions, for
k ∈ [N ]. Suppose that there exist real numbers c1 > c2 > 0, and C0, M2, M3 > 0
such that for all t ∈ [0, T ] and k ∈ [N ], we have

xk0 6
C0k

2

N2
,

dxkt
dt 6 −c1ykt + c2y

k+1
t 1k<N +M2kx

k+1
t 1k<N +M3

k2

N2
.

Then, there exist T∗, M > 0, depending only on β, c1, c2, C0, M2, M3, such that
for all t ∈ [0, T∗ ∧ T ), we have

xkt 6
MeMk

(T∗ − t)3N2
.

Proof. For t ∈ [0, T ] and r ∈ [c2/c1, 1], we de}ne the generating function (or the
Laplace transform) associated to xkt :

F (t, r) =
N∑

k=1

rkxkt .

Then, taking the time-derivative of F (t, r), we get

∂F (t, r)

∂t
6 −c1

N∑

k=1

rkykt + c2

N−1∑

k=1

rkyk+1
t +M2

N−1∑

k=1

krkxk+1
t +

M3

N2

N∑

k=1

k2rk

6 −c1ry1t +
N∑

k=2

(c2 − c1r)rk−1yk+1
t +M2

N−1∑

k=1

krkxk+1
t +

M3

N2

N∑

k=1

k2rk

6M2

N−1∑

k=1

krkxk+1
t +

M3

N2

N∑

k=1

k2rk.
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Notice that, by taking partial derivatives in r, we get

∂F (t, r)

∂r
=

N−1∑

k=0

(k + 1)rkxk+1
t ,

∂2

∂r2

(
1

1− r

)
=

∞∑

k=0

(k + 2)(k + 1)rk.

Thus, we }nd
∂F (t, r)

∂t
6M2

∂F (t, r)

∂r
+

2M3

N2(1− r)3 .

The initial condition of F satis}es

F (0, r) =

N∑

k=1

rkxk0 6
C0

N2

N∑

k=1

rkk2 6
2C0

N2(1− r)3 .

Let
T∗ =

1

M2

(
1− c2

c1

)

and for t < T∗ ∧ T , let (rs)s∈[0,t] be the characteristic line:

rs =
c2

c1
+M2(t− s).

We then have r0 6 c2/c1 +M2t. Integrating along this line, we get

F (t, rt) 6 F (0, r0) +
2M3

N2

∫ t

0

ds
(1− rs)3

6
2C0

N2(1− r0)3
+

2M3

M2N2

∫ r0

rt

dr
(1− r)3

6

(
2C0

(1− r0)3
+

M3

M2(1− r0)2
)

1

N2
.

Thus we get

xkt 6 r−k
t F (t, rt) 6

(
c1

c2

)k(
2C0(

1−M2t− c2
c1

)3 +
M3

M2

(
1−M2t− c2

c1

)2
)

1

N2
.

5.4 Other technical results
5.4.1 Transport inequality for W−1,∞ kernels
One key ingredient of the entropic hierarchy of Lacker [140] is to control the outer
interaction terms by the relative entropy through the Pinsker or Talagrand’s trans-
port inequality. In our situation, the interaction kernel is more singular, and we
are no longer able to control the dizerence by the mere relative entropy. It turns
out that the additional quantity to consider is the relative Fisher information.5 We
also include the inequality for the L2 hierarchy here, as the two inequalities share
the same form.

5It has been communicated to the author that Lacker has also obtained the inequality inde-
pendently.
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Proposition 5.7. For all K = ∇ · V with V ∈ L∞(Td;Rd × Rd) and all regular
enough measures m1, m2 ∈ P(Td), we have

|〈K,m1 −m2〉| 6 ‖V ‖L∞

(√
I(m1|m2) + ‖∇ logm2‖L∞

√
2H(m1|m2)

)
,

|〈K,m1 −m2〉| 6 ‖V ‖L2(m2)

(√
E(m1|m2) + ‖∇ logm2‖L∞

√
D(m1|m2)

)
.

Proof. For the }rst inequality, we have

|〈K,m1 −m2〉|
= |〈V,∇m1 −∇m2〉|

6

∫

Td

|V |
∣∣∣∣
∇m1

m1
− ∇m2

m2

∣∣∣∣ dm1 +

∫

Td

|∇m2|
m2

|V | d|m1 −m2|

6 ‖V ‖L∞

(∫

Td

∣∣∣∇ log m1

m2

∣∣∣
2

dm1

)1/2
+ ‖∇ logm2‖L∞‖V ‖L∞‖m1 −m2‖L1

6 ‖V ‖L∞

(√
I(m1|m2) + ‖∇ logm2‖L∞

√
2H(m1|m2)

)
.

For the second inequality, we set h = m1/m2 and }nd

|〈K1,m1 −m2〉|

=

∣∣∣∣
∫

Td

K(h− 1) dm2

∣∣∣∣

6

∣∣∣∣
∫

Td

V∇hdm2

∣∣∣∣+
∣∣∣∣
∫

Td

V (h− 1)∇ logm2 dm2

∣∣∣∣
6 ‖V ‖L2(m2)

(
‖∇h‖L2(m2) + ‖∇ logmt‖L∞‖h− 1‖L2(m2)

)
.

5.4.2 Improved Jabin–Wang lemma
In the following we state a slight improvement to [124, Theorem 4], in the sense
that we get the correct asymptotic behavior when the cumulant “test function” (φ
as denoted in their work) tends to zero. This behavior is not needed for their global
approach but is necessary for the inner interaction bound in our local approach.
For simplicity, we denote the universal constant of Jabin–Wang by

CJW := 16002 + 36e4.

Theorem 5.8 (Alternative version of [124, Theorem 4]). Let φ ∈ L∞(Td ×Td;R)
and m ∈ P(Td) be such that

∫
Td φ(x, y)m(dy) =

∫
Td φ(y, x)m(dy) = 0 and φ(x, x) =

0 for all x ∈ Td. Denote γ = CJW‖φ‖2L∞ . If γ ∈
[
0, 12

]
, then for all integer k > 1,

we have
log
∫

Tkd

exp
(
1

k

∑

i,j∈[k]

φ(xi, xj)

)
m⊗k(dx[k]) 6 6γ.

The proof will depend on two combinatorical estimates in [124], which we state
here for the readers’ convenience.
Proposition 5.9 ([124, Propositions 4 and 5]). Under the assumptions of Theo-
rem 5.8, for all integer r > 1, we have

1

(2r)!

∫

Tkd

∣∣∣∣
1

k

∑

i,j∈[k]

φ(xi, xj)

∣∣∣∣
2r

m⊗k(dx[k]) 6

{
(6e2‖φ‖L∞)2r if 4r > k,
(1600‖φ‖L∞)2r if 4 6 4r 6 k,
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Proof of Theorem 5.8. Let a 6= 0. We have the elementary inequality

ea − a− 1 =
∞∑

r=2

ar

r!
6

∞∑

r=2

|a|r
r!

=

∞∑

r=1

|a|2r
(2r)!

+

∞∑

r=1

|a|2r+1

(2r + 1)!

6

∞∑

r=1

|a|2r
(2r)!

+

∞∑

r=1

|a|2r+1

2(2r + 1)!

( |a|
2r + 2

+
2r + 2

|a|

)

6 3

∞∑

r=1

|a|2r
(2r)!

.

The inequality ea − a − 1 6 3
∑∞

r=1
|a|2r
(2r)! holds true for a = 0 as well. Taking

a = 1
k

∑
i,j∈[k] φ(x

i, xj) in the inequality above and integrating with m⊗k(dx[k]),
we get

∫

Tkd

exp
(
1

k

∑

i,j∈[k]

φ(xi, xj)

)
m⊗k(dx[k])

6 1 +
1

k

∑

i,j∈[k]

∫

Tkd

φ(xi, xj)m⊗k(dx[k])

+ 3
∞∑

r=1

1

(2r)!

∫

Tkd

∣∣∣∣
1

k

∑

i,j∈[k]

φ(xi, xj)

∣∣∣∣
2r

m⊗k(dx[k]).

The second term on the right hand side vanishes, as by assumption, for i 6= j, we
have

∫
Tkd φ(x

i, xj)m⊗k(dx[k]) = 0, and for i = j, we have φ(xi, xi) = 0. Thus,
using the counting result of Proposition 5.9, we get

∫

Tkd

exp
(
1

k

∑

i,j∈[k]

φ(xi, xj)

)
m⊗k(dx[k])

6 1 + 3

bk/4c∑

r=1

(1600‖φ‖L∞)2r + 3
∞∑

r=bk/4c+1

(6e2‖φ‖L∞)2r = 1 +
3γ

1− γ

We conclude by noting that log
(
1 + 3γ

1−γ

)
6 3γ

1−γ
6 6γ for γ ∈

[
0, 12

]
.

Then, taking a rescaling of φ, we get the following.

Corollary 5.10. Suppose that the function φ ∈ L∞(Td × Td;R) and the measure
m ∈ P(Rd) satisfy

∫
Td φ(x, y)m(dy) =

∫
Td φ(y, x)m(dy) = 0 and φ(x, x) = 0 for

all x ∈ Td. Then, for all integer N > 2 and k ∈ [N ], we have

log
∫

Tkd

exp
(

1

N

∑

i,j∈[k]

φ(xi, xj)

)
m⊗k(dx[k]) 6 6CJW‖φ‖2L∞

k2

N2
,

given that CJW‖φ‖2L∞ 6 1/2.
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5.4.3 Maximum principle
We show a maximum principle for a system of ODE by standard method.

Proposition 5.11. Let T > 0 and let x : [0, T ]→ RN be a C1 continuous function.
Suppose that the each component of the initial value x(0) is non-negative, i.e.,
xi(0) > 0 for all i ∈ [N ]. Suppose that it satis}es

∀t ∈ [0, T ], ∀i ∈ [N ],
dxi(t)

dt >
∑

j∈[N ]

Ai
j(t)x

j(t)

for some continuous matrix-valued A : [0, T ] → Rd×d whose oz-diagonal elements
are non-negative, i.e., Ai

j(t) > 0 for all i, j ∈ [N ] such that i 6= j. Then, for all
t ∈ [0, T ] and all i ∈ [N ], we have xi(t) > 0.

Proof of Proposition 5.11. Denote

‖A‖ = sup
i,j∈[N ]

sup
t∈[0,T ]

|Ai
j(t)|.

Let ε > 0. Then the new function xε : [0, T ]→ RN , de}ned componentwise

xiε(t) := xi(t) + εt,

veri}es
dxiε(t)

dt >
ε

2
+
∑

j∈[N ]

Ai
jx

j
ε(t)

for all t 6 T ∧ (2N‖A‖)−1 =: T1. Suppose that one component of xε becomes
negative on [0, T1]. Then the following time is well de}ned:

τ := inf{t ∈ [0, T1] : ∃i ∈ [N ], xiε(t) 6 0}.

Let ι ∈ [N ] be one index such that xιε(τ) 6 0, i.e., the above condition is met. By
the continuity, we must have xι(τ) = 0 and xjε(τ) > 0 for all j 6= ι. Then,

dxιε(τ)
dt >

ε

2
+Aι

ι(τ)x
ι
ε(τ) +

∑

j∈[N ]\{ι}
Aι

j(τ)x
j
ε(τ) >

ε

2
> 0,

which is a contradiction. So xiε(t) > 0 for all t ∈ [0, T1] and i ∈ [N ]. Taking ε→ 0,
we get the positivity for x on [0, T1]. Reiterating the proof if necessary, we get the
positivity on the whole interval [0, T ], which is the claim of the proposition.
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Chapter 6

Entropic }ctitious play for
mean }eld optimization
problem

Abstract. We study two-layer neural networks in the mean }eld limit, where
the number of neurons tends to in}nity. In this regime, the optimization over the
neuron parameters becomes the optimization over the probability measures, and
by adding an entropic regularizer, the minimizer of the problem is identi}ed as a
}xed point. We propose a novel training algorithm named entropic }ctitious play,
inspired by the classical }ctitious play in game theory for learning Nash equilib-
riums, to recover this }xed point, and the algorithm exhibits a two-loop iteration
structure. Exponential convergence is proved in this paper and we also verify our
theoretical results by simple numerical examples.

Based on joint work with Fan Chen and Zhenjie Ren.

6.1 Introduction
Deep learning has achieved unprecedented success in numerous practical scenarios,
including computer vision, natural language processing and even autonomous driv-
ing, which leverages deep reinforcement learning techniques [134, 96, 8]. Stochastic
gradient algorithms (SGD) and their variants have been widely used to train neural
networks, that is, to minimize networks’ loss and thereby to }t the data available
ezectively [146, 131]. However, due to the complicated network structures and
the non-convexity of typical optimization objectives, mathematical guarantees of
convergence to the optimizer remain elusive. Recent studies on the insensibility
of the number of neurons on one layer when it is su{ciently large [106], and the
feasibility of interchanging the neurons on one layer [176, 203] both motivated the
investigation of mean }eld regime. In practice, over-parameterized neural networks
with a large number of neurons are commonly employed in order to achieve high
performance [118]. This further motivates researchers to view neurons as random
variables following a probability distribution and the summation over neurons as
an expectation with respect to this distribution [212].

245
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Another appealing approach to address the global convergence of such over-
parameterized networks is through the neural tangent kernel (NTK) regime [125].
In this regime, it is believed that when the network width tends to in}nity, the pa-
rameter updates, driven by stochastic gradient descent, do not signi}cantly deviate
from i.i.d Gaussian initialization, and these updates are called lazy training [219,
58]. As a result, training of neural networks can be depicted as regression with a
}xed kernel given by linearization at initialization, leading to the exponential con-
vergence [125]. By appropriate time rescaling, it is possible for the dynamics of the
kernel method to track the SGD dynamics closely [162, 2]. Other studies, such as
[73], explore the reproducing kernel Hilbert space and demonstrate that the gradi-
ent ~ow indeed converges to the kernel ridgeless regression with an adaptive kernel.
Besides in [53], the researchers extend the de}nition of the kernel and show that
the training with an appropriate regularizer also exhibits behaviors similar to the
kernel method. However, the kernel behavior primarily manifests during the early
stages of the training process, whereas the mean }eld model reveals and explains
the longer-term characteristics [162]. Furthermore, another advantage of the mean
}eld settings compared to NTK is the presence of feature learning, in contrast to
the perspective of random feature [214, 95].

In the mean }eld limit where neurons become in}nitely many, the dynamics
of the neuron parameters under gradient descent can be understood as a gradient
~ow of measures in Wasserstein-2 space, providing a geometric interpretation of
the learning algorithm. This ~ow is also described by a PDE system where the
unknown is the density function of the measure. Well-posedness of the PDE system,
discretization errors and }nite-time propagation of chaos are studied in recent works
[176, 162, 89, 7, 211]. On the other hand, extensive analysis has been conducted to
investigate the convergence of such dynamics to their equilibrium. The convergence
of gradient ~ows modeling shallow networks is studied in [57, 162, 117]; more recent
works extend the gradient-~ow formulation and study deep network structures [89,
176]. Su{cient conditions for the convergence under non-convex loss functions have
been given in [176], and the discriminatory properties of the non-linear activation
function have been exploited in [211, 203] to deduce the convergence.

In this paper, one key assumption is the convexity of the objective functional
with respect to its measure-valued argument. This assumption has been exploited
by many recent works. Notably, [178] have established the exponential convergence
of the entropy-regularized problem in both discrete and continuous-time settings
by utilizing the log-Sobolev inequality (LSI), following the observations in [179].
Additionally, [177] estimate the generalization error and prove a polynomial con-
vergence rate by leveraging quadratic expansions of the loss function. [231] also
prove polynomial convergence rates in dizerent scenarios, where they add noise to
the gradient descent and assume the activation and regularization functions are
homogeneous.

With the existing convergence results on gradient ~ows for the mean }eld opti-
mization problem in mind, the following question arises to us:

Do there exist dynamics other than gradient ~ows
that solve the (regularized) mean }eld optimization e{ciently?

We believe the quest for its answer will not be wasted ezorts, as it may lead to
potentially highly performant algorithms for training neural networks, and also
because the dynamics similar to that we consider in this paper have already found
applications to various mean }eld problems.
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We recall the classical }ctitious play in game theory originally introduced by
Brown [34] to learn Nash equilibriums. During the }ctitious play, in each round
of repeated games, each player optimally responds to the empirical frequency of
actions taken by their opponents (hence the name). While the }ctitious play does
not necessarily converge in general cases [210], it does converge for zero-sum games
[197] and potential games [164]. More recently, this method has been revisited in
the context of mean }eld games [36, 104, 183, 144].

In this paper, we draw inspiration from the classical }ctitious play and propose
a similar algorithm, called entropic }ctitious play (EFP), to solve mean }eld opti-
mization problems emerging from the training of two-layer neural networks. Our
algorithm shares a two-loop iteration structure with the particle dual average (PDA)
algorithm, recently proposed by [179]. They estimated the computational complex-
ity and conducted various numerical experiments for PDA to show its ezectiveness
in solving regularized mean }eld problems. However, PDA is essentially dizerent
from our EFP algorithm and their dizerences will be discussed in Sections 6.2 and
6.4.

6.2 Problem setting
Let us }rst recall how the (convex) mean }eld optimization problem emerges from
the training of two-layer neural networks. While the universal representation the-
orem tells us that a two-layer network can arbitrarily well approximate the contin-
uous function on the compact time interval [68, 13], it does not tell us how to }nd
the optimal parameters. One is faced with the non-convex optimization problem

min
βn,i∈R,αn,i∈Rd,γn,i∈R

∫

R×Rd

`

(
y,

1

n

n∑

i=1

βn,iϕ(αn,i · z + γn,i)

)
ν(dy dz), (6.1)

where θ 7→ `(y, θ) is convex for every y, ϕ : R → R is a bounded, continu-
ous and non-constant activation function, and ν is a measure of compact sup-
port representing the data. Denote the empirical law of the parameters mn by
mn = 1

n

∑n
i=1 δ(βn,i,αn,i,γn,i). Then the neural network output can be written by

1

n

n∑

i=1

βn,iϕ(αn,i · z + γn,i) =

∫

Rd+2

βϕ(α · z + γ)mn(dβ dα dγ).

For technical reasons we may introduce a truncation function h(·) whose parameter
is denoted by β as in [117]. To ease the notation we denote x = (β, α, γ) ∈ Rd+2

and ϕ̂(x, z) = h(β)ϕ(α · z+ γ). Denote also by Em = EX∼m the expectation of the
random variable X of law m. Now we relax the original problem (6.1) and study
the mean }eld optimization problem over the probability measures,

min
m∈P(Rd)

F (m), where F (m) :=

∫

Rd

`
(
y,Em[ϕ̂(X, z)]

)
ν(dy dz) (6.2)

This reformulation is crucial, because the potential functional F de}ned above is
convex in the space of probability measure. In this paper, as in [117, 163], we shall
add a relative entropy term H(m|g) :=

∫
x∈Rd log dm

dg
(x)m(dx) in order to regularize

the problem. The regularized problem then reads

min
m∈P(Rd)

V σ(m), where V σ(m) := F (m) +
σ2

2
H(m|g). (6.3)
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Here we choose the probability measure g to be a Gibbs measure with energy
function U , that is, the density of g satis}es g(x) ∝ exp

(
−U(x)

)
. It is worth noting

that if a probability measure has }nite entropy relative to the Gibbs measure g,
then it is absolutely continuous with respect to the Lebesgue measure. Hence the
density of m exists whenever V σ(m) is }nite. In the following, we will abuse the
notation and use the same letter to denote the density function of m.

Since F is convex, together with mild conditions, the }rst-order condition says
that m∗ is a minimizer of V σ if and only if

δF

δm
(m∗, x) +

σ2

2
logm∗(x) +

σ2

2
U(x) = constant, (6.4)

where δF
δm

is the linear derivative, whose de}nition is postponed to Assumption 6.1
below. Further, note that m∗ satisfying (6.4) must be an invariant measure to the
so-called mean }eld Langevin (MFL) dizusion:

dXt = −
(
∇x

δF

δm
(mt, Xt) +

σ2

2
∇xU(Xt)

)
dt+ σ dWt, where mt := Law(Xt).

In [117] it has been shown that the MFL marginal law mt converges towards m∗,
and this provides an algorithm to approximate the minimizer m∗.

The starting point of our new algorithm is to view the }rst-order condition (6.4)
as a }xed pointed problem. Given m ∈ P(Rd), let Φ(m) be the probability measure
such that

δF

δm
(m,x) +

σ2

2
logΦ(m)(x) +

σ2

2
U(x) = constant. (6.5)

By de}nition, a probability measure m satis}es the }rst-order condition (6.4) if
and only if m is a }xed point of Φ. Throughout the paper we shall assume that
there exists at most one probability measure satisfying the }rst-order condition
(equivalently, there exists at most one }xed point for Φ). This is true when the
objective functional F is convex. Indeed, as the relative entropy m 7→ H(m|g)
is strictly convex, the free energy V σ = F + σ2

2 H(·|g) is also strictly convex and
therefore admits at most one minimizer.

It remains to construct an algorithm to }nd the }xed point. Observe that Φ(m)
de}ned in (6.5) satis}es formally

Φ(m) = argmin
µ∈P(Rd)

EX∼µ

[
δF

δm
(m,X)

]
+
σ2

2
H(µ|g), (6.6)

that is, the mapping Φ is given by the solution to a variational problem, similar to
the de}nition of Nash equilibrium. This suggests that we can adapt the classical
}ctitious play algorithm to approach the minimizer. In this context, Φ(mt) is the
“best response” to mt in the sense of (6.6), and we de}ne the evolution of the
“empirical frequency” of the player’s actions by

dmt = α
(
Φ(mt)−mt

)
dt, (6.7)

where α is a positive constant and should be understood as the learning rate. The
Duhamel’s formula for this equation reads

mt =

∫ t

0

αe−α(t−s) Φ(ms) ds+ e−αtm0,
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so mt is indeed a weighted empirical frequency of the previous actions m0 and(
Φ(ms)

)
s6t

.
We propose a numerical scheme corresponding to the entropic }ctitious play

described informally in Algorithm 3, which consists of inner and outer iterations.
The inner iteration, described later in Algorithm 4 for a speci}c example, calculates
an approximation of Φ(mt) given the measure mt. Note that we are sampling a
classical Gibbs measure so various Monte Carlo methods can be used. The outer
iterations let the measure evolve following the entropic }ctitious play (6.7) with a
chosen time step ∆t.

Algorithm 3: Entropic }ctitious play algorithm
Input: objective functional F , reference measure g ∝ exp(−U), initial

distribution m0, time step ∆t, interation times T .
1 for t = 0, ∆t, 2∆t, . . . , T −∆t do

// Inner iteration
2 Sample Φ(mt+∆t) ∝ exp

(
− δF

δm
(mt, x)− σ2

2 U(x)
)

by Monte Carlo;
// Outer iteration

3 Update mt+∆t ← (1− α∆t)mt + α∆tΦ(mn);
Output: distribution mT .

6.2.1 Related works
Mean }eld optimization

In contrast to the entropy-regularized mean }eld optimization addressed by our
EFP algorithm, the unregularized optimization has also been studied in recent
works [57, 203, 211]. [89] developed a mean }eld framework that captures the
feature evolution during multi-layer networks’ training and analyze the global con-
vergence for fully-connected neural networks and residual networks, introduced by
[107]. Deep network settings have also been studied in [211, 175, 7, 184, 176].

Exponential convergence rate

The exponential convergence rate of the mean }eld Langevin dynamics has been
shown in [178] by exploiting the log-Sobolev inequality, which critically relies on
the non-vanishing entropic regularization. On the other hand, [56] has studied the
annealed mean }eld Langevin dynamics, where the time steps decay following an
O
(
(log t)−1

)
trend, and has shown the convergence towards the minimizer of the

unregularized objective functional. In this paper, we will also prove an exponential
convergence rate for our EFP algorithm and the precise statement can be found in
Theorem 6.13. The convergence rate obtained solely depends on the learning rate,
which can be chosen in a fairly arbitrary way. This seems to be an improvement
over the LSI-dependent rate in [178, 56]. However, the arbitrariness is due to the
fact that our theoretical result only addresses the outer iteration and assumes that
the target measure of inner one can be perfectly sampled (see Algorithm 3), and our
convergence rate can not be directly compared to the ones obtained by [178, 56].
However, the inner iteration aims to sample a Gibbs measure, which is a classical
task for which various Monte Carlo algorithms are available. (see Remark 6.16).
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Furthermore, we propose a “warm start” technique to alleviate the computational
burden of the inner iterations (see Algorithm 4).

Particle dual averaging

Our entropic }ctitious play algorithm shares similarities with the particle dual
averaging algorithm introduced in [179]. PDA is an extension of regularized dual
average studied in [174, 233], and can be considered the particle version of the
dual averaging method designed to solve the regularized mean }eld optimization
problem (6.3). The key feature shared by PDA and EFP is the two-loop iteration
structure. In the PDA outer iteration, we calculate a moving average f̃n of the
linear functional derivative of the objective δF

δm
,

f̃n = (1− α∆t) δF
δm

(m̃n−1, ·) + α∆t
δF

δm
(m̃n−1, ·); (6.8)

the measure m̃n is on the other hand updated by the inner iteration,

m̃n+1(x) = argmin
m∈P(Rd)

Em
[
f̃n(x)

]
+
σ2

2
H(m|g), (6.9)

which can be calculated by a Gibbs sampler. While the PDA inner iteration (6.9)
is identical to that of EFP, their outer iterations are distinctly dizerent. The
PDA outer iteration updates the linear derivatives δF

δm
(m̃n, ·) by forming a convex

combination, while the EFP outer iteration updates the measures by a convex
combination, which serves as the }rst argument of the linear derivative δF

δm
(·, ·). One

disadvantage of PDA is that one needs to store the history of measures (m̃i)
n
i=1 to

evaluate f̃n in (6.8), which may lead to high memory usage in numerical simulations.
Our EFP algorithm circumvents this numerical di{culty as the dynamics (6.7)
corresponds to a birth-death particle system whose memory usage is bounded (see
discussions in Section 6.4.2). As a side note, EFP and PDA coincide when the
mapping m 7→ δF

δm
(m, ·) is linear. This occurs when F is quadratic in m. For

example, if F is de}ned by (6.2) with a quadratic loss, `(y, θ) = |y − θ|2, then its
functional derivative

δF

δm
(m,x) = 2

∫

Rd

(
Em[ϕ̂(X, z)]− y

)
ϕ̂(x, z) ν(dy dz)

is linear in m. Another dizerence is that the PDA outer iteration is updated with
diminishing time steps (or equivalently, learning rates) ∆t = O

(
n−1

)
, which leads

to the absence of exponential convergence, while EFP }xes the time step ∆t and
exhibits exponential convergence (modulo the errors from the inner iterations).
Finally, the condition (A3) of [179] seems di{cult to verify and our method does
not rely on such an assumption.

6.2.2 Organization of paper
In Section 6.3 we state our results on the existence and convergence of entropic
}ctitious play. In Section 6.4 we provide a toy numerical experiment to showcase
the feasibility of the algorithm for the training two-layer neural networks. Finally
the proofs are given in Section 6.5 and they are organized in several subsections
with a table of contents in the beginning to ease the reading.
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6.3 Main results
Fix an integer d > 0 and a real number p > 1. Denote by P(Rd) the set of the
probability measures on Rd and by Pp(R

d) the set of those with }nite p-moment.
We suppose the following assumption throughout the paper.

Assumption 6.1. 1. The mean }eld functional F : P(Rd)→ R is non-negative
and C1, that is, there exists a continuous function, also called functional linear
derivative, δF

δm
: P(Rd)×Rd → R such that for every m0, m1 ∈ P(Rd),

F (m1)− F (m0) =

∫ 1

0

∫

Rd

δF

δm
(mλ, x)(m1 −m0)mλ(dx) dλ,

where mλ := (1−λ)m0+λm1. Moreover, there exists constants LF , MF > 0
such that for every m, m′ ∈ P(Rd) and for every x, x′ ∈ Rd,

∣∣∣∣
δF

δm
(m,x)− δF

δm
(m′, x′)

∣∣∣∣ 6 LF

(
Wp(m,m

′) + |x− x′|
)
, (6.10)

∣∣∣∣
δF

δm
(m,x)

∣∣∣∣ 6MF . (6.11)

2. The function U : Rd → R is measurable and satis}es
∫

Rd

exp
(
−U(x)

)
dx = 1.

Moreover it satis}es

ess inf
x∈Rd

U(x) > −∞ and lim inf
x→∞

U(x)

|x|p > 0.

Given a function U satisfying Assumption 6.1, de}ne the Gibbs measure g on
Rd by its density g(x) := exp(−U(x)). In particular, given m ∈ Pp(R

d), we can
consider the relative entropy between m and g, 1

H(m|g) =
∫

x∈Rd

log dm
dg

(x)m(dx).

In this paper we consider the entropy-regularized optimization

inf
m∈P(Rd)

V σ(m), where V σ(m) := F (m) +
σ2

2
H(m|g).

Our aim is to propose a dynamics of probability measures converging to the mini-
mizer of the value function V σ.

Proposition 6.2. If Assumption 6.1 holds, then there exists at least one minimizer
of V σ, which is absolutely continuous with respect to the Lebesgue measure and
belongs to Pp(R

d).
1The relative entropy is de}ned to be +∞ whenever the integral is not well de}ned. Therefore,

the relative entropy is de}ned for every measure in P(Rd) and is always non-negative.
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Given the result above, we can restrict ourselves to the space of probability
measures of }nite p-moments when we look for minimizers of the regularized prob-
lem V σ. Before introducing the dynamics, let us recall the }rst-order condition for
being a minimizer.

Proposition 6.3 (Proposition 2.5 of [117]). Suppose Assumption 6.1 holds. If m∗

minimizes V σ in P(Rd), then it satis}es the }rst-order condition

δF

δm
(m∗, ·) + σ2

2
logm∗(·) + σ2

2
U(·) is a constant Leb-a.e., (6.12)

where m∗(·) denotes the density function of the measure m∗.
Conversely, if F is additionally convex, then every m∗ satisfying (6.12) is a

minimizer of V σ and such a measure is unique.

De}nition 6.4. For each µ ∈ P(Rd), de}ne G(µ; ·) : P(Rd)→ R by

G(µ;m) = EX∼µ

[
δF

δm
(m,X)

]
. (6.13)

Furthermore, given m ∈ P(Rd), we de}ne a measure m̂ ∈ P(Rd) by

m̂ = argmin
µ∈P(Rd)

G(µ;m) +
σ2

2
H(µ|g), (6.14)

whenever the minimizer exists and is unique.

Proposition 6.5. Suppose Assumption 6.1 holds. The minimizer de}ned in (6.14)
exists, is unique, and belongs to Pp(R

d). This de}nes a mapping Pp(R
d) 3 m 7→

m̂ ∈ Pp(R
d), which we denote by Φ in the following.

Since δG
δµ

(µ, x;m) = δF
δm

(m,x), according to the }rst-order condition in Propo-
sition 6.3, m̂ must satisfy

δF

δm
(m, ·) + σ2

2
log m̂+

σ2

2
U is a constant Leb-a.e. (6.15)

Therefore, a probability measure m is a }xed point of the mapping Φ if and only
if it satis}es the }rst-order condition (6.12). In particular, by Propositions 6.2 and
6.3, there exists at least one minimizer of V σ, and it is a }xed point of the mapping
Φ. On the other hand, if Φ admits only one }xed point, then it must be the unique
minimizer of V σ.

Given the de}nition of m̂, the entropic }ctitious play dynamics is the ~ow of
measures (mt)t>0 de}ned by

dmt

dt
= α (m̂t −mt). (6.16)

This equation is understood in the sense of distributions a priori. We shall show
that the entropic }ctitious play converges towards the minimizer of V σ under mild
conditions.
Remark 6.6. Choosing the relative entropy to be the regularizer may seem arbitrary.
It is motivated by the following two observations:
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• If F is convex, the strict convexity of entropy ensures that the mapping Φ
admits at most one }xed point.

• In numerical applications, one needs to sample the distribution m̂t e{ciently.
Applying the entropic regularization, we can sample m̂t by Monte Carlo meth-
ods since it is in the form of a Gibbs measure according to (6.14). See Sec-
tion 6.4 for more details.

De}nition 6.7 (Dynamical system per De}nition 4.1.1 of [108]). Let S[t] be a
mapping from Wp to itself for every t > 0. We say the collection (S[t])t>0 is a
dynamical system on Wp if

1. S[0] is the identity on Wp;

2. S[t](S[t′]m) = S[t+ t′]m for every m ∈ Pp(R
d) and t, t′ > 0;

3. for every m ∈ Pp(R
d), t 7→ S[t]m is continuous;

4. for every t > 0, m 7→ S[t]m is continuous with respect to the topology of Wp.

Proposition 6.8 (Existence and wellposedness of the dynamics). Suppose Assump-
tion 6.1 holds. Let α be a positive real and let m0 be in Pp(R

d) for some p > 1.
Then there exists a solution (mt)t>0 ∈ C

(
[0,+∞);Wp

)
to (6.16).

When p = 1, the solution is unique and depends continuously on the initial
condition. In other words, there exists a dynamical system (S[t])t>0 on W1 such
that mt de}ned by mt = S[t]m0 solves (6.16).

If additionally the initial value m0 is absolutely continuous with respect to the
Lebesgue measure, then the solution mt admits density for every t > 0, and the
densities mt(·) solves (6.16) classically. That is to say, for every x ∈ Rd the
mapping t 7→ mt(x) is C1 on [0,+∞) and the derivative satis}es

∂mt(x)

∂t
= α

(
m̂t(x)−mt(x)

)
. (6.17)

for every t > 0.

Now we study the convergence of the entropic }ctitious play dynamics and to
this end we introduce the following assumption.

Assumption 6.9. 1. The mapping Φ : Pp(R
d) 3 m 7→ m̂ ∈ Pp(R

d) admits a
unique }xed point m∗.

2. The initial value m0 belongs to Pp′(Rd) for some p′ > p and H(m0|g) < +∞.

Remark 6.10. Under Assumption 6.1, the }rst condition above is implied the con-
vexity of F . Indeed, if F is convex, then the regularized objective V σ reads
V σ = F + H(·|g) and is therefore strictly convex. So it admits a unique mini-
mizer m∗ in Pp(R

d) and by our previous arguments m∗is also the unique }xed
point of the mapping Φ.

Theorem 6.11 (Convergence in the general case). Let Assumptions 6.1 and 6.9
hold. If (mt)t>0 is a ~ow of measures in Wp solving (6.16), then mt converges to
m∗ in Wp when t→ +∞, and for every x ∈ Rd, mt(x)→ m∗(x) when t→ +∞.

Moreover, the mapping t 7→ V σ(mt) is dizerentiable with derivative

dV σ(mt)

dt
= −ασ

2

2

(
H(mt|m̂t) +H(m̂t|mt)

)
,
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and it satis}es
lim

t→+∞
V σ(mt) = V σ(m∗).

Given the convexity and higher dizerentiability of F , we also show that the
convergence of V σ(mt) is exponential.

Assumption 6.12. The mean-}eld function F is convex and C2 with bounded
derivatives. That is to say, there exists a continuous and bounded function δ2F

δm2 :

P(Rd)×Rd ×Rd → R such that it is the linear functional derivative of δF
δm

.

Theorem 6.13. Let Assumptions 6.1, 6.9 and 6.12 hold. Then we have for every
t > 0,

0 6 V σ(mt)− inf
m∈P(Rd)

V σ(m) 6
σ2

2
H(m0|m̂0)e

−αt.

6.4 Numerical example
In this section we walk through the implementation of the entropic }ctitious play
in details by treating a toy example. Recall that in Algorithm 3 the measures are
updated following the outer iteration

dmt

dt
= α (m̂t −mt),

and m̂t = Φ(mt) is evaluated by the inner iteration.

6.4.1 Evaluation of Gibbs measure
Since m̂t is a Gibbs measure corresponding to the potential δF

δm
(mt, ·) + σ2

2 U , it is
the unique invariant measure of a Langevin dynamics under the following technical
assumptions on F and U .

Assumption 6.14. 1. For all m ∈ P(Rd), the function δF
δm

(m, ·) : Rd → R has
a locally Lipschitz derivative, i.e. the intrinsic derivative of F , DF (m, ·) :=
∇ δF

δm
(m, ·) exists everywhere and is locally Lipschitz.

2. The function U is C2, and there exists κ > 0 such that
(
∇U(x) − ∇U(y)

)
·

(x− y) > κ(x− y)2 when |x− y| is su{ciently large.

Proposition 6.15. Suppose Assumptions 6.1 and 6.14 hold. Let m be a probability
measure on Rd. Then a probability measure m̂ ∈ P(Rd) satis}es the condition
(6.15) if and only if it is the unique stationary measure of the Langevin dynamics

dΘs = −
(
DF (m,Θs) +

σ2

2
∇U(Θs)

)
ds+ σ dWs, (6.18)

where W is a standard Brownian motion. Moreover, if Law(Θ0) ∈ ∪p>2Pp(R
d),

then the marginal distributions Law(Θs) converge in Wasserstein-2 distance towards
the invariant measure.

We refer readers to Theorem 2.11 of [117] for the proof of the proposition.
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Remark 6.16. 1. There exist various Markov chain Monte Carlo (MCMC) meth-
ods for sampling Gibbs measures [5, 127]. Here in our inner iteration, we
simulate the Langevin dizusion (6.18) by the simplest unadjusted Langevin
algorithm (ULA) proposed in [181]. However, there are many other e{cient
MCMC methods for our aim. For example, we could employ the Metropolis-
adjusted Langevin algorithms or the Hamiltonian Monte Carlo (HMC) meth-
ods based on an underdamped dynamics with }ctitious momentum variables
[172].

2. Exponential convergence in the sense of relative entropy for ULA proposed
above is shown in [220], based on a log-Sobolev inequality condition for po-
tential. There are also convergence results in the sense of the Wasserstein and
total variation distance for Langevin Monte Carlo. For example, [81] prove
Wasserstein convergence for ULA, [26, 54] prove respectively convergence in
total variation and in Wasserstein distance for Hamiltonian Monte Carlo.

6.4.2 Simulation of entropic }ctitious play
Now we explain our numerical scheme of the entropic }ctitious play dynamics (6.16).
First we approximate the probability distributions mt by empirical measures of
particles in the form

mt =
1

N

N∑

i=1

δΘi
t
,

where Θi
t ∈ Rd encapsulates all the parameters of a single neuron in the network.

In order to evaluate the Gibbs measure m̂t, we simulate a system of M Langevin
particles using the Euler scheme for a long enough time S, i.e.,

Θi
t,s+∆s = Θi

t,s −
(
DF (mt,Θ

i
t,s) +

σ2

2
∇U(Θi

t,s)

)
∆s+ σ

√
∆sN i

t,s, (6.19)

for 1 6 i 6M and s < S, where N i
t,s are independent standard Gaussian variables.

We then set m̂t equal to the empirical measure of the particles at the }nal time S,
(Θi

t,S)16i6M , i.e.,

m̂t :=
1

M

M∑

i=1

δΘi
t,S
.

To speed up the EFP inner iteration we adopt the following warm start tech-
nique. For each t, the initial value of the inner iteration (Θi

t+∆t,0)16i6M is chosen
to be the }nal value of the previous inner iteration, i.e. (Θi

t,S)16i6M . This ap-
proach exploits the continuity of the mapping Φ proved in Corollary 6.19: if Φ is
continuous, the measures Φ(mt+∆t), Φ(mt) should be close to each other as long as
mt+∆t, mt are close, and this is expected to hold when the time step ∆t is small.
Hence this choice of initial value for the inner iterations should lead to less error in
sampling the Gibbs measure m̂t.

Then we explain how to simulate the outer iteration. The naïve approach is to
add particles to the empirical measures by

mt+∆t = (1− α∆t)mt + α∆t m̂t =
1− α∆t

N

N∑

i=1

δΘi
t
+
α∆t

N

N∑

i=1

δΘi
t,S
.
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However, this leads to a linear explosion of the number of particles when t→ +∞
as at each step it is incremented by M . To avoid this numerical di{culty, we view
the EFP dynamics (6.16) as a birth-death process and kill bα∆tNc particles before
adding the same number of particles that represents m̂t, calculated by the Gibbs
sampler. In this way, the number of particles to keep remains bounded uniformly
in time and the memory use never explodes.

6.4.3 Training a two-Layer neural network by entropic }cti-
tious play

We consider the mean }eld formulation of two-layer neural networks in Section 6.1
with the following speci}cations. We choose the loss function ` to be quadratic:
`(y, θ) = 1

2 |y − θ|2, and the activation function to be the modi}ed ReLU, ϕ(t) =
max

(
min(t, 5), 0

)
. We also }x a truncation function h de}ned by

h(x) = max
(
min(x, 5),−5

)
.

In this case, the objective functional F reads

F (m) =
1

2K

K∑

k=1

(
yk − Em

[
h(β)ϕ(α · zk + γ)

])2
.

where (α, β, γ) is a random variable distributed as m and (zk, yk)
K
k=1 is the data set

with zk being the features and yk being the labels. Finally we choose the reference
measure g by }xing U(x) = 1

2x
2 + constant, where the constant ensures that

∫
g =∫

exp
(
−U(x)

)
dx = 1. Under this choice, one can verify Assumptions 6.1, 6.9, 6.12,

and the Langevin dynamics (6.19) for the inner iteration at time t reads

dβs =
1

K
h′(βs)ϕ(αs · zk + γs)

K∑

k=1

(
yk − Emt

[
h(β)ϕ(α · zk + γ)

])
ds

− σ2

2
βs ds+ σ dW β

s

dαs =
1

K
h(βs)zkϕ

′(αs · zk + γs)

K∑

k=1

(
yk − Emt

[
h(β)ϕ(α · zk + γ)

])
ds

− σ2

2
αs ds+ σ dWα

s

dγs =
1

K
h(βs)ϕ

′(αs · zk + γs)
K∑

k=1

(
yk − Emt

[
h(β)ϕ(α · zk + γ)

])
ds

− σ2

2
γs ds+ σ dW γ

s

where W {α,β,γ} are independent standard Brownian motions in respective dimen-
sions. The discretized version of this dynamics is then calculated on the interval
[0, S].

As a toy example, we approximate the 1-periodic sine function z 7→ sin(2πz)
de}ned on [0, 1] by a two-layer neural network. We pick K = 101 samples evenly
distributed on the interval [0, 1], i.e. zk = k−1

101 , and set yk = sin 2πzk for k = 1, . . . ,
101. The parameters for the outer iteration are
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• time step ∆t = 0.2,

• horizon T = 120.0,

• learning rate α = 1,

• the number of neurons N = 1000,

• the initial distribution of neurons m0 = N (0, 152).

For each t, we calculate the inner iteration (6.19) with the parameters:

• regularization σ2/2 = 0.0005,

• time step ∆s = 0.1,

• time horizon for the }rst step S}rst = 100.0, and the remaining Sother = 5.0,

• the number of particles for simulating the Langevin dynamics M = N = 1000,

See Algorithm 4 for a detailed description.
We present our numerical results. We plot the learned approximative functions

for dizerent training epochs (t/∆t = 10, 20, 50, 100, 200, 600) and compare them
to the objective in Figure 6.1(a). We }nd that in the last training epoch the sine
function is well approximated. We also investigate the validation error, calculated
from 1000 evenly distributed points in the interval [0, 1], and plot its evolution in
Figure 6.1(b). The }nal validation error is of the order of 10−4 and the whole
training process consumes 63.02 seconds on the laptop (CPU model: i7-9750H).
However, the validation error does not converge to 0, possibly due to the entropic
regularizer added to the original problem.

(a) Approximated function value. (b) Validation error in training.

Figure 6.1: (a) The approximated function value at dizerent time: the colors from
shallow to deep represents the number of outer iterations processed, epoch 10, 20,
50, 100, 200, 600 respectively; (b) The validation error at dizerent training epochs.



258 Chapter 6: Entropic }ctitious play

Algorithm 4: EFP with Langevin inner iterations
Input: objective function F (·), reference measure g with potential U ,

regularization parameter σ, initial distribution of parameter m0,
outer iterations time step ∆t and horizon T , inner iterations time
step ∆s and horizon S, learning rate α, and number of particles in
simulation N .

1 generate i.i.d. Θi
0 ∼ m0, i = 1, . . . , N ;

2 (Θi
0,0)

N
i=1 ← (Θi

0)
N
i=1;

3 for t = 0, ∆t, 2∆t, . . . , T −∆t do
4 if t = 0 then
5 S ← S}rst;
6 else
7 S ← Sother;

// Inner iterations
8 for s = 0, ∆s, 2∆s, . . . , S −∆s do
9 generate standard normal variable N i

t,s;
// Update the inner particles by Langevin dynamics

10 for i = 1, 2, . . . , N do
11 Θi

t,s+∆s ← Θi
t,s −

(
DF (mt,Θ

i
t) +

σ2

2 ∇U(Θi
t,s)
)
∆s+ σ

√
∆sN i

t,s;

// Outer iteration
12 K ← bα∆tNc;
13 choose uniformly K numbers from {1, . . . , N} and denote them by

(ik)
K
k=1;

14 for i = 1, 2, . . . , N do
15 if i ∈ {ik}Kk=1 then
16 Θi

t+∆t ← Θi
t,S ;

17 else
18 Θi

t+∆t ← Θi
t;

// Warm start for inner iterations
19 for i = 1, 2, . . . , N do
20 Θi

t+∆t,0 ← Θi
t,S ;

Output: distribution mT = 1
N

∑N
i=1 δΘi

T
.
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6.5 Proofs
6.5.1 Proof of Propositions 6.2 and 6.5
Proof of Propositions 6.2 and 6.5. We only show Proposition 6.2 as the method is
completely the same for the other proposition.

By Assumption 6.1 we have lim infx→∞ U(x)/|x|p > 0. Then we can }nd R,
c > 0 such that U(x) > c|x|p for |x| > R. Choose a minimizing sequence (mn)n∈N

in the sense that V σ(mn)↘ infm∈P(Rd) V
σ(m) when n→ +∞. Then we have

sup
n∈N

V σ(mn) > H(mn|e−U ) =

∫
mn(x)

(
logmn(x) + U(x)

)
dx

=

(∫

|x|6R

+

∫

|x|>R

)
mn(x)

(
logmn(x) + U(x)

)
dx

> −cdR
d

e
+ ess inf

|x|6R
U(x) +

∫

|x|>R

mn(x)
(
logmn(x) + U(x)

)
dx

> −cdR
d

e
+ ess inf

|x|6R
U(x) +

∫

|x|>R

mn(x)
(
logmn(x) + c|x|p

)
dx,

where the second inequality is due to x logx > −e−1 and cd denotes the volume of
the d-dimensional unit ball.

De}ne Z̃ =
∫
|x|>R

exp
(
−c|x|p/2

)
dx and denote by g̃ the probability measure

g̃(dx) =
1|x|>R

Z̃
exp
(
− c
2
|x|p

)
dx

supported on {|x| > R}. Using the fact that the relative entropy is always nonneg-
ative, we have

∫

|x|>R

mn(x)
(
logmn(x) + c|x|p

)
dx

=

∫

|x|>R

mn(x)

(
logmn(x) +

c

2
|x|p + c

2
|x|p

)
dx

= H(mn|g̃)− log Z̃
∫

|x|>R

mn(x) dx+
c

2

∫

|x|>R

mn(x)|x|p dx

> −|log Z̃|+ c

2

∫

|x|>R

mn(x)|x|p dx.

Combining the two inequalities above, we obtain

c

2

∫

|x|>R

mn(x)|x|p dx 6 |log Z̃|+ cdR
d

e
− ess inf

|x|<R
U(x) + sup

n∈N

V σ(mn),

which implies
sup
n∈N

‖mn‖pp = sup
n∈N

∫
mn(x)|x|p dx < +∞,

that is, the p-moment of the minimizing sequence is uniformly bounded. So the
sequence (mn)n∈N is tight and mn → m∗ weakly for some m∗ ∈ P(Rd) along a
subsequence. Applying the following lemma, whose proof is postponed, we obtain
m∗ ∈ Pp(R

d).
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Lemma 6.17 (“Fatou’s lemma” for weak convergence of measure). Let X be a
metric space, f : X → R+ be nonnegative continuous function and (mn)n∈N be
a sequence of probability measures on X. If mn converges to another probability
measure m weakly, then

∫

X

f dm 6 lim inf
n→+∞

∫

X

f dmn.

Since the relative entropy is weakly lower-semicontinuous, the entropy of m∗

satis}es
H(m∗|g) 6 lim inf

n→+∞
H(mn|g).

We show the regular part satis}es limn→+∞ F (mn) = F (m∗). Indeed, by the
de}nition of functional derivative, we have

∣∣F (mn)− F (m∗)
∣∣ 6

∫ 1

0

∣∣∣∣
∫

Rd

δF

δm
(mλ,n, x) (mn −m)(dx)

∣∣∣∣ dλ

where mλ,n := (1− λ)mn + λm. For every λ ∈ [0, 1], we have
∣∣∣∣
∫

Rd

δF

δm
(mλ,n, x) (mn −m∗)(dx)

∣∣∣∣

6

∣∣∣∣
∫

Rd

δF

δm
(m∗, x) (mn−m∗)(dx)

∣∣∣∣+
∫

Rd

∣∣∣∣
δF

δm
(mn, x)−

δF

δm
(m∗, x)

∣∣∣∣ (mn+m
∗)(dx).

Since δF
δm

(m∗, ·) is a bounded continuous function, the weak convergence mn → m∗

implies
lim

n→+∞

∣∣∣∣
∫

Rd

δF

δm
(m∗, x) (mn −m∗)(dx)

∣∣∣∣ = 0.

It remains to show the second term also converges to 0. Since the convergence
δF
δm

(mn, x)→ δF
δm

(m∗, x) is uniform for |x| < R for every R > 0, we have

lim
n→+∞

∫

|x|6R

∣∣∣∣
δF

δm
(mn, x)−

δF

δm
(m∗, x)

∣∣∣∣ (mn +m∗)(dx) = 0.

Consequently,

lim sup
n→+∞

∫

Rd

∣∣∣∣
δF

δm
(mn, x)−

δF

δm
(m∗, x)

∣∣∣∣ (mn +m∗)(dx)

= lim sup
n→+∞

(∫

|x|6R

+

∫

|x|>R

)∣∣∣∣
δF

δm
(mn, x)−

δF

δm
(m∗, x)

∣∣∣∣ (mn +m∗)(dx)

6 lim sup
n→+∞

∫

|x|>R

∣∣∣∣
δF

δm
(mn, x)−

δF

δm
(m∗, x)

∣∣∣∣ (mn +m∗)(dx)

6MF lim sup
n→+∞

∫

|x|>R

(mn +m∗)(dx)

=MF lim sup
n→+∞

(
m∗({|x| > R}) +mn({|x| > R})

)
= 0

by tightness of the sequence (mn)n∈N. Finally, using the boundedness
∣∣∣∣
∫

Rd

δF

δm
(mλ,n, x) (mn −m)(dx)

∣∣∣∣ 6 2MF ,
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we can apply the dominated convergence theorem and show that when n→ +∞,
∫ 1

0

∣∣∣∣
∫

Rd

δF

δm
(mλ,n, x) (mn −m)(dx)

∣∣∣∣ dλ→ 0.

Summing up, we have obtained a measure m∗ ∈ Pp(R
d) such that

V σ(m∗) = F (m∗) +
σ2

2
H(m∗)

6 lim inf
n→+∞

F (mn) +
σ2

2
H(mn) = lim inf

n→+∞
V σ(mn) = inf

m∈P(Rd)
V σ(m).

This completes the proof.

Lemma 6.17. By the construction of Lebesgue integral, for every positive measure
µ ∈ P(X), we have ∫

X

f dµ = sup
M>0

∫

X

f ∧M dµ.

Therefore,
∫

X

f dm = sup
M>0

∫

X

f ∧M dm

= sup
M>0

lim inf
n→+∞

∫

X

f ∧M dmn

= sup
M>0

sup
n

inf
k>n

∫

X

f ∧M dmk

6 sup
n

inf
k>n

sup
M>0

∫

X

f ∧M dmk

= lim inf
n→+∞

sup
M>0

∫

X

f ∧M dmn

= lim inf
n→+∞

∫

X

f dmn,

where the inequality is due to sup inf 6 inf sup.

6.5.2 Proof of Proposition 6.8
We prove several technical results before proceeding to the proof of Proposition 6.8.

Proposition 6.18. Suppose Assumption 6.1 holds. For every m ∈ Pp(R
d), the

measure m̂ determined by

m̂ =
1

Zm

exp
(
− δF
δm

(m,x)− U(x)

)
, (6.20)

where Zm is the normalization constant, is well de}ned and belongs to Pp(R
d).

Moreover, there exists constants c, C with 0 < c < 1 < C < +∞ such that for
every m ∈ Pp(R

d) and every x ∈ Rd,

ce−U(x) 6 m̂(x) 6 Ce−U(x), (6.21)
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Finally, there exists a constant L > 0 such that for every m, m′ ∈ Pp(R
d) and

every x ∈ Rd,
|m̂(x)− m̂′(x)| 6 LWp(m,m

′)e−U(x). (6.22)

Proof. Using (6.11), we have

exp
(
− 2

σ2
MF − U(x)

)
6 exp

(
− 2

σ2

δF

δm
(m,x)− U(x)

)
6 exp

(
2

σ2
MF − U(x)

)
,

(6.23)
and

exp
(
−2MF

σ2

)
Z0

=

∫

Rd

exp
(
− 2

σ2
MF − U(x)

)
dx 6 Zm 6

∫

Rd

exp
(

2

σ2
MF − U(x)

)
dx

= exp
(
2MF

σ2

)
Z0, (6.24)

Thus m̂ is well de}ned and (6.21) holds with constant C = c−1 = exp
(
4MFσ

−2
)
.

Consequently,
∫

Rd

|x|p m̂(dx) 6

∫

Rd

|x|pm̂(x) dx 6

∫

Rd

|x|pCe−U(x) dx < +∞,

that is, m̂ ∈ Pp(R
d).

Meanwhile, using the elementary inequality |ex − ey| 6 ex∨y|x− y|, we have
∣∣∣∣exp

(
− 2

σ2

δF

δm
(m,x)− U(x)

)
− exp

(
− 2

σ2

δF

δm
(m′, x)− U(x)

)∣∣∣∣

6
2

σ2
exp
(
2MF

σ2

)
Wp(m,m

′) exp
(
−U(x)

)
.

Integrating the previous inequality with respect to x, we obtain

|Z − Z ′| 6 2

σ2
exp
(
2MF

σ2

)
Wp(m,m

′)Z0.

Using the bounds (6.23) and (6.24), we obtain the Lipschitz continuity (6.22).

The Lipschitz continuity (6.22) implies the Hölder continuity of m 7→ m̂.

Corollary 6.19. Suppose Assumption 6.1 holds. Then the mapping Φ : Pp(R
d)→

Pp(R
d) is 1/p-Hölder continuous.

Before proving the corollary we show a lemma bounding the Wasserstein (cou-
pling) distance between two probability measures by the L∞ distance between their
density functions.

Lemma 6.20. Let (X, d) be a metric space and µ be a Borel probability measure
on X. Consider the space of positive integrable functions with respect to µ,

L∞
+,1(µ) :=

{
f : X → R Borel measurable : f > 0,

∫
f dµ = 1

}
.
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Equip L∞
+,1(µ) with the usual L∞ distance. Suppose for some p > 1 and some

x0 ∈ X, we have Cµ,p :=
∫
X
d(x, x0)

p µ(dx) < +∞. Then there exists a constant
Lµ,p > 0 such that for every f , g ∈ L∞

+,1(µ),

Wp(f µ, g µ) 6 Lµ,p‖f − g‖1/pL∞ ,

where f µ is the probability measure determined by (f µ)(A) :=
∫
A
f dµ and simi-

larily for g.

Proof. Construct the following coupling π between f µ, g µ:

π := π1 + π2,

π1(dx dy) := (f ∧ g)(x)µ∆(dx dy),

π2(dx dy) :=

(∫
(f − g)+(x)µ(dx)

)−1

(f − g)+(x)(g − f)+(y)µ(dx)µ(dy).

Here µ∆ is the measure supported on the diagonal ∆ := {(x, x) : x ∈ X} ⊂ X ×X
such that µ∆(A×A) = µ(A). One readily veri}es that the projection mappings to
the }rst and second variables, denoted by X, Y respectively, satisfy

X#π1 = Y#π1 = (f ∧ g)µ,
X#π2 = (f − g)+ µ,
Y#π2 = (g − f)+ µ

Hence X#π = f µ, Y#π = g µ and π is indeed a coupling between f µ, g µ.
By the de}nition of Wasserstein distance, we obtain

Wp(f µ, g µ)
p 6

∫

X×X

d(x, y)pπ1 (dx dy) +

∫

X×X

d(x, y)pπ2 (dx dy)

=

(∫
(f − g)+ µ

)−1 ∫

X×X

(f − g)+(x)(g − f)+(y)d(x, y)p µ(dx)µ(dy).

Using triangle inequality d(x, y)p 6 Cp

(
d(x, x0)

p + d(y, x0)
p
)

and exchanging x, y,
the last term is again bounded by

1∫
(f − g)+ µ

∫

X×X

Cp

(
d(x, x0)

p + d(y, x0)
p
)
(f − g)+(x)(g − f)+(y)µ(dx)µ(dy)

=
Cp∫

(f − g)+ µ

∫

X×X

d(x, x0)
p

[
(f − g)+(x)(g − f)+(y)

+ (g − f)+(x)(f − g)+(y)
]
µ(dx)µ(dy)

= Cp

∫

X

d(x, x0)
p|f − g|(x)µ(dx) 6 CpCµ,p‖f − g‖L∞ .

The Hölder constant is then given by Lµ,p = (CpCµ,p)
1/p.

Remark 6.21. The Hölder exponent 1/p in the inequality is sharp. Consider the
example: µ = Leb[0,1], f = (1 + ε)1[0,1/2) + (1− ε)1[1/2,1], g = (1− ε)1[0, 12 )

+ (1 +

ε)1[1/2,1]. Then the Wp distance between fµ, gµ is of order ε1/p when ε→ 0.
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Proof of Corollary 6.19. Applying Lemma 6.20 with µ(dx) = e−U(x) dx, we obtain

Wp(m̂1, m̂2) 6 L

∥∥∥∥
m̂1(x)

e−U(x)
− m̂2(x)

e−U(x)

∥∥∥∥
1/p

L∞

,

while by (6.22) we have
∥∥∥∥
m̂1(x)

e−U(x)
− m̂2(x)

e−U(x)

∥∥∥∥
L∞

6 LWp(m1,m2).

The Hölder continuity follows.

Proof of Proposition 6.8. Step 1: Existence. We will use Schauder’s }xed point
theorem. To this end, }x T > 0, let m0 ∈ Pp be the initial value and denote
X = C([0, T ];Wp). Let T : X → X be the mapping determined by

T [m]t :=

∫ t

0

αe−α(t−s) m̂s ds+ e−αtm0 =

∫ t

0

αe−α(t−s) Φ(ms) ds+ e−αtm0,

(6.25)
where t ∈ [0, T ]. We verify indeed T [m] ∈ X, i.e. T [m]t ∈ Pp for every t ∈ [0, T ],
and t 7→ T [m]t is continuous with respect to Wp. This }rst claim follows from
the fact that T [m]t is a convex combination of elements in Pp, as we have shown
m̂s = Φ(ms) ∈ Pp(R

d). The second claim follows from

Wp(T [m]t+δ,T [m]t)
p 6 α

∫ δ

0

e−α(δ−s)Wp(m̂s,mt)
p ds

6 C(1− e−αδ)
(
supm̂∈Im ΦMp(m̂) +Mp(T [m]t)

)
. (6.26)

Next we show the compactness of the mapping T . Setting t = 0 in the previous
equation and letting δ vary in [0, T ], we obtain

sup
m∈X

sup
t∈[0,T ]

Mp

(
T [m]t

)
6 C.

Plugging this back to (6.26), we have

sup
m∈X,06t<t+δ6T

Wp

(
T [m]t+δ,T [m]t

)
6 Cδ1/p. (6.27)

From (6.11) one knows that ImΦ forms a precompact set in Pp, and since Xt :=
{T [m]t : m ∈ X} lies in the convex combination of ImΦ and {m0}, Xt is also
precompact. Then by the Arzelà–Ascoli theorem, ImT = T [X] is a precompact
set. In other words, T is a compact mapping. We use Schauder’s theorem to
conclude that T admits a }xed point, i.e. (6.16) admits at least one solution in X.
Step 2: Wellposedness when p = 1. The mapping Φ is Lipschitz in this case. The
wellposedness follows from standard Picard–Lipschitz arguments.
Step 3: Pointwise solution. By de}nition, m̂t admits the density function

m̂t(x) =
1

Zt

exp
(
− 2

σ2

δF

δm
(mt, x)− U(x)

)
,

where Zt :=
∫
Rd exp

(
− 2

σ2
δF
δm

(mt, x)− U(x)
)
dx is the normalization constant. The

functional derivative δF
δm

(mt, x) is continuous in t by the continuities of t 7→ mt and
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m 7→ δF
δm

(m,x), and is bounded for every t > 0. By the dominated convergence
theorem, both exp

(
− 2

σ2
δF
δm

(mt, x)−U(x)
)

and Zt are continuous in t and bounded.
Hence t 7→ m̂t(x) is continuous and bounded uniformly in x. Suppose now the
initial value m0 has density m0(x). De}ne the density of mt according to the
Duhamel’s formula (6.25):

mt(x) :=

∫ t

0

αe−α(t−s)m̂s(x) ds+ e−αtm0(x), for x ∈ Rd. (6.28)

By de}nition mt(x) de}ned by (6.28) is indeed the density of mt solving the time
dynamics (6.16), and is automatically continuous in t. Since αe−α(t−s)m̂s(x) in
(6.28) is continuous and bounded in s for every t > 0, the density mt(x) is C1 in t

and satis}es the pointwise equality (6.17).

We also obtain a density bound that will be used in the following.

Corollary 6.22. Suppose Assumption 6.1 holds. There exist constants c, C > 0,
depending only on F and U , such that

mt(x) > (1− e−αt)ce−U(x), (6.29)
mt(x) 6 (1− e−αt)Ce−U(x) + e−αtm0(x), (6.30)

for every x ∈ Rd.

Proof. For all m̂ ∈ ImΦ, we have

m̂(x) > ce−U(x).

Then by the de}nition of density (6.28), we have

mt(x) >

∫ t

0

αe−α(t−s)m̂s(x) ds

> ce−U(x)

∫ t

0

αe−α(t−s)m̂s(x) ds

= (1− e−αt)ce−U(x).

The proof for the upper bound is similar.

6.5.3 Proof of Theorem 6.11
As it is important to our proof of Theorem 6.11, we single out the derivative in
time result in the following proposition and prove it before tackling the other parts
of the theorem.

Proposition 6.23. Suppose Assumptions 6.1 and 6.9 holds, and let (mt)t>0 be a
solution to (6.16) in Wp. Then for every t > 0,

dV σ(mt)

dt
= −ασ

2

2

(
H(mt|m̂t) +H(m̂t|mt)

)
. (6.31)

Before proving the proposition, we show a lemma on the uniform integrability
of mt and m̂t.
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Lemma 6.24. Fix s > 0. Under the conditions of the previous proposition, there
exist integrable functions f , g such that for every t ∈ [s,+∞) and every x ∈ Rd,

g(x) 6 log mt(x)

e−U(x)

(
m̂t(x)−mt(x)

)
6 f(x).

Proof. We }rst deal with the }rst term log mt(x)
e−U(x) m̂t(x). Using the bounds (6.29),

(6.30) we have

log mt(x)

e−U(x)
m̂t(x) > log (1− e−αt)ce−U(x)

e−U(x)
m̂t(x) = log

(
(1− e−αt)c

)
m̂t(x)

> log
(
(1− e−αs

)
c)m̂t(x) > log

(
(1− e−αs)c

)
Ce−U(x) =: g1(x).

Here we shrink the constant c if necessary so that c < 1 and in the last inequality
the coe{cient log

(
(1− e−αs)c

)
is negative. Now we upper bound log mt(x)

e−U(x) m̂t(x).
We have

log mt(x)

e−U(x)
6 log

(
e−αt m0(x)

e−U(x)
+

∫ t

0

αe−α(t−s) m̂s(x)

e−U(x)
ds

)

6 log
(
e−αt m0(x)

e−U(x)
+ C

∫ t

0

αe−α(t−s) ds

)

= log
(
e−αt m0(x)

e−U(x)
+ C(1− e−αt)

)

6 log
(
(1− e−αt)C

)
+

e−αt

C(1− e−αt)

m0(x)

e−U(x)
6 logC + Cs

m0(x)

e−U(x)
.

Here in the third inequality we used the elementary inequality log(x+y) 6 logx+ y
x

for real x, y, and in the last line we maximize over t > s and set Cs = e−αs
(
C(1−

e−αs)
)−1. Therefore,

log mt(x)

e−U(x)
m̂t(x) 6

(
logC + Cs

m0(x)

e−U(x)

)
m̂t(x) 6

(
logC + Cs

m0(x)

e−U(x)

)
Ce−U(x)

= logC · Ce−U(x) + CsCm0(x) =: f1(x).

Now consider the second term log mt(x)
e−U(x)mt(x). Applying Jensen’s inequality to

the Duhamel formula (6.28), we have

log mt(x)

e−U(x)
mt(x) 6 e−αt log m0(x)

e−U(x)
m0(x) +

∫ t

0

αe−α(t−s) log m̂s(x)

e−U(x)
m̂s(x) dt

6 e−αt log m0(x)

e−U(x)
m0(x) +

∫ t

0

αe−α(t−s) logC · m̂s(x) dt

6 e−αt log m0(x)

e−U(x)
m0(x) +

∫ t

0

αe−α(t−s) logC · Ce−U(x) dt

6

(
log m0(x)

e−U(x)
m0(x)

)

+

+ logC · Ce−U(x) =: −g2(x)

In the second and third inequality we use consecutively the bound m̂(x) 6 Ce−U(x)

with C > 1. For the lower bound of the second term we note

log mt(x)

e−U(x)
mt(x) = log mt(x)

e−U(x)
· mt(x)

e−U(x)
e−U(x) > −1

e
e−U(x) =: −f2(x)

The proof is complete by letting f = f1 + f2 and g = g1 + g2.
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Proof of Proposition 6.23. Thanks to the lemma above, we can apply the domi-
nated convergence theorem to dizerentiate t 7→ V σ(mt) and obtain

dH(mt)

dt
= α

∫

Rd

(
logmt(x) + U(x)

)(
m̂t(x)−mt(x)

)
dx.

For the regular term F (mt), by the de}nition of functional derivative, we have

F (mt+δ)− F (mt) =

∫ 1

0

∫

Rd

δF

δm
(mt+uδ, x)

(
mt+δ(x)−mt(x)

)
dx du.

Applying again the dominated convergence theorem, the derivative reads

dV σ(mt)

dt
= α

∫

Rd

(
δF

δm
(mt, x) +

σ2

2
logmt(x) +

σ2

2
U(x)

)(
m̂t(x)−mt(x)

)
dx

= α

∫

Rd

(
Ct +

σ2

2
logmt(x)−

σ2

2
log m̂t(x)

)(
m̂t(x)−mt(x)

)
dx

= α

∫

Rd

(
σ2

2
logmt(x)−

σ2

2
log m̂t(x)

)(
m̂t(x)−mt(x)

)
dx

= −ασ
2

2

(
H(mt|m̂t) +H(m̂t|mt)

)
,

where in the second line we use the }rst-order condition for m̂t and Ct is a constant
that may depend on t.

Remark 6.25. The result of Proposition 6.23 implies

•
∫ +∞
0

(
H(mt|m̂t) +H(m̂t|mt)

)
dt < +∞;

• The derivative dV σ(mt)
dt

vanishes if and only if mt = m̂t, i.e. the dynamics
reaches a stationary point.

Proof of Theorem 6.11. Our strategy of proof is as follows. First we show that, by
the (pre-)compactness of the ~ow (mt)t>0 in a suitable Wasserstein space, the ~ow
converges up to an extraction of subsequence. Then we prove by a monotonicity
argument the convergence holds true without extraction. Finally we study the
convergence of the density functions and prove the convergence of value function
by the dominated convergence theorem.

According to the Duhamel’s formula (6.25), the measure mt is a (weighted)
linear combination of the initial value m0 and the best responses m̂s. Since there
exists some p′ > p such that m0 ∈ Pp′(Rd), we obtain by the triangle inequality

‖mt‖p
′

p′ 6 e−αt‖m0‖p
′

p′ + (1− e−αt) sup
06s6t

‖m̂s‖p
′

p′

6 ‖m0‖p
′

p′ + sup
m∈Pp(Rd)

‖Φ(m)‖p
′

p′ 6 ‖m0‖p
′

p′ + C

∫

Rd

xp
′

e−U(x) dx.

Thus the ~ow (mt)t>0 in precompact in Pp(R
d) and the set of limit points,

w(m0) := {m ∈ Pp(R
d) : ∃tn → +∞ such that mtn → m},

is nonempty. We now show that w(m0) is the singleton {m∗} and therefore mt →
m∗ in Wp. Pick m ∈ w(m0) and let (tn)n∈N be an increasing sequence such that
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tn → +∞ and mtn → m. Extracting a subsequence if necessary, we may suppose
tn+1− tn > 1 for n ∈ N. Proposition 6.23 implies for every t, s such that t > s > 0,

V σ(ms)− V σ(mt) =

∫ t

s

(
H(mu|m̂u) +H(m̂u|mu)

)
du.

Consequently,

V σ(m0) > V σ(mt0)− V σ(mtn)

>

n−1∑

k=0

∫ tk+1

tk

(
H(mu|m̂u) +H(m̂u|mu)

)
du

>

n−1∑

k=0

∫ 1

0

(
H(mtk+u|m̂tk+u) +H(m̂tk+u|mtk+u)

)
du.

By taking n→ +∞, we obtain

n−1∑

k=0

∫ 1

0

(
H(mtk+u|m̂tk+u) +H(m̂tk+u|mtk+u)

)
du < +∞.

Therefore,

0 = lim
k→+∞

∫ 1

0

(
H(mtk+u|m̂tk+u) +H(m̂tk+u|mtk+u)

)
du

>

∫ 1

0

lim inf
k→+∞

(
H(mtk+u|m̂tk+u) +H(m̂tk+u|mtk+u)

)
du

=

∫ 1

0

lim inf
k→+∞

(
H
(
S[u]mtk

∣∣Φ(S[u]mtk)
)
+H

(
Φ(S[u]mtk)

∣∣S[u]mtk

))
du

=

∫ 1

0

(
H
(
S[u]m

∣∣Φ(S[u]m)
)
+H

(
Φ(S[u]m)

∣∣S[u]m
))
du.

In the }rst inequality we applied Fatou’s lemma, and in the last equality we used
the convergence mtk → m, the continuity of S[u] and Φ, and the joint lower-
semicontinuity of (µ, ν) 7→ H(µ|ν) with respect to the weak convergence of mea-
sures. Then we have

H
(
S[u]m

∣∣Φ(S[u]m)
)
+H

(
Φ(S[u]m)

∣∣S[u]m
)
= 0

for a.e. u ∈ [0, 1]. Using again the lower-semicontinuity of relative entropy, we
obtain

H
(
m
∣∣Φ(m)

)
+H

(
Φ(m)

∣∣m
)

6 lim inf
u→0

(
H
(
S[u]m

∣∣Φ(S[u]m)
)
+H

(
Φ(S[u]m)

∣∣S[u]m
))

= 0.

That is to say, as a probability measure m = Φ(m) = m̂. By our assumption Φ
has unique }xed point m∗, therefore m = m∗ and w(m0) is equal to the singleton
{m∗}.
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Next we show that the convergence of the density function mt(·) → m∗(·).
Since σ2

2 H(m∗) 6 V σ(m∗) < +∞, the measure m∗ has a density function, which
we denote by m∗(·). The Duhamel’s formula for density functions (6.28) yields

∣∣mt(x)−m∗(x)
∣∣

6 e−αt
∣∣m0(x)−m∗(x)

∣∣+
∫ t

0

αe−α(t−s)
∣∣m̂s(x)−m∗(x)

∣∣ ds

6 e−αt
∣∣m0(x)−m∗(x)

∣∣+
∫ t

0

αe−α(t−s)LWp(m̂s,m
∗)e−U(x) ds

= e−αt
∣∣m0(x)−m∗(x)

∣∣+
∫ t

0

αe−αsLWp(m̂t−s,m
∗)e−U(x) ds

= e−αt
∣∣m0(x)−m∗(x)

∣∣+
∫ +∞

0

1s6tαe
−αsLWp(m̂t−s,m

∗)e−U(x) ds.

The integrand in the last integral is positive and upper-bounded by the integrable
function

1s6tαe
−αsLWp(m̂t−s,m

∗)e−U(x) 6 αL sup
t>0
Wp(m̂t,m

∗)e−αse−U(x),

where supt>0Wp(m̂t,m
∗) < +∞ because (mt)t>0 is a continuous and convergent

~ow in Pp. Hence by the dominated convergence theorem,

lim
t→+∞

∫ +∞

0

1s6tαe
−αsLWp(m̂t−s,m

∗)e−U(x) ds

=

∫ +∞

0

lim
t→+∞

1s6tαe
−αsLWp(m̂t−s,m

∗)e−U(x) ds = 0,

where lims→+∞Wp(m̂s,m
∗) = lims→+∞Wp

(
Φ(ms),m

∗) = 0 since ms → m∗ and
Φ is continuous. As a result, mt(x) → m∗(x) when t → +∞. We }nally show the
convergence of the value function. Note that, as in the proof of Proposition 6.23,
the entropic term is doubly bounded by integrable functions

−f2(x) 6 mt(x) log mt(x)

e−U(x)
6 −g2(x).

Applying the dominated convergence theorem, we obtain

lim
t→+∞

H(mt) = lim
t→+∞

∫

Rd

mt(x) log mt(x)

e−U(x)
dx =

∫

Rd

lim
t→+∞

mt(x) log mt(x)

e−U(x)
dx

=

∫

Rd

m∗(x) log m
∗(x)

e−U(x)
dx = H(m∗).

The convergence in Wasserstein distance implies already F (mt)→ F (m∗). There-
fore limt→+∞ V σ(mt) = V σ(m∗).

6.5.4 Proof of Theorem 6.13
We again show some technical results before moving on to the proof of the theorem.
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Lemma 6.26. Suppose Assumptions 6.1 and 6.9 holds, and let mt be a solution to
(6.16). For every t > 0, we have

0 6

∫

Rd

m̂t+δ(x)

(
log m̂t+δ(x) + U(x) +

2

σ2

δF

δm
(mt, x)

)
dx

−
∫

Rd

m̂t(x)

(
log m̂t(x) + U(x) +

2

σ2

δF

δm
(mt, x)

)
dx = O(δ1/p)

when δ → 0.

Proof. Denote the quantity to bound by I. We write it as the sum of the following
two terms:

I = I1 + I2,

I1 =

∫

Rd

(
2

σ2

δF

δm
(mt, x) + log m̂t(x) + U(x)

)(
m̂t+δ(x)− m̂t(x)

)
dx = 0,

I2 =

∫

Rd

(
log m̂t+δ(x)− log m̂t(x)

)
m̂t+δ(x) dx.

The term I1 is zero because 2
σ2

δF
δm

(mt, x) + log m̂t(x) is constant by the }rst-order
condition. On the other hand, we have I2 = H(m̂t+δ|m̂t) > 0. Let us bound the
other side. Since m̂s(x) > ce−U(x) holds for every s > 0, we have

∣∣log m̂t+δ(x)− log m̂t(x)
∣∣m̂t+δ(x)

6
m̂(x)

min
{
m̂t+δ(x), m̂t(x)

}(mt+δ(x)− m̂t(x)
)

6 C
(
m̂t+δ(x)− m̂t(x)

)

6 Ce−U(x)Wp(mt+δ,mt)

6 Ce−U(x)δ1/p.

Here we have used log x
y

6
|x−y|

min{x,y} in the }rst inequality, (6.22) in the second
inequality, and (6.27) in the last inequality.

We need the following notion to treat the possibly non-dizerentiable relative
entropy.

De}nition 6.27. For a real function f : (t−ε, t+ε)→ R de}ned on a neighborhood
of t, the set of its upper-dizerentials at t is

D+f(t) :=

{
p ∈ R : lim sup

s→t

f(s)− f(t)− p(s− t)
|s− t| 6 0

}
.

Lower-dizerentials are de}ned as D−f(t) := −D+(−f)(t).
Lemma 6.28. Let f : [a, b] → R be a function de}ned on a closed interval,
continuous on its two ends a and b. If f has nonnegative lower-dizerentials on (a, b),
i.e. for every a < t < b there exists pt ∈ D−f(t) with pt > 0, then f(b) > f(a).

Proof. Since the interval [a, b] is compact, for every ε > 0, we can }nd a }nite
sequence a < x1 < . . . < xn < b such that f(xi+1) − f(xi) > −ε(xi+1 − xi) with
x1 < a+ε and b < xn+ε. Thus we have f(xn)−f(x1) > −ε(xn−x1). We conclude
by taking the limit ε→ 0.
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Next we calculate the upper-dizerential of the relative entropy t 7→ H(mt|m̂t).

Proposition 6.29. Let Assumptions 6.1, 6.9 and 6.12 hold, and let (mt)t>0 be a
solution to (6.16) inWp. Then the relative entropy H : t 7→ H(mt|m̂t) is continuous
on [0,+∞), and for every t > 0, the set of upper dizerentials D+H(t) is non-empty
and there exists pt ∈ D+H(t) such that

pt 6 −α
(
H(mt|m̂t) +H(m̂t|mt)

)
.

Proof. Fix t > 0. The relative entropy reads

Ht := H(mt|m̂t) =

∫

Rd

mt(x)
(
logmt(x)− log m̂t(x)

)
dx

=

∫

Rd

mt(x)

(
logmt(x) + U(x) +

2

σ2

δF

δm
(mt, x)

)
dx

−
∫

Rd

mt(x)

(
log m̂t(x) + U(x) +

2

σ2

δF

δm
(mt, x)

)
dx

=

∫

Rd

mt(x)

(
logmt(x) + U(x) +

2

σ2

δF

δm
(mt, x)

)
dx

−
∫

Rd

m̂t(x)

(
log m̂t(x) + U(x) +

2

σ2

δF

δm
(mt, x)

)
dx

=: H1,t −H2,t.

In the second equality we can separate the integral into two parts because the
integrand of the second term mt(x)

(
log m̂t(x) + U(x) + 2

σ2
δF
δm

(m,x)
)

is integrable
as it is constant by the }rst-order condition. For the same reason, in the fourth
equality we can replace mt by m̂t in the second term, as we are integrating against
a constant and mt, m̂t have the same total mass 1.

Now we consider the dizerence Ht+δ −Ht = (H1,t+δ −H1,t)− (H2,t+δ −H2,t).
For the }rst part we have

H1,t+δ −H1,t = H(mt+δ)−H(mt)

+
2

σ2

∫

Rd

(
mt+δ(x)

δF

δm
(mt+δ, x)−mt(x)

δF

δm
(mt, x)

)
dx.

= δ

∫

Rd

α log mt(x)

e−U(x)
(m̂t(x)−mt(x)) dx

+
2δ

σ2

∫

Rd

α
(
m̂t(x)−mt(x)

) δF
δm

(mt, x) dx

+
2δ

σ2

∫

Rd

∫

Rd

mt(x)
δ2F

δm2
(mt, x, y)α

(
m̂t(y)−mt(y)

)
dx dy + o(δ)

= αδ

∫

Rd

(
logmt(x) + U(x) +

2

σ2

δF

δm
(mt, x)

)(
m̂t(x)−mt(x)

)
dx

+
2δ

σ2

∫

Rd

∫

Rd

mt(x)
δ2F

δm2
(mt, x, y)α

(
m̂t(y)−mt(y)

)
dx dy + o(δ).

by Lemma 6.24 and dominated convergence theorem.
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Next we calculate the second part:

H2,t+δ −H2,t =
2

σ2

∫

Rd

m̂t+δ(x)

(
δF

δm
(mt+δ, x)−

δF

δm
(mt, x)

)
dx

+

[∫

Rd

m̂t+δ(x)

(
log m̂t+δ(x) + U(x) +

2

σ2

δF

δm
(mt, x)

)
dx

−
∫

Rd

m̂t(x)

(
log m̂t(x) + U(x) +

2

σ2

δF

δm
(mt, x)

)
dx

]

For the }rst dizerence we use the expansion mt+δ −mt = αδ (m̂t −mt) + o(δ) and
apply the dominated convergence theorem to obtain

2

σ2

∫

Rd

m̂t+δ(x)

(
δF

δm
(mt+δ, x)−

δF

δm
(mt, x)

)
dx

=
2αδ

σ2

∫

Rd

∫

Rd

m̂t+δ(x)
δ2F

δm2
(mt, x, y)α

(
m̂t(y)−mt(y)

)
dx dy + o(δ)

=
2αδ

σ2

∫

Rd

∫

Rd

m̂t(x)
δ2F

δm2
(mt, x, y)α

(
m̂t(y)−mt(y)

)
dx dy + o(δ)

and the second dizerence is already treated in Lemma 6.26. Summing up, we have

H2,t+δ −H2,t −
2αδ

σ2

∫∫
m̂t(x)

δ2F

δm2
(mt, x, y)α

(
m̂t(y)−mt(y)

)
dx dy > o(δ)

We have equally the bound on the other side: H2,t+δ −H2,t 6 O(δ1/p).
Putting everything together, we have

Ht+δ −Ht

6 αδ

∫ (
logmt(x) + U(x) +

2

σ2

δF

δm
(mt, x)

)(
m̂t(x)−mt(x)

)
dx

− 2αδ

σ2

∫∫
δ2F

δm2
(mt, x, y)

(
m̂t(x)−mt(x)

)(
m̂t(y)−mt(y)

)
dx dy + o(δ)

= αδ

∫

Rd

(
logmt(x)− log m̂t(x)

)(
m̂t(x)−mt(x)

)
dx

− 2αδ

σ2

∫∫
δ2F

δm2
(mt, x, y)

(
m̂t(x)−mt(x)

)(
m̂t(y)−mt(y)

)
dx dy + o(δ)

= −αδ
(
H(mt|m̂t) +H(m̂t|mt)

)

− 2αδ

σ2

∫∫
δ2F

δm2
(mt, x, y)

(
m̂t(x)−mt(x)

)(
m̂t(y)−mt(y)

)
dx dy + o(δ).

By the convexity of F . the double integral is positive, that is to say
∫∫

δ2F

δm2
(mt, x, y)

(
m̂t(x)−mt(x)

)(
m̂t(y)−mt(y)

)
dx dy > 0.

For the other side we have Ht+δ − Ht > O(δ1/p). Thus Ht is continuous and pt
de}ned by

pt = −α
(
H(mt|m̂t) +H(m̂t|mt)

)

− 2α

σ2

∫∫
δ2F

δm2
(mt, x, y)

(
m̂t(x)−mt(x)

)(
m̂t(y)−mt(y)

)
dx dy.
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is an upper-dizerential of H(mt|m̂t) and satis}es pt 6 −α
(
H(mt|m̂t)+H(m̂t|mt)

)
.

Theorem of Theorem 6.13. By Proposition 6.23, we know

dV σ(mt)

dt
= −ασ

2

2

(
H(mt|m̂t) +H(m̂t|mt)

)
.

By Proposition 6.29, we }nd for every t > 0 an upper-dizerential pt ∈ D+H(mt|m̂t)
such that

pt 6 −α
(
H(mt|m̂t) +H(m̂t|mt)

)
.

Therefore,
dV σ(mt)

dt
>
σ2

2
pt.

Since dV σ(mt)
dt

−pt is a lower-dizerential of V σ(mt)−H(mt|m̂t), we apply Lemma 6.28
to the }nite interval [s, u] and obtain

V σ(mu)− V σ(ms) >
σ2

2

(
H(mu|m̂u)−H(ms|m̂s)

)
. (6.32)

It follows from Proposition 6.29 and Lemma 6.28 that t 7→ eαtH(mt|m̂t) is non-
increasing, and therefore,

H(mt|m̂t) 6 H(m0|m̂0)e
−αt.

Taking the limit u→ +∞ in (6.32), we obtain

infV σ − V σ(ms) > 0− σ2

2
H(ms|m̂s) > −

σ2

2
H(ms|m̂s)e

−αt,

and the proof is complete.

6.6 Conclusion
In this paper we proposed the entropic }ctitious play algorithm that solves the
mean }eld optimization problem regularized by relative entropy. The algorithm
is composed of an inner and an outer iteration, sharing the same ~avor with the
particle dual average algorithm studied in [179], but possibly allows easier imple-
mentations. Under some general assumptions we rigorously prove the exponential
convergence for the outer iteration and identify the convergence rate as the learning
rate α. The inner iteration involves sampling a Gibbs measure and many Monte
Carlo algorithms have been extensively studied for this task, so errors from the
inner iterations are not considered in this paper. For further research directions,
we may look into the discrete-time scheme to better understand the e{ciency and
the bias of the algorithm, and may also study the annealed entropic }ctitious play
(i.e., σ → 0 when t→ +∞) as well.



Chapter 7

Self-interacting
approximation to
McKean–Vlasov long-time
limit: a Markov chain Monte
Carlo method

7.1 Introduction
In this paper we develop a novel method to approximate the invariant measure of
the non-degenerate McKean–Vlasov dynamics

dXt = b
(
Law(Xt), Xt

)
dt+ dBt, (7.1)

where B is a standard Brownian motion in Rd. The McKean–Vlasov dynamics
characterize the mean }eld limit of interacting particles, and they have widespread
applications, encompassing }elds such as granular materials [19, 23, 39], mathe-
matical biology [129], statistical mechanics [161], and synchronization of oscillators
[138]. More recently, there has been a growing interest in the role of such dynamics
in the context of mean }eld optimization for training neural networks [163, 57, 117,
179, 178, 56, 63].

In order to simulate the invariant measure of (7.1), we turn to the corresponding
N -particle approximation, i.e., the dynamics

dXi
t = b

(
1

N

N∑

i=1

δXi
t
, Xi

t

)
dt+ dBi

t, for i = 1, . . . , N, (7.2)

where (Bi)16i6N are independent Brownian motions. It is expected that the empir-
ical measure 1

N

∑N
i=1 δXi

t
of the N -particle system can approximate the McKean–

Vlasov long-time limit when N and t are both large enough. For }xed N , to ensure
control over the distance between the McKean–Vlasov dynamics in (7.1) and the
N -particle system in (7.2), throughout the entire time horizon, the literature has

275
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proposed various uniform-in-time propagation of chaos results under dizerent sce-
narios, see for example, [101, 80, 70, 142] and Chapter 1.

When the drift b does not depend on the marginal distribution, Law(Xt), the
dizusion process is Markovian. Under general conditions, we can leverage Birkhoz’s
ergodic theorem [21] to approximate its invariant measure using the occupation
measure

mt :=
1

t

∫ t

0

δXs
ds,

as t→∞. In scenarios where the drift takes the form of gradient b(x) = −∇U(x),
this ergodic property of the Markov dizusion lays the groundwork for various
Markov chain Monte Carlo methods, such as Metropolis adjusted Langevin al-
gorithm [196, 195] and unadjusted Langevin algorithm [82]. Motivated by the
Markovian ergodicity, the recent paper [75] studied the following self-interacting
process:

dXt = b(mt, Xt) dt+ dBt, (7.3)

where the dependence on the marginal distribution in McKean-Vlasov dizusion
(7.1) is replaced by the occupation measure, that is, the empirical mean of the
trajectory (Xs)s∈[0,t]. In [75], the authors successfully demonstrated that, in the
regime of weak interaction, where the dependence on the marginal distribution is
su{ciently small, the occupation measures (mt)t>0 of the self-interacting process
(7.3) also converge towards the invariant measure of (7.1) as t → ∞. Remark-
ably, from a practical point of view, simulating the occupation measure of the
self-interacting process (7.3) only requires a single particle, which distinguishes it
from the conventional N -particle approximation (7.2). It is worth noting that the
investigation into the long-time behavior of the self-interacting dizusions can be
traced back to the pioneering works of Cranston and Le Jan [66] and Raimond
[188].

Building upon the discovery in [75], this paper ventures into uncharted territory,
where the mean }eld interaction need not to be inherently weak. We propose to
study the self-interacting particle with exponentially decaying dependence on its
trajectory:

dXt = b(mt, Xt) dt+ dBt,

dmt = λ(δXt
−mt) dt,

(7.4)

where λ is a positive constant. Integrating the second equation of (7.4), we }nd

mt = e−λtm0 +

∫ t

0

λe−λ(t−s)δXs
ds,

that is to say, the measure mt is an exponentially weighted occupation measure
with emphasis on the recent past. The dynamics (7.4) is a time-homogeneous
Markov process and we show its exponential ergodicity in the }rst part of the
paper. Although the state space where the random variable (Xt,mt) lives is in}nite-
dimensional, we have a non-degenerate noise in the X component and an almost
sure contraction in the m component, which render such ergodicity possible. Under
suitable conditions for the drift b, we show in Theorem 7.4 by a re~ection coupling
approach that the Markov process is contractive for a Wasserstein distance. This
implies that the stationary measure ρλ for the Markov process exists, and is unique
and globally attractive. Notably, the conditions that we impose on b do not imply
the uniqueness of invariant measure for the McKean–Vlasov (7.1), and cover the
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case of the ferromagnetic Curie–Weiss model in Section 7.4. Here, we also remark
that the exact weight for the measure mt is not important and we work with a
time-homogeneous Markov structure only for convenience. We could, for example,
take the alternative weighting

λ

1− e−λt

∫ t

0

e−λ(t−s)δXs
ds

to remove the dependency on the initial value.
We then proceed to investigate properties of the stationary ρλ in Theorem 7.16.

A crucial feature of the self-interacting process (7.4) is that when λ → 0, the
dynamics of the measure mt becomes slow, while the rate of the Xt dynamics
remains roughly unchanged. Suppose additionally that for some mean }eld energy
functional F : P(Rd)→ R, the drift is its negative intrinsic gradient:

b(m,x) = −DmF (m,x) = −∇x

δF

δm
(m,x).

The double time-scale structure allows us to speculate that Law(Xt) rapidly relaxes
to the local-in-time equilibrium

m̂t :=
exp
(
−2 δF

δm
(mt, x)

)
dx∫

exp
(
−2 δF

δm
(mt, x′)

)
dx′

so that the measure evolution is ezectively described by

∂tmt = λ(m̂t −mt). (7.5)

This dynamics is called entropic }ctitious play in Chapter 6 and this point of
view plays a key role in various literatures, notably the series of works of Benaïm,
Ledoux and Raimond [15, 16, 17, 18] and the article of Kleptsyn and Kurtzmann
[132]. The main novelty of our method is that we provide a quantitative justi}ca-
tion of the intuition presented above, and we are no longer restricted to the case
of two-body interaction potentials. More precisely, letting (X,m) be a random
variable distributed as the stationary measure ρλ, we provide an entropy bound in
Proposition 7.25 that measures in a way the distance between the conditional dis-
tribution Law(X|m) and m̂, relying crucially on the log-Sobolev inequality for m̂.
This method requires unfortunately a }nite-dimensional dependency of the mean
}eld in the energy functional F , which we explain in Remark 7.17 in detail. The en-
tropy bound, together with an inherent gradient structure of the dynamics, is then
used in the rest of the proof of Theorem 7.16 to show that the random measure m
solves approximately the stationary condition for the entropic }ctitious play (7.5):

m̂ = m.

In the case that the energy F is convex, the equation above has a unique solution
m∗, which is also the invariant measure for the McKean–Vlasov dynamics (7.1),
and we show that the stationary measure ρλ is in fact close to m∗ ⊗ δm∗

for small
λ.

The self-interacting dynamics (7.4) can be also thought as an intermediate
scheme between the entropic }ctitious play (7.5), which corresponds to the limit
λ→ 0, and the linear dynamics

dXt = b(δXt
, Xt) dt+ dBt,
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which corresponds to the limit λ → ∞. From a computational point of view, the
linear dynamics is easy to sample and relaxes rapidly, but in the long time does
not yield the McKean–Vlasov’s long-time limit. The entropic }ctitious play reaches
high precision in the long time, but at each time step, it requires usually a costly
Monte Carlo run to sample the Gibbs measure m̂t. The self-interacting dynamics
lies exactly in between by mixing the two time scales.

As a }nal note on the terminology, although the words “stationary” and “invari-
ant” have almost identical meanings in the context of stochastic process, we always
say “invariant measure” when referring to the McKean–Vlasov process (7.1), and
“stationary measure” when referring to the self-interacting process (7.4). We hope
this arti}cial distinction would reduce possible confusions for the readers.

The rest of the paper is organized as follows. The main results are stated in
Section 7.2. Before moving to their proofs, we apply our results to the training of a
two-layer neural network in Section 7.3 and to a Curie–Weiss model for ferromagnets
in Section 7.4. Ergodicity of the self-interacting dynamics, i.e., Theorem 7.4, is
proved in Section 7.5. In Section 7.6, we prove Theorem 7.16, which characterizes
the stationary measure of the self-interacting process. Finally, a technical result
and its proof, and the numerical algorithm are included in the appendices.

7.2 Main results
We state and discuss our main results in this section. First, we study the con-
tractivity of the self-interacting process (7.4), and in particular, the exponential
convergence to its unique stationary measure is obtained. Then, focusing on the
gradient case, we quantify the distance between the self-interacting stationary mea-
sure and the corresponding McKean–Vlasov invariant measure. Finally, applying
both the results, we propose an annealing scheme so that the self-interacting dy-
namics converges to the McKean–Vlasov invariant measure.

To avoid extra assumptions on the drift functional b, we will always assume the
existence and the uniqueness of strong solution to the self-interacting process (7.4)
without explicitly mentioning it in the rest of the paper.

Assumption. Given any }ltered probability space supporting a Brownian motion
(Bt)t>0 and satisfying the usual conditions, for any initial conditions (X0,m0)
measurable to the initial σ-algebra and taking value in Rd × P(Rd), there exists a
unique adapted stochastic process (Xt,mt)t>0 such that for all t > 0,

Xt =

∫ t

0

b(ms, Xs) ds+Bt +X0,

mt = λ

∫ t

0

(δXs
−ms) ds+m0.

One may easily }nd various su{cient conditions for the assumption above. For
example, if b : P(Rd) × Rd → Rd is W1-Lipschitz continuous in measure and
Lipschitz continuous in space, then by Cauchy–Lipschitz arguments, we know that
the assumption is satis}ed.
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7.2.1 Contractivity of the self-interacting dizusion
We }rst present the results on the contractivity of the self-interacting dynamics
(7.4), from which follows the convergence to its unique stationary measure. We
start with two basic de}nitions. First, we de}ne moduli of continuity.

De}nition 7.1 (Modulus of continuity). We say that ω : [0,∞) → [0,∞) is a
modulus of continuity if it satis}es the following properties:

• ω(0) = 0;

• ω is continuous and non-decreasing;

• for all h, h′ > 0, we have ω(h+ h′) 6 ω(h) + ω(h′).

Note that a modulus of continuity necessarily has at most linear growth accord-
ing to our de}nition. We also introduce the notion of semi-monotonicity following
Eberle [83].

De}nition 7.2 (Semi-monotonicity). We say that κ : (0,∞) → R is a semi-
monotonicity function for a vector }eld v : Rd → Rd if

(
v(x)− v(x′)

)
· (x− x′) 6 −κ(|x− x′|)|x− x′|2

holds for every x, x′ ∈ Rd with x′ 6= x. We say κ is a uniform semi-monotonicity
function of a family of vector }elds if it is a semi-monotonicity function of each
member.

In this subsection, we impose the following assumption on the drift of the
McKean–Vlasov dynamics (7.1).

Assumption 7.3. The drift b satis}es the following conditions:

1. For any }xed m ∈ P(Rd), the vector }eld x 7→ b(m,x) is uniformly equicon-
tinuous and has a uniform semi-monotonicity function κb, given by κb(x) =
κ0 −Mb/x for some κ0 > 0 and Mb > 0.

2. There exist a bounded modulus of continuity ω : [0,∞) → [0,Mω] and a
constant L > 0 such that

|b(m,x)− b(m′, x)| 6 LWω(m,m
′)

for every m, m′ ∈ P(Rd) and every x ∈ Rd. Here Wω is the Wasserstein
distance

Wω(m,m
′) = inf

π∈Π(m,m′)

∫
ω(|x− x′|)π(dx dx′).

Using re~ection coupling, we derive the following result.

Theorem 7.4. Suppose Assumption 7.3 hold. Let (Xt,mt)t>0, (X ′
t,m

′
t)t>0 be two

processes following the dynamics (7.4) for some λ > 0 such that the }rst marginals
of their initial values X0, X ′

0 have }nite }rst moments. De}ne the following metric
on Rd × P(Rd):

dλ
(
(x,m), (x′,m′)

)
= |x− x′|+ 2L

λ
Wω(m,m

′)
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and denote the corresponding Wasserstein distance on P1

(
Rd × P(Rd)

)
by Wdλ

.
Then, we have

Wdλ

(
Law(Xt,mt),Law(X ′

t,m
′
t)
)
6 Ce−ctWdλ

(
Law(X0,m0),Law(X ′

0,m
′
0)
)
,

where the constants C, c are given by

C = 1 +
2M√
K0

exp
(
M2

4K0

)
,

c =

(
1

K0
+

2M

K
3/2
0

exp
(
M2

4K0

))−1

for M =Mb + 2LMω and K0 = min
(
κ0,

λ
2

)
.

The proof of Theorem 7.4 is postponed to Section 7.5.
Remark 7.5 (On the assumption). The }rst condition on the semi-monotonicity
of the vector }eld x 7→ b(m,x) is stronger than those used in [83], in that we
require a more gentle singularity in κ(x) for x close to 0. This is because in this
work, we are concerned with a good convergence rate when the parameter λ → 0
(see the following remark for more discussions) and it will become clear in the
proof that this stronger requirement on the semi-monotonicity is necessary for our
purpose. Nevertheless, this condition is not too di{cult to ful}ll. Upon de}ning
b0(x) = −κ0x and b1(m,x) = b(m,x)− b0(x), the }rst condition of Assumption 7.3
is equivalent to (

b1(m,x)− b1(m,x′), x− x′
)
6Mb,

and this holds true when sup(m,x)∈P(Rd)×Rd |b1(m,x)| 6Mb/2 in particular.
Remark 7.6 (Rate of convergence). We discuss the rate of convergence across three
parameter ranges.

In the }rst scenario, when the drift b is κ0-strongly monotone for some κ0 > 0,
i.e., Mb = 0, and when there is no mean }eld interaction (L = 0), we have M = 0
and K0 = min

(
κ0,

λ
2

)
. Consequently, C = 1 and c = min

(
κ0,

λ
2

)
. It is worth noting

that under these conditions, the component X exhibits exponential contraction
with a rate of κ0, while m contracts at a rate no greater than λ. In this case, the
best contraction rate for the joint process is min(κ0, λ). Thus our method yields a
contraction rate that remains at least half of the optimal one.

In the second scenario, when λ is small but non-zero (with self-interaction), we
obtain c ∼ 2Mλ3/2 exp(−M2/2λ) and C ∼ 2Mλ−1/2 exp(−M2/2λ). We note that
such exponentially slow convergence also arises in the kinetic Langevin process
as the damping parameter approaches zero; see Eberle, Guillin and Zimmer [84,
Section 2.6] for further discussion.

Finally, for λ > 2κ0, the contractivity constants C, c become independent of
λ, consistent with the intuition that the self-interacting dizusion becomes linear in
the large λ limit.

Now we discuss a few examples satisfying Assumption 7.3.
Example 7.7 (Two-body interaction). Consider b(m,x) = b0(x) + b1(m,x), where

b1(m,x) =

∫
K(x, x′)m(dx′).
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Suppose furthermore that

sup
x∈Rd

‖K(x, ·)‖W 1,∞ = sup
x∈Rd

max
(
‖K(x, ·)‖L∞ , ‖∇K(x, ·)‖L∞

)
6M,

that is to say, the mapping y 7→ K(x, y) is M -bounded and M -Lipschitz continuous
for every x. Thus, we have

|b(m,x)− b(m′, x)| 6
∣∣∣∣
∫
K(x, x′)(m−m′)(dx′)

∣∣∣∣ 6MWω(m,m
′)

for the modulus of continuity ω(x) = min(x, 2). Therefore Assumption 7.3 is sat-
is}ed once b0 is uniformly Lipschitz and has a semi-monotonicity function κ0(x) =
κ0 −M1/x for some κ0 > 0 and M1 > 0.

We can generalize the example above to drifts that depend on the measure in a
non-linear way.
Example 7.8 (C1 functional). Suppose m 7→ b(m,x) is C1 dizerentiable in the sense
that there exists a continuous and bounded mapping δb

δm
: P(Rd)×Rd ×Rd → R

such that

b(m,x)− b(m′, x) =
∫ 1

0

∫
δb

δm

(
(1− t)m+ tm′, x, x′

)
(m−m′)(dx′) dt

for all m, m′ ∈ P(Rd) and x ∈ Rd. If supm,x

∥∥ δb
δm

(m,x, ·)
∥∥
W 1,∞ is }nite and

the vector }elds x 7→ b(m,x) are uniformly Lipschitz and share a uniform semi-
monotonicity function κ0(x) = κ0 −M1/x for some κ0 > 0 and M1 > 0, then by
the same argument as in Example 7.7, Assumption 7.3 is satis}ed.

We now examine the stationary measure of the self-interacting process (7.4).

De}nition 7.9. We call a probability measure P ∈ P
(
Rd ×P(Rd)

)
stationary to

the self-interacting dizusion (7.4) if the stochastic process (Xt,mt)t>0 with initial
value Law(X0,m0) = P satis}es Law(Xt,mt) = P for all t > 0.

The de}nition above makes sense since we have assumed the existence and
uniqueness of strong solution.

By the Banach }xed point theorem in the metric space P1

(
Rd × P(Rd)

)
and

standard arguments, Theorem 7.4 implies the existence and uniqueness of stationary
measure of the self-interacting process (7.4).

Corollary 7.10. Under Assumption 7.3, for every λ > 0, there exists a unique
stationary measure of the self-interacting dizusion (7.4) in P

(
Rd × P(Rd)

)
whose

}rst marginal distribution on Rd has }nite }rst moment.

Finally, we note that although Theorem 7.4, along with Corollary 7.10, implies
that the self-interacting process (7.4) converges to its stationary measure exponen-
tially, its assumptions are not su{cient to establish the uniqueness of invariant
measure of the McKean–Vlasov process (7.1), as illustrated by the Curie–Weiss
example in Section 7.4. So in general, there is no hope that the self-interacting
stationary measure approximates the McKean–Vlasov invariant measure.
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7.2.2 Stationary measure in the gradient case
In this subsection, we study the stationary measure of the self-interacting dynam-
ics (7.4), provided that the drift b is the negative intrinsic gradient of a }nite-
dimensional mean }eld functional, whose precise meaning will be explained in the
following. In particular, we aim at proving that, in this case, the stationary measure
of (7.4) provides an approximation to the invariant measure of the McKean–Vlasov
dynamics (7.1). We }x a positive λ in this subsection.

The }rst assumption in the subsection is that the drift b corresponds to a gra-
dient descent whose dependency in the mean }eld is }nite-dimensional.

Assumption 7.11 (Finite-dimensional mean }eld). For a closed convex set K ⊂
RD, there exists a function

` = (`1, . . . , `D) ∈ C1(Rd;K)

whose gradient is of at most linear growth, and a function Φ ∈ C2(RD;R) whose
Hessian ∇2Φ is bounded, such that the drift term b reads

b(m,x) = −∇Φ(〈`,m〉) · ∇`(x) = −∇Φ
(∫

`(x)m(dx)
)
· ∇`(x)

= −
D∑

ν=1

∇νΦ

(∫
`(x)m(dx)

)
∇`ν(x).

In other words, for the mean }eld functional F : P2(R
d)→ R de}ned by

F (m) = Φ(〈`,m〉) = Φ

(∫
`(x′)m(dx′)

)
,

the drift b is the negative intrinsic derivative:

b(m,x) = −DmF (m,x) = −∇x

δF

δm
(m,x).

We shall also impose the following conditions on a family of probability measures
related to Φ and `.

Assumption 7.12 (Uniform LSI). The probability measures (m̂y)y∈K on Rd de-
termined by

m̂y(dx) ∝ exp
(
−2∇Φ(y) · `(x)

)
dx

are well de}ned and satisfy a uniform CLS-logarithmic Sobolev inequality for some
CLS > 0. That is to say, for all regular enough probability measure m ∈ P(Rd) and
all y ∈ K, we have

∫
log dm

dm̂y

dm =: H(m|m̂y) 6
CLS
4
I(m|m̂y) :=

CLS
4

∫ ∣∣∣∣∇ log dm
dm̂y

∣∣∣∣
2

m̂y,

where dm/dm̂y is the Radon–Nikodým derivative between measures.

Remark 7.13. As mentioned in the introduction, the uniform log-Sobolev inequality
is crucial to our method as it is used to obtain the entropy estimate in Proposi-
tion 7.25. This condition is often perceived as a strong one, but still it can be
veri}ed if for example

2∇Φ(y) · `(x) = U(x) +G(y, x)
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for some strongly convex U : Rd → R and some bounded G : K ×R→ R. Indeed,
in this case m̂y is a uniformly bounded perturbation of the strongly log-concave
measure e−U(x) dx

/∫
e−U(x′) dx′, so it satis}es a uniform log-Sobolev inequality

by the Bakry–Émery condition [11] and the Holley–Stroock perturbation [113].
We note that this condition has also been exploited recently to obtain long-time
behaviors of mean }eld Langevin [56, 178] and its particle systems in Chapters 1
and 2.

Finally, we assume that the following quantitative bound on Φ and `.
Assumption 7.14 (Bound). The following quantity is }nite:

M2 := sup
x∈Rd,y∈RD

∣∣∇2Φ(y)1/2∇`(x)
∣∣2

= sup
x∈Rd,y∈RD

sup
a∈Rd

|a|=1

a>∇`(x)>∇2Φ(y)∇`(x)a.

Remark 7.15. Under the three assumptions above, if Φ is additionally convex, then
there exists a unique invariant measurem∗ of the McKean–Vlasov dynamics (7.1) by
Proposition 1.32 and Corollary 1.39, and the convergence to the invariant measure
is exponentially fast by Theorem 1.4. In fact, the convexity of Φ implies precisely
the functional convexity of the mean }eld energy F considered in Chapter 1.

The main discovery of this paper characterizes the distance between the sta-
tionary measure P of the self-interacting dynamics (7.4) and m∗ ⊗ δm∗

.
Theorem 7.16. Let Assumptions 7.11, 7.12 and 7.14 hold true. Suppose that
P = Pλ ∈ P4

(
Rd × P4(R

d)
)

is a stationary measure of the self-interacting process
(7.4) in the sense of De}nition 7.9 that has }nite fourth moment:

∫∫ (
|x|4 +

∫
|x′|4m(dx′)

)
P (dx dm) <∞.

Let (X,m) be a random variable distributed as P . Denote by ρ1 and ρ2 the probability
distributions of the random variables X and 〈`,m〉 =

∫
`(x)m(dx) respectively.

1. Suppose Φ is convex. Denote in the case by m∗ the unique invariant measure
of the McKean–Vlasov dynamics (7.1). De}ne

y∗ := 〈`,m∗〉 =
∫
`(x)m∗(dx),

λ0 :=
1

48M2C
2
LS

(
1 + 2M2CLS

(
M2

2C
2
LS + 1

)1/2) ,

H :=
CLS(D + 24M2CLSd)λ

2− 96M2C
2
LS

(
1 + 2M2CLS

(
M2

2C
2
LS + 1

)1/2)
λ
.

Then, for λ ∈ (0, λ0), we have

v(ρ2) := E

[∫∫∫ 1

0

δ2F

δm2

(
(1− t)m+ tm∗, x

′, x′′
)

dt (m−m∗)
⊗2(dx′ dx′′)

]

=

∫∫ 1

0

(y − y∗)>∇2Φ
(
(1− t)y + ty∗

)
(y − y∗) dt ρ2(dy)

6 4M2CLS
(
M2

2C
2
LS + 1

)
H,
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and

W 2
2 (ρ

1,m∗) 6
(
2CLS + 4M2C

2
LS
(
M2

2C
2
LS + 1

)1/2)
H,

‖ρ1 −m∗‖2TV 6
(
4 + 8M2CLS

(
M2

2C
2
LS + 1

)1/2)
H.

2. If in addition to the convexity of Φ,

M1 := sup
x∈Rd,y∈RD

`(x)>∇2Φ(y)`(x) <∞,

then the three inequalities above hold also for all λ ∈ (0,∞), with H replaced
by

H ′ :=
CLS
2

(D + 2M1)λ.

3. If Φ is concave, then for ŷ := 〈`, m̂y〉, we have

−
∫
(ŷ − y)>∇2Φ(y)(ŷ − y)ρ2(dy) 6 M2C

2
LSD

2
λ.

The proof of Theorem 7.16 is postponed to Section 7.6.
Remark 7.17 (Dependence on the dimension D). Readers may have observed that,
in our framework, the value of the functional F (m) may only depend on the D-
dimensional vector

∫
`(x)m(dx), and this corresponds to “cylindrical functions”

considered in [4, De}nition 5.1.11]. Given a continuous functional F on P(Rd), for
every compact subset S ⊂ Rd, we can construct, according to the Stone–Weierstrass
theorem, a sequence of functions `n : Rd → RDn and Φn : RDn → R such that the
cylindrical functionals Fn(m) = Φn

(∫
`n dm

)
approach F in the uniform topology

of C
(
P(S)

)
(see [92, Lemma 2] for example). However, the dimension Dn may tend

to in}nity when n → ∞. Since all the upper bounds in Theorem 7.16 depend on
the dimension D linearly, our analysis and }ndings cannot be directly applied to
more general functionals on P(Rd).
Remark 7.18 (Meaning of M1 and M2). The second-order functional derivative of
F reads

δ2F

δm2
(m,x′, x′′) = `(x′)>∇2Φ(y)`(x′′),

and in the case of convex Φ, satis}es the Cauchy–Schwarz inequality:
∣∣∣∣
δ2F

δm2
(m,x′, x′′)

∣∣∣∣ =
∣∣`(x′)>∇2Φ(y)`(x′′)

∣∣

6
∣∣`(x′)>∇2Φ(y)`(x′)

∣∣1/2∣∣`(x′′)>∇2Φ(y)`(x′′)
∣∣1/2

=

∣∣∣∣
δ2F

δm2
(m,x′, x′)

∣∣∣∣
1/2∣∣∣∣

δ2F

δm2
(m,x′′, x′′)

∣∣∣∣
1/2

6M1.

Similarly, the second-order intrinsic derivative satis}es
∣∣D2

mF (m,x
′, x′′)

∣∣ =
∣∣∇`(x′)>∇2Φ(y)∇`(x′′)

∣∣

6
∣∣∇`(x′)>∇2Φ(y)∇`(x′)

∣∣1/2∣∣∇`(x′′)>∇2Φ(y)∇`(x′′)
∣∣1/2

=
∣∣D2

mF (m,x
′, x′)

∣∣1/2∣∣D2
mF (m,x

′′, x′′)
∣∣1/2 6M2.
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Moreover, by taking x′ = x′′ in the inequalities above, we }nd that M1 and M2

are the respective suprema of the second-order ~at and intrinsic derivatives of the
functional F .

We illustrate in the following example that the order of λ when λ → 0 for the
variance of 〈`,m〉 under P in Theorem 7.16 (i.e., the }rst claim) is optimal.

Example 7.19 (Optimality of the order of λ). Consider the mean }eld functional
F : P2(R

d)→ R given by

F (m) =
1

2

∫
|x|2m(dx) + 1

2

∣∣∣∣
∫
xm(dx)

∣∣∣∣
2

.

By taking D = d + 1, `(x) = (x, |x|2/2)>, Φ(y0, y1) = y20/2 + y1, the mean }eld
functional F is covered by the cylindrical setting (namely Assumption 7.11) of
Theorem 7.16. Moreover, the function Φ is convex.

The corresponding gradient dynamics (7.1) is then characterized by the drift

b(m,x) = −x−
∫
x′m(dx′),

and its unique invariant measure m∗ is N (0, 1/2). We explicitly compute quantities
related to the stationary measure Pλ of the self-interacting dynamics (7.4) in the
following. The dynamics reads

dXt = −Xt dt−
∫
x′mt(dx′) dt+ dBt,

dmt = λ(δXt
−mt) dt,

and has a unique strong solution by Cauchy–Lipschitz arguments. Upon de}ning
Y0,t =

∫
x′mt(dx′), the process has the }nite-dimensional projection:

dXt = (−Xt − Y0,t) dt+ dBt,

dY0,t = λ(−Y0,t +Xt) dt.

The }nite-dimensional dynamics has a unique invariant measure that is a centered
Gaussian with the following covariance structure:

E[X ⊗X] =
λ+ 2

4(λ+ 1)
1d×d,

E[Y0 ⊗ Y0] = E[X ⊗ Y0] =
λ

4(λ+ 1)
1d×d.

Hence, the exact distances, or bounds thereof, read

E
[
|Y0|2

]
=

dλ

4(1 + λ)
,

W 2
2

(
Law(X),m∗

)
=
d

2

(
1−

(
1− λ

2(1 + λ)

)1/2)2

,

‖Law(X)−m∗‖2TV ∈
[

1

10000

dλ2

4(1 + λ)2
,
9

4

dλ2

4(1 + λ)2

]
,
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where the last mutual bound is due to [71, Theorem 1.1].
Now we try to verify the assumptions of Theorem 7.16. By the Kolmogorov

extension theorem, we can construct a stationary Markov process (Xt, Y0,t)t∈R,
de}ned on the whole real line, such that Law(Xt, Y0,t) = Law(X,Y0) for all t ∈ R.
Then, by de}ning

mt = λ

∫ t

−∞
e−λ(t−s)δXs

ds,

we recover the solution (Xt,mt)t∈R to the original in}nite-dimensional dynamics.
By construction, Law(Xt,mt) is stationary and has }nite fourth moments. The rest
of the assumptions of Theorem 7.16 can be satis}ed with the constants CLS = 1/2
and M2 = 1. Since Φ is convex, by the }rst claim of the theorem, we get

E
[
|Y0|2

]
6

5(13d+ 1)λ

8− 48(2 +
√
5)λ

,

W 2
2

(
Law(X),m∗

)
6

(2 +
√
5)(13d+ 1)λ

8− 48(2 +
√
5)λ

,

‖Law(X)−m∗‖2TV 6
(2 +

√
5)(13d+ 1)λ

2− 12(2 +
√
5)λ

,

for λ < 1
/
6(2 +

√
5). So the results of Theorem 7.16 give the optimal order of λ

when λ → 0 for the variance of the Y variable, but possibly sub-optimal ones for
the Wasserstein and total-variation distances in the X direction.

7.2.3 A class of dynamics
In this subsection, we present a class of dynamics to which both Theorems 7.4
and 7.16 are applicable. This class encompasses in particular the neural network
example that will be discussed in the following Section 7.3.

Assumption 7.20. The drift functional writes

b(m,x) = −∇U(x)−∇Φ0

(∫
`0(x

′)m(dx′)
)
· ∇`0(x). (7.6)

for some functions U : Rd → R, Φ0 : RD → R, `0 : Rd → RD satisfying the
following conditions:

• the function U is C2 continuous with bounded Hessian, i.e., ‖∇2U‖L∞ <∞,
and its gradient admits a semi-monotonicity function κ(x) = κ0 −M/x for
some κ0 > 0 and M > 0.

• the probability measure Z−1 exp
(
−2U(x)

)
dx, with Z =

∫
exp
(
−2U(x)

)
dx,

is well de}ned in P(Rd), and satis}es a CLS,0-logarithmic Sobolev inequality.

• the function Φ0 is κΦ0
-strongly convex for some κΦ0

> 0 and belongs to
C2(RD) ∩W 2,∞(RD).

• the function `0 belongs to C1(Rd;RD) ∩W 1,∞(Rd;RD).
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Proposition 7.21. Under Assumption 7.20, there exists a unique stationary mea-
sure P ∈ P1

(
Rd × P(Rd)

)
to the self-interacting dynamics (7.4). Moreover, there

exists C > 0, independent of λ, such that for (X,m) distributed as P ,

E[|〈`0,m−m∗〉|2] +W 2
2

(
Law(X),m∗

)
+ ‖Law(X)−m∗‖2TV 6 Cλ,

where m∗ is the unique invariant measure to the McKean–Vlasov process.

Proof of Proposition 7.21. We }rst verify the conditions of Theorem 7.4 to establish
the existence and uniqueness of the stationary measure. As the drift b has derivative

δb

δm
(m,x, x′) = −∇2Φ0

(∫
`0(x

′′)m(dx′′)
)
· ∇`0(x) · `0(x′),

we have ∥∥∥∥
δb

δm
(m,x, ·)

∥∥∥∥
W 1,∞

6 ‖∇2Φ0‖L∞‖∇`0‖L∞‖`0‖W 1,∞

for every m ∈ P(Rd) and every x ∈ Rd. Then the dynamics falls into the class
considered in Example 7.8. The conditions of Theorem 7.4 are satis}ed. Applying
Corollary 7.10 gives the existence and the uniqueness of the stationary measure
P ∈ P1

(
Rd × P(Rd)

)
.

We proceed to verify the conditions of Theorem 7.16. Introduce the functions
Φ : RD+1 → R, ` : Rd → RD+1 de}ned respectively by

Φ(y0, y1) = Φ0(y0) + y1, for y0 ∈ RD and y1 ∈ R,

`(x) =
(
`0(x), U(x)

)
, for x ∈ Rd.

Here the range set K of the mapping ` is taken as the whole space RD. In this way,
the drift b reads

b(m,x) = −∇Φ
(∫

`(x′)m(dx′)
)
· ∇`(x)

so Assumption 7.11 is satis}ed. Now we show the stationary measure P of the
dynamics (7.4) has }nite fourth moment. Consider the functional

E(x,m) = κ−1
0 |x|4 +

∫
|x′|4m(dx′).

Along the self-interacting dynamics (7.4), we have, by Itō’s formula,

d
dt E[E(Xt,mt)] = 4κ−1

0 E
[
b(mt, Xt) ·Xt|Xt|2

]
+ (2d+ 4)κ−1

0 E
[
|Xt|2

]

− λE
[∫
|x′|4m′(dx′)

]
+ λE

[
|Xt|4

]
.

As the vector }eld x 7→ b(m,x) has weak monotonicity function κb(x) = κ0−Mb/x,
we have

b(m,x) · x 6 −κ0
2
|x|2 + C2

for every (m,x) ∈ P(Rd) × Rd, for some C2 > 0. The functional E veri}es the
Lyapunov condition as well:

d
dt E[E(Xt,mt)] 6 −c3 E[E(Xt,mt)] + C3
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for some c3 > 0, C3 > 0. In consequence, the stationary measure P of }nite }rst
moment must have }nite fourth moment. Since

m̂y(dx) ∝ exp
(
−2∇Φ(y) · `(x)

)
dx = exp

(
−2∇Φ0(y) · `0(x)

)
exp
(
−2U(x)

)
dx

with supx,y|∇Φ0(y)·`0(x)| 6 ‖∇Φ0‖L∞‖`0‖L∞ , by the Holley–Stroock perturbation
argument [113], we know that the measure m̂y veri}es a uniform CLS-LSI with

CLS = CLS,0 exp(4‖∇Φ0‖L∞‖`0‖L∞),

so Assumption 7.12 is satis}ed. The constants M1, M2 in Theorem 7.16 and As-
sumption 7.14 are }nite as

|`(x)>∇2Φ(y)`(x)| = |`0(x)>∇2Φ0(y)`0(x)| 6 ‖∇2Φ0‖L∞‖`0‖2L∞ ,

|∇`(x)∇2Φ(y)∇`(x)| = |∇`0(x)>∇2Φ0(y)∇`0(x)| 6 ‖∇2Φ0‖2L∞‖∇`0‖L∞ .

All the conditions of Theorem 7.16 are satis}ed. Since for all y ∈ RD,

κΦ0 |〈`0,m−m∗〉|2 6 〈`0,m−m∗〉⊥∇2Φ0(y)〈`0,m−m∗〉
= 〈`,m−m∗〉⊥∇2Φ(y)〈`,m−m∗〉,

the claim of the proposition follows from the second case stated in the theorem.

Remark 7.22 (Open question). Applying further the convergence result of Theo-
rems 7.4, we can obtain a bound on the dizerence between the marginal distribu-
tion of the non-stationary self-interacting dizusion (7.4) and the invariant measure
of the McKean–Vlasov dynamics (7.1). Speci}cally, let (Xt,mt) denote the self-
interacting process (7.4). Theorem 7.4 yields

W1

(
Law(Xt,mt),Law(X,m)

)
6 Ce−ct,

where C, c are the contractivity constants in the theorem. Let ϕ : RK → R be a
1-Lipschitz test function. Combining this with Proposition 7.21, we can bound the
following L1 simulation error:

E[|〈ϕ ◦ `,mt −m∗〉|] = E[|〈ϕ ◦ `,mt −m+m−m∗〉|] = O(e−ct +
√
λ).

As noted in Remark 7.6, the contraction rate c depends on 1/λ exponentially,
rendering the above error bound impractical for applications.

This naturally raises the question of whether the method and results of Theo-
rem 7.16, which address the static case (i.e., the comparison between Law(X,m)
and m∗⊗ δm∗

), can be extended to the dynamical setting (comparing Law(Xt,mt)
and m∗ ⊗ δm∗

). Unfortunately, we are currently unable to establish the entropy
estimate in Section 7.6.2 for the parabolic problem, so our approach does not yet
apply in this context. We leave this as an open problem for future research.

7.3 Numerical application to training two-layer neu-
ral networks

Let us recall the structure of two-layer neural networks and introduce the mean
}eld model for it. Consider an activation function ϕ : R→ R satisfying

ϕ is continuous and non-decreasing,
lim

θ→−∞
ϕ(θ) = 0, lim

θ→+∞
ϕ(θ) = 1.
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De}ne S = R × Rdin × R, where the neurons take values. For each neuron x =
(c, a, b) ∈ S we de}ne the feature map:

Rddin 3 z 7→ f(x; z) := τ(c)ϕ(a · z + b) ∈ R,

where τ : R → [−L,L] is a truncation function with the truncation threshold
L ∈ (0,+∞). The two-layer neural network is nothing but the averaged feature
map parameterized by N neurons x1, . . . , xN ∈ S:

Rdin 3 z 7→ fN (x1, . . . , xN ; z) =
1

N

N∑

i=1

f(xi; z) ∈ R. (7.7)

The training of neural network aims to minimize the distance between the averaged
output (7.7) for K data points (z1, . . . , zK) and their labels (y1, . . . , yK), that is,
the objective function of the minimization reads

FN
NNet(x

1, . . . , xN ) =
N

2K

K∑

i=1

∣∣yi − fN (x1, . . . , xN ; zi)
∣∣2. (7.8)

This objective function is of high dimension and non-convex, and this di{culty
motivates the recent studies, see for example [163, 57, 117] among others, to lift
the }nite-dimensional optimization (7.8) to the space of probability measures and
to consider the following mean }eld optimization:

inf
m∈P2(S)

FNNet(m), where FNNet(m) :=
1

2K

K∑

i=1

∣∣yi − EX∼m[f(X; zi)]
∣∣2.

The mean }eld loss functional FNNet is apparently convex. Given that the activation
and truncation functions ϕ, τ have bounded derivatives of up to fourth order, it
has been proved in Proposition 1.34 that the minimum of the entropy-regularized
mean }eld optimization problem

inf
m∈P2(S)

FNNet(m) +
σ2

2
H
(
m
∣∣N (0, γ−1)

)

can be attained by the invariant measure of the mean }eld Langevin dynamics:

dXt = −DmF
(
Law(Xt), Xt

)
dt+ σ dWt, (7.9)

where the mean }eld potential functional reads

F (m) := FNNet(m) +
σ2γ

2

∫
|x|2m(dx).

By de}ning

`0(x) := |x|2, `i(x) := f(x, zi)− yi, for i = 1, . . . ,K,

RK+1 3 θ = (θ0, θ1, . . . , θK) 7→ Φ(θ) :=
σ2γ

2
θ0 +

1

2K

K∑

i=1

|θi|2,

we note that the mean }eld potential functional is of the form:

F (m) = Φ(〈`,m〉), where ` := (`0, `1, . . . , `K),
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as in the gradient case investigated in Sections 7.2.2.
In order to simulate the invariant measure of the mean }eld Langevin dynamics

(7.9), one usually turns to the corresponding N -particle system:

dXj
t =

(
−∇jF

N
NNet(X

1
t , . . . , X

N
t )− σ2γX

j
t

)
dt+ σ dW j

t , for j = 1, . . . , N (7.10)

The uniform-in-time propagation of chaos results obtained in [215] and Chapter 1
ensure that the marginal distributions Law(X1

t , . . . , X
N
t ) of the N -particle system

are close to those of the mean }eld Langevin dynamics uniformly on the whole time
horizon, and can e{ciently approximate mean }eld invariant measure provided that
t and N are both large enough.

Note that the N -particle system (7.10) is nothing but a regularized and noised
gradient descent ~ow for N neurons. In contrast, the self-interacting dizusion

dXt = −
K∑

i=0

∇iΦ
(
Y 0
t , Y

1
t , . . . , Y

K
t

)
∇`i(Xt) dt+ σ dWt

= −
(

1

K

K∑

k=1

Y k
t ∇f(Xt, zk) + σ2γXt

)
dt+ σ dWt,

dY i
t = λ

(
`i(Xt)− Y i

t

)
dt, for i = 1, . . . ,K,

(7.11)

introduces an innovative alternative algorithm for training two-layer neural net-
works, in which the algorithm iterations impact only a single neuron.

Setup. We aim to train a neural network to approximate the non-linear elemen-
tary function R2 3 z = (z1, z2) 7→ g(z) := sin 2πz1 + cos 2πz2. Note that in
this numerical example din = 2 and therefore S = R1+2+1. We draw K points
{zi}Kk=1 sampled according to the uniform distribution on [0, 1]2 and compute the
corresponding labels yk = g(zk) to form our training data {zk, yk}Kk=1. We }x
the truncation function τ by τ(θ) = (θ ∧ 30) ∨ −30 and the sigmoid activation
function ϕ by ϕ(θ) = 1/

(
1 + exp(−θ)

)
. The Brownian noise has volatility σ such

that σ2/2 = 0.05, and the regularization constant γ is }xed at γ = 0.0025 in the
experiment. The initial value X0 = (C0, A0, B0), taking values in S = R1+2+1, is
sampled from the normal distribution m0 = N (0, 102 × Id4×4) in four dimensions.
To observe the impact of the self-interacting coe{cient λ, we run the simulation of
(7.11) for dizerent λ equal to 4−p for p = 4, . . . , 8. Furthermore, to compare with
these results with }xed λ, we choose the non-increasing piecewise constant function
λa such that λa(t) = 4−i on successive intervals of length δTi = 4i, for i = 2, . . . , 11,
and train the neural network along the annealing scheme:

dXt = −
(

1

K

K∑

k=1

Y k
t ∇f(Xt, zk) + σ2γXt

)
dt+ σ dWt,

dY i
t = λa(t)

(
`i(Xt)− Y i

t

)
dt, for i = 1, . . . ,K.

(7.12)

We simulate both the constant and dynamic-λ self-interacting dizusions (7.11),
(7.12) by the Euler scheme, as described in Appendix D.2, on a long time horizon
till the terminal time T = 106, with the discrete time step δt = 0.5.
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Figure 7.1: Averaged over 100 repetitions losses for }xed values of λ and for discrete
annealing.

Results and discussions. We repeat the simulations mentioned above for }xed
λ’s and dynamic λa all for 100 times and compute the averaged loss Φ(Yt) at each
time t and plot its evolution in Figure 7.1. On the annealing scheme curve, we
include triangles to visually indicate the points at which there are changes on the
values of λa. We observe that the value of Φ(Yt) }rst decays exponentially, and
the speed of initial decay depending on the value of λ. More precisely, the bigger
is the value of λ, the faster is the initial decay. In particular, this remains true for
the annealed process as it starts from a bigger value λa(0). We notice that such
phenomenon is in line with our theoretical results in Theorem 7.4. In the long run,
when }xing λ, the value of Φ(Yt) stabilizes at a level sensible with respect to the
value of λ. We notice that the smaller is the value of λ, the better is the }nal
performance. These facts are in line with our discovery in Theorems 7.4 and 7.16.
Finally, the training exhibits the best performance when implementing the discrete
annealing. The loss Φ(Yt) continues to decrease as the value of λa(t) diminishes.

7.4 A Curie–Weiss model
In this section, we present and study a simple Curie–Weiss model, i.e., a mean
}eld model of ferromagnets, which has possibly multiple invariant measures. In
particular, we show that in this case, the last claim of Theorem 7.16 provides
informations on the concentration of the self-interacting stationary measure.

Let `0 : R → R be a smooth, odd, increasing function in C1 ∩W 1,∞. For a
probability measure m ∈ P(R), consider the mean }eld energy

F (m) = −1

2

(∫
`0(x)m(dx)

)2
+

1

2

∫
x2m(dx).
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By setting

`(x) :=
(
`0(x), |x|2/2

)>
,

Φ(y0, y1) := −
1

2
|y0|2 + y1,

we have F (m) = Φ(〈`,m〉). So we are in the cylindrical setting of Assumption 7.11
with the range set of ` being de}ned by

K := [−‖`0‖L∞ , ‖`0‖L∞ ]×R.

Moreover, as the corresponding intrinsic derivative, or the drift, writes

b(m,x) = −DmF (m,x) = 〈`0,m〉`′0(x)− x,

we can verify Assumption 7.3 with the modulus of continuity

ω(r) = sup
x,x′∈R:|x−x′|6r

|`0(x)− `0(x′)|.

This implies, by Corollary 7.10, that the self-interacting process has a unique in-
variant measure, which we denote by ρλ = ρ. Arguing as in the proof of Proposi-
tion 7.21, we can verify the conditions of Theorem 7.16 for the choice of Φ, ` and
ρ above. Especially, the probability measures

m̂(y0,y1)(dx) ∝ exp
(
−1

2
|x|2 + y0`0(x)

)
dx

satisfy a uniform LSI thanks to the boundedness of y0 and the Holley–Stroock
perturbation lemma.

Before applying Theorem 7.16, we }rst give a characterization of the invariant
measure for the McKean–Vlasov dynamics (7.1). We discuss a special case and
then move to general discussions.

1. If ‖`′‖L∞ < 1, then by the result of [224], we already know that the McKean–
Vlasov dynamics (7.1) has a unique invariant measure, which is the centered
Gaussian of variance 1/2, i.e., N (0, 1/2). This case corresponds to the weak
interaction regime studied in [75].

2. In the general case where ‖`′‖L∞ is not restricted, the invariant measures of
(7.1) correspond to }xed points of the one-dimensional mapping

R 3 y0 7→ Π0(y0) = ŷ0 ∈ R

given by

Π0(y0) =

∫
`0(x) exp

(
2y0`0(x)− |x|2

)
dx∫

exp
(
2y0`0(x)− |x|2

)
dx

That is to say, if y0 satis}es Π0(y0) = y0, then the probability measure pro-
portional to exp

(
2y0`0(x)− |x|2

)
dx is invariant to (7.1); and vice versa. Due

to the oddness of `0, the mapping Π0 is odd. In particular, Π0(0) = 0 and we
know that N (0, 1/2) is always invariant.
If Π′

0(0) > 1, then by the fact that ‖Π0‖L∞ 6 ‖`0‖L∞ < ∞ and the
intermediate value theorem, there exists y0 > 0 such that Π0(y0) = y0
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and Π0(−y0) = −y0. That is to say there exists at least three invariant
measures, two of which are, in physicists’ language, “symmetry-breaking”
phases, and the centered Gaussian measure is the “symmetry-preserving”
phase. Moreover, the centered measure corresponding to y0 = 0 should
be unstable as it is a local maximum point for the free energy landscape
y0 7→ 1

2y
2
0 − 1

2 log
∫

exp
(
2y0`0(x)− |x|2

)
dx.

We now turn to the study of the stationary measure ρλ of the self-interacting
process (7.4). Since Φ(y) = −|y0|2/2+ y1 is linear in its second coordinate, the last
claim of Theorem 7.16 implies that

∫
|ŷ0 − y0|2ρ2(dy) = −

∫
(ŷ − y)>∇2Φ(y)(ŷ − y)ρ2(dy) 6 Cλ,

where C is a constant depending only on `0 and as we recall, y0 is the }rst coordinate
of y. In other words, the stationary measure ρλ solves the self-consistency equation

ŷ0 = y0

up to an error of order O(
√
λ). Denote the set of }xed points of y0 7→ Π0(y0) = ŷ0

by S. If the set S is }nite, and if for each s ∈ S we have

Π′
0(s) 6= 1,

then there exists c > 0 such that for all y0 ∈ R,

|ŷ0 − y0| > cmin
(
d(y0, S), 1

)
,

where d(·, S) indicates the distance to the set S. In this case, we have
∫

min
(
d(y0, S), 1

)2
ρ2(dy) = O(λ).

That is to say, for small λ, the random variable Y = (Y0, Y1), distributed as the
second component of the stationary measure ρλ, has Y0 concentrated near the
solutions to the self-consistency equation, which correspond to invariant measures
of the McKean–Vlasov dynamics. However, the last claim of Theorem 7.16 is not
su{cient to show that Y0 is only concentrated around, or in a way “selects”, the
physically stable phases that are minimizers of a free energy functional. We refer
readers to [17] for qualitative results on such selection mechanism.

7.5 Proof of Theorem 7.4
We }rst note that as the metric space

(
P(Rd),Wω

)
is separable, we do not have

measurability issues. We refer readers to [149, Chapter 2] for details.
Recall that the self-interacting dynamics (7.4) writes

dXt = b(mt, Xt) dt+ dBt,

dmt = λ(−mt + δXt
) dt

and similarly for the other dynamics (X ′,m′) driven by another Brownian motion
B′. Fix n ∈ N. Let rc : Rd × Rd → [0, 1] be a Lipschitz continuous function such
that sc :=

√
1− rc2 is also Lipschitz continuous and

rc(x, x′) =
{
1 if |x− x′| > 2n−1,

0 if |x− x′| 6 n−1.
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We couple the two dynamics (X,m), (X ′,m′) by
dBt = rc(Xt, X

′
t) dBrc

t + sc(Xt, X
′
t) dBsc

t ,

dB′
t = rc(Xt, X

′
t)
(
1− 2ete

>
t

)
dBrc

t + sc(Xt, X
′
t) dBsc

t ,

where Brc, Bsc are independent Brownian motions and et is the d-dimensional
vector de}ned by

et =

{
Xt−X′

t

|Xt−X′

t| if Xt 6= X ′
t,

(1, 0, . . . , 0)> otherwise.
Subtracting the dynamical equations of X, X ′ and denoting δX = X −X ′, we

obtain
dδXt =

(
b(mt, Xt)− b(m′

t, X
′
t)
)

dt+ 2 rc(Xt, X
′
t)et dWt,

where Wt :=
∫ t

0
e>t dBrc

t and is a one-dimensional Brownian motion by Lévy’s char-
acterization. The absolute value of the semimartingale δXt admits the decomposi-
tion d|δXt| = dA|δX|

t + dM |δX|
t with

dA|δX|
t 6 −|δXt|κ(|δXt|) dt+ LWω(mt,m

′
t) dt,

dM |δX|
t = 2 rc(Xt, X

′
t) dWt.

For the m variable, we have
d(mt −m′

t) = −λ(mt −m′
t) dt+ λ(δXt

− δX′

t
) dt.

Thus, by considering the (random) Wω-optimal coupling at each t, we get
dWω(mt,m

′
t) 6 −λWω(mt,m

′
t) dt+ λω(|δXt|) dt.

Hence the process
rt = |δXt|+

2L

λ
Wω(mt,m

′
t)

admits the decomposition drt = dAr
t + dMr

t with
dAr

t 6
(
−|δXt|κ(|δXt|) + 2Lω(|δXt|)− LWω(mt,m

′
t)
)

dt,
dMr

t = 2 rc(Xt, X
′
t) dWt.

Let f : [0,∞)→ [0,∞) be a C2 function to be determined in the following. We
de}ne ρt = f(rt). The process ρt admits the decomposition dρt = dAρ

t +dMρ
t with

dAρ
t 6

(
−|δXt|κ(|δXt|) + 2Lω(|δXt|)− LWω(mt,m

′
t)
)
f ′−(rt) dt

+ 2 rc(Xt, X
′
t)

2f ′′(rt) dt
6 −rtK̃(rt)f

′
−(rt) dt+ 2 rc(Xt, X

′
t)

2f ′′(rt) dt

for the function K̃ : (0,∞)→ R de}ned by

K̃(r) := inf
x+2Lλ−1y=r

x,y>0

xκ(x)− 2Lω(x) + Ly

r

> inf
x+2Lλ−1y=r

x,y>0

κ0x+ Ly −Mb − 2LMω

r

> min
(
κ0,

λ

2

)
− Mb + 2LMω

r

=: K0 −
M

r
=: K(r).
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Thus, we have shown

dAρ
t 6 −rtK(rt)f

′
−(rt) dt+ 2 rc(Xt, X

′
t)

2f ′′(rt) dt.

Following Du et al. [76], we choose the function f : [0,∞)→ [0,∞) by requiring

f ′(r) =
1

2

∫ ∞

r

s exp
(
−1

2

∫ s

r

τK(τ) dτ
)

ds.

and f(0) = 0. The function f is indeed C2 continuous, and, according to [76,
Lemma 5.1], it is also concave and satis}es

2f ′′(r)− rK(r)f ′(r) + r = 0

and
1

K0
6 f ′(r),

f(r)

r
6 f ′(0)

for all r > 0. Plugging in the expression for K, we obtain

f ′(0) =
1

2

∫ ∞

0

s exp
(
−K0s

2

4
+
Ms

2

)
ds

=
1

2
exp
(
M2

4K0

)∫ ∞

0

s exp
(
−
K0(s− M

K0
)2

4

)
ds

=
1

2
exp
(
M2

4K0

)∫ ∞

−M/
√
2K0

(
2t

K0
+M

21/2

K
3/2
0

)
exp
(
− t

2

2

)
dt

6
1

2
exp
(
M2

4K0

)(
2

K0
exp
(
−M

2

4K0

)
+ 2M

π1/2

K
3/2
0

)

6
1

K0
+

2M

K
3/2
0

exp
(
M2

4K0

)
.

For |δXt| > 2n−1, we have rct(Xt, X
′
t) = 1, and by the previous construction,

df(rt) = dAρ
t+dMρ

t 6 −rt dt+dMρ
t 6 − f(rt)

K−1
0 + 2MK

−3/2
0 exp(M2/4K0)

dt+dMρ
t .

For |δXt| < 2n−1, we proceed dizerently. Let ωb denote the uniform modulus of
equicontinuity of the vector }elds x 7→ b(m,x). The absolute continuous part of rt
satis}es

dAr
t 6

(
ωb(2n

−1) + 2Lω(2n−1)− LWω(mt,m
′
t)
)

dt
= −LWω(mt,m

′
t) dt+ o(1) dt

6 −λ
2
rt dt+ o(1) dt,

where o(1) denotes a term that tends to 0 when n→∞.
Now we combine the two cases. De}ne a sequence of functions by

fn(r) =

{
f(r), if r > 2n−1,
f(2n−1)
2n−1 r, if r < 2n−1.
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Each function fn is concave and satis}es, by the arguments above,

dE[fn(rt)] 6 −cE[fn(rt)] dt+ o(1) dt,

where

c := min
(

1

K−1
0 + 2MK

−3/2
0 exp(M2/4K0)

,
λ

2

)

=
1

K−1
0 + 2MK

−3/2
0 exp(M2/4K0)

.

Applying Grönwall’s lemma, we obtain

E[fn(rt)] 6 e−ct E[fn(r0)] + o(1).

Since limn→∞ E[fn(rt)] = E[f(rt)] by dominated convergence, taking the limit
n→∞ completes the proof.

7.6 Proof of Theorem 7.16
This section consists of four subsections. We show a series of intermediate, and
sometimes technical, lemmas and propositions in the }rst three subsections before
proving the theorem in the last subsection.

7.6.1 Elliptic equation for the stationary measure
We }rst note that the stationary measure P solves a partial dizerential equation in
the following weak sense.

Proposition 7.23. Let C1,2b denote the class of functionals φ : P(Rd)×Rd → R with
continuous spatial derivatives ∇xφ, ∇2

xφ and a bounded linear functional derivative
δφ
δm

: P(Rd)×Rd ×Rd → R satisfying

∀m ∈ P(Rd), ∀x ∈ Rd, |∇xφ(m,x)|+
∣∣∇2

xφ(m,x)
∣∣ 6 C,

∀m ∈ P(Rd), ∀x, x′ ∈ Rd,

∣∣∣∣
δφ

δm
(m,x, x′)

∣∣∣∣ 6 C,

for some C > 0. Under the settings of the theorem, let (X,m) be a random variable
distributed as the stationary measure P . Then we have, for all φ ∈ C1,2b ,

E

[
1

2
∆xφ(m,X) + b(m,X) · ∇xφ(m,X)

+ λ

∫
δφ

δm
(m,X, x′)(δX −m)(dx′)

]
= 0.

We omit the proof of the proposition, which follows directly from expanding the
dizerence E[φ(mt, Xt)]− E[φ(m0, X0)] by Itō-type calculus.

The in}nite-dimensional nature of the PDE above makes its analysis di{cult,
and in the following we approach the problem by studying a }nite-dimensional
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projection of it. Under Assumption 7.11, de}ne the functions

β(y, x) = −∇Φ(y) · ∇`(x) = −
D∑

ν=1

∇νΦ(y)∇`ν(x),

V (y, x) = ∇Φ(y) · `(x) =
D∑

ν=1

∇νΦ(y)`
ν(x).

They verify β(y, x) = −∇xV (y, x). Note that, if my is a measure satisfying∫
`(x)my(dx) = y, then we have

β(y, x) = b(my, x),

V (y, x) =
δF

δm
(my, x).

Let (X,m) be distributed as the stationary measure P and consider the random
variable Y = 〈`,m〉 =

∫
`(x)m(dx) valued in K. Applying Proposition 7.23 to

functionals of the following form:

φ(m,x) = ϕ

(
x,

∫
`(x′)m(dx′)

)
,

where ϕ ∈ D(Rd ×RD), we get that the joint distribution ρ = ρλ := Law(X,Y ) ∈
P(Rd ×K) satis}es the stationary degenerate Fokker–Planck equation

1

2
∆xρ−∇x ·

(
β(y, x)ρ

)
− λ∇y ·

((
`(x)− y

)
ρ
)
= 0. (7.13)

in the sense of distributions. The fact that P has }nite fourth moment implies that
its projection ρ satis}es the following moment condition:

∫
(|x|4 + |y|2)ρ(dx dy) <∞. (7.14)

From the Fokker–Planck equation (7.13), we get the following result.

Lemma 7.24. Under the setting of the theorem, for every function ϕ ∈ C1(RD;R)
whose gradient ∇ϕ is of linear growth, we have

∫∫
∇ϕ(y) ·

(
`(x)− y

)
ρ(dx dy) = 0.

Proof of Lemma 7.24. Since its gradient ∇ϕ is of linear growth, the function ϕ is of
quadratic growth. Thanks to the fact that ρ satis}es the moment condition (7.14),
we can take the duality with ϕ in the static Fokker–Planck equation (7.13), from
which the desired result follows.

7.6.2 Entropy estimate
In this subsection, we show an entropy estimate for the stationary measure ρ by
studying the Fokker–Planck equation (7.13).
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Denote the }rst and second marginal distributions of ρ by ρ1, ρ2 respectively.
For ρ2-almost all y ∈ RD, denote also the conditional distribution of the }rst
variable by ρ1|2(·|y) : B(Rd)→ R. De}ne

ρ̂(dx dy) := m̂y(dx)ρ2(dy) =
1

Zy

exp
(
−2V (y, x)

)
dx ρ2(dy), (7.15)

for Zy =
∫

exp
(
−2V (y, x)

)
dx. Recall that m̂y is the probability measure on Rd

that satis}es a uniform LSI according to Assumption 7.12.

Proposition 7.25. Under the setting of the theorem, we have

H(ρ|ρ̂) 6 CLS
2

(
D + 2

∫∫ (
`(x)− y

)>∇2Φ(y)
(
`(x)− y

)
ρ(dx dy)

)
λ,

where ρ̂ is the measure de}ned by (7.15).

For convenience, we set

I :=

∫∫ (
`(x)− y

)>∇2Φ(y)
(
`(x)− y

)
ρ(dx dy), (7.16)

so the claim of the proposition reads

H(ρ|ρ̂) 6 CLS
2

(D + 2I)λ.

Proof of Proposition 7.25. Let gε be the Gaussian kernel in D dimensions:

gε(y) = (2πε)−D/2 exp
(
−|y|

2

2ε

)
.

We de}ne the partial convolution ρε = ρ ?y g
ε, and according to (7.13), it solves

the non-degenerate elliptic equation

1

2
∆xρ

ε −∇x ·
(
βε(y, x)ρε

)
− `(x) · ∇yρ

ε + λε∆yρ
ε + λ∇y · (yρε) = 0, (7.17)

where βε is de}ned by
βε =

(βρ) ?y g
ε

ρε
.

Indeed, we have

(yρ) ?y g
ε =

∫
y′ρ(x′, y′)gε(y − y′) dy′

=

∫
(y′ − y + y)ρ(x′, y′)gε(y − y′) dy′

= ε

∫
ρ(x′, y′)∇yg

ε(y − y′) dy′ + yρε

= ε∇yρ
ε + yρε.

Thus,
(
∇y · (yρ)

)
?y g

ε = ∇y ·
(
(yρ) ?y g

ε
)
= ε∆yρ

ε +∇y · (yρε). By [22, Lemma
3.1.1], we have ‖βε‖L2(ρε) 6 ‖β‖L2(ρ) <∞. Then we can apply [22, Theorem 3.1.2]
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to (7.17) and obtain that ρε ∈W 1,1(Rd+D) and satis}es

1

2

∫∫ |∇xρ
ε|2

ρε
+ λε

∫∫ |∇yρ
ε|2

ρε

=

∫∫
∇xρ

ε · βε + λ

∫∫
∇yρ

ε · `− λ
∫∫
∇yρ

ε · y.

As the function ` depends only on the x argument, for the second term we have
∫∫
∇yρ

ε · ` =
∫ (∫

∇yρ
ε(x, y)dy

)
`(x) dx =

∫
0 · `(x) dx = 0.

where the }rst equality is due to Fubini and the second to the fact that ∇ρε ∈
L1
x(L

1
y). For the last term, similarly, since the function

(
(x, y) 7→ ρε(x, y)y

)
∈W 1,1,

we have
∫∫
∇y · (ρεy) = 0 and therefore,

−
∫∫
∇yρ

ε · y =

∫∫
(∇y · y)ρε = D.

That is to say, we have established
1

2

∫∫ |∇xρ
ε|2

ρε
+ λε

∫∫ |∇yρ
ε|2

ρε
=

∫∫
∇xρ

ε · βε + λD. (7.18)

This equality implies a uniform-in-ε bound on
∫∫
|∇xρ

ε|2/ρε by Cauchy–Schwarz.
Using a sequence of functions in C∞c approaching V (y, x) in (7.13), we also get
∫∫

1

2
β · ∇xρ

ε −
∫∫

λε∇yV · ∇yρ
ε −

∫∫
β · βερε

+

∫∫
λ∇yV (y, x) ·

(
`(x)− y

)
ρε(dx dy) = 0. (7.19)

The second term of (7.19) is upper bounded by

λε

∫∫
|∇yV · ∇yρ

ε| 6 λε‖∇yV ‖L2(ρε)

(∫∫ |∇yρ
ε|2

ρε

)1/2

6
√
λε‖∇yV ‖L2(ρε)

√
1

2

∫∫ |∇xρε|2
ρε

+
1

2
‖βε‖2

L2(ρε) + λD,

where the second inequality is due to (7.18). Using the uniform-in-ε bound of∫∫
|∇xρ

ε|2/ρε, we obtain that the second term of (7.19) converges to 0 when ε→ 0.
The third term of (7.19) satis}es

∫∫
β · βερε =

∫∫
β ·
(
(βρ) ? gε

)
=

∫∫
(β ? gε) · βρ→

∫∫
|β|2ρ

when ε→ 0. Hence, by (7.18) and (7.19), we have
1

2

∫∫
|∇x log ρε − 2β|2ρε(dx dy)

6 λD +

∫∫
∇xρ

ε · βε +

∫∫
β · ∇xρ

ε − 2

∫∫
∇xρ

ε · β

+ 2λ

∫∫
∇yV (y, x) ·

(
`(x)− y

)
ρε(dx dy) + o(1)

= λD + 2λ

∫∫
∇yV (y, x) ·

(
`(x)− y

)
ρε(dx dy) + o(1),
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where the last equality is due to the fact that
∣∣∣∣
∫∫
∇xρ

ε · (βε − β)
∣∣∣∣ 6

(∫∫ |∇xρ
ε|2

ρε

)1/2(∫∫
|β − βε|2ρε

)1/2

and
∫∫
|β − βε|2ρε =

∫∫
|β|2ρε − 2

∫∫
β · βερε +

∫∫
|βε|2ρε

=

∫∫
(|β|2 ?y gε)ρ− 2

∫∫
(β ?y g

ε) · βρ+
∫∫
|βε|2ρε → 0,

when ε→ 0 by previous arguments and [22, Lemma 3.1.1]. We also have
∫∫
∇yV (y, x) ·

(
`(x)− y

)
ρε(dx dy) =

∫∫ (
∇yV (y, x) ·

(
`(x)− y

))
?y g

ερ(dx dy)

→
∫∫
∇yV (y, x) ·

(
`(x)− y

)
ρ(dx dy)

when ε→ 0. Finally, by Lemma 7.24 for the function ϕ(y) = y · ∇Φ(y)−Φ(y), we
have

∫∫
∇yV (y, x) ·

(
`(x)− y

)
ρ(dx dy)

=

∫∫
`(x)>∇2Φ(y)

(
`(x)− y

)
ρ(dx dy)

=

∫∫ (
`(x)− y

)>∇2Φ(y)
(
`(x)− y

)
ρ(dx dy) = I,

where the last equality is exactly the de}nition (7.16) of I. Thus, we have shown

1

2

∫∫ ∣∣∣∣∇x log ρ
ε(x, y)

m̂y(x)

∣∣∣∣
2

ρε(dx dy) 6 (D + 2I)λ+ o(1).

Note that by the lower semicontinuity of (partial) Fisher information,

lim inf
ε→0

∫∫ ∣∣∣∣∇x log ρ
ε(x, y)

m̂y(x)

∣∣∣∣
2

ρε(dx dy) >
∫∫ ∣∣∣∣∇x log ρ(x, y)

m̂y(x)

∣∣∣∣
2

ρ(dx dy).

We refer readers to the proof of Lemma B.1 for details. Taking the limit ε→ 0, we
obtain

1

2

∫∫ ∣∣∣∣∇x log ρ(x, y)
m̂y(x)

∣∣∣∣
2

ρ(dx dy) 6 (D + 2I)λ.

Since ρ2 is supported on K, for ρ2-almost all y ∈ RD, we have the following by the
uniform LSI for (m̂y)y∈K:

H(ρ|ρ̂) =
∫
H
(
ρ1|2(·|y)

∣∣m̂y

)
ρ2(dy) 6 CLS

4

∫∫ ∣∣∣∣∇x log ρ(x, y)
m̂y(x)

∣∣∣∣
2

ρ(dx dy),

which completes the proof.
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Remark 7.26. If we formally integrate the static Fokker–Planck equation (7.13)
with log(ρ/ρ̂) and integrate by parts, we obtain

1

2

∫∫ ∣∣∣∣∇x log ρ(x, y)
m̂y(x)

∣∣∣∣
2

ρ(dx dy) = λD + 2λ

∫∫
`(x)>∇2Φ(y)

(
`(x)− y

)
ρ(dx dy).

(7.20)
However, the equality must not hold in all circumstances. Indeed, if one arti}cially
increases the dimension of ` and Φ by de}ning the new functions

Φ̃(y0, y1) = Φ(y0),

˜̀(x) =
(
`(x), 0

)
,

the right hand side of (7.20) increases while the left hand side stays unchanged. This
phenomenon is caused by the fact that the equation (7.13) is degenerate elliptic and
lacks Laplacian in the y directions. To illustrate this ezect, consider the }rst-order
equation

∇y · (yρ) = 0

in d dimensions. This equation has a probability solution ρ = δ0, the Dirac mass at
the origin. Formally integrating the equation with log ρ and integrating by parts,
we have

0 =

∫
log ρ∇y · (yρ) = −

∫ ∇yρ

ρ
· yρ = −

∫
∇yρ · y =

∫
ρ∇y · y =

∫
ρd = d,

which is absurd.
To complete the entropy estimate, we provide in the following upper bounds for

the integral I.

Proposition 7.27. Under the setting of the theorem, the integral I in (7.16) sat-
is}es the upper bound:

I 6 12M2

(
dCLS + 2W 2

2

(
Law(X),m∗

))
, (7.21)

where X is the }rst component of the random variable (X,m) following the station-
ary distribution P = Pλ, and m∗ is the unique invariant measure of the McKean–
Vlasov process (7.1). If additionally ∇2Φ is convex and the quantity

M1 := sup
x∈Rd,y∈RD

`(x)>∇2Φ(y)`(x)

is }nite, then we have the alternative upper bound:

I 6M1. (7.22)

Proof of Proposition 7.27. First let us treat the simpler case where M1 < ∞. By
applying Lemma 7.24 to the function ϕ(y) = y · ∇Φ(y)− Φ(y), we get

I =

∫∫ (
`(x)>∇2Φ(y)`(x)− y>∇2Φ(y)y

)
ρ(dx dy)

6

∫∫
`(x)>∇2Φ(y)`(x)ρ(dx dy) 6M1.
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So the second claim of the proposition is proved.
Without the assumption M1 <∞, we note that, for the second-order functional

derivative
δ2F

δm2
(m,x′, x′′) = `(x′′)>∇2Φ(〈`,m〉)`(x),

we have
I = E

[∫∫
δ2F

δm2
(m,x′, x′′)(δX −m)(dx′)(δX −m)(dx′′)

]
,

where (X,m) is a random variable following the stationary distribution P , and
(X, 〈`,m〉) has the distribution ρ. We observe

∣∣D2
mF (m,x

′, x′′)
∣∣ =

∣∣∣∣∇x′∇x′′

δ2F

δm2
(m,x′, x′′)

∣∣∣∣
=
∣∣∇`(x′′)>∇2Φ(〈`,m〉)∇`(x′)

∣∣ 6M2.

Then, by applying Lemma D.1 in Appendix D.1 to a sequence of C2 functions
approaching (x′, x′′) 7→ δ2F

δm2 (m,x
′, x′′), we get

I 6M2 E
[
W 2

2 (δX ,m)
]

=M2 E

[∫
|X − x′|2m(dx′)

]

6 2M2 E

[
|X − E[X]|2 +

∫
|x′ − E[X]|2m(dx′)

]
.

Let φ : P2(R
d)→ R be the functional de}ned by

φ(m) =

∫
|x′ − E[X]|2m(dx′).

We consider the sequence of C1b “soft cut-ozs” that approach φ:

φn(m) =

d∑

i=1

∫
n2 tanh2

(
x′i − E[Xi]

n

)
m(dx′), for n ∈ N.

Then, by applying the sequence φn to Proposition 7.23 of stationary measure and
taking the limit n→∞, we get

0 = λE

[∫
δφ

δm
(m,x′)(δX −m)(dx′)

]

= λE
[
|X − E[X]|2

]
− λE

[∫
|x′ − E[X]|2m(dx′)

]
.

Thus, we have derived

I 6 4M2 E
[
|X − E[X]|2

]
=: 4M2 VarX,

where VarX denotes the sum of the variances of each component of the random
vector X. It remains only to }nd an upper bound for VarX. Note that, using
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the de}nition of Wasserstein distance and the triangle inequality, and letting X∗
be distributed as m∗, we get

VarX =W 2
2

(
Law(X), δE[X]

)

6 3
(
W 2

2

(
Law(X),m∗

)
+W 2

2

(
m∗, δE[X∗]

)
+W 2

2

(
δE[X∗], δE[X]

))

6 3
(

VarX∗ + 2W 2
2

(
Law(X),m∗

))
,

while the variance of X∗ is upper bounded by the Poincaré inequality:

VarX∗ =
d∑

i=1

(∫
|xi|2m∗(dx)−

(∫
xim∗(dx)

)2)

6 CLS

d∑

i=1

∫
|∇xi|2m∗(dx) = CLSd.

We then conclude by combining the three inequalities above.

7.6.3 Construction of another measure
In this subsection, we construct another measure in order to exploit the convexity
of Φ, used for the proof of the }rst and second claims of the theorem. Readers
only interested in the last claim of the theorem can now directly go to the next
subsection.

Let µ = µλ be the probability measure on Rd×RD characterized by the following
formula:

〈f, µ〉 =
∫
f(x, y)µ(dx dy)

= E

[∫
f(x, 〈`,m〉)m(dx)

]
= E

[∫
f(x, Y )m(dx)

]
(7.23)

for all bounded and measurable f : Rd×RD → R. By taking f depending only on
the y variable, we }rst realize that the second marginals of ρ and µ agree, that is,

ρ2 = µ2.

In addition, we show the following important properties of µ.

Proposition 7.28. Under the setting of the theorem, for every C2 dizerentiable
Ψ : RD → R with bounded Hessian, we have

∫∫
∇Ψ(y) · `(x)(µ− ρ)(dx dy) = 0.

In particular, the respective }rst marginals µ1, ρ1 of µ, ρ satisfy
∫
`(x)(µ1 − ρ1)(dx) = 0.

Moreover, denoting by µ1|2(·|·) : B(Rd) × RD → R the conditional measure of µ
given its second variable, we have for ρ2-almost all y ∈ RD,

〈
`, µ1|2(·|y)

〉
= y.
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Proof of Proposition 7.28. Consider the functional

φ(m) =

∫
f(x′, 〈k,m〉)m(dx′),

where f ∈ C1b(Rd ×RD;R) and k ∈ Cb(R
d;RD). Then its linear functional deriva-

tive reads

δφ

δm
(m,x′) = f(x′, 〈k,m〉) +

∫
∇yf(x

′′, 〈k,m〉) · k(x′)m(dx′′),

so φ belongs to the C1b class. Then, applying Proposition 7.23 to the functional φ,
we get

0 = E

[∫
δφ

δm
(m,x′)(δX −m)(dx′)

]

= E[f(X,m)]− E

[∫
f(x′, 〈k,m〉)m(dx′)

]

+ E

[∫
∇yf(x

′, 〈k,m〉) ·
(
k(X)− 〈k,m〉

)
m(dx′)

]

By approximation, the equality above holds for k = ` and for all C1-continuous f
with the following growth bounds:

|f(x, y)| 6M(1 + |x|4 + |y|2),
|∇yf(x, y)| 6M(1 + |x|2 + |y|),

that is to say, we have

〈f, ρ− µ〉+ E

[∫
∇yf(x

′, Y )
(
`(X)− Y

)
m(dx′)

]
= 0,

where, as before, Y = 〈`,m〉. Specializing to f(x, y) = ∇Ψ(y) · `(x), we obtain

〈f, µ− ρ〉 = E

[∫
`(x)>∇2Ψ(Y )

(
`(X)− Y

)
m(dx)

]

= E
[
Y >∇2Ψ(Y )

(
`(X)− Y

)]
= 0,

where the last equality is due to Lemma 7.24, as for ϕ(y) := ∇Ψ(y) · y − Ψ(y),
we have ∇ϕ(y) = ∇2Ψ(y)y. So the }rst claim is proved. Taking Ψ(y) = yν , for
ν = 1, . . . , D, yields the second claim.

For the last claim, we take f(x, y) = `(x)g(y) for g : RD → R of linear growth
in the de}ning equation (7.23) of µ. Then, we get
∫
g(y)

(∫
`(x)µ1|2(dx|y)

)
µ2(dy) =

∫∫
f(x, y)µ(dx dy) = E[Y g(Y )]

=

∫
g(y)yµ2(dy).

The desired property follows from the arbitrariness of g.
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7.6.4 Proving the theorem
Having established the entropy estimate and constructed the auxiliary measure, we
}nally move to the central part of the proof, which consists of six steps. The aim
of the }rst }ve steps is to show the }rst and the second claims of the theorem, and
in the last step we prove the last claim.
Step 1: Control of the symmetrized entropy. We aim at controlling the symmetrized
entropy ∫ (

H(m̂y|m∗) +H(m∗|m̂y)
)
ρ2(dy)

in this step. First observe
∫ (

H(m̂y|m∗) +H(m∗|m̂y)
)
ρ2(dy)

= 2

∫∫ (
V (y∗, x)− V (y, x)

)(
m̂y(dx)−m∗(dx)

)
ρ2(dy). (7.24)

In order to control the right hand side above, we turn to the probability measure
µ introduced in (7.23). Recall that m∗ is the invariant measure of the McKean–
Vlasov (7.1), and y∗ := 〈`,m∗〉. The convexity of Φ implies the convexity of F
as a functional, and as a result, for ρ2-almost all y ∈ RD, we have the tangent
inequalities
∫
V
(〈
`, µ1|2(·|y)

〉
, x
)(
µ1|2(dx|y)−m∗(dx)

)

> F
(
µ1|2(·|y)

)
−F (m∗)

>

∫
V (y∗, x)

(
µ1|2(dx|y)−m∗(dx)

)
. (7.25)

Thanks to the last claim of Proposition 7.28, the leftmost term satis}es, for ρ2-
almost all y ∈ RD,
∫
V
(〈
`, µ1|2(·|y)

〉
, x
)(
µ1|2(dx|y)−m∗(dx)

)
=

∫
V (y, x)

(
µ1|2(dx|y)−m∗(dx)

)
.

Hence, integrating the tangent inequalities (7.25) above by ρ2, we get
∫∫

V (y, x)
(
µ1|2(dx|y)−m∗(dx)

)
ρ2(dy)

>

∫∫
V (y∗, x)

(
µ1|2(dx|y)−m∗(dx)

)
ρ2(dy). (7.26)

Using µ2 = ρ2 and applying Proposition 7.28 to V (y, x) = ∇Φ(y) · `(x), we know
that the left hand side of (7.26) satis}es

∫∫
V (y, x)

(
µ1|2(dx|y)−m∗(dx)

)
ρ2(dy)

=

∫∫
V (y, x)µ(dx dy)−

∫∫
V (y, x)m∗(dx)ρ2(dy)

=

∫∫
V (y, x)ρ(dx dy)−

∫∫
V (y, x)m∗(dx)ρ2(dy)

=

∫∫
V (y, x)

(
ρ1|2(dx|y)−m∗(dx)

)
ρ2(dy).
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The right hand side of (7.26) satis}es
∫∫

V (y∗, x)
(
µ1|2(dx|y)−m∗(dx)

)
ρ2(dy)

=

∫∫
V (y∗, x)µ(dx dy)−

∫∫
V (y∗, x)m∗(dx)

= ∇Φ(y∗) ·
∫
`(x)

(
µ1(dx)−m∗(dx)

)

= ∇Φ(y∗) ·
∫
`(x)

(
ρ1(dx)−m∗(dx)

)

=

∫∫
V (y∗, x)

(
ρ1|2(dx|y)−m∗(dx)

)
ρ2(dy),

where the third equality is due to the last claim of Proposition 7.28. Thus, we have
derived ∫∫ (

V (y, x)− V (y∗, x)
)(
ρ1|2(dx|y)−m∗(dx)

)
ρ2(dy) > 0. (7.27)

Therefore, to dominate the right hand side of (7.24), it remains to control the
following term. Using the Kantorovich duality, we get
∣∣∣∣
∫∫ (

V (y, x)− V (y∗, x)
)(
ρ1|2(dx|y)− m̂y(dx)

)
ρ2(dy)

∣∣∣∣

=

∣∣∣∣
∫ (
∇Φ(y)−∇Φ(y∗)

)
·
〈
`, ρ1|2(·|y)− m̂y

〉
ρ2(dy)

∣∣∣∣

=

∣∣∣∣
∫∫ 1

0

(y − y∗)>∇2Φ
(
(1− t)y + ty∗

)〈
`, ρ1|2(·|y)− m̂y

〉
dt ρ2(dy)

∣∣∣∣

6

(∫∫ 1

0

(y − y∗)>∇2Φ
(
(1− t)y + ty∗

)
(y − y∗) dt ρ2(dy)

)1/2

×
(∫∫ 1

0

∣∣∣
〈
∇2Φ

(
(1− t)y + ty∗

)1/2
`, ρ1|2(·|y)− m̂y

〉∣∣∣
2

dt ρ2(dy)
)1/2

6

(∫∫ 1

0

(y − y∗)>∇2Φ
(
(1− t)y + ty∗

)
(y − y∗) dt ρ2(dy)

)1/2

×
√
M2

(∫
W 2

1

(
ρ1|2(·|y), m̂y

)
ρ2(dy)

)1/2

=:
√
M2v(ρ2)

(∫
W 2

1

(
ρ1|2(·|y), m̂y

)
ρ2(dy)

)1/2
,

where, by Assumption 7.14,
∣∣∇2Φ(y′)1/2∇`(x)

∣∣ 6 √M2 for all x ∈ Rd, y′ ∈ RD,
and v(ρ2) is the quantity to be controlled in the }rst claim of the theorem. The
uniform LSI for (m̂y)y∈K implies a uniform Talagrand’s transport inequality, from
which we obtain

∫
W 2

1

(
ρ1|2(·|y), m̂y

)
ρ2(dy) 6

∫
W 2

2

(
ρ1|2(·|y), m̂y

)
ρ2(dy)

6 CLS

∫
H
(
ρ1|2(·|y)

∣∣m̂y

)
ρ2(dy) = CLSH(ρ|ρ̂),



7.6 Proof of Theorem 7.16 307

as ρ2 is supported on K. Combining the two inequalities above with (7.24) and
(7.27), we obtain

∫ (
H(m̂y|m∗) +H(m∗|m̂y)

)
ρ2(dy) 6 2

√
M2CLSv(ρ2)H(ρ|ρ̂). (7.28)

Step 2: Control of the conditional Wasserstein distance. Now, using again the
Talagrand’s transport inequality for m̂y and m∗ (note that m∗ = m̂y∗

for y∗ =
〈`,m∗〉), we get for ρ2-almost all y ∈ RD,

W 2
2 (m̂y,m∗) 6

CLS
2

(
H(m̂y|m∗) +H(m∗|m̂y)

)
,

while the triangle inequality and the transport inequality imply

W 2
2

(
ρ1|2(·|y),m∗

)
6 2
(
W 2

2

(
ρ1|2(·|y), m̂y

)
+W 2

2 (m̂y,m∗)
)

6 2CLSH
(
ρ1|2(·|y), m̂y

)
+ 2W 2

2 (m̂y,m∗).

So, combining the three inequalities above and integrating with ρ2, we }nd
∫
W 2

2

(
ρ1|2(·|y),m∗

)
ρ2(dy) 6 2CLSH(ρ|ρ̂) + 2

√
M2C

3
LSv(ρ

2)H(ρ|ρ̂). (7.29)

Step 3: Control of v(ρ2) by H(ρ|ρ̂). Applying Proposition 7.28 to the function
Ψ(y) = Φ(y)−∇Φ(y∗) · y, where, as we recall, y∗ = 〈`,m∗〉, we get

0 =

∫∫
∇Ψ(y) · `(x)(µ− ρ)(dx dy)

=

∫∫ (
∇Φ(y)−∇Φ(y∗)

)
· `(x)(µ− ρ)(dx dy)

=

∫∫ 1

0

(y − y∗)>∇2Φ
(
(1− t)y + ty∗

)〈
`, µ1|2(·|y)− ρ1|2(·|y)

〉
dt ρ2(dy)

=

∫∫ 1

0

(y − y∗)>∇2Φ
(
(1− t)y + ty∗

)(
y −

〈
`, ρ1|2(·|y)

〉)
dt ρ2(dy),

where the last equality is due to the last claim of Proposition 7.28. In other words,
we have
∫∫ 1

0

(y − y∗)>∇2Φ
(
(1− t)y + ty∗

)
(y − y∗) dt ρ2(dy)

=

∫∫ 1

0

(y − y∗)>∇2Φ
(
(1− t)y + ty∗

)〈
`, ρ1|2(·|y)−m∗

〉
dt ρ2(dy),

and this implies, by Cauchy–Schwarz,
∫∫ 1

0

(y − y∗)>∇2Φ
(
(1− t)y + ty∗

)
(y − y∗) dt ρ2(dy)

6

∫∫ 1

0

〈
`, ρ1|2(·|y)−m∗

〉>∇2Φ
(
(1− t)y + ty∗

)〈
`, ρ1|2(·|y)−m∗

〉
dt ρ2(dy)

=

∫∫ 1

0

∣∣∣
〈
∇2Φ

(
(1− t)y + ty∗

)1/2
`, ρ1|2(·|y)−m∗

〉∣∣∣
2

dt ρ2(dy).
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As
∣∣∇2Φ(y′)1/2∇`(x)

∣∣ 6
√
M2 for all y′ ∈ RD and x ∈ Rd, we have, by the

Kantorovich duality,

v(ρ2) =

∫∫ 1

0

(y − y∗)>∇2Φ
(
(1− t)y + ty∗

)
(y − y∗) dt ρ2(dy)

6M2

∫
W 2

1

(
ρ1|2(·|y),m∗

)
ρ2(dy). (7.30)

Thus, using the fact that W1 6W2 and the inequality (7.29), we obtain

v(ρ2) 6 2M2CLSH(ρ|ρ̂) + 2
√
M3

2C
3
LSv(ρ

2)H(ρ|ρ̂).

Introduce the “adimensionalized” variable

υ =
v(ρ2)

4M3
2C

3
LSH(ρ|ρ̂) .

Then the inequality above reads

υ 6
1

2M2
2C

2
LS

+
√
υ 6

1

2M2
2C

2
LS

+
1

2
+

1

2
υ.

Hence, we get
v(ρ2) 6 4M2CLS

(
M2

2C
2
LS + 1

)
H(ρ|ρ̂). (7.31)

Step 4: Control of Wasserstein and TV distances by H(ρ|ρ̂). By inserting (7.31)
into (7.29), and noting, by the de}nition of the Wasserstein distance,

W 2
2 (ρ

1,m∗) 6
∫
W 2

2

(
ρ1|2(·|y),m∗

)
ρ2(dy),

we get
W 2

2 (ρ
1,m∗) 6

(
2CLS + 4M2C

2
LS
(
M2

2C
2
LS + 1

)1/2)
H(ρ|ρ̂). (7.32)

For the total variation distance, we observe that the Csiszár–Kullback–Pinsker
inequality implies

∫ ∥∥ρ1|2(·|y)− m̂y

∥∥2
TVρ

2(dy) 6 2H(ρ|ρ̂),
∫
‖m̂y −m∗‖2TVρ

2(dy) 6
∫ (

H(m̂y|m∗) +H(m∗|m̂y)
)
ρ2(dy).

By the triangle and Jensen’s inequalities, we get

‖ρ1 −m∗‖2TV 6

∫ ∥∥ρ1|2(·|y)−m∗
∥∥2

TVρ
2(dy)

6 2

∫ (∥∥ρ1|2(·|y)− m̂y

∥∥2
TV + ‖m̂y −m∗‖2TV

)
ρ2(dy)

6 4H(ρ|ρ̂) + 2

∫ (
H(m̂y|m∗) +H(m∗|m̂y)

)
ρ2(dy).

Then, by inserting (7.31) into (7.28), we get

‖ρ1 −m∗‖2TV 6
(
4 + 8M2CLS

(
M2

2C
2
LS + 1

)1/2)
H(ρ|ρ̂). (7.33)
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Step 5: Control of H(ρ|ρ̂) and conclusion for the convex case. In the case where

M1 := sup
x∈Rd,y∈RD

`(x)>∇2Φ(y)`(x) <∞,

by Proposition 7.25 and (7.22) in Proposition 7.27, we immediately get

H(ρ|ρ̂) 6 CLS
2

(D + 2M1)λ = H ′.

In the general case where M1 is not necessarily }nite, Proposition 7.25 and
(7.21) in Proposition 7.27 yield

H(ρ|ρ̂) 6 CLS
2

(D + 24M2CLSd)λ+ 24M2CLSW
2
2 (ρ

1,m∗)λ.

Together with the upper bound (7.32) of W 2
2 (ρ

1,m∗), we get

H(ρ|ρ̂) 6 CLS(D + 24M2CLSd)λ

2− 96M2C
2
LS

(
1 + 2M2CLS

(
M2

2C
2
LS + 1

)1/2)
λ
= H,

for
λ <

1

48M2C
2
LS

(
1 + 2M2CLS

(
M2

2C
2
LS + 1

)1/2) = λ0.

We obtain the desired estimates on v(ρ2), Wasserstein and TV distances, by insert-
ing the upper bounds of H(ρ|ρ̂) for the respective cases into (7.31), (7.32), (7.33).

Now we work with a concave Φ and prove the last claim of the theorem.

Step 6: Case of concave Φ. Observe }rst that the mapping y 7→ ∇2Φ(y) · ŷ is a
gradient:

∇2Φ(y) · ŷ = ∇2Φ(y) ·
∫
`(x) exp

(
−2∇Φ(y) · `(x)

)
dx∫

exp
(
−2∇Φ(y) · `(x)

)
dx

= −1

2
∇y

(
log
∫

exp
(
−2∇Φ(y) · `(x)

)
dx
)
.

This identity is analogous to the fact in thermodynamics that when we derive the
free energy with respect to a variable, we get the statistical average of its response
variable. Moreover,

∇2Φ(y) · y = ∇y

(
∇Φ(y) · y − Φ(y)

)
.

Thus, taking the test function

ϕ(y) = −1

2
log
∫

exp
(
−2∇Φ(y) · `(x)

)
dx−∇Φ(y) · y +Φ(y)

in Lemma 7.24, we get
∫∫ (

`(x)− y
)>∇2Φ(y)(ŷ − y)ρ(dx dy) = 0.
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Consequently,

−
∫∫

(ŷ − y)>∇2Φ(y)(ŷ − y)ρ(dx dy)

= −
∫∫ (

ŷ − `(x)
)>∇2Φ(y)(ŷ − y)ρ(dx dy)

=

∫ 〈(
−∇2Φ(y)

)1/2
`, m̂y − ρ1|2(·|y)

〉
·
(
−∇2Φ(y)

)1/2
(ŷ − y)ρ2(dy)

6

(
−
∫
(ŷ − y)>∇2Φ(y)(ŷ − y)ρ2(dy)

)1/2

×
(∫ ∣∣∣

〈(
−∇2Φ(y)

)1/2
`, m̂y − ρ1|2(·|y)

〉∣∣∣
2

ρ2(dy)
)1/2

,

which implies that

−
∫

(ŷ − y)>∇2Φ(y)(ŷ − y)ρ2(dy) 6
∫ ∣∣∣
〈(
−∇2Φ(y)

)1/2
`, m̂y − ρ1|2(·|y)

〉∣∣∣
2

ρ2(dy).

The term on the right satis}es
∫ ∣∣∣
〈(
−∇2Φ(y)

)1/2
`, m̂y − ρ1|2(·|y)

〉∣∣∣
2

ρ2(dy) 6M2

∫
W 2

1

(
m̂y, ρ

1|2(·|y)
)
ρ2(dy)

6M2CLS

∫
H
(
ρ1|2(·|y)

∣∣m̂y

)
ρ2(dy)

by the uniform LSI for (m̂y)y∈K. The entropy estimate in Proposition 7.25 gives
∫
H
(
ρ1|2(·|y)

∣∣m̂y

)
ρ2(dy) 6 CLS

2
(D + 2I)λ 6

CLSDλ

2
,

as in the case of concave Φ, the term I 6 0 by its de}nition (7.16).



Chapter 8

Mean }eld optimization
problem regularized by
Fisher information

Abstract. Recently there is a rising interest in the research of mean }eld optimiza-
tion, in particular because of its role in analyzing the training of neural networks.
In this paper by adding the Fisher Information as the regularizer, we relate the
regularized mean }eld optimization problem to a so-called mean }eld Schrödinger
(MFS for short) dynamics. We develop an energy-dissipation method to show that
the marginal distributions of the MFS dynamics converge exponentially quickly to-
wards the unique minimizer of the regularized optimization problem. Remarkably,
the MFS dynamics is proved to be a gradient ~ow on the probability measure space
with respect to the relative entropy. Finally we propose a Monte Carlo method to
sample the marginal distributions of the MFS dynamics.

Based on joint work with Julien Claisse, Giovanni Conforti and Zhenjie Ren.

8.1 Introduction
Recently the mean }eld optimization problem, namely

inf
p∈P

F(p), for a function F : P → R, where P is a set of probability measures,

attracts increasing attention, in particular because of its role in analysing the train-
ing of arti}cial neural networks. The universal representation theorem (see e.g.
[115]) ensures that a given continous function f : Rd → R can be approximated by
the parametric form:

f(x) ≈
N∑

i=1

ciϕ(ai · x+ bi), with ci ∈ R, ai ∈ Rd, bi ∈ R for 1 6 i 6 N,

where ϕ is a }xed non-constant, bounded, continuous activation function. This
particular parametrization is called a two-layer neural network (with one hidden

311



312 Chapter 8: Mean }eld optimization regularized by Fisher information

layer). In order to train the optimal parameters, one needs to solve the optimization
problem

inf
(ci,ai,bi)16i6N

M∑

j=1

L
(
f(xj),

N∑

i=1

ciϕ(ai · xj + bi)
)
,

where L : (y, z) 7→ L(y, z) is a loss function, typically convex in z. Here we face
an overparametrized, non-convex optimization, and have no theory for an e{cient
solution. However it has been recently observed (see e.g. [162, 117, 57, 128]) that
by lifting the optimization problem to the space of probability measures, namely

inf
p∈P

M∑

j=1

L
(
f(xj),E

p[Cϕ(A · x+B)]
)
,

with random variables (C,A,B) taking values in R×Rd ×R following the distri-
bution p, one makes the optimization convex (notice that the function F : p 7→∑M

j=1 L
(
f(xj),E

p[Cϕ(A · x + B)]
)

is convex), and has extensive tools to }nd the
minimizers.

Unlike in [57] where the authors address the mean }eld optimization directly, in
[162, 117] the authors add the entropy regularizer H(p) :=

∫
p(x) log p(x) dx, that

is, they aim at solving the regularized optimization problem:mfo}sher-

inf
p∈P

F (p) +
σ2

2
H(p). (8.1)

Recall the de}nition of the linear derivative δF/δp and the intrinsic derivative DpF

(see Remark 8.2 below) for functions on the space of probability measures. In [117]
the authors introduce the mean }eld Langevin (MFL for short) dynamics:

dXt = −DpF (pt, Xt) dt+ σ dWt,

where pt = Law(Xt) and W is a standard Brownian motion, and prove that the
marginal laws (pt)t>0 of the MFL dynamics converge towards the minimizer of the
entropic regularization (8.1). In the following works [178, 56] it has been shown
that the convergence is exponentially quick.

In this paper we try to look into the mean }eld optimization problem from an-
other perspective, by adding the Fisher information I(p) :=

∫
|∇ log p(x)|2p(x) dx

instead of the entropy as the regularizer, namely solving the regularized optimiza-
tion

inf
p∈P

Fσ(p), Fσ(p) := F (p) +
σ2

4
I(p).

By convexity and calculus of variations (see Theorem 8.28), it is not hard to see
that p∗ ∈ argminp∈P Fσ(p) if

δFσ

δp
(p∗, x) :=

δF

δp
(p∗, x)− σ2

4
(2∆ log p∗ + |∇ log p∗|2) = constant. (8.2)

We shall introduce the mean }eld Schrödinger (MFS for short) dynamics:

∂tpt = −
δFσ

δp
(pt, ·)pt,
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prove its wellposedness and show that its marginal distributions (pt)t>0 converges
(uniformly) towards the minimizer of the free energy function Fσ. One crucial
observation is that the free energy function decays along the MFS dynamics:

dFσ(pt)

dt = −
∫ ∣∣∣∣

δFσ

δp
(pt, x)

∣∣∣∣
2

pt(dx).

In order to prove it rigorously, we develop a probabilistic argument (coupling of dif-
fusions) to estimate (∇ log pt,∇2 log pt)t>0. Remarkably, the estimate we obtain is
uniform in time. Using the energy dissipation we can show that (pt)t>0 converges
exponentially quickly with help of the convexity of F and the Poincaré inequal-
ity. Another main contribution of this paper is to show that the MFS dynamics
is a gradient ~ow of the free energy function Fσ on the space of probability mea-
sures, provided that the ‘distance’ between the probability measures is measured
by relative entropy. Finally it is noteworthy that MFS dynamics is numerically
implementable, and we shall brie~y propose a Monte Carlo simulation method.

Related works. Assume F to be linear, i.e. F (p) :=
∫
f(x)p(dx) with a real po-

tential function f and denote the wave function by ψ :=
√
p. Then the function Fσ

reduces to the conventional energy function in quantum mechanics, composed of the
potential energy 〈ψ, fψ〉L2 and the kinetic energy σ2〈∇ψ,∇ψ〉L2 . Meanwhile, the
MFS dynamics is reduced to the semigroup generated by the Schrödinger operator:

∂tψ = −Hψ, with H := −σ
2

2
∆ +

1

2
f. (8.3)

The properties of the classical Schrödinger operator, including its longtime behav-
ior, have been extensively studied in the literature, see e.g. the monographs [190,
151]. There are also profound studies in cases where F is nonlinear, notably the
density functional theory [87, 88]. However, to our knowledge there is no literature
dedicated to the category of convex potential F : P → R, and studying the long-
time behavior of such nonlinear Schrödinger operator by exploiting the convexity.
In addition, the probabilistic nature of our arguments seems novel.

Using the change of variable: u := − log p∗, the }rst order equation (8.2) can be
rewritten as

σ2

2
∆u− σ2

4
|∇u|2 + δF

δp
(p∗, x) = constant.

So the function u solves an ergodic Hamilton-Jacobi-Bellman equation, and its gra-
dient ∇u is the optimal control for the ergodic stochastic control problem:mfo}sher-

lim
T→∞

1

T
sup
α

E

[∫ T

0

(
1

2
|αt|2 +

2

σ2

δF

δp
(p∗, Xα

t )

)
dt
]
,

where

dXα
t = αt dt+

√
2dWt.

Further note that the probability p∗ = e−u coincides with the invariant measure
of the optimal controlled dizusion: dX∗

t = −∇u(X∗
t ) dt +

√
2dWt, so that p∗ is

the Nash equilibrium of the corresponding ergodic mean }eld game. For more
details on the ergodic mean }eld game, we refer to the seminal paper [143], and
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for more general mean }eld games we refer to the recent monographs [37, 38]. Our
convergence result of the MFS dynamics (pt)t>0 towards p∗ ozers an approximation
to the equilibrium of the ergodic mean }eld game.

Our result on the gradient ~ow, as far as we know, is new to the literature. It is
well known to the community of computational physics that the normalized solution
(ψt)t>0 to the imaginary time Schrödinger equation (8.3) is the gradient ~ow of
the free energy Fσ on the L2-unit ball. On the other hand, in [202] the authors
discuss the (linear) optimization problem without Fisher information regularizer,
and formally show that the dynamics, ∂tp = −fp, is the gradient ~ow of the
potential functional

∫
fdp on the space of probability measures provided that the

distance between the measures are measured by the relative entropy. Inspired by
these works, we prove in the current paper that the solution to the variational
problem

phi+1 := argmin
p∈P

{Fσ(p) + h−1H(p|phi )}, for h > 0, i > 0,

converges to the continuous-time ~ow of the MFS dynamics as h→ 0. This result
can be viewed as a counterpart of seminal paper [126] on the Wasserstein-2 gradient
~ow.

The rest of the paper is organized as follows. In Section 8.2 we formulate
the problem and state the main results of the paper. The proofs are postponed
to the subsequent sections. In Section 8.3, we show that the MFS dynamic is
well-de}ned and admits an important decomposition as the exponential of a sum
of a convex and a Lipschitz function. Then we study the long time behavior of
this dynamic in Section 8.4 and we prove that it converges exponentially fast to
the unique minimizer of the mean }eld optimization problem regularized by Fisher
information. Finally we establish in Section 8.5 that the MFS dynamic corresponds
to the gradient ~ow with respect to the relative entropy. Some technical results
including a re}ned re~ection coupling result are also gathered in the appendices.

Notations. (i) For each T > 0, we denote by QT = (0, T ]×Rd, Q̄T = [0, T ]×Rd

and by Cn(QT ) the set of functions f such that ∂kt∇mf is continuous on QT for
2k + m 6 n. In the case T = +∞, we simply write Q = (0,∞) × Rd, Q̄ =
[0,+∞)×Rd.

(ii) Given a measure µ on Rd, let W k,p(µ) be the Sobolev space of functions
f : Rd → R such f ∈ Lp(µ) and ∇lf ∈ Lp(µ) for all l 6 p. In particular, we denote
H1(µ) :=W 1,2(µ). We simply write W k,p and H1 when µ is the Lebesgue measure.

(iii) Let Pp(R
d) be the collection of distribution on Rd with }nite }rst p mo-

ments. It is equipped with Wp the Wasserstein distance of order p.
(iv) Given u : Rd → R, we consider the functional norms

‖u‖(2) := sup
x∈Rd

|u(x)|
1 + |x|2 , ‖u‖∞ := sup

x∈Rd

|u(x)|.

8.2 Main results
8.2.1 Free energy with Fisher information
Denote by P2(R

d) the set of all probability measures on Rd with }nite second
moments, endowed with W2 the Wasserstein distance of order 2. We focus on the



8.2 Main results 315

probability measures admitting densities, and denote the density of p ∈ P2(R
d)

still by p : Rd → R if it exists. In particular we are interested in the probability
measures of density satifying:

PH := {p ∈ P2(R
d) :
√
p ∈ H1}.

In this paper we study a regularized mean }eld optimization problem, namely, given
a potential function F : P2(R

d)→ R we aim at solving

inf
p∈PH

Fσ(p), with Fσ(p) := F (p) + σ2I(p), (8.4)

where σ > 0 and I is the Fisher information de}ned by

I(p) :=

∫

Rd

|∇√p(x)|2 dx. (8.5)

In the literature, Fσ is called the Ginzburg–Landau energy function with tempera-
ture σ. Note that for p ∈ PH and p > 0, it holds

4

∫

Rd

|∇√p(x)|2 dx =

∫

Rd

|∇ log p(x)|2p(x) dx.

Throughout the paper, we assume that the potential function F is smooth, convex
and coercive as stated in the following assumption.

De}nition 8.1. We say that a function F : P2(R
d) → R is C1 if there exist

δF
δp

: P2(R
d) × Rd → R continuous with quadratic growth in the second variable

such that for all p, q ∈ P2(R
d),

F (q)− F (p) =
∫ 1

0

∫

Rd

δF

δp

(
tq + (1− t)p, x

)
(q − p)(dx) dt.

Remark 8.2. Note that F ∈ C1 is W2-continuous and δF/δp is de}ned up to
constant. We call δF/δp the linear derivative and we may further de}ne the intrinsic
derivative DpF (p, x) := ∇ δF

δp
(p, x).

Assumption 8.3. Assume that F is C1, convex and

F (p) > λ

∫

Rd

|x|2p(dx) for some λ > 0.

The following proposition states that the bias caused by the regularizer vanishes
as the temperature σ → 0. It ensures that the Fisher information is e{cient as
regularizer in this mean }eld optimization problem.

Proposition 8.4. It holds

lim
σ→0

inf
p∈PH

Fσ(p) = inf
p∈P2

F (p).

Proof. Given ε > 0, let p ∈ P2 be such that F (p) < infp∈P2 F (p)+ε. By truncation
and molli}cation, de}ne pK,δ := pK ∗ ϕδ where pK := p1|x|6K/p(|x| 6 K) and
ϕδ(x) := (2πδ)−d/2 exp(−|x|2/2δ). It is clear that pK,δ converges to p in W2 as
K → ∞ and δ → 0. Additionally, one easily checks by direct computation that
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I(pK,δ) < +∞. ByW2-continuity of F , we deduce by choosing K large and δ small
enough that

inf
p∈PH

Fσ(p) 6 F (pK,δ) +
σ2

2
I(pK,δ) 6 F (p) + ε+

σ2

2
I(pK,δ)

6 inf
p∈P2

F (p) + 2ε+
σ2

2
I(pK,δ).

We conclude by taking the limit σ → 0.

For the gradient ~ow analysis of Section 8.2.3 below, we shall actually con-
sider a slightly more general mean }eld optimization problem. Namely, we aim at
minimizing the following generalized free energy function: for all p ∈ PH ,

Fσ,γ(p) := F (p) + σ2I(p) + γH(p), (8.6)

where γ > 0 and H is the entropy de}ned as

H(p) :=

∫

Rd

p(x) log p(x) dx.

By considering the limit of the rate of change
(
Fσ,γ

(
p + t(q − p)

)
− Fσ,γ(p)

)/
t as

t→ 0, a formal calculus leads to de}ne by abuse of notation

δFσ,γ

δp
(p, ·) := δF

δp
(p, ·)− σ2

2
∆ log p− σ2

4
|∇ log p|2 + γ log p− λ(p), (8.7)

where λ(p) ∈ R is chosen so that
∫

Rd

δFσ,γ

δp
(p, x)p(x) dx = 0. (8.8)

The details of this calculation can be found within the proof of Theorem 8.28 below.
Note also that equivalent formulas for δFσ,γ/δp can be obtained by observing that

∆ log p+ 1

2
|∇ log p|2 =

∆p

p
− 1

2

|∇p|2
p2

= 2
∆
√
p

√
p
.

8.2.2 Mean }eld Schrödinger dynamics
Given the de}nition in (8.7), we will consider the following generalized mean }eld
Schrödinger (MFS for short) dynamics

∂tpt = −
δFσ,γ

δp
(pt, ·)pt.

Thanks to the normalization in (8.8), the mass of pt is conserved to 1. Writing the
functional derivative explicitly, we have the following dynamics

∂tpt = −
(
δF

δp
(pt, ·)−

σ2

2
∆ log pt −

σ2

4
|∇ log pt|2 + γ log pt − λt

)
pt (8.9)

where pt = p(t, ·) and λt = λ(pt) satis}es

λt =

∫

Rd

(
δF

δp
(pt, x)−

σ2

2
∆ log pt(x)−

σ2

4
|∇ log pt(x)|2 + γ log pt(x)

)
pt(x) dx.
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In particular, the important case γ = 0 is called the MFS dynamics, namely,

∂tpt = −
δFσ

δp
(pt, ·)pt. (8.10)

Intuitively the generalized MFS dynamics follows the direction of steepest de-
scent as it moves in the opposite direction of the derivative δFσ,γ/δp. To ensure
that it is indeed converging towards a minimizer of Fσ,γ , the crucial assumption
in this paper is that the derivative δF/δp decomposes into the sum of a convex
potential and a Lipschitz perturbation as stated below.

Assumption 8.5. The linear derivative admits the decomposition δF
δp

(p, x) =

g(x) +G(p, x) where g and G(p, ·) are C2 such that

(i) g is
¯
κ-convex and has bounded Hessian, i.e.,

¯
κId 6 ∇2g 6 κ̄Id, for some κ̄ >

¯
κ.

(ii) G is W1-continuous in p and Lipschitz continuous in x, i.e., for all x, y ∈ Rd,
p ∈ P2(R

d),
|G(p, x)−G(p, y)| 6 LG|x− y|.

(iii) ∇G is Lipschitz continuous, i.e., for all x, y ∈ Rd, p, q ∈ P2(R
d),

|∇G(p, x)−∇G(q, y)| 6 LG

(
|x− y|+W1(p, q)

)
.

Assumption 8.6. The initial distribution admits the decomposition

p0(x) = exp
(
−v0(x)− w0(x)

)
,

where v0 and w0 are C1 such that

(i) v0 is
¯
η0-convex and ∇v0 is Lipschitz continuous, i.e., for all x, y ∈ Rd,

|∇v0(x)−∇v0(y)| 6 η̄0|x− y|,
(
∇v0(x)−∇v0(y)

)
· (x− y) >

¯
η0|x− y|2.

(ii) w0 and ∇w0 are both Lipschitz continuous, i.e., for all x, y ∈ Rd,

|w0(x)− w0(y)|+ |∇w0(x)−∇w0(y)| 6 L0|x− y|.

In the sequel, we assume that Assumptions 8.3, 8.5 and 8.6 hold. First we show
that the generalized MFS dynamic is well-de}ned and that it decomposes as the
exponential of a sum of a convex and a Lipschitz function. The proof is postponed
to Section 8.3.2.

Theorem 8.7. Under the assumptions above, the generalized MFS dynamics (8.9)
admits a unique positive classical solution p ∈ C3(Q)∩C(Q̄). In addition, it admits
the decomposition pt = exp(−vt − wt) where there exist

¯
η, η̄, L > 0 such that

¯
ηId 6 ∇2vt 6 η̄Id, ‖∇wt‖∞ ∨ ‖∇2wt‖∞ 6 L, ∀t > 0. (8.11)
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Then we study the long-time behaviour of the generalized MFS dynamics and
establish convergence toward the unique minimizer of the generalized free energy
function. The proof is postponed to Section 8.4.3. It essentially relies on energy
dissipation which can be derived formally as follows:

d
dtF

σ,γ(pt) =

∫

Rd

δFσ,γ

δp
(pt, x)∂tpt(x) dx = −

∫

Rd

∣∣∣∣
δFσ,γ

δp
(pt, x)

∣∣∣∣
2

pt(x) dx,

See Theorem 8.29 below for a proof. It follows that the generalized free energy
monotonously decreases along the generalized MFS dynamics (8.9). Intuitively,
the dissipation of energy only stops at the moment δFσ,γ/δp (p∗, ·) = 0. Since
Fσ,γ is (strictly) convex, it is a su{cient condition for p∗ to be the minimizer, see
Theorem 8.28 below.

Theorem 8.8. Under the assumptions above, the solution (pt)t>0 to (8.9) converges
uniformly on Rd to p∗, the unique minimizer of Fσ,γ in PH . In addition, the
optimizer p∗ satis}es (8.11) and it is a stationary solution to (8.9), i.e.,

δFσ,γ

δp
(p∗, ·) = 0. (8.12)

Remark 8.9. By Lemma 8.32 below, the family of distributions (pt)t>0 admits
uniform Gaussian bounds and thus it also converges to p∗ for the Lp-norm or the
Wp-distance for any p > 1.
Remark 8.10. In case that the function p 7→ F (p) is linear, i.e., F (p) =

∫
Rd f(x)p(dx)

with some potential f , the function Fσ is the classical energy function in quantum
mechanics composed of the potential energy F and the kinetic one

∫
Rd |∇

√
p(x)|2 dx.

Let p∗ be the minimizer of Fσ, and denote by ψ∗ :=
√
p∗ the corresponding wave

function. Then the }rst order equation (8.12) reads

−σ2∆ψ∗ + fψ∗ = cψ∗, with c = Fσ(p∗) = min
p∈PH

Fσ(p).

It is well known that c is the smallest eigenvalue of the Schrödinger operator−σ2∆+
f and that ψ∗ is the ground state of the quantum system.

Further we shall prove that the convergence for the MFS dynamics (with γ = 0)
is exponentially quick. See Section 8.4.4 below for a proof. As a byproduct, we
establish a functional inequality in Theorem 8.34 which may carry independent
interest.

Theorem 8.11. There exists a constant c(
¯
η, η̄, L, d, σ) > 0 such that

Fσ(pt)− Fσ(p∗) 6 e−ct
(
Fσ(p0)− Fσ(p∗)

)
. (8.13)

Moreover, it holds
σ2

4
I(pt|p∗) 6 e−ct

(
Fσ(p0)− Fσ(p∗)

)
,

where I(pt|p∗) :=
∫
pt|∇ log(pt/p∗)|2 is the relative Fisher information.
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8.2.3 Gradient ~ow with relative entropy
In this paper, we shall further investigate the gradient ~ow of the free energy func-
tion Fσ with respect to the relative entropy. First, given h > 0 and a distribution
p̃ satisfying Assumption 8.6, consider the variational problem:mfo}sher-

inf
p∈PH

{Fσ(p) + h−1H(p|p̃)}. (8.14)

where H(p|p̃) :=
∫
p log(p/p̃) is the relative entropy. In view of Assumption 8.6, we

have the decomposition p̃ = exp(−ũ) with ũ = ṽ + w̃. Denoting by

F̃ (p) := F (p) + h−1

∫

Rd

ũ(x)p(dx)

the new potential function, we may rewrite the objective function in the optimiza-
tion (8.14) in the form of the generalized free energy function (8.6), i.e.

F̃σ,h−1

(p) = F̃ (p) + σ2I(p) + h−1H(p).

Moreover, the new potential function F̃ still satis}es Assumption 8.5 with g̃ =
g + h−1ṽ and G̃ = G + h−1w̃. Therefore, the following result is a straightforward
consequence of Theorem 8.8.

Corollary 8.12. If p̃ satis}es Assumption 8.6, the minimization problem (8.14)
admits a unique minimizer p∗ ∈ PH still satisfying Assumption 8.6 (with dizerent
coe{cients) and it satis}es the }rst order condition

δF̃σ,h−1

δp
(p∗, ·) = 0.

Now given ph0 := p0 satisfying Assumption 8.6, we may de}ne a sequence of
probability measures using the variational problem (8.14):

phi := argmin
p∈PH

{Fσ(p) + h−1H(p|phi−1)}, for i > 1. (8.15)

It corresponds to the so-called minimizing movement scheme in the optimal trans-
port literature. According to Corollary 8.12, the minimizer phi is well de}ned and
it satis}es the }rst order condition:

δFσ

δp
(phi , ·) + h−1(log phi − log phi−1) =

∫
h−1(log phi − log phi−1)p

h
i . (8.16)

Thus we expect as h → 0 that the minimizing movement scheme ph converges to
the corresponding gradient ~ow p satisfying

δFσ

δp
(pt, ·) + ∂t log pt = 0,

which corresponds to the MFS dynamics (8.10).
This result is proved rigorously in Section 8.5.3 below. By slightly abusing the

notations, de}ne the continuous-time ~ow of probability measures:

pht := phi , for t ∈ [hi, h(i+ 1)).
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Theorem 8.13. The sequence of functions (ph)h>0 converges, uniformly on [0, T ]×
Rd for any T > 0, to p the MFS dynamics (8.10).
Remark 8.14. In view of Corollary 8.37 below, the family of distributions (ph)h>0

admits uniform Gaussian bounds and thus we also have for any p > 1,

sup
t∈[0,T ]

∥∥pht − pt
∥∥
Lp −−−→

h→0
0, sup

t∈[0,T ]

Wp

(
pht , pt

)
−−−→
h→0

0.

8.2.4 Numerical simulation
In this section we shall brie~y report how to sample N−1

∑N
i=1 δXi

t
to approximate

the probability law pt in the MFS dynamics (8.10), without pursuing mathematical
rigorism.

Observe }rst that the MFS dynamics (8.10) can be rewritten as

∂tpt =
σ2

2
∆pt −

(
δF

δp
(pt, ·) +

σ2

4
|∇ log pt|2 − λt

)
pt.

This can viewed as the Fokker–Planck equation describing the marginal distri-
bution of a Brownian motion (Xt)t>0 killed at rate η(t, x) := δF/δp (pt, x) +
σ2|∇ log pt(x)|2/4 conditionned on not being killed. In other words, the particle
X moves freely in the space Rd as a Brownian motion (σWt)t>0 before it gets
killed with conditional probability

P
[
X gets killed in [t, t+∆t]

∣∣ Xt

]
≈ η(t,Xt)∆t, for small ∆t.

Meanwhile the killed particle gets reborn instantaneously according to the distri-
bution pt. This interpretation of the MFS dynamics ozers an insight on how to
sample the marginal law pt. However, in order to evaluate the death rate η(t,Xt),
one needs to evaluate |∇ log pt|2, which can be hard if not impossible in practice.
This di{culty forces us to }nd a more sophisticated way to sample pt.

Now observe that ψt :=
√
pt solves the PDE:

∂tψt =
σ2

2
∆ψt −

1

2

(
δF

δp
(pt, ·)− λt

)
ψt. (8.17)

Then introduce two scalings of ψt, namely, ψ̄t := exp
(
− 1

2

∫ t

0
λs ds

)
ψt and ψ̂t :=

ψt

/∫
ψt so that

∂tψ̄t =
σ2

2
∆ψ̄t −

1

2

δF

δp
(pt, ·)ψ̄t, ∂tψ̂t =

σ2

2
∆ψ̂t −

1

2

(
δF

δp
(pt, ·)− λ̂t

)
ψ̂t,

where the constant λ̂t ∈ R is chosen so that ψ̂t is a probability density. Observe
that:

• By the Feynman–Kac formula, the function ψ̄ has the probabilistic represen-
tation:

ψ̄t(x) = E

[
exp
(
−
∫ t

0

1

2

δF

δp
(pt−s, x+ σWs) ds

)
ψ0(x+ σWt)

]

≈ 1

M

M∑

j=1

exp
(
−
∫ t

0

1

2

δF

δp
(pt−s, x+ σW j

s ) ds
)
ψ0(x+ σW

j
t ),

where the latter is the standard Monte Carlo approximation of the expecta-
tion.
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• The probability law ψ̂ is the marginal distribution of a Brownian motion
killed at rate η(t, x) := 1

2
δF
δp

(pt, x) conditioned on not being killed. It can be
sampled by simulating a large number (X̂i)16i6N of independent Brownian
particles killed at rate η which upon dying are instantaneously reborn by
duplicating one of the living particles.

• Eventually, the distribution pt can be approximately sampled as the following
weighted empirical measure

pt =
ψ̄t∫

Rd ψ̄t(x)ψ̂t(x) dx
ψ̂t ≈

1

N

N∑

i=1

ψ̄(t, X̂i
t)

1
N

∑N
k=1 ψ̄(t, X̂

k
t )
δX̂i

t
.

Remark 8.15. In particular, in view of Remark 8.10, the Monte Carlo method above
ozers an e{cient way to sample the ground state of a high dimensional quantum
system. To our knowledge there is little discussion on similar numerical schemes in
the literature.

8.3 Mean }eld Schrödinger dynamics
In order to study the generalized MFS dynamics in (8.9), we introduce a change of
variable pt = exp(−ut)

/∫
exp(−ut) where u satis}es the following equation:

∂tut =
σ2

2
∆ut −

σ2

4
|∇ut|2 +

δF

δp
(pt, ·)− γut, (8.18)

with initial condition u0 = − log p0. Clearly, u is a classical solution to (8.18) if
and only if the probability density p is a positive classical solution to (8.9). Thus
we consider the mapping

(mt)t∈[0,T ] 7→ (ut)t∈[0,T ] 7→ (pt)t∈[0,T ] (8.19)

where pt = exp(−ut)
/∫

exp(−ut) and u solves the equation

∂tut =
σ2

2
∆ut −

σ2

4
|∇ut|2 +

δF

δp
(mt, ·)− γut, (8.20)

and we look for a }xed point to this mapping as it corresponds to a solution to
(8.18). Note that (8.20) corresponds to the Hamilton–Jacobi–Bellman (HJB for
short) equation of a classical linear-quadratic stochastic control problem and so u is
well-de}ned as the unique viscosity solution of this equation by standard arguments.

In this section, we }rst show that the solution to the HJB equation (8.20)
can be decomposed as the sum of a convex and a Lipschitz function. This allows
us to apply a re~ection coupling argument to show that the mapping (8.19) is a
contraction on short horizon and thus to ensure existence and uniqueness of the
solution to (8.18).This completes the proof of Theorem 8.7. Finally we gather some
properties of the solution to (8.9) for later use.

8.3.1 Hamilton–Jacobi–Bellman equation
The aim of this section is to prove that the solution to the HJB equation (8.20) is
smooth and can be decomposed into the sum of a convex and a Lipschitz function
as stated in Proposition 8.17 below. Throughout this section we assume that the
following assumption holds.
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Assumption 8.16. Assume that the mapping t 7→ mt is W1-continuous, i.e.,

lim
s→t
W1(mt,ms) = 0, for all t > 0.

Proposition 8.17. There exists a unique classical solution u ∈ C3(Q) ∩ C(Q̄) to
the HJB equation (8.20). In addition, u = v + w where there exist

¯
η, η̄, L > 0,

independent of m, such that

¯
ηId 6 ∇2vt 6 η̄Id, ‖∇wt‖∞ ∨ ‖∇2wt‖∞ 6 L, ∀t > 0.

By the Cole–Hopf transformation, we may prove in a rather classical way that
there exists a unique smooth solution to (8.20). We refer to Appendix E.1 for a
complete proof. Further, given the decomposition δF/δp (p, x) = g(x) +G(p, x) in
Assumption 8.5 and u0 = v0+w0 in Assumption 8.6, we are tempted to decompose
the solution to (8.20) as u = v+w, where v solves the HJB equation corresponding
to the convex part

∂tvt =
σ2

2
∆vt −

σ2

4
|∇vt|2 + g − γvt, (8.21)

and w solves the remaining part

∂twt =
σ2

2
∆wt −

σ2

2
∇vt · ∇wt −

σ2

4
|∇wt|2 +G(mt, ·)− γwt. (8.22)

Because it is a special case of (8.20), (8.21) also admits a unique classical solution,
and therefore so does (8.22). The proof of Proposition 8.17 is completed through
Propositions 8.20, 8.21 and 8.22 below.
Remark 8.18. In case G = 0 and w0 = 0, we have u = v. Therefore all the properties
proved for the function u are shared by the function v.

Lemma 8.19. Let u be the classical solution to (8.20). There exists a constant
δ > 0 only depending on κ̄, η̄0, L0, LG from Assumption 8.5 and 8.6 such that
supT6δ ‖∇2u(T, ·)‖∞ <∞.

Proof. Step 1. We }rst show that the SDE (8.25) below admits a unique strong
solution. De}ne ψ(t, x) := exp

(
−u(t, x)/2

)
. By Lemma E.2 in the appendices, we

have

ψ(t, x) = E

[
exp
(
−1

2

∫ t

0

(δF
δp

(mt−s, x+σWs)−γu(t−s, x+σWs)
)

ds
)
ψ0(x+σWt)

]
.

(8.23)
Now consider the continuous paths space C([0, T ]) as the canonical space. Denote
by (F̄t)t6T the canonical }ltration and X̄ the canonical process. Let P be the
probability measure such that (X̄−x)/σ is a P-Brownian motion starting from the
origin. We may de}ne an equivalent probability measure Q on the canonical space
via

dQ

dP

∣∣∣
F̄T

= ΛT := exp
(
−
∫ T

0

1

2

(δF
δp

(mT−s, X̄s)−γu(t−s, X̄s)
)

dt
)
ψ0(X̄T )

/
ψ(T, x).

(8.24)
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By Itô’s formula, we may identify that

EP[ΛT |F̄t]

= exp
(
−
∫ t

0

1

2

(δF
δp

(mT−s, X̄s)− γu(t− s, X̄s)
)

dt
)
ψ(T − t, X̄t)

/
ψ(T, x)

= exp
(
−
∫ t

0

1

2
∇u(t− s, X̄s) · dX̄s −

∫ t

0

σ2

8
|∇u(t− s, X̄s)|2 ds

)
.

Using the Girsanov’s theorem, we may conclude that the SDE

Xt = x−
∫ t

0

σ2

2
∇u(T − s,Xs) ds+ σWt, (8.25)

admits a weak solution. In addition, since x 7→ ∇u(t, x) is locally Lipschitz, the
SDE above has the property of pathwise uniqueness. Therefore, we can conclude
by the Yamada–Watanabe theorem.

Step 2. Next we observe that ∇u is the classical solution to

∂t∇ut =
σ2

2
∆∇ut −

σ2

2
∇2ut∇ut +∇

δF

δp
(mt, ·)− γ∇ut. (8.26)

By denoting Yt := ∇u(T − t,Xt), it follows from Itô’s formula that (X,Y ) solves
the forward-backward SDE (FBSDE for short):

{
dXt = −σ2

2 Yt dt+ σ dWt, X0 = x,

dYt =
(
γYt −∇ δF

δp
(mT−t, Xt)

)
dt+ Zt dWt, YT = ∇u0(XT ),

where Zt = σ∇2u(T − t,Xt). Introduce the norm

‖(Y, Z)‖D := sup
t6T

{
E

[
|Yt|2 +

∫ T

t

|Zs|2ds
]}1/2

.

We are going to show that ‖(Y, Z)‖D <∞, provided that T is small enough.
By Lemma E.1 and Proposition E.3 in the appendices, we have

exp
(
−CT (1 + |x|2)

)
6 ψ(t, x) 6 CT , |∇ψ(t, x)| 6 CT (1 + |x|2).

Therefore,
|∇u(t, x)| = 2

|∇ψ|
ψ

(t, x) 6 CT (1 + |x|2) exp(CT |x|2).

On the other hand, by the de}nition of ΛT in (8.24), we have

ΛT 6 CT exp
(
CT

(
|x|2 + sup

t6T

|X̄t|2
))
.

Now we may provide the following estimate

E
[
sup
t6T

|Yt|2
]
= E

[
sup
t6T

|∇u(T − t,Xt)|2
]
= EP

[
ΛT sup

t6T

|∇u(T − t, X̄t)|2
]

6 CT e
CT |x|2EP

[(
1 + sup

t6T

|X̄t|2
)

exp
(
CT sup

t6T

|X̄t|2
)]
.
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In particular, if T is small enough, we have

EP
[(
1 + sup

t6T

|X̄t|2
)

exp
(
CT sup

t6T

|X̄t|2
)]
<∞.

Moreover, by Itô’s formula, we obtain

d|Yt|2 =

(
2γ|Yt|2 − 2Yt · ∇

δF

δp
(mT−t, Xt) + |Zt|2

)
dt+ 2Yt · Zt dWt

>

(
(2γ − 1)|Yt|2 −

∣∣∣∇δF
δp

(mT−t, Xt)
∣∣∣
2

+ |Zt|2
)

dt+ 2Yt · Zt dWt.

De}ne the stopping time τn := inf{t > 0 : |Zt| > n}, and note that

E

[∫ T∧τn

0

|Zt|2 dt
]
6 E[|YT∧τn |2]− E[|Y0|2]

+ E

[∫ T∧τn

0

(
(1− 2γ)|Yt|2 +

∣∣∣∇δF
δp

(mT−t, Xt)
∣∣∣
2

dt
)]
.

Since we have proved E
[
supt6T |Yt|2

]
< ∞, by monotone and dominated conver-

gence theorem, we obtain

E

[∫ T

0

|Zt|2 dt
]
6 E

[
|YT |2

]
+E

[∫ T

0

(
(1−2γ)|Yt|2+

∣∣∣∇δF
δp

(mT−t, Xt)
∣∣∣
2

dt
)]

<∞.

Therefore, we have ‖(Y, Z)‖D <∞.

Step 3. It is known (see e.g. [158, Theorem I.5.1]) that there exists δ > 0 only
depending on κ̄, η̄0, L0, LG such that for T 6 δ the process (Y, Z) here is the
unique solution to the FBSDE such that ‖(Y, Z)‖D <∞. Moreover, by standard a
priori estimate (again see [158, Theorem I.5.1]) we may }nd a constant C > 0 only
depending on κ̄, η̄0, L0, LG such that for (Y ′, Z ′) solution to the FBSDE above
starting from X0 = x′ we have

‖(Y, Z)− (Y ′, Z ′)‖D 6 C|x− x′|, for T 6 δ.

In particular, it implies that

|Y0 − Y ′
0 | = |∇u(T, x)−∇u(T, x′)| 6 C|x− x′|,

so that supT6δ ‖∇2u(T, ·)‖∞ <∞.

Proposition 8.20. Let v be the classical solution to (8.21). It holds:

(i) The function vt is ηt-convex, i.e., ∇2vt > ηtId, with

dηt

dt
=

¯
κ− γηt − σ2η2t , η0 =

¯
η0. (8.27)

In particular, vt is
¯
η-convex with

¯
η := min

(
η0, (

√
γ2 + 4σ2

¯
κ− γ)/(2σ2)

)
.

(ii) The Hessian of v is bounded uniformly w.r.t. t > 0 and m.
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Proof. We divide the following discussion into three steps.
Step 1. We }rst prove the strict convexity of the solution v on a short horizon. Fix
T := δ small enough so that, thanks to Lemma 8.19, ∇2v is uniformly bounded on
(0, T ]. We shall prove that not only ∇2v has a positive lower bound, but also the
bound does not depend on T .

As in Step 1 of the proof of Lemma 8.19, we may de}ne the strong solution

Xt = x−
∫ t

0

σ2

2
∇v(T − s,Xs) ds+ σWt.

Further de}ne Yt := ∇v(T−t,Xt) and Zt := σ∇2v(T−t,Xt) so that ‖(Y, Z)‖D <∞
and (Y, Z) is the unique solution to the FBSDE on the short horizon [0, T ]:

{
dXt = −σ2

2 Yt dt+ σ dWt, X0 = x,

dYt =
(
γYt −∇g(Xt)

)
dt+ Zt dWt, YT = ∇v0(XT ).

De}ne (X ′, Y ′, Z ′) similarly with X ′
0 = x′, and further denote by δXt := Xt −X ′

t,
δYt := Yt − Y ′

t , δZt := Zt − Z ′
t. Note that due to the uniqueness of the solution to

the FBSDE, we have δXt = δYt = δZt = 0 for t > τ := inf{t > 0 : δXt = 0}. By
Itô’s formula, it is easy to verify that

dδXt · δYt
|δXt|2

=

(
−σ

2|δYt|2
2|δXt|2

+ γ
δXt · δYt
|δXt|2

− δXt ·
(
∇g(Xt)−∇g(X ′

t)
)

|δXt|2
+ σ2 |δXt · δYt|2

|δXt|4
)

dt

+
δXt · δZt dWt

|δXt|2
.

Therefore, the pair (Ŷt, Ẑt) := (δXt · δYt/|δXt|2, δX>
t δZt/|δXt|2) solves the BSDE:

dŶt =
(
−σ

2|δYt|2
2|δXt|2

+ γŶt −
δXt ·

(
∇g(Xt)−∇g(X ′

t)
)

|δXt|2
+ σ2Ŷ 2

t

)
dt+ Ẑt dWt.

According to Lemma 8.19, the process Ŷ is bounded on [0, T ] and so is the coe{cient
in front of dt above. By the Itô isometry, we clearly have E

[∫ T

0
|Ẑt|2 dt

]
<∞.

We aim at providing a lower bound for Ŷ . Consider the Riccati equation (8.27)
and note that the solution (ηt)t>0 evolves monotonously from the initial condition
η0 > 0 to the positive equilibrium η∗ := (

√
γ2 + 4σ2

¯
κ− γ)/(2σ2). In particular, it

holds

¯
η = min(η0, η∗) 6 ηt 6 max(η0, η∗). (8.28)

De}ne η̂t := ηT−t for t 6 T so that

dη̂t = (−
¯
κ+ γη̂t + σ2η̂2t ) dt, η̂T 6 ŶT .

Since g is
¯
κ-convex, we have

d(Ŷt − η̂t)

=

(
−σ

2|δYt|2
2|δXt|2

− δXt ·
(
∇g(Xt)−∇g(X ′

t)
)

|δXt|2
+

¯
κ+ γ(Ŷt − η̂t) + σ2(Ŷ 2

t − η̂2t )
)

dt

+ Ẑt dWt

6
(
γ(Ŷt − η̂t) + σ2(Ŷt + η̂t)(Ŷt − η̂t)

)
dt+ Ẑt dWt
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Since Ŷt, η̂t are both bounded and E
[∫ T

0
|Ẑt|2 dt

]
<∞, it follows from the standard

comparison principle for BSDE that Ŷt − η̂t > 0, i.e., the function vt is ηt-convex
for t ∈ [0, T ].

Step 2. We shall improve the bound of |∇2v| to get a bound independent of the
horizon T = δ. Note that ∇v satis}es the equation

∂t∇vt =
σ2

2
∆∇vt −

σ2

2
∇2vt∇vt +∇g − γ∇vt.

Thus it admits the probabilistic representation

∇v(t, x) = E

[∫ t

0

e−γs∇g(Xs) ds+ e−γt∇v0(Xt)

]
,

with

Xs = x−
∫ s

0

σ2

2
∇v(t− r,Xr) dr + σWs.

Let X ′ be the solution to the SDE above with X ′
0 = x′. Since ∇g and ∇v0 are both

Lipschitz continuous, we have

|∇v(t, x)−∇v(t, x′)| 6 E

[
κ̄

∫ t

0

|Xs −X ′
s| ds+ η̄0|Xt −X ′

t|
]
, (8.29)

Now recall that we have proved in Step (i) that the function vs is ηs-convex for
s ∈ [0, t] so that

1

2
d|Xs −X ′

s|2 = (Xs −X ′
s) · (dXs − dX ′

s)

= −σ
2

2
(Xs −X ′

s) ·
(
∇v(t− s,Xs)−∇v(t− s,X ′

s)
)

ds

6 −σ
2ηt−s

2
|Xs −X ′

s|2 ds,

Furthermore recall that ηs >
¯
η for all s > 0 by (8.28) so that

|Xs −X ′
s| 6 exp(−σ2

¯
ηs/2)|x− x′|. (8.30)

Together with (8.29), we obtain

|∇v(t, x)−∇v(t, x′)| 6 C

(
1 +

2

σ2

¯
η

)
|x− x′|.

Therefore |∇2v(t, ·)| 6 C
(
1 + 2/(σ2

¯
η)
)
, in particular the bound does not depend

on T = δ.

Step 3. By the result of Step 2, we know that ∇2v(δ, ·) is bounded and the bound
does not depend on δ. Together with Lemma 8.19, we conclude that∇2v is bounded
on [δ, 2δ], and further deduce that vt is ηt-convex and ∇2v has a δ-independent
bound again on [δ, 2δ] thanks to the results of Steps 1 and 2. Therefore the desired
result follows from induction.
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Proposition 8.21. Let w be the classical solution to (8.22). Then the function
x 7→ w(t, x) is Lipschitz continuous uniformly w.r.t. t > 0 and m.

Proof. We consider the following stochastic control problem. Let (Ω,F ,P,F) be
a }ltered probability space, and W be a (P,F)-Brownian motion. Denote by A
the collection of admissible control process, i.e., α is progressively measurable and
E
[∫ t

0
|αt|2 dt

]
< ∞. Then it follows from standard dynamic programming argu-

ments that

w(t, x) = inf
α∈A

E

[∫ t

0

e−γs

(
G(mt−s, X

α
s ) +

σ2

4
|αs|2

)
ds+ e−γtw0(X

α
t )

]
,

where Xα stands for the strong solution to

dXα
s = −σ

2

2

(
∇v(t− s,Xα

s ) + αs

)
ds+ σ dWs, Xα

0 = x.

Denote by Y α the solution to the SDE above with Y α
0 = y. Then it holds

|w(t, y)− w(t, x)| 6 sup
α

E

[
LG

∫ t

0

e−γs|Y α
s −Xα

s | ds+ L0e
−γt|Y α

t −Xα
t |
]
. (8.31)

Using the convexity of vs from Proposition 8.20, we obtain by the same argument
as (8.30) that

|Y α
s −Xα

s | 6 exp(−σ2

¯
ηs/2)|y − x|.

Together with (8.31), we can }nd a (t,m)-independent constant L > 0 such that

|w(t, y)− w(t, x)| 6 L|y − x|.

Given the decomposition of u as the sum of a convex and a Lipschitz function,
we shall also prove that the Hessian of u is bounded uniformly in time which is
clearly an improvement over Lemma 8.19.

Proposition 8.22. Let u be the classical solution to (8.20). Then the Hessian of
u is bounded uniformly w.r.t. t > 0 and m.

Proof. Recall that ∇u satis}es (8.26) so that, by Feynman–Kac’s formula, it admits
the probabilistic representation

∇u(t, x) = E

[∫ t

0

e−γs∇δF
δp

(mt−s, Xs) ds+ e−γt∇u0(Xt)

]
, (8.32)

with

Xs = x− σ2

2

∫ s

0

∇u(t− r,Xr) dr + σWs.

Let us prove that x 7→ ∇u(t, x) is Lipschitz continuous with a Lipschitz constant
independent of t and m. Denote by Y the solution to the SDE above with Y0 = y.
It follows from the re~ection coupling Theorem E.7 in the appendices that for
pXs := L(Xs) and pYs := L(Ys),

W1(p
X
s , p

Y
s ) 6 C exp(−cσ2s)W1(p

X
0 , p

Y
0 ), for all s > 0.
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Note that the drift ∇u = ∇v+∇w satis}es Assumption E.5 since v is
¯
η-convex and

∇w is bounded, see Remark E.6. Together with (8.32) and the fact that ∇ δF
δp

(p, ·)
and ∇u0 are uniformly Lipschitz, we have by Kantorovitch duality that

|∇u(t, x)−∇u(t, y)| 6 C

(∫ t

0

W1(p
X
s , p

Y
s ) ds+W1(p

X
t , p

Y
t )

)
6 C|x− y|,

where the constant C does not depend on t and m.

8.3.2 Proof of Theorem 8.7
Proof of Theorem 8.7. In view of Proposition 8.17, it is enough to show that the
mapping (8.19) (mt)t∈[0,T ] 7→ (pt)t∈[0,T ] is a contraction for T small enough, where
pt = exp(−ut)

/∫
exp(−ut) with u the solution to (8.20). This contraction property

relies essentially on a re~ection coupling argument established in Appendix E.3
which follows from the decomposition of u as the sum of a convex and a Lipschtz
function.
Step 1. Let (m̃t)t∈[0,T ] be another ~ow of probability measures satisfying Assump-
tion 8.16, and use it to de}ne the function ũ as in (8.20). Denote by δu := u − ũ.
Using the stability result for the HJB equation (8.20) proved in Proposition 8.23
below, we obtain

sup
t6T

‖∇δu(t, ·)‖∞ 6 TCT sup
t6T

W1(mt, m̃t). (8.33)

Step 2. Further de}ne the probability density p̃t = exp(−ũt)
/∫

exp(−ũt). Note
that pt and p̃t are the invariant measures of the dizusion processes

dXs = −∇u(t,Xs) ds+
√
2dWs, dX̃s = −∇ũ(t, X̃s) ds+

√
2dWs,

respectively. Denote by pt,s := L(Xs) and p̃t,s := L(X̃s) the marginal distributions,
and assume that pt,0 = p̃t,0 = p0. By Proposition 8.17 and Remark E.6, we may
apply the re~ection coupling in Theorem E.7 in the appendices to obtain

W1

(
pt,s, p̃t,s

)
6 Ce−cs

∫ s

0

ecr‖∇δu(t, ·)‖∞ dr.

Let s→∞ on both sides. Since lims→∞W1(pt,s, pt) = 0 and lims→∞W1(p̃t,s, p̃t) =
0 by Remark E.8, we deduce that

W1

(
pt, p̃t

)
6 C‖∇δu(t, ·)‖∞.

Step 2. Together with (8.33), we }nally obtain

sup
t6T

W1

(
pt, p̃t

)
6 TCT sup

t6T

W1

(
mt, m̃t

)
.

Therefore, given T small enough, the mapping (mt)t6T 7→ (pt)t6T is a contraction
under the metric supt6T W1(·t, ·t).

The following lemma shows that the gradient ∇u of the solution to the HJB
equation (8.20) is stable with respect to (mt)t∈[0,T ] as needed for the proof of
Theorem 8.7 above, as well as with respect to ∇u0 for later use.
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Lemma 8.23. Let ũ be the classical solution to (8.20) corresponding to the ~ow
of distribution m̃ satisfying Assumption 8.16 and the initial value ũ0 satisfying
Assumption 8.6. Then we have the following stability results:

(i) If ∇u0 = ∇ũ0, then ‖∇δu(t, ·)‖∞ 6 Ct

∫ t

0
W1(ms, m̃s) ds.

(ii) Otherwise ‖∇δu(t, ·)‖(2) 6 Ct

(∫ t

0
W1(ms, m̃s) ds+ ‖∇δu0‖(2)

)
.

Proof. Similiar to (8.32), it follows from the Feynman-Kac’s formula that

∇u(t, x) = E

[∫ t

0

e−γs∇δF
δp

(mt−s, Xs) ds+ e−γt∇u0(Xt)

]
,

∇ũ(t, x) = E

[∫ t

0

e−γs∇δF
δp

(m̃t−s, X̃s) ds+ e−γt∇ũ0(X̃t)

]
,

with

dXs = −
σ2

2
∇u(t− s,Xs) ds+ σ dWs, X0 = x,

dX̃s = −
σ2

2
∇ũ(t− s, X̃s) ds+ σ dWs, X̃0 = x.

By Proposition 8.17 and Remark E.6, we may apply the re~ection coupling in
Theorem E.7 in the appendices to compare the marginal distribution of X and X̃,
denoted by p and p̃ respectively. We obtain

W1(ps, p̃s) 6 Ce−cσ2s

∫ s

0

ecσ
2rE
[
|∇δu(t− r,Xr)|

]
dr.

Further, by Kantorovich duality and Lipschitz continuity of ∇ δF
δp

and ∇ũ0, we have

|∇δu(t, x)| 6 CE

[ ∫ t

0

∫ s

0

Ce−γs−cσ2(s−r)
∣∣∇δu(t− r,Xr)

∣∣ dr ds

+

∫ t

0

e−γsW1(mt−s, m̃t−s) ds

+

∫ t

0

Ce−γt−cσ2(t−s)|∇δu(t− s,Xs)| ds+ e−γt|∇δu0(Xt)|
]
,

which implies that

|∇δu(t, x)| 6 CE

[∫ t

0

∣∣∇δu(t−s,Xs)
∣∣ ds+

∫ t

0

W1(ms, m̃s)ds+|∇δu0(Xt)|
]
. (8.34)

Recall the decomposition of the solution established in Proposition 8.17: u = v+w,
ũ = ṽ + w̃, where v, ṽ are strictly convex and w, w̃ are Lipschitz. We divide the
following discussion into two cases.
Case 1. We assume ∇δu0 = 0. Note that in this case ∇v = ∇ṽ (because v, ṽ are
not in~uenced by m or m̃) and that ∇δu = ∇w −∇w̃ is bounded. It follows from
the (8.34) that

‖∇δu(t, ·)‖∞ 6 C

(∫ t

0

‖∇δu(s, ·)‖∞ ds+
∫ t

0

W1(ms, m̃s) ds
)
.



330 Chapter 8: Mean }eld optimization regularized by Fisher information

Finally, by the Grönwall inequality, we obtain

‖∇δu(t, ·)‖∞ 6 Ct

∫ t

0

W1(ms, m̃s) ds.

Case 2. We consider the general case. Recall that both ∇v and ∇ṽ are Lipschitz,
and both ∇w and ∇w̃ are bounded, so we have ‖∇δu(t, ·)‖(2) < ∞. Further it
follows from (8.34) that

|∇δu(t, x)| 6 C

(∫ t

0

‖∇δu(t− s, ·)‖(2)
(
1 + E

[
|Xs|2

])
ds

+

∫ t

0

W1(ms, m̃s) ds+ ‖∇δu0‖(2)
(
1 + E

[
|Xt|2

]))

6 Cect
(∫ t

0

‖∇δu(t− s, ·)‖(2)(1 + |x|2) ds

+

∫ t

0

W1(ms, m̃s) ds+ ‖∇δu0‖(2)(1 + |x|2)
)
.

Finally, by the Grönwall inequality, we obtain

‖∇δu(t, ·)‖(2) 6 Ct

(∫ t

0

W1(ms, m̃s) ds+ ‖∇δu0‖(2)
)
.

8.3.3 Properties of mean }eld Schrödinger dynamics
The decomposition of the generalized MFS dynamics provided by Theorem 8.7
allows us to derive Gaussian bounds, }rst locally in time as stated below and later
uniformly in time, see Lemma 8.32.

Proposition 8.24. For any T > 0, there exist
¯
c, c̄,

¯
C, C̄ > 0, such that for all

t ∈ [0, T ], x ∈ Rd,

¯
C exp(−

¯
c|x|2) 6 pt(x) 6 C̄ exp(−c̄|x|2).

In particular, pt ∈ PH for all t > 0.

Proof. The Gaussian bounds follow immediately from Lemma E.4 in the appen-
dices, whose assumptions are satis}ed on T = [0, T ] according to Theorem 8.7.
Then we observe

|∇√pt|2 =
1

4
|∇ log pt|2pt 6 CT (1 + |x|2)pt,

where the latter follows from the boundedness of ∇2 log pt. Thus ∇√pt ∈ L2 and
pt ∈ PH .

Then we establish a stability result for the generalized MFS dynamics (8.9). It
plays a crucial role in the proof of convergence in Theorem 8.8.

Proposition 8.25. For n ∈ N, let pn (resp. p) be the generalized MFS dynamics
(8.9) starting from pn0 (resp. p0), where pn0 (resp. p0) satisfy Assumption 8.6. If
∇ log pn0 converges to ∇ log p0 in ‖ · ‖(2), then (pnt , log pnt ) converges to (pt,∇ log pt)
in W1 ⊗ ‖ · ‖(2) for all t > 0.
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Proof. Recall that the function ut solution to (8.18) dizers from − log pt only
through an additive constant (depending on t), in particular ∇ut = −∇ log pt.
Denote by δu := un − u. By the stability result of the HJB equation (8.20) proved
in Proposition 8.23, we have

‖∇δu(T, ·)‖(2) 6 CT

(∫ T

0

W1(p
n
t , pt) dt+ ‖∇δu0‖(2)

)
. (8.35)

As in the proof of Theorem 8.7, note that pnt and pt are the invariant measures of
the dizusions:

dXn
s = −∇un(t,Xn

s ) ds+
√
2dWs, dXs = −∇u(t,Xs) ds+

√
2dWs,

respectively. Denote the marginal distributions pnt,s := L(Xn
s ) and pt,s := L(Xs),

and assume that pnt,0 = pt,0. Using the re~ection coupling, we deduce from Theo-
rem E.7 that

W1(p
n
t,s, pt,s) 6 Ce−cs

∫ s

0

ecrE[|∇δu(t,Xr)|] dr.

By letting s→∞ on both sides, it follows from using successively theW1-convergence
of pnt,s and pt,s toward pnt and pt by Remark E.8, the linear growth of ∇δu(t, ·) and
Lemma 8.24 that

W1(p
n
t , pt) 6 C

∫

Rd

|∇δu(t, x)|pt(x) dx 6 CT ‖∇δu(t, ·)‖(2).

Together with (8.35), by the Grönwall inequality, we obtain

‖∇δu(T, ·)‖(2) 6 CT e
TCT ‖∇δu0‖(2),

as well as

W1(p
n
T , pT ) 6 CT e

TCT ‖∇δu0‖(2).

8.4 Convergence towards the minimizer
8.4.1 First order condition
The aim of this section is to derive a }rst order condition to characterize the mini-
mizer of the generalized free energy Fσ,γ . Recall that Fσ,γ(p) = F (p) + σ2I(p) +
γH(p) with parameters σ > 0, γ > 0, and I(p) =

∫
|∇√p|2, H(p) =

∫
p log p.

Proposition 8.26. The function Fσ,γ is convex on PH . Additionally, if it admits
a minimizer p∗ ∈ PH such that 1/p∗ ∈ L∞

loc, then it is unique.

Proof. It follows from the convexity of F by Assumption 8.3, the convexity of H
by convexity of x 7→ x logx and Proposition 8.27 below.

Lemma 8.27. Let p, q ∈ PH and α, β > 0. Then we have

I(αp+ βq) 6 αI(p) + βI(q).

If in addition 1/p ∈ L∞
loc, then the equality holds if and only if p = q.
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Proof. Let ϕ =
√
p, ψ =

√
q. We have by using the Cauchy–Schwarz inequality

I(αp+ βq) =

∫ ∣∣∇
√
αϕ2 + βψ2

∣∣2 =

∫
(αϕ∇ϕ+ βψ∇ψ)2

αϕ2 + βψ2

6

∫
(αϕ2 + βψ2)

(
α(∇ϕ)2 + β(∇ψ)2

)

αϕ2 + βψ2
= αI(p) + βI(q).

The equality holds if and only if ϕ∇ψ = ψ∇ϕ. If in addition 1/p ∈ L∞
loc then

1/ϕ ∈ L∞
loc and ψ/ϕ ∈ L1

loc which is a distribution in the sense of Schwartz. Its
derivative satis}es

∇
(
ψ

ϕ

)
=
ϕ∇ψ − ψ∇ϕ

ϕ2
= 0.

Therefore ψ/ϕ is constant a.e., i.e., p and q are proportional.

Proposition 8.28. If a probability measure p ∈ PH satis}es p ∈ C2 and

p(x) 6 Ce−c|x|2 , |∇2 log p(x)| 6 C,

then the following inequality holds: for all q ∈ PH ,

Fσ,γ(q)− Fσ,γ(p) >

∫

Rd

δFσ,γ

δp
(p, x)

(
q(x)− p(x)

)
dx.

In particular, if δFσ,γ/δp (p, ·) = 0, then p is the unique minimizer of the generalized
free energy Fσ,γ .

Proof. We have Fσ,γ(p) = F (p) + σ2I(p) + γH(p). We deal with each of these
three terms separately. Adding the three subsequent inequalities gives the desired
inequality. The second assertion then follows immediately from Theorem 8.26.
Throughout the proof, we denote pt := p+ t(q − p) for t ∈ [0, 1].

Step 1. By convexity of F , it holds

F (q)− F (p) > F (pt)− F (p)
t

.

Since F is C1, we conclude by passing to the limit t→ 0 that

F (q)− F (p) > dF (pt)
dt

∣∣∣∣
t=0+

=

∫

Rd

δF

δp
(p, ·)(q − p).

Step 2. Denote IK(p) :=
∫
K
|∇p|2/4p for K ⊂ Rd compact and p ∈ PH . Assume

}rst that q is bounded and compactly supported. Then it follows from the convexity
of IK and dizerentiation under the integral sign that

IK(q)− IK(p) >
dIK(pt)

dt

∣∣∣∣
t=0+

= −1

4

∫

K

|∇p|2
p2

(q − p) + 1

2

∫

K

∇p · ∇(q − p)
p

.

Note that ∇q = 2
√
q∇√q ∈ L2. Next we take the limit K ↑ Rd and we observe

that the r.h.s. converges by using for the }rst term, |∇p(x)|/p(x) = |∇ log p(x)| 6
C(1 + |x|) and p, q ∈ P2, and for the second term, |∇p|2/p = 4|∇√p|2 ∈ L1. Using
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further integration by parts, since p(x) 6 Ce−c|x|2 and q is compactly supported,
we obtain

I(q)− I(p) > −1

4

∫

Rd

( |∇p|2
p2

+ 2∇ ·
(∇p
p

))
(q − p).

To conclude it remains to deal with the general case q ∈ PH not necessarily
bounded and compactly supported. Given M > 0, we consider the distribu-
tion qM ∝ 1|x|6M q ∧M and we apply the inequality above to qM . Taking the
limit M → ∞ yields the desired result as the r.h.s. converges since q ∈ P2 and
|∇2 log p| 6 C.
Step 3. Denote HK(p) :=

∫
K
p log p for K ⊂ Rd compact and p ∈ PH . Assume }rst

that q is bounded. Then it follows from the convexity of HK and dizerentiation
under the integral sign that

HK(q)−HK(p) >
dHK(pt)

dt

∣∣∣∣
t=0+

=

∫

K

(1 + log p)(q − p).

Next we take the limit K ↑ Rd and we observe that the r.h.s. converges as p, q ∈ P2

and |log p(x)| 6 C(1 + |x|2). We obtain

H(q)−H(p) >

∫

Rd

(log p)(q − p)

To conclude it remains to deal with the general case q ∈ PH not necessarily
bounded. Given M > 0, we consider the distribution qM ∝ q ∧ M and we ap-
ply the inequality above to qM ∈ L∞. Taking the limit M →∞ yields the desired
result.

8.4.2 Dissipation of energy
Proposition 8.29. The generalized free energy decreases along the generalized
MFS dynamics (pt)t>0 solution to (8.9). More precisely, we have

d
dtF

σ,γ(pt) = −
∫

Rd

∣∣∣∣
δFσ,γ

δp
(pt, x)

∣∣∣∣
2

pt(x) dx. (8.36)

Proof. Using Theorem 8.28 whose assumptions are satis}ed in view of Theorem 8.7
and Lemma 8.24, we have

Fσ,γ(pt+h)− Fσ,γ(pt) >

∫

Rd

δFσ,γ

δp
(pt, x)(pt+h − pt)(x) dx

= −
∫

Rd

δFσ,γ

δp
(pt, x)

∫ t+h

t

δFσ,γ

δp
(ps, x)ps(x) ds dx.

Similarily we have

Fσ,γ(pt+h)− Fσ,γ(pt) 6 −
∫

Rd

δFσ,γ

δp
(pt+h, x)

∫ t+h

t

δFσ,γ

δp
(ps, x)ps(x) ds dx.

The conclusion then follows from the dominated convergence theorem. Indeed, by
Theorem 8.7, the mapping t 7→ δFσ,γ/δp (pt, x) is continuous and satis}es

sup
t6T

∣∣∣∣
δFσ,γ

δp
(pt, x)

∣∣∣∣ 6 CT (1 + |x|2)
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for any T > 0. Note that the same holds for δF/δp (pt, x) by the W1-continuity of
t 7→ pt. In addition, Lemma 8.24 ensures that

∫
|x|4 supt6T pt(x) dx <∞.

The dissipation of energy allows us to extend previous estimates of the gener-
alized MFS dynamics from [0, T ] to [0,∞) which is crucial to study its asymptotic
behavior.

Lemma 8.30. It holds

sup
t>0

{∫

Rd

|x|2pt(x) dx+

∫

Rd

|∇√pt(x)|2 dx
}
< +∞. (8.37)

Proof. Let q the Gaussian density with variance υ2. We have

H(p) = H(p | q) +
∫
p(x) log q(x) dx > −d

2
log(2πυ2)− 1

2υ2

∫

Rd

|x|2p(x) dx.

Then it follows from Assumption 8.3 by choosing υ su{ciently large that there exist
C, c > 0 such that

Fσ,γ(pt) > −C + c

∫

Rd

|x|2pt(x) dx+ σ2

∫

Rd

|∇√pt(x)|2 dx, ∀t > 0. (8.38)

Since the generalized free energy is decreasing according to Theorem 8.29, we deduce
that

sup
t>0

{
c

∫

Rd

|x|2pt(x) dx+ σ2

∫

Rd

|∇√pt(x)|2 dx
}

6 C + Fσ,γ(p0).

Proposition 8.31. It holds for all x ∈ Rd,

sup
t>0
|∇ log pt(x)| 6 C(1 + |x|).

Proof. In view of Theorem 8.7, the Hessian ∇2 log pt is bounded by some constant,
denoted L. In particular, it holds

|∇ log pt(x)| 6 L|x|+ |∇ log pt(0)|,

and also

|∇ log pt(0)|2 6
(
L|x|+ |∇ log pt(x)|

)2
6 2L2|x|2 + 2|∇ log pt(x)|2.

It follows that

4

∫

Rd

|∇√pt(x)|2 dx =

∫

Rd

|∇ log pt(x)|2pt(x) dx

>
1

2
|∇ log pt(0)|2 − L2

∫

Rd

|x|2pt(x) dx.

We conclude by Lemma 8.30 that supt>0 |∇ log pt(0)| <∞.

Using Lemma 8.31, it is straightforward to extend the Gaussian bounds of
Lemma 8.24 from [0, T ] to R+.

Corollary 8.32. There exist
¯
c, c̄,

¯
C, C̄ > 0 such that for all t > 0, x ∈ Rd,

¯
C exp(−

¯
c|x|2) 6 pt(x) 6 C̄ exp(−c̄|x|2).
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8.4.3 Proof of Theorem 8.8
Proof of Theorem 8.8. We start by observing that the family (pt)t>0 is relatively
compact for the uniform norm on C(Rd). This property follows from Arzelà–Ascoli
Theorem as

pt(x) 6 Ce−c|x|2 , |∇pt(x)| = |∇ log pt(x)|pt(x) 6 C(1+ |x|) exp(−c|x|2), (8.39)

by Lemma 8.31 and Lemma 8.32. Let p∗ be an arbitrary cluster point, i.e., ptk
converges uniformly to p∗ for some sequence tk ↑ ∞. Note that, in view of the
Gaussian bound above, the convergence also occurs in Wp for any p > 1. The aim
of the proof is to show that p∗ is the unique minimizer of Fσ,γ .
Step 1. Let us show }rst that, for almost all h > 0,

lim inf
k→∞

∫

Rd

∣∣∣∣
δFσ,γ

δp
(ptk+h, x)

∣∣∣∣
2

p(tk + h, x) dx = 0. (8.40)

Indeed, suppose by contradiction that there exists h > 0 such that

0 <

∫ h

0

lim inf
k→∞

{∫

Rd

∣∣∣∣
δFσ,γ

δp
(ptk+s, x)

∣∣∣∣
2

ptk+s(x) dx
}

ds

6 lim inf
k→∞

∫ h

0

{∫

Rd

∣∣∣∣
δFσ,γ

δp
(ptk+s, x)

∣∣∣∣
2

ptk+s(x) dx
}

ds,

where the last inequality is due to Fatou’s lemma. It would lead to a contradiction
as by Theorem 8.29,

Fσ,γ(ptk+1
)− Fσ,γ(pt0) =

k∑

j=0

Fσ,γ(ptj+1
)− Fσ,γ(ptj )

= −
k∑

j=0

∫ tj+1−tj

0

∫

Rd

∣∣∣∣
δFσ,γ

δp
(ptj+s, x)

∣∣∣∣
2

ptj+s(x) dx ds

where the l.h.s. is bounded from below by (8.38) and the r.h.s. diverges to −∞ by
assuming w.l.o.g. that tj+1 − tj > h.
Step 2. From now on, denote by thk := tk + h where h > 0 is chosen so that (8.40)
holds. Let q be an arbitrary probability measure in PH . Due to the }rst order
inequality established in Theorem 8.28, we have

Fσ,γ(q)− Fσ,γ(pth
k
) >

∫

Rd

δFσ,γ

δp
(pth

k
, x)(q − pth

k
)(x) dx.

In view of Theorem 8.7, Lemma 8.31 and Lemma 8.32, we have

sup
t>0

∣∣∣∣
δFσ,γ

δp
(pt, x)

∣∣∣∣ 6 C(1 + |x|2), sup
t>0

∫

Rd

|x|2pt(x) dx <∞.

Note that the }rst inequality holds for δF/δp (pt, x) since (pt)t>0 belongs to a W1-
compact set due to the Gaussian bound. Hence, for any ε > 0, we can }nd K big
enough such that for all k, j ∈ N,

Fσ,γ(pth
k
) 6 Fσ,γ(q)−

∫

|x|6K

δFσ,γ

δp
(pth

k
, x)(q − pth

k
)(x) dx+ ε.
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Further it follows from Cauchy–Schwartz inequality that
∣∣∣∣
∫

|x|6K

δFσ,γ

δp
(pth

k
, x)(q − pth

k
)(x) dx

∣∣∣∣

6

(∫

Rd

∣∣∣∣
δFσ,γ

δp
(pth

k
, x)

∣∣∣∣
2

pth
k
(x) dx

∫

|x|6K

|q − pth
k
|2

pth
k

(x) dx
)1/2

Assume }rst that q is bounded and note that the second term on the r.h.s. is also
bounded as infk,h,x pth

k
(x) > 0 by Lemma 8.32. Thus we deduce by taking the limit

k →∞ and then ε→ 0 that

lim inf
k→∞

Fσ,γ(pth
k
) 6 Fσ,γ(q), (8.41)

for any q ∈ PH bounded. If q ∈ PH is not necessarily bounded, this inequality
also holds as it holds for the distribution qM ∝ q ∧M and Fσ,γ(qM ) → Fσ,γ(q) as
M →∞.

Step 3. Denote by (p∗t )t>0 the solution to (8.9) starting from p∗0 = p∗ We observe
by Lemma 8.33 below that pth

k
and ∇ log pth

k
converges pointwise to p∗h and ∇ log p∗h

respectively. In view of Lemma 8.31 and Lemma 8.32, it follows easily by the
dominated convergence theorem that limk→∞ F (pth

k
) = F (p∗h) as pth

k
→ p∗h in W2

by using the Gaussian bound,

lim
k→∞

H(pth
k
) = lim

k→∞

∫
pth

k
log pth

k
=

∫
p∗h log p∗h = H(p∗h),

and

lim
k→∞

I(pth
k
) = lim

k→∞
1

4

∫
|∇ log pth

k
|2pth

k
=

1

4

∫
|∇ log p∗h|2p∗h = I(p∗h).

We deduce that
lim
k→∞

Fσ,γ(pth
k
) = Fσ,γ(p∗h).

Hence, by (8.41), p∗h is a minimizer of Fσ,γ . In view of Theorem 8.26, this minimizer
is unique and thus p∗h does not depend on h and coincides with its limit p∗0 = p∗

when h→ 0.

Step 4. As a byproduct, we observe that p∗ is a stationary solution to (8.9) and
thus it satis}es

δFσ,γ

δp
(p∗, ·) = 0.

Lemma 8.33. Using the notations above, as k → ∞, pth
k

converges uniformly to
p∗h and ∇ log pth

k
converges to ∇ log p∗h in ‖ · ‖(2).

Proof. Step 1. Let us show }rst that ∇ log ptk converges to ∇ log p∗ in ‖ · ‖(2).
According to Theorem 8.7 and Lemma 8.31, (∇ log ptk)k∈N lives in a ‖·‖(2)-compact
set of the form

K := {f : Rd → R | f is C-Lipschitz and |f(0)| 6 C},



8.4 Convergence towards the minimizer 337

for some constant C > 0. Consequently, there is a subsequence and a function
f ∈ K such that limk→∞ ‖∇ log ptk − f‖(2) = 0. Therefore, we have for almost all
x, y ∈ Rd,

log p∗(x)− log p∗(y) = lim
k→∞

(
log ptk(x)− log ptk(y)

)

= lim
k→∞

∫ 1

0

∇ log ptk
(
sx+ (1− s)y

)
· (x− y) ds

=

∫ 1

0

f
(
sx+ (1− s)y

)
· (x− y) ds.

So f = ∇ log p∗ and the desired result follows.
Step 2. In view of Proposition 8.25, it follows immediately from Step (i) that
(pth

k
,∇ log pth

k
) converges to (p∗h,∇ log p∗h) in W1 ⊗ ‖ · ‖(2). It remains to prove

that pth
k

converges uniformly to p∗h. This is an easy consequence of Arzelà–Ascoli
Theorem by (8.39).

8.4.4 Proof of Theorem 8.11
The proof relies on the following functional inequality which is new to the best of
our knowledge and may carry independent interest.
Theorem 8.34. Let p(dx) = e−u(x) dx satisfy a Poincaré inequality with constant
CP , i.e., for all f ∈ H1(p) such that

∫
f dp = 0,

∫
f2 dp 6 CP

∫
|∇f |2 dp. (8.42)

Assume that u is weakly dizerentiable with ∇u ∈ L2 and de}ne the operator L :=
∆−∇u · ∇. Then we have for all f ∈W 2,2(p) such that Lf ∈ L2(p),

C−1
P

(∫

Rd

f(x)p(dx)
)2 ∫

Rd

|∇f(x)|2p(dx)

6

∫

Rd

f(x)2p(dx)
∫

Rd

(
Lf(x)

)2
p(dx)−

(∫

Rd

f(x)Lf(x)p(dx)
)2
. (8.43)

Remark 8.35. Note that it follows from integration by parts that
∫

Rd

Lf(x)p(dx) = 0,

∫

Rd

|∇f(x)|2p(dx) = −
∫

Rd

f(x)Lf(x)p(dx). (8.44)

Moreover, if pf (dx) = f(x)2p(dx) is a probability measure then the right hand
side of the inequality (8.43) is equal to the variance of Lf/f under pf , namely,
Varpf (Lf/f).
Proof of Theorem 8.34. Let f = f0 + f̄ , where f̄ =

∫
f dp is the mean. For the

right-hand side of the inequality (8.43), we obtain by using successively
∫
f0 dp = 0,∫

Lf dp = 0 and Cauchy–Schwartz inequality,
∫

Rd

f2 dp
∫

Rd

(Lf)2 dp−
(∫

Rd

fLf dp
)2

= f̄
2
∫
(Lf)2 dp+

∫
f20 dp

∫
(Lf)2 dp−

(∫
f0Lf dp

)2
> f̄2

∫
(Lf)2 dp.
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Meanwhile for the left-hand side, we obtain by (8.44), Cauchy–Schwarz inequality
and Poincaré inequality,
∫
|∇f |2 dp = −

∫
fLf dp = −

∫
f0Lf dp

6

(∫
f20 dp

)1/2(∫
(Lf)2 dp

)1/2
6 C

1/2
P

(∫
|∇f |2 dp

∫
(Lf)2 dp

)1/2
.

The desired inequality follows by combining the estimates above.

Proposition 8.36. If u : Rd → R decomposes as u = v + w with v, w ∈ C2,
∇2v > ηId with η > 0 and |∇w| 6 L, then there exists a constant CP = C(η, L, d)
such that the Poincaré inequality (8.42) holds.
Proof. This is a direct consequence of Corollary 1.6 (1) in [9].

Proof of Theorem 8.11. Recall that pt is the classical solution to the MFS dynam-
ics (8.10). For each t > 0, denote Ft := δF/δp (pt, ·) and de}ne

p̂t := argmin
p∈PH

{∫
Ft dp+ σ2

4
I(p)

}
. (8.45)

We recognize that it is the minimizer of the mean }eld optimization problem if
we replace F (p) by

∫
Ft dp. According to Theorem 8.8, the minimizer p̂t = e−ût

satis}es ût = v̂t + ŵt with ∇2v̂t >
¯
ηId and |∇ŵt| 6 L for all t > 0. Thus p̂t veri}es

a Poincaré inequality with a constant CP independent of time by Proposition 8.36.
Note also that

σ2

2
∆ût −

σ2

4
|∇ût|2 + Ft − λ̂t = 0, (8.46)

where, by integration by parts,

λ̂t =

∫ (
σ2

2
∆ût −

σ2

4
|∇ût|2 + Ft

)
dp̂t =

∫ (
σ2

4
|∇ût|2 + Ft

)
dp̂t. (8.47)

The desired result follows by applying the functional inequality (8.43) with
distribution p̂t and function ft =

√
pt/p̂t. Let Lt = ∆ − ∇ût · ∇ and observe by

direct computation using ft = exp
(
(ût − ut)/2

)
that

Ltft

ft
=

1

2
∆ût −

1

4
|∇ût|2 −

(
1

2
∆ut −

1

4
|∇ut|2

)
.

Then it follows from (8.46) that

Ltft

ft
= σ−2λ̂t − σ−2

(
σ2

2
∆ut −

σ2

4
|∇ut|2 + Ft

)
. (8.48)

Thus, by using Theorem 8.29, the right-hand side of (8.43) corresponds to

dFσ(pt)

dt = −
∫ ∣∣∣∣

σ2

2
∆ut −

σ2

4
|∇ut|2 + Ft − λt

∣∣∣∣
2

dpt

= −
∫ ∣∣∣∣

σ2

2
∆ut −

σ2

4
|∇ut|2 + Ft − λ̂t

∣∣∣∣
2

dpt + (λ̂t − λt)2

= −σ4 Varpt

(Ltft

ft

)
,
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where, by integration by parts,

λt =

∫ (
σ2

2
∆ut −

σ2

4
|∇ut|2 + Ft

)
dpt =

∫ (
σ2

4
|∇ut|2 + Ft

)
dpt. (8.49)

As for the left-hand side of (8.43), we have for the }rst term
∫
ft dp̂t =

∫ √
ptp̂t dx > C > 0,

by using the Gaussian bounds provided in Lemma 8.32. Regarding the second term,
it holds by using (8.44) and (8.48),
∫
|∇ft|2 dp̂t = −

∫
ftLtft dp̂t = σ−2

∫ (
σ2

2
∆ut −

σ2

4
|∇ut|2 + Ft

)
dpt − σ−2λ̂t.

Using further (8.47) and (8.49), we obtain

σ2

∫
|∇ft|2 dp̂t =

∫ (
σ2

4
|∇ut|2 + Ft

)
dpt −

∫ (
σ2

4
|∇ût|2 + Ft

)
dp̂t

=

∫
Ft(dpt − dp̂t) +

σ2

4

(
I(pt)− I(p̂t)

)

>

∫
Ft(dpt − dp∗) + σ2

4

(
I(pt)− I(p∗)

)
,

where the last inequality follows from the optimality of p̂t in (8.45).
By Theorem 8.34 and the above computations, we deduce that

dFσ(pt)

dt 6 − (Cσ)2

CP

(∫
Ft(dpt − dp∗) + σ2

4

(
I(pt)− I(p∗)

))

6 − (Cσ)2

CP

(
Fσ(pt)− Fσ(p∗)

)
,

where the last inequality is due to Theorem 8.28. Therefore, the exponential con-
vergence of the free energy (8.13) follows with a constant c = (Cσ)2/CP .

In order to obtain the exponential convergence of the relative Fisher information,
de}ne f∗t :=

√
pt/p∗, L∗ := ∆−∇u∗ · ∇, and repeat the previous computation:

I(pt|p∗) = 4

∫
|∇f∗t |2 dp∗ = −4

∫
f∗t L∗f∗t dp∗

= 4σ−2

(∫
δF

δp
(p∗, ·)(dpt − dp∗) + σ2

4
(I(pt)− I(p∗))

)

6 4σ−2
(
Fσ(pt)− Fσ(p∗)

)
.

8.5 Gradient ~ow with relative entropy
Let phi be de}ned in (8.15). The proof of Theorem 8.13 essentially relies on applying
Arzelà–Ascoli Theorem to the family (t, x) 7→ phbt/hc(x) for h > 0. To this end, we
need to ensure equicontinuity and boundedness in the two subsequent sections. In
the sequel, we }x a time horizon T <∞ and we denote by Nh := bT/hc.
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8.5.1 Equicontinuity in space
The goal of this section is to obtain uniform Gaussian bounds for the family
(phi )h,i6Nh

as in Lemma 8.24 and to deduce equicontinuity in space of the discrete
~ow.

Proposition 8.37. For some
¯
C, C̄,

¯
c, c̄ > 0, we have for all h > 0, i 6 Nh,

x ∈ Rd,

¯
C exp(−

¯
c|x|2) 6 phi (x) 6 C̄ exp(−c̄|x|2).

In addition, it holds
sup

h,i6Nh

‖∇phi ‖∞ < +∞.

Proof. The Gaussian bounds are a direct consequence of Lemma E.4, whose as-
sumptions are satis}ed according to Lemmas 8.38–8.42 below. As for the second
part, it follows from the identity ∇phi = phi∇ log phi by using the Gaussian upper-
bound above and the fact that |∇ log phi (x)| 6 C(1+ |x|) according to Lemmas 8.41
and 8.42 below.

Recall that the mapping phi is a solution to the stationary MFS equation (8.16).
In other words, if we denote uhi := − log(phi ), it holds

σ2

2
∆uhi −

σ2

4
|∇uhi |2 +

δF

δp
(phi , ·) + h−1uhi−1 − h−1uhi = λhi , (8.50)

with

λhi =

∫

Rd

(
δF

δp
(phi , ·) + h−1(uhi−1 − uhi ) +

σ2

2
∆uhi −

σ2

4
|∇uhi |2

)
phi . (8.51)

The key point is to observe that we have the decomposition uhi = vhi + wh
i with

vhi uniformly convex and wh
i uniformly Lipschitz. It comes from using arguments

similar to Section 8.3.1. In this setting there is a slight ambiguity in the de}nition
of vhi (and thus wh

i ) due to the normalizing constant λhi . Let us de}ne vhi as the
solution to

σ2

2
∆vhi −

σ2

4
|∇vhi |2 + g + h−1vhi−1 − h−1vhi = 0.

Lemma 8.38. The function (vhi )h,i6Nh
are uniformly η-convex for some η > 0.

Proof. Observe that vhi corresponds to the stationary solution to (8.21) with param-
eter γ = h−1 and convex term g + h−1vhi−1 instead of g. Due to Proposition 8.20,
vhi is ηhi -convex with

ηhi =

√
h−2 + 4σ2

(
¯
κ+ h−1ηhi−1

)
− h−1

2σ2

>

√
h−2 + 4σ2

(
¯
κ+ h−1 min(ηhi−1,

√
¯
κ/σ)

)
− h−1

2σ2

> min(ηhi−1,
√
¯
κ/σ).

Recall that ηh0 =
¯
η0. Finally we obtain that vhi is min(

¯
η0,
√
¯
κ/σ)-convex.

Lemma 8.39. The Hessian’s (∇2vhi )h,i6Nh
are uniformly bounded.
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Proof. As in Proposition 8.20, we may obtain the following probabilistic represen-
tation:

∇vhi (x) = E

[∫ t

0

e−s/h
(
∇g(Xs) + h−1∇vhi−1(Xs)

)
ds+ e−t/h∇vhi (Xt)

]
,

with

Xs = x−
∫ s

0

σ2

2
∇vhi (Xr) dr + σWs.

Let X ′ satisfy the same SDE with initial value x′. Since vhi is η-convex, it follows
from the same arguments as (8.30) that

|Xt −X ′
t| 6 e−σ2ηt/2|x− x′|.

Further we obtain

|∇vhi (x)−∇vhi (x′)|

6 E

[∫ t

0

e−s/h(κ̄+ h−1‖∇2vhi−1‖∞)|Xs −X ′
s| ds+ e−t/h‖∇2vhi ‖∞|Xt −X ′

t|
]

6

(∫ t

0

e−(1/h+σ2η/2)s(κ̄+ h−1‖∇2vhi−1‖∞) ds+ e−(1/h+σ2η/2)t‖∇2vhi ‖∞
)
|x− x′|.

Letting t→∞, we get

‖∇2vhi ‖∞ 6
κ̄h+ ‖∇2vhi−1‖∞

1 + σ2ηh/2
.

Therefore, we deduce by induction that

‖∇2vhi ‖∞ 6
2κ̄

σ2η

(
1−

(
1 +

σ2ηh

2

)−i
)
+ η̄0

(
1 +

σ2ηh

2

)−i

6
2κ̄

σ2η
+ η̄0.

Lemma 8.40. The gradients (∇wh
i )h,i6Nh

are uniformly bounded.

Proof. Observe that wh
i = uhi − vhi satis}es

σ2

2
∆wh

i −
σ2

2
∇vhi · ∇wh

i −
σ2

4
|∇wh

i |2 +G(phi , ·) + h−1wh
i−1 − h−1wh

i = λhi .

As in Proposition 8.21, we observe that wh
i is the value function of the following

stochastic control problem

wh
i (x) = inf

α
E

[∫ t

0

e−s/h
(
G(phi , X

α
s ) + h−1wh

i−1(X
α
s ) +

σ2

4
|αs|2 − λhi

)
ds

+ e−t/hwh
i (X

α
t )

]
,

with
dXα

s = −σ
2

2

(
∇vhi (Xα

s ) + αs

)
ds+ σ dWs, Xα

0 = x.
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Further as in (8.31), we may estimate

|wh
i (x)− wh

i (x
′)|

6

(∫ t

0

e−(1/h+σ2η/2)s(LG + h−1‖∇wh
i−1‖∞) + e−(1/h+σ2η/2)t‖∇wh

i ‖∞
)
|x− x′|.

Letting T →∞, we obtain

‖∇wh
i ‖∞ 6

LGh+ ‖∇wh
i−1‖∞

1 + σ2ηh/2
.

Therefore, we deduce by induction that

‖∇wh
i ‖∞ 6

2LG

σ2η
+ L0.

Lemma 8.41. The Hessians (∇2uhi )h,i6Nh
are uniformly bounded.

Proof. As in the proof of Lemma 8.22, the Feynman–Kac formula ensures that

∇uhi (x) = E

[∫ ∞

0

e−t/h

(
∇δF
δp

(phi , Xt) + h−1∇uhi−1(Xt)

)
dt
]
,

with

Xt = x− σ2

2

∫ t

0

∇uhi (Xs) ds+ σWt.

Let Y satisfy the same SDE starting from y. By the re~ection coupling in Theo-
rem E.7, it holds

W1(p
X
t , p

Y
t ) 6 Ce−ct|x− y|,

where pX and pY are the marginal distribution of X and Y respectively. Then it
follows by Kantorovich duality that

|∇uhi (x)−∇uhi (y)|

6

∫ ∞

0

Ce−t/h−ct|x− y|+
∫ ∞

0

e−t/hh−1E
[
|∇uhi−1(Xt)−∇uhi−1(Yt)|

]

=
Ch

1 + ch
|x− y|+

∫ ∞

0

e−t/hh−1E
[
|∇uhi−1(Xt)−∇uhi−1(Yt)|

]
dt.

Next apply the same estimate on |∇uhi−1(Xt)−∇uhi−1(Yt)|, and obtain

|∇uhi (x)−∇uhi (y)| 6
2Ch

1 + ch
|x− y|

+

∫ ∞

0

e−t1/hh−1

∫ ∞

0

e−t2/hh−1E
[
|∇uhi−2(X

(1)
t1+t2

)−∇uhi−2(Y
(1)
t1+t2

)|
]

dt2 dt1,

with

X
(1)
0 = x, dX(1)

t =

{
−σ2

2 ∇uhi (X
(1)
t ) dt+ σ dWt, for t ∈ [0, t1)

−σ2

2 ∇uhi−1(X
(1)
t ) dt+ σ dWt, for t > t1.
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By repeating the procedure, we eventually obtain for i > 1

|∇uhi (x)−∇uhi (y)|
6

Chi

1 + ch
|x− y|

+

∫ ∞

0

· · ·
∫ ∞

0

e−h−1 ∑i
j=1 tjh−iE

[∣∣∇u0
(
X

(i−1)
∑

i
j=1 tj

)
−∇u0

(
Y

(i−1)
∑

i
j=1 tj

)∣∣
]

dti · · · dt1,

with

X
(i−1)
0 = x, dX(i−1)

t = −σ
2

2
∇uhj

(
X

(i−1)
t

)
dt+ σ dWt, for t ∈ [ti−j , ti+1−j).

Again it follows from the re~ection coupling that

W1(p
X(i−1)

t , pY
(i−1)

t ) 6 Ce−ct|x− y|,

where pX(i−1) , pY (i−1) are the marginal distribution of X(i−1), Y (i−1) respectively.
In particular, the constants c, C do not depend on (t1, · · · , ti−1) by Lemmas 8.38–8.40.
Finally we get

|∇uhi (x)−∇uhi (y)|

6
Chi

1 + ch
|x− y|+ C

∫ ∞

0

· · ·
∫ ∞

0

e−(h−1+c)
∑i

j=1 tjh−i|x− y| dti · · · dt1

6 C(T + 1)|x− y|,

and the desired result follows.

Lemma 8.42. The vectors
(
∇uhi (0)

)
h,i6Nh

are uniformly bounded.

Proof. The proof follows similar arguments as Lemma 8.30 and Lemma 8.31. First
we observe that the sequence Fσ(phi ) is non-increasing as

Fσ(phi ) 6 Fσ(phi ) + h−1H(phi |phi−1) 6 Fσ(phi−1) + h−1H(phi−1|phi−1) = Fσ(phi−1),

by using (8.15) for the second inequality. In addition, it follows from Assumption 8.3
that

λ

∫

Rd

|x|2phi (x) dx+ σ2

∫

Rd

|∇
√
phi (x)|2 dx 6 Fσ(phi ).

Therefore we have

sup
h,i6Nh

{
λ

∫

Rd

|x|2phi (x) dx+ σ2

∫

Rd

|∇
√
phi (x)|2 dx

}
6 Fσ(p0).

Since we have proved that L := suph,i6Nh
‖∇2uhi ‖∞ <∞, we deduce that

4

∫

Rd

|∇
√
phi (x)|2 dx =

∫

Rd

|∇uhi (x)|2phi (x)dx >
1

2
|∇uhi (0)|2 − L2

∫

Rd

|x|2phi (x)dx.

Finally we obtain suph,i6Nh
|∇uhi (0)| <∞.
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8.5.2 Equicontinuity in time
We aim to show the equicontinuity in time of the family (ph)h>0 as stated in
the proposition below. We also demonstrate as a preliminary step and for later
use that the family of function (t 7→ λhbt/hc)h>0 de}ned by (8.51) is bounded and
equicontinuous.

Proposition 8.43. There exists constants C, c > 0 such that for all h > 0, i <
j 6 Nh, x ∈ Rd,

|phj (x)− phi (x)| 6 C exp(−c|x|2)(j − i)h.
Additionally, the sequence (λhi )h.i6Nh

is uniformly bounded, i.e., suph,i6Nh
|λhi | <

+∞, and there exists a modulus of continuity (m.o.c.) $ : R+ → R+ such that for
all h > 0, i < j 6 Nh,

|λhj − λhi | 6 $
(
(j − i)h

)
.

Proof. Step 1: Formulas for λhi . The normalization condition for uhi , i 6 Nh, writes

1 =

∫
exp(−uhi ) =

∫
exp(−uhi−1) exp

(
−hu

h
i − uhi−1

h

)

=

∫
phi−1 exp

(
−h
(σ2

2
∆uhi −

σ2

4
|∇uhi |2 +

δF

δp
(phi , ·)− λhi

))
.

where the latter follows from (8.50). This allows us to obtain the following formula
for λhi :

λhi = − 1

h
log
∫
phi−1 exp(−hBh

i ), (8.52)

where
Bh

i :=
σ2

2
∆uhi −

σ2

4
|∇uhi |2 +

δF

δp
(phi , ·).

By writing the normalization in the backward way,

1 =

∫
exp(−uhi−1) =

∫
exp(−uhi ) exp

(
h
uhi − uhi−1

h

)

=

∫
exp(−uhi ) exp

(
h(Bh

i − λhi )
)
,

we obtain a similar formula

λhi =
1

h
log
∫
phi exp(hBh

i ). (8.53)

We apply Jensen’s inequality to (8.52) and (8.53) to obtain
∫
phi B

h
i 6 λhi 6

∫
phi−1B

h
i . (8.54)

Additionally, estimates from Lemma 8.41 and Lemma 8.42 gives us the bound

sup
h,i6Nh

|Bh
i (x)| 6 C(1 + |x|2). (8.55)
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Note that the same holds for δF/δp (phi , ·) as (phi )h,i6Nh
belong to a W1-compact

set due to the Gaussian bound. Thus, by Corollary 8.37, we prove the second claim
suph,i6Nh

|λhi | < +∞.

Step 2: Time regularity of phi . According to the HJB equation (8.50) and Step (i)
above, it holds

|uhj (x)− uhi (x)| =
∣∣∣∣h
( j∑

s=i+1

Bh
s −

j∑

s=i+1

λhs

)∣∣∣∣ 6 C(j − i)h(1 + |x|2). (8.56)

Using further the bound from Corollary 8.37, we obtain

|phj (x)− phi (x)| =
∣∣exp

(
−uhj (x)

)
− exp

(
−uhi (x)

)∣∣

6 phj (x) ∨ phi (x) |uhj (x)− uhi (x)|
6 C(j − i)h exp(−c|x|2)(1 + |x|2)
6 C(j − i)h exp(−c|x|2), (8.57)

which is our }rst claim. This implies the W1-regularity of phi as follows:

W1(p
h
j , p

h
i ) 6

∫
|x||phj (x)− phi (x)| dx 6 C(j − i)h

∫
|x| exp(−c|x|2) 6 C(j − i)h.

(8.58)

Step 3: Uniform continuity of δF/δp. Thanks to the estimate in Corollary 8.37,
{phi }h,i6Nh

forms a relatively compact set in W1, and the W1-continuity of p 7→
δF/δp (p, 0) becomes uniform. That is, there exists a m.o.c. $0 : R+ → R+ such
that
∣∣∣∣
δF

δp
(phi , 0)−

δF

δp
(phj , 0)

∣∣∣∣ 6 $0

(
W1(p

h
i , p

h
j )
)
, ∀h > 0, ∀i 6 Nh, ∀j 6 Nh.

Integrating along the straight line from 0 to any x ∈ Rd and using the assumptions
on ∇ δF

δp
, we obtain

∣∣∣∣
δF

δp
(phi , x)−

δF

δp
(phj , x)

∣∣∣∣ 6
∣∣∣∣
δF

δp
(phi , 0)−

δF

δp
(phj , 0)

∣∣∣∣

+

∫ 1

0

∣∣∣∣x ·
(
∇δF
δp

(phi , tx)−∇
δF

δp
(phj , tx)

)∣∣∣∣ dt

6 $0

(
W1(p

h
i , p

h
j )
)
+ LG|x|W1(p

h
i , p

h
j ).

Combining with (8.58), we deduce that the exists a m.o.c. $1 : R+ → R+ such
that ∣∣∣∣

δF

δp
(phi , x)−

δF

δp
(phj , x)

∣∣∣∣ 6 (1 + |x|)$1

(
(j − i)h

)
. (8.59)

Step 4: Time regularity of λhi . We }rst note that thanks to (8.54) we can approxi-
mate λhi by

∫
phi B

h
i , up to a uniform O(h) error. More precisely,

|rhi | :=
∣∣∣∣λhi −

∫
phi B

h
i

∣∣∣∣ 6
∣∣∣∣
∫
(phi − phi−1)B

h
i

∣∣∣∣ 6 Ch

∫
exp(−c|x|2)(1 + |x|2) 6 Ch,
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where we used (8.55) and (8.57). It su{ces then to study the dizerence
∫
phjB

h
j − phi Bh

i =

∫
phi (B

h
j −Bh

i ) +

∫
(phj − phi )Bh

j =: δ + δ′.

We bound the second part, using again (8.55) and (8.57),

|δ′| 6 C(j − i)h
∫

exp(−c|x|2)(1 + |x|2) 6 C(j − i)h.

As for the }rst part, we decompose it into three terms, each of which we treat
separately:

δ =
σ2

2

∫
phi (∆u

h
j −∆uhi )−

σ2

4

∫
phi (|∇uhj |2 − |∇uhi |2)

+

∫
phi

(
δF

δp
(phj , ·)−

δF

δp
(phi , ·)

)
=: δ1 + δ2 + δ3.

We apply integration by parts to the }rst term, using the previous estimates on
∇uhi , phi and the time regularity result of ∇uhi from Lemma 8.44 below,

|δ1| =
σ2

2

∣∣∣∣
∫
phi∇uhi ·(∇uhj −∇uhi )

∣∣∣∣ 6 C

∫
phi (1+|x|)2

(
(j−i)h

)1/2
6 C

(
(j−i)h

)1/2
.

The second term is treated in the same way:

|δ2| 6
σ2

4

∫
phi (|∇uhj |+ |∇uhi |)|∇uhj −∇uhi | 6 C

(
(j − i)h

)1/2
.

Using (8.59), we can then bound

|δ3| 6
∫
phi

∣∣∣∣
δF

δp
(phj , ·)−

δF

δp
(phi , ·)

∣∣∣∣ 6
∫
phi (1 + |x|)$1

(
(j − i)h

)
6 C$1

(
(j − i)h

)
.

Collecting the bounds on r, δ′, δ, we derive }nally that

|λhj − λhi | 6 |δ|+ |δ′|+ |rhj |+ |rhi |
6 C

((
2(j − i)h

)1/2
+$1

(
(j − i)h

)
+ (j − i)h+ 2h

)
.

Lemma 8.44. There exists a constant C such that for all h ∈ (0, 1), i < j 6 Nh,
we have

|∇uhj (x)−∇uhi (x)| 6 C
(
(j − i)h

)1/2
(1 + |x|), ∀x ∈ Rd.

Proof. By taking spatial derivatives of the HJB equation (8.50), we see the following
is satis}ed for

1

h
(∇uhk −∇uhk−1) =

σ2

2
∆∇uhk −

σ2

2
∇2uhk ∇uhk +∇δF

δp
(phk , ·) =:

σ2

2
∆∇uhk +Ah

k ,

(8.60)
where by estimates in Lemma 8.41 and Lemma 8.42 we know that

sup
h,i6Nh

|Ah
i (x)| 6 C(1 + |x|), ∀x ∈ Rd.
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The solution to (8.60) admits the following representation

∇uhk =

∫ ∞

0

e−h−1t

(
Pσ2tA

h
k +

1

h
Pσ2t∇uhk−1

)
dt,

where Pt is the heat kernel generated by 1
2∆. Iterating this procedure with de-

scending k, we obtain

∇uhj =

j−i∑

n=1

h−(n−1)

∫

t1,...,tn>0

e−h−1(t1+...+tn)Pσ2(t1+···+tn)A
h
j+1−n dt1 · · · dtn

+ h−(j−i)

∫

t1,...,tj−i>0

e−h−1(t1+...+tj−i)Pσ2(t1+···+tj−i)∇uhi dt1 · · · dtj−i.

Here we used the semigroup property of the heat kernel. Denoting γn,θ(t) =
Γ(n)−1θ−ntn−1e−t/θ the gamma distribution density, we have equivalently

∇uhj = h

j−i∑

n=1

∫ ∞

0

γn,h(t)Pσ2tA
h
j+1−n dt+

∫ ∞

0

γj−i,h(t)Pσ2t∇uhi dt.

Subtracting ∇uhi , we obtain

|∇uhj (x)−∇uhi (x)|

6 h

j−i∑

n=1

∫ ∞

0

γn,h(t)|Pσ2tA
h
j+1−n(x)| dt+

∫ ∞

0

γj−i,h(t)|Pσ2t∇uhi (x)−∇uhi (x)| dt

6 h

j−i∑

n=1

∫ ∞

0

γn,h(t)C
(
1 + |x|+ (σ2t)1/2

)
dt+

∫ ∞

0

γj−i,h(t)(σ
2t)1/2‖∇2uhi ‖∞ dt

6 C(j − i)h(1 + |x|) + Ch3/2
j−i∑

n=1

Γ
(
n+ 1

2

)

Γ(n)
+ Ch1/2

Γ
(
j − i+ 1

2

)

Γ(j − i)

6 C(j − i)h(1 + |x|) + C
(
(j − i)h

)3/2
+ C

(
(j − i)h

)1/2
.

In the second inequality, we used the following properties of the heat kernel:

Pt|·|(x) 6 cd
√
t+ |x|, ‖Ptf − f‖∞ 6

√
t‖f‖Lip.

In the last inequality, we used the log-convexity of the gamma function along the
positive real line: Γ

(
x+ 1

2

)
6
√
Γ(x)Γ(x+ 1) =

√
xΓ(x) for x > 0.

8.5.3 Proof of Theorem 8.13
Proof of Theorem 8.13. Step 1. Let us de}ne by abuse of notations the step ~ows

fh(t) = fhi , for t ∈ [ih, (i+ 1)h), f = p, λ.

In view of Corollary 8.37 and Lemma 8.43, we can apply a version of Arzelà–Ascoli
Theorem for discontinuous functions, see e.g. [74, Theorem 6.1], to ensure that the
family of functions (ph)h (resp. (λh)h) is relatively compact in B([0, T ]×Rd) (resp.
B([0, T ])) the space of bounded functions on [0, T ]×Rd (resp. [0, T ]) equipped with
the uniform norm, and any adherence values p (resp. λ) is uniformly continuous.
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Let p and λ be such adherence values, i.e., there exists hn ↓ 0 such that phn → p

and λhn → λ uniformly. Note that ψhn :=
√
phn also converges to ψ :=

√
p

uniformly on [0, T ]×Rd by using the elementary inequality |√a−
√
b| 6

√
|a− b|.

Step 2. Let us verify that the limit (p, ψ, λ) solves the MFS equation (8.17) in the
weak sense, i.e., for all ϕ ∈ C2

c (R
d), we have for all t ∈ [0, T ],

∫ (
ψ(t, x)− ψ(0, x)

)
ϕ(x) dx

=

∫ t

0

∫
σ2

2
ψ(s, x)∆ϕ(x)− 1

2

(
δF

δp
(ps, x)− λ(s)

)
ψ(s, x)ϕ(x) dx ds. (8.61)

By construction, we know that the following holds for i 6 Nh,

∫ i∑

k=1

log ψh(kh, x)

ψh
(
(k − 1)h, x

)ψh(kh, x)ϕ(x) dx

= h

i∑

k=1

∫
σ2

2
ψh(kh, x)∆ϕ(x)− 1

2

(
δF

δp
(phkh, x)− λh(kh)

)
ψh(kh, x)ϕ(x) dx.

(8.62)

Let i = bt/hc be the unique integer such that t ∈ [ih, (i + 1)h) and denote the
dizerence between the left and right hand sides of (8.61), (8.62) by δ`(h), δr(h)
respectively. We want to show that both δ`(hn), δr(hn) converge to zero when
n→∞, so that (8.61) is proved. For the left hand side we have δ`(h) = δ`1(h)+δ

`
2(h)

with

δ`1(h) =

∫ (
ψ(t, x)− ψh(t, x)

)
ϕ(x) dx,

δ`2(h) =

∫ i∑

k=1

(
ψh(kh, x)− ψh

(
(k − 1)h, x

)

− log ψh(kh, x)

ψh((k − 1)h, x)
ψh(kh, x)

)
ϕ(x) dx.

The }rst part converges to 0 along the sequence hn as ψhn → ψ uniformly. For the
second part we note that, by using (8.56),
∣∣∣∣ψh(kh, x)− ψh

(
(k − 1)h, x

)
− log ψh(kh, x)

ψh
(
(k − 1)h, x

)ψh(kh, x)

∣∣∣∣

=

∣∣∣∣exp
(
−uhk(x)/2

)
− exp

(
−uhk−1(x)/2

)
+

1

2
exp
(
−uhk(x)/2

)(
uhk(x)− uhk−1(x)

)∣∣∣∣

6
1

8
max

(
ψh
k (x), ψ

h
k−1(x)

)
|uhk(x)− uhk−1(x)|2 6 C exp(−c|x|2)h2,

so that δ`2(h) 6 Ch
∫

exp(−c|x|2)ϕ(x) dx 6 Ch. For the right hand side, we have
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δr(h) = δr1(h) + δr2(h) with

δr1(h) =

∫ t

ih

∫
σ2

2
ψ(s, x)∆ϕ(x)− 1

2

(δF
δp

(ps, x)− λ(s)
)
ψ(s, x)ϕ(x) dx ds,

δr2(h) =

∫ ih

0

∫
σ2

2
(ψ − ψh)(s, x)∆ϕ(x)

− 1

2

(
δF

δp
(p·, ·)ψ −

δF

δp
(ph· , ·)ψh − λψ + λhψh

)
(s, x)ϕ(x) dx ds,

The }rst part clearly satis}es |δr1(h)| 6 Ch while the second part goes to zero along
the sequence hn as (phn , ψhn , λhn)→ (p, ψ, λ) uniformly.

Step 3. If we denote c(t, x) := δF/δp (pt, x)− λ(t), then Step 2 ensures that ψ is a
weak solution to the linear PDE

∂tψt =
σ2

2
∆ψt −

1

2
ctψt.

By weak uniqueness and strong existence, it is actually the classical solution to this
PDE. It follows that pt = ψ2

t satis}es (8.10) with λt = λ(pt) as the mass of pt is
conserved to 1 by construction. We conclude by uniqueness stated in Theorem 8.7.



Appendix A

Appendices to Chapter 1

A.1 Proofs of technical results on MFL
In the section we provide proofs of technical results on the regularity properties of
the MFL dynamics.

Proof of Proposition 1.37. It is classical that under the conditions (1.3) and (1.5),
the McKean–Vlasov SDE

dXt = −DmF (mt, Xt) dt+
√
2dWt, Law(Xt) = mt

has unique global solution de}ned for t ∈ [0,+∞). By construction the marginal
law mt = Law(Xt) is in C

(
[0,+∞);P2(R

d)
)
, proving the existence of solution. Any

solution to the Fokker–Planck equation admits equally this probabilistic represen-
tation, then the uniqueness in short time follows from Cauchy–Lipschitz bounds.
We extend this uniqueness to the in}nity by sewing up the short time intervals,
}nishing the proof of the }rst claim.

Let ρt(x) be the density of GaussianN (0, 2t). The solutionmt satis}es Duhamel’s
formula in the sense of distributions

mt = ρt ? m0 +

∫ t

0

ρt−s ?∇ ·
(
msDmF (ms, ·)

)
ds

= ρt ? m0 +
d∑

i=1

∫ t

0

∇iρt−s ?
(
msDmF

i(ms, ·)
)

ds.

Note that ‖∇ρt‖Lp(Rd) 6 Cd,pt
− 1

2+
d
2 (

1
p
−1), which is integrable around 0+ when

p < d
d−1 . In this case apply Young’s convolution inequality to obtain

‖mt‖Lp(Rd) 6 ‖ρt‖Lp(Rd)‖m0‖TV +

d∑

i=1

∫ t

0

‖∇iρt−s‖Lp(Rd)‖msDmF
i(ms, ·)‖TV ds,

where sups∈[0,t] ‖msDmF
i(ms, ·)‖TV 6 sups∈[0,t] C

∫
(1+ |x|)ms(dx) < +∞. Hence

‖mt‖Lp(Rd) < +∞ for all t > 0. This and the second moment bound
∫
|x|2mt(dx) <

+∞ are su{cient for the }niteness of entropy, i.e. the integral
∫
| logmt(x)|mt(x) dx

is }nite, which is our second claim. Indeed for the lower bound on entropy we use

351
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the decomposition in (1.45), while the upper bounds follows from m logm 6 mp−m
p−1

for all p > 1.
The drift DmF (mt, x) has uniform linear growth in x:

|DmF (ms, x)| 6MF
mx|x|+ sup

s∈[t0,t]

|DmF (ms, 0)|,

where MF
mx is the constant in (1.5) and the second term is }nite by the compactness

of set {ms : s ∈ [t0, t]} in P2. As a result,
∫ t

t0

∫
|DmF (ms, x)|2ms(dx) dt < +∞.

We then apply [22, Theorem 7.4.1] to obtain the }niteness of (1.47). Especially,
∇m ∈ L1

loc
(
(0,+∞);L1(Rd)

)
. Rewrite the Fokker–Planck equations as a continuity

equation ∂tm+∇·(mtvt) = 0 where vt(x) = −DmF (mt, x)−∇ logmt(x). We have
∫ t

t0

∫
|vs(x)|2ms(dx) ds

6 2

(∫ t

t0

∫
|DmF (ms, x)|2ms(dx) ds+

∫ t

t0

∫ |∇ms(x)|2
ms(x)

dx ds
)
< +∞.

Hence by [4, Theorem 8.3.1] the ~ow mt is locally AC2 in (P2,W2). The vector
}eld vt(x) = −DmF (mt, x)−∇ logmt(x) solves the continuity equation

∂tmt +∇ · (mtvt) = 0 (A.1)

in the sense of distributions and vt writes in the gradient form vt = −∇
(
δF
δm

(mt, x)+

logmt(x)
)
= −∇ϕt.

We }nally verify vt is indeed a tangent vector of mt according to [4, De}nition
8.4.1], i.e. vt ∈ Tanmt

P2(R
d) = {∇ϕ : ϕ ∈ C∞

c (Rd)}L
2(mt). Let ηR : Rd → [0, 1]

be a smooth function supported on B(2R), has the constant value 1 on B(R) and
satis}es |∇η(x)| 6 2/R for all x. We have

∫
|∇ϕt −∇(ϕtηR)|2mt 6 2

∫

B(2R)\B(R)

(
|ϕt|2|∇ηR|2 + |∇ϕt|2|1− ηR|2

)
mt.

The second term tends to 0 when R→∞, while the }rst satis}es
∫

B(2R)\B(R)

|ϕt|2|∇ηR|2mt

6
2

R2

∫

B(2R)\B(R)

(∣∣∣∣
δF

δm
(mt, x)

∣∣∣∣
2

+ |logmt(x)|2
)
mt

6
2C

R2

∫

B(2R)\B(R)

(1 + |x|4)mt(dx) +
2

R2

∫

B(2R)\B(R)

|logmt|2mt

6
2C

R2

∫

B(2R)\B(R)

(1 + 4R2|x|2)mt(dx) +
2

R2

∫

B(2R)\B(R)

|logmt|2mt.

Here the }rst term tends to 0 since mt ∈ P2, while the second term tends to 0 by
the integrability of | logmt|2mt, which follows from the elementary inequality

m|logm|2 6 Cpm
p1m>1 + 2

(
|x|2m+ sup

t∈[0,1]

t(log t)2e−|x|
)
1m<1
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for p > 1 and x ∈ Rd. Hence ∇(ϕtηR) → ∇ϕt in L2(mt). It then su{ces to
approximate the (essentially) compactly supported function ϕtηR by C∞

c functions
in the L2(mt)-norm. We can do this by taking a sequence of compacted supported
molli}ers ρn and applying them to obtain ∇(ϕtηR)?ρn → ∇(ϕtηR) in L2(mt) when
n→∞.

Proof of Proposition 1.43. Let h be a positive function. De}ne the functions kn =
1B(n)(h ∧ n) ∨ 1/n and kn,m = ρm ? kn, where (ρm)m∈N is a sequence of C∞

molli}ers. They satisfy

∀x ∈ Rd,
1

n
6 kn(x), kn,m(x) 6 n and |∇`kn,m(x)| 6 n‖∇`ρm‖∞ < +∞.

In particular kn,m ∈ A+. We have kn → h in Lp(µ) whenever h ∈ Lp(µ) for p > 1
and ‖kn‖q → ‖h‖q whenever h ∈ Lq(µ) for q 6 1 by the dominated convergence
theorem. Since for all n ∈ N the function kn ∈ L1(Rd), we have kn,m → kn in
L1(Rd) when m → ∞. Hence kn,m → kn a.e. when m → ∞ along a subsequence.
Then we can apply again the dominated convergence to obtain kn,m → kn in Lp(µ)
for all p > 1 and ‖kn,m‖q → ‖kn‖q for all q < 1. We can thus taking a subsequence
of (n,m)→ (+∞,+∞) so that kn,m → h in the desired ways.

Proof of Proposition 1.44. Fix T > t0. We denote by C a positive constant that
depends on maxk=1,2,3 supm,x |∇kDmF (m,x)| and on the initial condition h′ ∈ A+;
and by CQ a positive constant that depends additionally on the quantity Q. The
constants C, CQ may change from line to line. De}ne g(t, x) = ∇ · (bt − b∞) +
(bt − b∞) · b∞. It satis}es |g(t, x)| 6 C(1 + |x|) for all (t, x) ∈ [t0, T ] × Rd as
‖∇k(bt−b∞)‖∞ 6 C for k = 0, 1 and t ∈ [t0, T ]. Fix t ∈ [t0, T ]. Let (Xt,x

s )s∈[0,t−t0]

be the stochastic process solving

dXt,x
s = (2b∞ − bt−s) ds+

√
2dWs (A.2)

with X
t,x
0 = x and de}ne as well its extremal process M t,x

s = sup06u6s |Xu| for
s ∈ [0, t − t0]. Since the drift satis}es (2b∞ − bt) · x 6 CT |x|2 + CT for all (t, x) ∈
[t0, T ]×Rd, we obtain the Gaussian moment bound

E exp
(
C−1

T |M t,x
t−t0
|2
)
6 CT exp(CT |x|2)

by Itō’s formula and Doob’s maximal inequality. As a consequence the exponential
moments are }nite:

∀α > 0, E exp
(
α|M t,x

t−t0
|
)
6 CT,α exp(CT,α|x|).

Set h(t0, ·) = h′. We construct the solution by the Feynman–Kac formula for (1.50)

h(t, x) := E

[
exp
(
−
∫ t−t0

0

g(t− s,Xt,x
s ) ds

)
h(t0, X

t,x
t−t0

)

]
.

It is standard that the h constructed above solves (1.50) in the sense of distributions.
We verify ht ∈ A+ for all t ∈ [t0, T ]. For the upper bound we apply the Cauchy–
Schwarz inequality to obtain

h(t, x) 6 E

[
exp
(
−2
∫ t−t0

0

g(t− s,Xt,x
s ) ds

)]1/2
E
[
h(t0, X

t,x
t−t0

)2
]1/2

6 E
[
exp
(
CT (1 + |M t,x

t−t0
|)
)]1/2

E
[
exp
(
CT (1 + |Xt,x

t−t0
|)
)]1/2

6 E
[
exp
(
CT (1 + |M t,x

t−t0
|)
)]

6 exp
(
CT (1 + |x|)

)
.
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We applied the bound on g and h in the second inequality and used the exponential
moment bound on Mt−t0 in the last. For the lower bound we use Cauchy–Schwarz
from the other direction:

h(t, x) > E

[
exp
(∫ t−t0

0

g(t− s,Xt,x
s ) ds

)]−1

E
[
h(t0, X

t,x
t−t0

)1/2
]2

> C−1
T E

[
exp
(
CT |M t,x

t−t0
|
)]−1

E
[
exp
(
−CT |Xt,x

t−t0
|
)]2

> C−1
T E

[
exp
(
CT |M t,x

t−t0
|
)]−1

E
[
exp
(
CT |Xt,x

t−t0
|
)]−2

> C−1
T E

[
exp
(
CT |M t,x

t−t0
|
)]−3

> C−1
T exp(−CT |x|).

Again we applied the bound on g and h on the second inequality and used the
exponential moment bound on Mt−t0 on the last line. So we have proved the
bound of both sides |logh(t, x)| 6 CT (1+ |x|), that is, the “zeroth-order” condition
of A+.

Now derive the continuity of x 7→ h(t, x). Let the stochastic processes (Xt,x
· )x∈Rd

be coupled by sharing the same Brownian motion in their de}ning SDEs (A.2). The
mapping x 7→ Xt,x

s is continuous almost surely as its matrix-valued partial deriva-
tive ∂Xt,x

· /∂x solves the SDE

d∂X
t,x
s

∂x
= ∇

(
2b∞(Xt,x

s )− bt−s(X
t,x
s )
)∂Xt,x

s

∂x
ds

whose wellposedness is guaranteed by the bound

|∇2(2b∞ − bt−s)(x)| 6 3 sup
m∈P2(Rd)

sup
x∈R

|∇2DmF (m,x)| 6 C.

The norm of ∂Xt,x
s

∂x
satis}es

∀s ∈ [0, t− t0], ∀x ∈ Rd,

∣∣∣∣
∂Xt,x

s

∂x

∣∣∣∣ 6 CT a.s.

by Grönwall’s lemma. Therefore we have

E
[
exp
(
C−1

T sup
x:|x−x0|61

|M t,x
t−t0
|2
)]

6 CT exp(CT |x0|2)

for all x0 ∈ Rd. We obtain h(t, x) → h(t, x0) when x → x0 by applying the
dominated convergence theorem to the Feynman–Kac formula.

We sketch the part for verifying the conditions on derivatives. Dizerentiate the
evolution equation (1.50). We obtain for k = 1, 2,

∂t∇kh = ∆∇kh+ (2b∞ − bt) · ∇∇kh+

k∑

i=2

(
k

i

)
∇i(2b∞ − bt) · ∇∇k−ih

+

k∑

i=1

(
k

i

)
∇ig(t, x)∇k−ih+

(
∇(2b∞ − bt) · ∇∇k−1h+ g(t, x)∇kh

)
.

We then write the Feynman–Kac formula for ∇kh, k = 1, 2. The }rst two terms on
the right hand side of the equation corresponds to the same stochastic process, to



A.2 Proof of modi}ed Bochner’s theorem 355

which the Gaussian moment bound applies. The third and fourth term are lower-
order derivatives, continuous in space and have bound |∇k−ih(t, x)| 6 exp

(
CT (1 +

|x|)
)

by the induction hypothesis. The last term corresponds to the exponential in
the Feynman–Kac formula, whose growth in x remains linear. So we can argue as
before to derive |∇kh(t, x)| 6 exp

(
CT (1 + |x|)

)
for all (t, x) ∈ [t0, T ] × Rd. The

continuity of x 7→ ∇kh(t, x) for k = 1, 2 follows analogously. Since x 7→ h(t, x) are
twice-dizerentiable the generalized derivative ∂th exists by the evolution equation
(1.50). Finally all the constants in the bounds depend only additionally on T , so
(ht)t∈[t0,T ] ⊂ A+ uniformly.

A.2 Proof of modi}ed Bochner’s theorem
Proof of Theorem 1.16. We prove the theorem by showing (i)⇒ (ii)⇒ (iii)⇒ (i).
(i) ⇒ (ii). Suppose (i) holds, i.e., m 7→ FInt(m) is convex. Let µ be a compactly
supported signed measure with

∫
dµ = 0. Then it admits decomposition into

positive and negative parts: µ = µ+ − µ−. We de}ne the probability measure

m :=
|µ|∥∥|µ|
∥∥

TV
=

µ+ + µ−
‖µ+‖TV + ‖µ−‖TV

.

Then, for all t < (‖µ+‖TV + ‖µ−‖TV)
−1 =: t0, we have mt := m + tµ ∈ P(Rd).

Thus, the mapping

t 7→ FInt(mt) = FInt(m) + t

∫∫
V (x− y)m(dx)µ(dy) + t2

2

∫∫
V (x− y)µ(dx)µ(dy)

is convex on the interval (−t0, t0), and therefore,
∫∫

V (x−y)µ(dx)µ(dy) > 0, which
proves (ii).
(ii) ⇒ (iii). Suppose (ii) holds. For non-zero s ∈ Rd, we de}ne the bounded and
continuous function Ws(t) := 2V (t)− V (t+ s)− V (t− s). Then, for every ξ ∈ RN

and every x1, . . . , xN ∈ Rd, we have
N∑

i,j=1

ξiξjWs(x
i − xj)

=

N∑

i,j=1

ξiξjV (xi − xj) +
N∑

i,j=1

ξiξjV
(
(xi + s− (xj + s)

)

−
N∑

i,j=1

ξiξjV
(
(xi + s)− xj

)
−

N∑

i,j=1

ξiξjV
(
xi − (xj + s)

)

=

∫∫
V (x− y)µ̂(dx)µ̂(dy) > 0, for µ̂ =

N∑

i=1

ξiδxi −
N∑

i=1

ξiδxi+s

as the measure µ̂ has zero net mass. Thus, Ws is a function of positive type,
and according to the classical Bochner’s theorem [191, Theorem IX.9], its Fourier
transform Ŵs is a positive and }nite measure on Rd. On the other hand, denoting
by V̂ , Ŵs the Fourier transforms of V , Ws respectively, we have

Ŵs(k) = 2
(
1− cos(k · s)

)
V̂ (k)
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in the sense of tempered distributions. For every k 6= 0, we can }nd a non-zero
s ∈ Rd such that the mapping k′ 7→ 1− cos(k′ · s) is lower bounded away from 0 in
a neighborhood of k. Thus, in this neighborhood, we have

V̂ (k′) =
Ŵs(k

′)

2
(
1− cos(k′ · s)

) .

Therefore, the distribution V̂ restricted on Rd \ {0} is a positive and locally }nite
measure, which we denote by λ. The dizerence V̂ −λ, being a Schwartz distribution,
is supported on the singleton {0}, and by the structure theorem (see e.g., [207,
Théorème XXXV] and [114, Theorem 2.3.4]), admits decomposition

V̂ − λ =

m∑

|n|=0

(−1)|n|cnDnδ0,

n being multi-indices, for some m ∈ N and cn ∈ C. Denote the heat kernel by

ρε(x) = (2πε)−d/2 exp(−|x|2/2ε)

and its Fourier transform reads ρ̂ε(k) = (2π)−d/2 exp(−2π2ε|k|2). De}ne V ε =
V ? ρε. We then have

V ε(0) = 〈ρε, V 〉 = 〈ρ̂ε, V̂ 〉 =
〈
ρ̂ε, λ+

m∑

|n|=0

(−1)|n|cnDnδ0

〉

=

∫

Rd\{0}
ρ̂ε dλ+

c0

(2π)d/2
+

m∑

|n|=1

cn∇nρ̂ε(0),

where 〈ρ̂ε, V̂ 〉 is well de}ned, since ρ̂ε ∈ S and V̂ ∈ S ′. Thanks to the fact that
∫

Rd\{0}
ρ̂εdλ↗ λ(Rd \ {0}), V ε(0)→ V (0), ∇nρ̂ε(0)→ 0

when ε ↘ 0, for n such that |n| > 1, we can take the limit and obtain that the
mass λ(Rd \ {0}) is }nite and c0 ∈ R. Then the original potential V reads

V (x) =
1

(2π)d/2

∫

Rd\{0}
eik·xλ(dk) + c0

(2π)d/2
+ P (x),

where P is an m-th-order polynomial with P (0) = 0. The boundedness of V implies
that P must be identically zero, which concludes.
(iii)⇒ (i). Suppose (iii) holds. Let µ be an arbitrary signed measure with

∫
dµ = 0.

Then its Fourier transform µ̂ is even, real-valued, belongs to the class C0 and
satis}es µ̂(0) = 0. Thus, we have

∫∫
V (x− y)µ(dx)µ(dy) = 〈V ? µ, µ〉 = (2π)d/2〈V̂ µ̂, µ̂〉

= (2π)d/2
∫

Rd\{0}

(
µ̂(k)

)2
V̂ (dk) > 0,

which proves (ii). Finally, from the computation in the }rst paragraph, we see that
(i) is a consequence of (ii).
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Appendices to Chapter 2

B.1 Lower-semicontinuities
Lemma B.1. The entropy H : P2(R

2d)→ (−∞,+∞] and the Fisher information
I : P2(R

2d)→ (−∞,+∞] are lower-semicontinuous with respect to the weak topol-
ogy of P2. Consequently, under the assumption (2.2), if (mn)n∈N is a sequence
converging to m∗ in P2(R

2d), then

lim inf
n→+∞

H(mn|m̂n) > H(m∗|m̂∗) and lim inf
n→+∞

I(mn|m̂n) > I(m∗|m̂∗).

Proof. The lower semicontinuity of m 7→ H(m) is classical. We show the lower
semicontinuity of the Fisher information. Let (mn)n∈N be a sequence converging
to m∗ in P2(R

d). Without loss of generality, we suppose I(mn) 6 M2 for every
n ∈ N. This implies in particular ‖∇mn‖L1 6 M by Cauchy–Schwarz. For every
function ϕ belonging to C∞

c (Rd), we have

|〈∇ϕ,m∗〉| = lim
n→+∞

|〈∇ϕ,mn〉| 6M‖ϕ‖∞.

Hence ‖∇m∗‖TV 6 M as well. Moreover, for every f ∈ Cc(R
d) and every ε >

0, we can }nd ϕ ∈ C∞
c (Rd) such that ‖f − ϕ‖∞ < ε

4M and n ∈ N such that
|〈∇ϕ,mn −m∗〉| < ε

2 . Then,

|〈f,∇(mn −m∗)〉| 6 |〈f − ϕ,∇mn〉|+ |〈f − ϕ,∇m∗〉|+ |〈∇ϕ,mn −m∗〉|
< 2 · ε

4M
·M +

ε

2
= ε.

Equivalently, the sequence of Rd-valued Radon measures (∇mn)n∈N converges to
∇m locally weakly. We then apply [3, Theorem 2.34] to obtain

lim inf
n→+∞

I(mn) > I(m∗).

Finally, the lower semicontinuity of m 7→ H(m|m̂) (resp. m 7→ I(m|m̂)) follows
from the lower semicontinuity of m 7→ H(m) (resp. m 7→ I(m)) and the locally
uniform quadratic growth of x 7→ δF

δm
(m,x) (resp. the locally uniform linear growth

of x 7→ DmF (m,x)).
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B.2 Convergence of non-linear functional of em-
pirical measures

Let φ : P2(R
d) → R be a (non-linear) mean }eld functional and m be a proba-

bility measure with }nite second moment. We suppose the }rst and second-order
functional derivatives δφ

δm
, δ2φ
δm2 exist and that (φ,m) satis}es

∀m′ ∈ P2(R
d), ∀x ∈ Rd,

∣∣Dmφ(m
′, x)

∣∣ 6M1, (B.1)

∀m′ ∈ P2(R
d),

∣∣∣∣
∫∫ [

δ2φ

δm2
(m′, x, x)− δ2φ

δm2
(m′, x, y)

]
m(dx)m(dy)

∣∣∣∣ 6M2 (B.2)

for some constants M1 and M2.
Remark B.2. The condition (B.2) is a modi}ed version of the condition [218, (p-
LFD)]. Our version has the advantage of being intrinsic: the left hand side of (B.2)
stays invariant under the change δ2φ

δm2 (m,x, y)→ δ2φ
δm2 (m,x, y) +

δφ1

δm
(m, y) + φ2(m)

for regular enough φ1 and φ2.

Lemma B.3. If the mean }eld functional φ and the measure m satisfy (B.1) and
(B.2), then for N i.i.d. random variables ξ1, . . . , ξN ∼ µ, we have

E
[
|φ(µξ)− φ(m)|2

]
6
M2

1 Varm
N

+
M2

2

4N2
. (B.3)

Proof. We have the decomposition

E
[
|φ(µξ)− φ(m)|2

]
= Varφ(µξ) +

(
E
[
φ(µξ)

]
− φ(m)

)2
.

Thanks to (B.1), the mapping ξi 7→ φ(µξ) is M1

N
-Lipschitz continuous, so by the

Efron–Stein inequality we have

Varφ(µξ) 6
M2

1

N
Varm.

For the second term we apply the argument of [218, Theorem 4.2.9 (i)] and obtain
∣∣E
[
φ(µξ)

]
− φ(m)

∣∣ 6 M2

2N
.

B.3 Validity of Girsanov transforms
We prove a lemma similar to [117, Lemma A.1] which allows us to justify Girsanov
transforms.

Lemma B.4. Let (Ω,F , (Ft)t∈[0,T ],P) be a }ltered probability space. If β, γ, X,
Y : Ω× [0, T ]→ Rd are Ft-adapted continuous stochastic processes satisfying

|βt|+ |γt| 6 C(1 + |Xt|+ |Vt|)

almost surely for some constant C, and if the tuple (X,V, β) solves

dXt = Vtdt,

dVt = βtdt+
√
2dWt
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for an Ft-adapted Brownian Wt with E
[
|X0|2 + |V0|2

]
< +∞, then the exponential

local martingale
R· := exp

(∫ ·

0

γs · dWs −
1

2

∫ ·

0

|γs|2ds
)

is uniformly integrable.

Proof. It su{ces to verify E[RT ] = 1. Put M· = R·(1 + |X·|2 + |V·|2). By Itō’s
formula, the local semimartingale satis}es

dMt = 2Rt

(
Xt ·Yt+(βt+

√
2γt) ·Yt+1

)
dt+Rt

(
(1+ |Xt|2+ |Yt|2)γt+2

√
2Yt
)
·dWt.

Using the uniform linear growth condition of β, γ, we can }nd a constant C such
that t 7→ e−CtMt is a local supermartingale. But e−CtMt > 0. So by Fatou’s
lemma t 7→ e−CtMt is really a supermartingale and this yields E[Mt] 6 eCt E[M0].
The Itō’s formula for R· writes

dRt = Rtγt · dWt.

So for ε > 0 the bounded supermartingale R·

1+εR·

satis}es

d
Rt

1 + εRt

= − εR2
tγ

2
t

(1 + εRt)3
dt+

Rt

(1 + εRt)2
γt · dWt.

Taking expectations on both sides, we obtain

E

[
RT

1 + εRT

]
=

1

1 + ε
− E

[∫ T

0

εR2
tγ

2
t

(1 + εRt)3
dt

]
.

Using the bound εR2
tγ

2
t

(1+εRt)3
6 Rtγ

2
t 6 CMt, we take the limit ε→ 0 by the dominated

convergence theorem and obtain E[RT ] = 1.
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Appendices to Chapter 4

C.1 Well-posedness of singular dynamics
The mean }eld well-posedness proof will mainly be based on the estimates on the
convolution with the kernel K in Proposition 4.15 and the following elementary
result.

Proposition C.1 (Growth and stability estimates). Let T > 0 and β : [0, T ] ×
Rd → Rd be a vector }eld that is the sum of a Lipschitz and a bounded part, that
is, β = βLip + βb with ∇βLip, βb ∈ L∞. Suppose its divergence is lower bounded:
(∇ · β)− ∈ L∞. Let m : [0, T ] → P(Rd) be a probability solution to the parabolic
equation

∂tmt = ∆mt −∇ · (βtmt) .

Then, for all p ∈ [2,∞], we have

‖mt‖Lp 6 Cp

(
‖m0‖Lp + 1

)

for some Cp depending only on p, d and ‖(∇ · β)−‖L∞ (notably independent of t
and T ).

Moreover, let β′ be another vector }eld satisfying the same conditions as β, and
let m′ be a probability solution to the equation corresponding to β′. Then, for all
p ∈ {1} ∪ [2,∞), we have

‖mt−m′
t‖Lp 6 eC

′

pt‖m0−m′
0‖Lp +C ′

p

(
(eC

′

pt−1)1p>2+
√
t1p=1

)
sup

v∈[0,t]

‖βv−β′
v‖L∞

for some C ′
p depending only on p, d, ‖(∇ · β)−‖L∞ , ‖(∇ · β′)−‖L∞ , ‖m0‖Lp and

‖m′
0‖Lp .

Proof. First, consider the SDE

dXt = βt(Xt) dt+
√
2dBt .

Since its drift is the sum of a bounded and a Lipschitz part, we have the existence
of the strong solution and we }nd that if Law(X0) = m0, then we have the corre-
spondence Law(Xt) = mt, by the uniqueness of the PDE. Moreover, it is known
(see e.g. [45]) that if we take a molli}ed sequence approaching towards β, the SDE

361
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solution will also tend to the original one, i.e. X, and we have the continuous de-
pendency on the initial value as well. So without loss of generality, we can suppose
that ∇β ∈ C∞b and m0 belongs to the Schwartz class. By a Feynman–Kac argument
similar to that of Proposition C.2, we know that mt belongs also to the Schwartz
class. Thus, in the following we perform only formal calculations.
Step 1: Growth estimates. Let p > 2. The Lp norm of mt satis}es

d
dt

∫

Rd

m
p
t = p

∫

Rd

m
p−1
t ∂tmt

= p

∫

Rd

m
p−1
t

(
∆mt −∇ · (βtmt)

)

=

∫

Rd

(
−p(p− 1)mp−2

t |∇mt|2 − (p− 1)(∇ · βt)mt

)

6 −p(p− 1)

∫

Rd

m
p−2
t |∇mt|2 + (p− 1)‖(∇ · β)−‖L∞

∫

Rd

m
p
t

6 (p− 1)‖(∇ · β)−‖L∞

∫

Rd

m
p
t ,

where here and in the following Cp denotes a constant having the same dependencies
as in the statement, and may change from line to line. We would also denote by
C a constant that does not depend on p, but having the same other dependencies.
By Grönwall’s lemma, we get

‖mt‖Lp 6 exp
(
p− 1

p
(∇ · β)−‖L∞t

)
‖m0‖Lp , (C.1)

and taking p→∞, we get

‖mt‖L∞ 6 exp
(
‖(∇ · β)−‖L∞t

)
‖m0‖L∞ . (C.2)

Now we show that the two estimates above can be improved into time-uniform
ones. To this end, de}ne the operator Lt = ∆+βt ·∇ and its dual L∗

t = ∆−∇·(βt·).
Denote by (Pu,t)06u6t6T the time-dependent semi-group generated. Specializing
to p = 2 in the Lp computations above, we get

d
dt

∫

Rd

m2
t 6 −2

∫

Rd

|∇mt|2 + ‖(∇ · β)−‖L∞

∫

Rd

m2
t .

The Nash inequality indicates

‖mt‖1+2/d
L2 6 Cd‖mt‖2/dL1 ‖∇mt‖L2 ,

where Cd depends only on d. So by Grönwall’s lemma, we get the uniform-in-time
bound over ‖mt‖L2 :

‖mt‖2L2 6

(
C2

d‖(∇ · β)−‖L∞

2

)d/2
(1− e−κt)−d/2‖mt‖2L1 ,

for κ = 2‖(∇ · β)−‖L∞/d. Note that this bound is independent of ‖m0‖L∞ . Now
we take an arbitrary h0 : Rd → [0,∞) of the Schwartz class and consider the dual
evolution ∂uhu = Lt−uhu, that is,

∂uhu = ∆hu + βt−u · ∇hu ,
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for u ∈ [0, t], where t ∈ [0, T ]. Deriving the L1 norm of hs and integrating by parts,
we get

‖hu‖L1 6 exp
(
‖(∇ · β)−‖L∞u

)
‖h0‖L1 .

Doing the same for the L2 norm, we get

d
du

∫

Rd

h2u = 2

∫

Rd

huLT−uhu

= 2

∫

Rd

hu
(
∆hu + βt−u · ∇hu

)

= −2
∫

Rd

|∇hu|2 −
∫

Rd

h2u∇ · βt−u

6 −2
∫

Rd

|∇hu|2 + ‖(∇ · β)−‖L∞

∫

Rd

h2u .

Again, using the Nash inequality:

‖hu‖1+2/d
L2 6 Cd‖hu‖2/dL1 ‖∇hu‖L2 6 Cd exp

(
2‖(∇ · β)−‖L∞u/d

)
‖h0‖2/dL1 ‖∇hu‖L2 ,

we derive the bound over ‖ht‖L2 :

‖Pt−u,th0‖2L2 = ‖hu‖2L2 6

(
C2

d‖(∇ · β)−‖L∞

2

)d/2
(e−κu − e−2κu)−d/2‖h0‖2L1 ,

from which follows the bound on ‖Pt−u,t‖L1→L2 . So, taking u = max(t/2, t−κ−1),
we get

‖mt‖L∞ = ‖P ∗
u,tmu‖L∞ 6 ‖mu‖L2‖P ∗

u,t‖L2→L∞

= ‖mu‖L2‖Pu,t‖L1→L2 6 C(t ∧ 1)−d/2‖m0‖L1 . (C.3)

So, combining (C.2) and (C.3) , we get a uniform-in-time bound over ‖mt‖L∞ :

sup
t∈[0,T ]

‖mt‖L∞ 6 C
(
‖m0‖L1 + ‖m0‖L∞

)
. (C.4)

Finally, by dizerentiating
∫
mt and integrating by parts, we get

‖mt‖L1 = ‖m0‖L1 . (C.5)

Similarly, interpolating between (C.3) and (C.5), we get

‖mt‖Lp 6 C(p−1)/p(t ∧ 1)−(p−1)d/2p‖m0‖L1 ,

and combing with (C.1), we get

sup
t∈[0,T ]

‖mt‖Lp 6 Cp

(
‖m0‖L1 + ‖m0‖Lp

)
. (C.6)

Step 2: Stability estimates. Now let β′, m′ be the other vector }eld and the
probability solution. Recall that m, m′ correspond respectively to the SDE

dXt = βt(Xt) dt+
√
2dWt , Law(X0) = m0 ,

dX ′
t = β′

t(X
′
t) dt+

√
2dWt , Law(X ′

0) = m′
0 .
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Now introduce the third SDE, whose drift term is identical to the }rst, but initial
condition identical to the second:

dX ′′
t = βt(X

′′
t ) dt+

√
2dWt , Law(X ′′

0 ) = m′
0 .

such that P[X0 6= X ′′
0 ] =

1
2‖m0 −m′

0‖L1 . Denote m′′
t = Law(X ′′

t ). Thus, condi-
tioning on the initial condition, we get

‖mt −m′′
t ‖L1 6 2P[Xt 6= X ′′

t ] 6 2P[X0 6= X ′′
0 ] = ‖m0 −m′

0‖L1 .

On the other hand, by Pinsker’s inequality and Girsanov’s theorem, we have

‖m′
t −m′′

t ‖2L1 6 2H(m′
t|m′′

t ) 6
1

2

∫ t

0

‖βv − β′
v‖2L∞ dv .

Combining the two inequalities above yields the L1-stability estimate. Now, let
p > 2 and let us calculate:

d
dt

∫

Rd

|mt −m′
t|p

= p

∫

Rd

|mt −m′
t|p−2(mt −m′

t)
(
∆(mt −m′

t)−∇ · (mtβt) +∇ · (m′
tβ

′
t)
)

= −p(p− 1)

∫

Rd

|mt −m′
t|p−2|∇(mt −m′

t)|2

+ p

∫

Rd

|mt −m′
t|p−2(mt −m′

t)
(
−∇ · (mtβt) +∇ · (m′

tβ
′
t)
)

= −p(p− 1)

∫

Rd

|mt −m′
t|p−2|∇(mt −m′

t)|2

+ p

∫

Rd

|mt −m′
t|p−2(mt −m′

t)
(
−∇ ·

(
(mt −m′

t)β
′
t

)
+∇ ·

(
mt(β

′
t − βt)

))

6 (p− 1)

∫

Rd

|mt −m′
t|p · (−∇ · β′

t) +
p(p− 1)

4

∫

Rd

|mt −m′
t|p−2m2

t |βt − β′
t|2

6
(p− 1)

2
‖(∇ · β′)−‖L∞

∫

Rd

|mt −m′
t|p +

(p− 1)(p− 2)

4

∫

Rd

|mt −m′
t|p

+
p− 1

2
‖mt‖pLp‖βt − β′

t‖pL∞ .

Then, using the uniform Lp estimate in the }rst step, applying Grönwall’s lemma
and taking the p-th root, we get the desired result.

Now we are ready to prove the well-posedness of the mean }eld dynamics.

Proof of Proposition 4.16. Take a p ∈ (1,∞) such that p−1 < 1− s+1
d

and let q be
its conjugate: p−1 + q−1 = 1. We also take a θ ∈ (0, d− s− 1).
Step 1: Well-posedness. Let T ∈ (0,∞). We de}ne the functional space:

X := C([0, T ];L1 ∩ Lp ∩ P) .

The space X is a complete metric space. Given m ∈ X, we let T [m] be the
uniqueness probability solution to the Cauchy problem

∂tT [m]t = ∆T [m]t −∇ ·
(
(K ?mt −∇U)T [m]t

)
, T [m]0 = m0 .
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According to Proposition C.1 we know that T [m] ∈ X , where the continuity in
L1 ∩ Lp follows from a density argument. Moreover, by the stability estimate in
the proposition, for all m, m′ ∈ X, we have

‖T [m]t − T [m′]t‖Lr 6 eC
′

rt‖m0 −m′
0‖Lr

+ C ′
r

(
(eC

′

rt − 1)1r=p +
√
t1r=1

)
sup

v∈[0,t]

‖K ? (mv −m′
v)‖L∞

for r = 1, p. But by Proposition 4.15, we have

‖K ? (mv −m′
v)‖L∞ . ‖mv −m′

v‖1−q(s+1)/d
L1 ‖mv −m′

v‖q(s+1)/d
Lp .

Thus, restricting to the subspace of X of common initial value and letting T be
small enough, we get that the mapping T is a contraction in X . So a time-local
solution exists and is unique. Thanks to the uniform growth estimates, this short
time interval can be extended in}nitely by iteration. So a unique global solution
is recovered and it satis}es the uniform L∞ bound thanks to Proposition C.1. For
the continuous dependency on the initial value, we use the stability estimates on a
small time interval without restricting the initial values to be the same and iterate
in}nitely as well.

Step 2: Control of moments. Given the uniform L∞ bound obtained above, we
have, according to Proposition 4.15,

‖K ?mt‖L∞ . ‖mt‖1−(s+1)/d
L1 ‖mt‖(s+1)/d

L∞ .

So the contribution from the interaction kernel is bounded. Then we construct, for
k > 0, the Lyapunov function

Vk(x) =
√

1 + |x|2k ,

and we can easily verify
(
∆−∇U · ∇+ (K ?mt) · ∇

)
Vk 6 −ckVk + Ck ,

for some ck > 0, Ck > 0. This implies the uniform bound on the k-th moment.

Step 3: Approximation. Let (mε
t )t>0 be the ~ow corresponding to the molli}ed

kernel Kε and potential Uε. Applying the stability estimates in Proposition C.1,
we get

‖mt −mε
t‖Lr 6 eC

′

rt‖m0 −mε
0‖Lr

+C ′
r

(
(eC

′

rt−1)1r=p+
√
t1r=1

)
sup

v∈[0,t]

(
‖K?mv−Kε?mε

v‖L∞+‖∇U−∇Uε‖L∞

)
.

Note that the initial Lp error ‖mt −mε
t‖Lp → 0 by interpolation between L1 and

L∞. For the }rst term in the supremem, we have

‖K ?mv −Kε ? mε
v‖L∞ 6 ‖K ? (mv −mε

v)‖L∞ + ‖K ?mε
v −K ?mε

v ? η
ε‖L∞

6 ‖K ? (mv −mε
v)‖L∞ + εθ[K ?mε

v]Cθ .
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By the L∞ and Hölder estimates in Proposition 4.15, we have the following controls:

‖K ? (mv −mε
v)‖L∞ . ‖mv −mε

v‖1−q(s+1)/d
L1 ‖mv −mε

v‖q(s+1)/d
Lp ,

[K ?mε
v]Cθ . ‖mε

v‖1−(s+1+θ)/d
L1 ‖mε

v‖(s+1+θ)/d
L∞ .

For the second term we simply bound ‖∇U −∇Uε‖L∞ 6 ‖∇2U‖L∞ε. Since mε is
again uniformly bounded in L1 ∩ L∞, we get an error bound between mt and mε

t

for small t and we iterate in}nitely.

Finally, we prove the well-posedness of the particle system in the non-attractive
sub-Coulombic and Coulombic cases.

Proof of Proposition 4.17. De}ne for n ∈ N the sequence of stopping times:

τn := inf
{
t > 0 :

∣∣Xi
t −Xj

t

∣∣ 6 1/n for some i 6= j
}
.

Then the original SDE system (4.39) stopped at τn is well de}ned according to
Cauchy–Lipschitz theory. Consider the “energy” functional

E(x) = E(x1, . . . , xN ) =
1

2

∑

i,j∈J1,NK
i 6=j

gs(x
i − xj) + N1s=0

2

N∑

i=1

|xi|2 .

The energy functional is always lower bounded, and by Itō calculus, we }nd that
E
[
E
(
Xt∧τn

)]
is upper bounded uniformly in n. Then using the Markov inequality

for the energy, we show that P[τn 6 t] → 0 when n → ∞. This implies that
limn→∞ τn =∞ almost surely, thus the local well-posedness of the SDE extends to
the half line [0,∞). That is to say the }rst claim is proved.

Now prove the second claim. For each n ∈ N, we construct a Lipschitz kernel
K̃n : Rd → R such that K̃n(x) = K(x) for x ∈ Rd with |x| > 1/n. De}ne the
convolution K̃ε

n = K̃n ? η
ε and consider the SDE system

dX̃ε,i
n,t = −∇Uε

(
X̃

ε,i
n,t

)
dt+ 1

N − 1

∑

j∈J1,NK\{i}
K̃ε

n

(
X̃

ε,i
n,t − X̃ε,j

n,t

)
dt+

√
2dW i

t ,

for i ∈ J1, NK, with initial condition X̃ε
n,0 = X0. De}ne the stopping time

τ εn := inf
{
t > 0 :

∣∣X̃ε,i
n,t − X̃ε,j

n,t

∣∣ 6 1/n+ ε for some i 6= j
}
.

By construction, we know
X̃ε

n,t∧τε
n
= Xε

t∧τε
n

a.s.

On the other hand, by Cauchy–Lipschitz theory, we know

sup
t∈[0,T ]

∣∣X̃ε
n,t∧τn

−Xt∧τn

∣∣ 6 C(n,N,K,U, T )ε a.s.

Thus, for each n ∈ N, there exists ε0(n,N,K,U, T ) > 0 such that for all ε 6 ε0, we
have

sup
t∈[0,T ]

∣∣X̃ε
n,t∧τn

−Xt∧τn

∣∣ 6 1

3n
a.s.
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In particular, we get for all ε 6 ε0, t 6 T ∧ τn and i 6= j,

∣∣X̃ε,i
n,t − X̃ε,j

n,t

∣∣ > 1

3n
a.s.

Consequently, for ε 6 ε1(n,N,K,U, T ) := ε0 ∧ 1/(13n), we have T ∧ τn 6 τ ε4n, and
therefore,

sup
t6T∧τn

∣∣Xε
t −Xt

∣∣ = sup
t6T∧τn

∣∣Xε
t∧τε

4n
−Xt

∣∣ = sup
t6T∧τn

∣∣X̃ε
4n,t −Xt

∣∣

6 C(4n,N,K,U, T )ε a.s.

Thus, taking ε → 0, we get Xε
t∧τn

→ Xt∧τn a.s. for all t 6 T . We recover the
second claim by using the arbitrariness of T and the fact that limn→∞ τn = ∞
a.s.

C.2 Feynman–Kac formula
Proposition C.2. Let T > 0. Suppose β : [0, T ]×Rd → Rd and ϕ : [0, T ]×Rd → R

are measurable functions and suppose that there exists C > 0 such that for all
t ∈ [0, T ] and x ∈ Rd, we have

|β(t, x)| 6 C(1 + |x|) ,
|ϕ(t, x)| 6 C(1 + |x|) ,

∣∣∇k
xβ(t, x)

∣∣ 6 C , for k ∈ J1, 3K ,
∣∣∇k

xϕ(t, x)
∣∣ 6 C , for k ∈ J1, 2K .

Suppose in addition that f0 : Rd → R is measurable and satis}es, for the same
constant C, and for all x ∈ Rd,

|∇kf0(x)| 6 C exp
(
C(1 + |x|)

)
, for k ∈ J0, 2K .

Then, the function f : [0, T ]×Rd → R de}ned by

f(t, x) = E

[
exp
(∫ t

0

ϕ
(
t− u,Xt,x

u

)
du
)
f0
(
X

t,x
t

)]
,

where Xt,x
· solves

dXt,x
u = β

(
t− s,Xt,x

u

)
du+

√
2dBt , u ∈ [0, t] , X

t,x
0 = x ,

is a strong solution to the Cauchy problem

∂tf = ∆f + β · ∇f + ϕf , f |t=0 = f0

with the following bound: there exists C ′ > 0 such that for all t ∈ [0, T ] and x ∈ Rd,
we have

|∇kf0(t, x)| 6 C ′ exp
(
C ′(1 + |x|)

)
, for k ∈ J0, 2K .

The result can be easily obtained by dizerentiating the de}ning SDE of the
process Xt,x

· . We refer readers to e.g. Appendix A.1 for details.
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Appendices to Chapter 7

D.1 A lemma on Wasserstein duality
Lemma D.1. Let f : Rd1 × Rd2 → R be a C2 function such that the Euclidean
operator norm of ∇x∇yf(x, y) satis}es

|∇x∇yf(x, y)| 6M

for all x ∈ Rd1 and y ∈ Rd2 . Then, for all µ, µ′ ∈ P2(R
d1) and ν, ν′ ∈ P2(R

d2),
we have

∣∣∣∣
∫∫

f(x, y)(µ− µ′)(dx)(ν − ν′)(dy)
∣∣∣∣ 6MW2(µ, µ

′)W2(ν, ν
′).

Proof of Lemma D.1. Let π ∈ Π(µ, µ′) be the W2-optimal transport plan between
µ and µ′, and π′ ∈ Π(ν, ν′) be that between ν and ν′. Construct the random
variable

(
(X,X ′), (Y, Y ′)

)
distributed as π ⊗ π′. Then, we have

∫∫
f(x, y)(µ− µ′)(dx)(ν − ν′)(dy)

= E[f(X,Y )− f(X ′, Y )− f(X,Y ′) + f(X ′, Y ′)]

= E

[∫∫

[0,1]2
(X −X ′)>

∇x∇yf
(
(1− t)X + tX ′, (1− s)Y + sY ′)(Y − Y ′) dtds

]
.

Therefore, taking absolute values, we get
∣∣∣∣
∫∫

f(x, y)(µ− µ′)(dx)(ν − ν′)(dy)
∣∣∣∣

6M E
[
|X −X ′||Y − Y ′|

]

6M E
[
|X −X ′|2

]1/2
E
[
|Y − Y ′|2

]1/2

=MW2(µ, µ
′)W2(ν, ν

′),

which concludes the proof.
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D.2 Algorithm

Algorithm 5: Training two-layer neural network by self-interacting dizu-
sions

Input : Activation func. ϕ, truncation func. τ , dataset {zk, yk}Kk=1,
volatility σ, regularization constant γ, initial distribution m0,
time step δt, time horizon T , non-increasing piecewise constant
func. λ : [0, T ]→ (0,∞)

Output: YT
generate X0 = (C0, A0, B0) ∼ m0; Y0 = l(X0);
for t = 0, δt, 2δt, …, T − δt do

generate i.i.d. Nt ∼ N (0, 1);
Xt+δt ← Xt −

(
1
K

∑K
k=1 Y

k
t ∇f(Xt, zk) + σ2γXt

)
δt+ σ

√
δtNt;

if λ(t) ≡ λ∗ is constant function then
Yt+δt ← (1− λ∗δt)Yt + λ∗δt `(Xt+δt);
// Update corresponding to fixed value of λ

else
Yt+δt ←

(
1− λ(t)δt

)
Yt + λ(t)δt `(Xt+δt);

// Update corresponding to annealing λ(t) = λa(t)
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Appendices to Chapter 8

E.1 Regularity of solution to HJB equation
Throughout this section, we assume that Assumptions 8.5, 8.6 and 8.16 hold and
we }x a time horizon T < +∞. Let u be the unique viscosity solution to the HJB
equation (8.20). We start by establishing upper and lower bounds on u.
Lemma E.1. It holds for all t ∈ [0, T ], x ∈ Rd,

−CT 6 u(t, x) 6 CT (1 + |x|2).
Proof. Under Assumption 8.5 and 8.16, we have −CT 6 δF

δp
(mt, x) 6 CT (1 + |x|2).

Additionally, under Assumption 8.6, the initial value satis}es −C 6 u0(x) 6 C(1+
|x|2). The desired result follows from the comparison principle.

To show the existence and uniqueness of the classical solutions to HJB equa-
tion (8.20), it is convenient to consider the change of variable ψ := e−u/2, which
corresponds to the well-known Cole–Hopf transformation.
Lemma E.2. The function ψ is the unique viscosity solution to

∂tψt =
σ2

2
∆ψt −

1

2

(
δF

δp
(mt, ·)− γut

)
ψt, ψ0(x) = exp

(
−u0(x)/2

)
. (E.1)

Moreover, it admits the following probabilistic representation

ψ(t, x) = E

[
exp
(
−1

2

∫ t

0

(δF
δp

(mt−s, x+σWs)−γu(t−s, x+σWs)
)

ds
)
ψ0(x+σWt)

]
.

(E.2)
Proof. First, it follows from the monotonicity of x 7→ e−x/2 that ψ is a viscosity
solution to (E.1) if and only if u is a viscosity solution to (8.20). Then, by the
bound of u in Lemma E.1, we have

E

[
exp
(
γ

2

∫ t

0

u(t− s, x+ σWs) ds
)]

6
1

t

∫ t

0

E

[
exp
(
γt

2
u(t− s, x+ σWs)

)]
ds

6
1

t

∫ t

0

E

[
exp
(
γtCT

2
(1 + |x+ σWs|2)

)]
ds <∞,
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for all t 6 δ with δ small enough. Also note that
(
− δF

δp
(mt, ·)

)
t∈[0,T ]

and ψ0 are
bounded from above. So for t 6 δ we may de}ne

ψ̃(t, x) := E

[
exp
(
−1

2

∫ t

0

(δF
δp

(mt−s, x+σWs)−γu(t−s, x+σWs)
)

ds
)
ψ0(x+σWt)

]
.

It is easy to verify that ψ̃ is a viscosity solution to (E.1), so equal to ψ on [0, δ].
Also note that ψ = exp(−u/2) 6 CT thanks to Lemma E.1. So we may further
de}ne for t ∈ (δ, 2δ],

ψ(t, x)

:= E

[
exp
(
−1

2

∫ t−δ

0

(δF
δp

(mt−s, x+ σWs)− γu(t− s, x+ σWs)
)

ds
)

ψ̃(δ, x+ σWt−δ)

]

= E

[
exp
(
−1

2

∫ t

0

(δF
δp

(mt−s, x+ σWs)− γu(t− s, x+ σWs)
)

ds
)
ψ0(x+ σWt)

]
.

Therefore the desired probabilistic representation (E.2) follows from induction.

Proposition E.3. The function ψ = exp(−u/2) ∈ C3(QT ) ∩ C(Q̄T ) is the unique
classical solution to (E.1). Moreover, the gradient ∇ψ satis}es the growth condition
|∇ψ(t, x)| 6 CT (1 + |x|2).

Proof. It follows from Lemma E.2 that

s 7→ exp
(
−1

2

∫ s

0

(δF
δp

(mt−r, x+ σWr)− γu(t− r, x+ σWr)
)

dr
)
ψ(t− s, x+ σWs)

is a continuous martingale on [0, t]. By Itô’s formula, we have for all 0 6 r 6 t that

ψ(t, x) = E[ψ(r, x+ σWt−r)]

− 1

2
E

[∫ t−r

0

(δF
δp

(mt−s, x+ σWs)− γu(t− s, x+ σWs)
)

ψ(t− s, x+ σWs) ds
]
. (E.3)

Recall that
∣∣ δF
δp

(mt, x)
∣∣+ |u(t, x)| 6 CT (1+ |x|2) on [0, T ]×Rd, so for all t 6 T we

have
∫ t

0

E

[∣∣∣∣
(δF
δp

(mt−s, x+ σWs)− γu(t− s, x+ σWs)
)
ψ(t− s, x+ σWs)

Ws

σs

∣∣∣∣
]

ds <∞.

As a result ∇ψ exists and is equal to

∇ψ(t, x) = E[∇ψ0(x+ σWt)]

− 1

2
E

[∫ t

0

(δF
δp

(mt−s, x+ σWs)− γu(t− s, x+ σWs)
)

ψ(t− s, x+ σWs)
Ws

σs
ds
]
.
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Therefore we obtain |∇ψ(t, x)| 6 CT (1 + |x|2), and

|∇u(t, x)| = 2

∣∣∣∣
∇ψ(t, x)
ψ(t, x)

∣∣∣∣ 6 CT (1 + |x|2) exp
(
CT (1 + |x|2)

)
.

In particular we have E
[
|∇u(t, x + σWs)|2

]
< ∞ for s small enough. So for r < t

and r close enough to t we have

∇ψ(t, x) = E[∇ψ(r, x+ σWt−r)]

− 1

2
E

[∫ t−r

0

(
∇δF
δp

(mt−s, x+ σWs)− γ∇u(t− s, x+ σWs)

)

ψ(t− s, x+ σWs) ds
]
.

Further note that
∫ t−r

0

E

[∣∣∣∣
(
∇δF
δp

(mt−s, x+σWs)−γ∇u(t−s, x+σWs)

)
ψ(t−s, x+σWs)

Ws

σs

∣∣∣∣
]

ds

<∞,

So ∇2ψ exist and is equal to

∇2ψ(t, x) = E

[
∇ψ(r, x+ σWt−r)

Wt−r

σ(t− r)

]

− 1

2
E

[∫ t−r

0

(
∇δF
δp

(mt−s, x+ σWs)− γ∇u(t− s, x+ σWs)

)

ψ(t− s, x+ σWs)
Ws

σs
ds
]
.

Further, in order to compute the time partial derivative, recall (E.3). Since we have
already proved that x 7→ ψ(t, x) belongs to C2, it follows from Itô’s formula that

ψ(t, x)− ψ(r, x)

=
σ2

2
E

[∫ t−r

0

∆ψ(r, x+ σWs) ds
]

− 1

2
E

[∫ t−r

0

(δF
δp

(mt−s, x+ σWs)− γu(t− s, x+ σWs)
)
ψ(t− s, x+ σWs) ds

]
.

Then clearly ∂tψ exists and ψ satis}es (E.1). in the classical sense. Moreover,
using the same argument, we can easily show that ∇3ψ and ∂t∇ψ exist and are
continuous on QT .

E.2 Gaussian bounds
The aim of this section is to establish a technical result which ensures that if a
family of probability distributions writes as the exponential of a sum of a Lipschitz
and a convex function then it admits uniform Gaussian bounds.

Lemma E.4. Let p = exp(−v − w) be a probability measure on Rd that satis}es
the following conditions:
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(i) For some η̄ >
¯
η > 0, it holds

¯
ηId 6 ∇2v 6 η̄Id.

(ii) The vector ∇v(0) is bounded by C1, i.e., |∇vt(0)| 6 C1.

(iii) The gradient ∇w is bounded by C2, i.e., ‖∇wt‖∞ 6 C2.

Then there exist
¯
c, c̄,

¯
C, C̄ > 0, depending only on the constants in the conditions

and the dimension d, such that x ∈ Rd,

¯
C exp(−

¯
c|x|2) 6 pt(x) 6 C̄ exp(−c̄|x|2).

Proof. We decompose the probability measure p = qr with q = exp(−v)
/∫

exp(−v)
and r = exp(−w)

/∫
exp(−w)q.

Step 1. We }rst derive some estimates on v and the corresponding measure q. From
Assumption (i), the following inequalities holds

|∇v(x)−∇v(0)||x| >
(
∇v(x)−∇v(0)

)
· x >

¯
η|x|2

Let x∗ be the unique solution to ∇v(x) = 0, i.e., x∗ is the minimizer of v. Plug-
ging x∗ in the inequality above, we obtain |∇v(0)||x| >

¯
η|x|2. Thus, in view of

Assumption (ii), we have
|x∗| 6

C1

¯
η
. (E.4)

Denote ṽ(x) = v(x) − v(x∗). We have by de}nition q = exp(−ṽ)
/∫

exp(−ṽ) and
ṽ(x∗) = 0 as well as ∇ṽ(x∗) = 0. It follows from Taylor expansion that

1

2¯
η|x− x∗|2 6 ṽ(x) 6

1

2
η̄|x− x∗|2,

so that
(

¯
η

2π

)d/2
exp
(
− η̄
2
|x− x∗|2

)
6 q 6

(
η̄

2π

)d/2
exp
(
−¯
η

2
|x− x∗|2

)
. (E.5)

Step 2. Now we estimate the function r. Denote w̃(x) = w(x)−w(x∗). We have by
de}nition r = exp(−w̃)

/∫
exp(−w̃)q and w̃(x∗) = 0. Thanks to Assumption (iii),

we know that ∇w = ∇w̃ is uniformly bounded by C2. Therefore it holds

−C2|x− x∗| 6 w̃(x) 6 C2|x− x∗|.

In particular, in view of (E.5) and (E.4), it holds for some
¯
C, C̄ > 0,

¯
C exp(−L|x− x∗|) 6 r 6 C̄ exp(L|x− x∗|). (E.6)

Step 3. Since p = qr, the conclusion follows immediately from (E.4), (E.5) and
(E.6).
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E.3 Re~ection coupling
In the section we recall the re~ection coupling technique developped in [83, 85]
and use it to estimate the W1–distance between the marginal laws of two dizusion
processes with drift b and b+ δb.

Assumption E.5. The drifts b and δb satisfy

(i) b and δb are Lipschitz in x, i.e., there is a constant L > 0 such that

|b(t, x)−b(t, y)|+|δb(t, x)−δb(t, y)| 6 L|x−y|, for all t ∈ [0, T ], x, y ∈ Rd;

(ii) there exists a continuous function κ : (0,∞)→ R satisfying

lim sup
r→∞

κ(r) < 0,

∫ 1

0

rκ+(r) dr <∞

and

(x− y) ·
(
b(t, x)− b(t, y)

)
6 κ(|x− y|)|x− y|2, for all t ∈ [0, T ], x, y ∈ Rd.

Remark E.6. If b(t, x) = −
(
α(t, x) +∇β(t, x)

)
with α bounded and β η–convex in

x, i.e., (
∇β(t, x)−∇β(t, y)

)
· (x− y) > η|x− y|2,

then the function b satis}es Assumption E.5 (ii) with κ(r) = 2‖α‖∞r−1 − η.

Theorem E.7. Let Assumption E.5 hold. Consider the following two dizusion
processes

dXt = b(t,Xt) dt+ σ dWt, dYt = (b+ δb)(t, Yt) dt+ σ dWt,

and denote their marginal distributions by pXt := L(Xt) and pYt := L(Yt). Then we
have

W1(p
X
t , p

Y
t ) 6 Ce−cσ2t

(
W1(p

X
0 , p

Y
0 )+

∫ t

0

ecσ
2sE
[
|δb(s, Ys)|

]
ds
)
, for all t > 0,

(E.7)
where the constants C and c only depend on the function κ(·)/σ2.

Remark E.8. It follows immediately from Theorem E.7 that if π is an invariant
distribution of the process X then

W1(p
X
t , π) 6 Ce−cσ2tW1(p

X
0 , π), for all t > 0.

In particular, it is unique and it is the limiting distribution of X.

Proof. We }rst recall the re~ection-synchronuous coupling introduced in [85]. In-
troduce Lipschitz functions rc : Rd×Rd → [0, 1] and sc : Rd×Rd → [0, 1] satisfying

rc2(x, y) + sc2(x, y) = 1.
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Fix a small constant η > 0. We impose that rc(x, y) = 1 whenever |x− y| > η and
rc(x, y) = 0 if |x− y| 6 η/2. The so-called re~ection-synchronuous coupling is the
strong solution to the following SDE system:

dXt = b(t,Xt) dt+ rc(Xt, Yt)σ dW 1
t + sc(Xt, Yt)σ dW 2

t ,

dYt = (b+ δb)(t, Yt) dt+ rc(Xt, Yt)(I − 2et〈et, ·〉)σ dW 1
t + sc(Xt, Yt)σ dW 2

t ,

where W 1,W 2 are d-dimensional independent standard Brownian motion and

et =
Xt − Yt
|Xt − Yt|

for Xt 6= Yt and et = u for Xt = Yt,

with u ∈ Rd a }xed arbitrary unit vector. We denote by rct := rc(Xt, Yt) and de}ne
rt := |Xt − Yt|. Observe that

drt = 〈et, b(t,Xt)− b(t, Yt)− δb(t, Yt)〉 dt+ 2 rct σ dW ◦
t ,

where W ◦ is a one-dimensional standard Brownian motion, see [83, Lemma 6.2].
Next we construct an important auxiliary function f as in [85, Section 5.3].

First de}ne two constants:

R1 = inf{R > 0 | κ(r) 6 0, for all r > R},
R2 = inf{R > R1 | κ(r)R(R−R1) 6 −4σ2, for all r > R}.

Further de}ne

ϕ(r) = exp
(
− 1

2σ2

∫ r

0

uκ+(u) du
)
,

Φ(r) =

∫ r

0

ϕ(u) du,

g(r) = 1− c

2

∫ r

0

Φ(u)ϕ(u)−1 du,

where the constant c =
(∫ R2

0
Φ(r)ϕ(r)−1 dr

)−1, and eventually de}ne the auxiliary
function

f(r) =

∫ r

0

ϕ(u)g(u ∧R2) du.

One easily checks that

rϕ(R1) 6 Φ(r) 6 2f(r) 6 2Φ(r) 6 2r, for all r > 0.

Note also that f is increasing and concave. In addition, f is linear on [R2,+∞),
twice continuously dizerentiable on (0, R2) and satis}es

2σ2f ′′(r) 6 −rκ+(r)f ′(r)− cσ2f(r), for all r ∈ (0,∞) \ {R2}. (E.8)

This inequality follows easily by direct computation on [0, R2) and we refer to [85,
Eqn (5.32)] for a detailed justi}cation on (R2,+∞). Then we have by the Itô–
Tanaka formula as in [85, Eqn (5.26)] that

df(rt) 6
(
f ′−(rt)〈et, b(t,Xt)− b(t, Yt)− δb(t, Yt)〉+ 2σ2 rc2t f ′′(rt)

)
dt

+ 2 rct f ′−(rt)σ dW ◦
t .
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Further note that

〈et, b(t,Xt)− b(t, Yt)〉 6 1rt<η|b|Lipη + 1rt>ηrtκ
+(rt).

Together with the fact that f ′ 6 1, f ′′ 6 0 and rct 1rt>η = 1, we deduce that

decσ
2tf(rt) 6 ecσ

2t
(
2 rct f ′−(rt)σ dW ◦

t + |δb(t, Yt)| dt
+ 1rt<η(cσ

2f(rt) + |b|Lipη) dt

+ 1rt>η

(
cσ2f(rt) + rtκ

+(rt)f
′(rt) + 2σ2f ′′(rt)

)
dt
)
.

It follows from (E.8) that

decσ
2tf(rt) 6 ecσ

2t
(
2 rct f ′−(rt)σ dW ◦

t +
(
|δb(t, Yt)|+ (cσ2 + |b|Lip)η

)
dt
)
.

Taking expectation on both sides, we obtain

E[ecσ
2tf(rt)− f(r0)] 6

∫ t

0

ecσ
2s
(
E
[
|δb(s, Ys)|

]
+ (cσ2 + |b|Lip)η

)
ds.

Again due to the construction of f we have

W1(p
X
t , p

Y
t ) 6 E[rt] 6 2ϕ(R1)

−1E[f(rt)]

6 2ϕ(R1)
−1e−cσ2t

(
E[f(r0)] +

∫ t

0

ecσ
2sE
[
|δb(s, Ys)|

]
ds
)

+ 2ϕ(R1)
−1

∫ t

0

e−cσ2(t−s)(cσ2 + |b|Lip)η ds

6 2ϕ(R1)
−1e−cσ2t

(
W1(p

X
0 , p

Y
0 ) +

∫ t

0

ecσ
2sE
[
|δb(s, Ys)|

]
ds
)

+ 2ϕ(R1)
−1

∫ t

0

e−cσ2(t−s)(cσ2 + |b|Lip)η ds.

By passing to the limit η → 0, we }nally obtain the estimate (E.7).
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Titre : Comportements en temps long des dynamiques avec des interactions de champ moyen

Mots-clés : comportement en temps long, interaction de champ moyen, propagation du chaos, �ot de gradient,
entropie, inégalité de Sobolev logarithmique

Résumé: Cette thèse est consacrée à l’étude des
comportements en temps long des dynamiques avec
des interactions de champ moyen et des systèmes
de particules associés. Pour la plupart des cas traités
dans la thèse, la condition structurelle pour les com-
portements en temps long est la convexité plate de la
fonctionnelle d’énergie de champ moyen, qui est dif-
férente de la convexité de déplacement étudiée dans
les travaux classiques de transport optimal et de �ot de
gradient. La thèse est composée de trois parties. Dans
la première partie, nous étudions les dynamiques de
Langevin de champ moyen suramortie et sousamor-
tie, qui sont des dynamiques de gradient associées à
une fonctionnelle d’énergie libre de champ moyen, et
nous montrons qu’elles présentent des propriétés de
propagation du chaos uniforme en temps en exploitant
leurs structures de gradient et une inégalité de Sobo-
lev logarithmique uniforme. Dans la deuxième partie,
nous développons d’abord quelques résultats tech-
niques sur les inégalités de Sobolev logarithmiques
et nous les appliquons pour obtenir la propagation du
chaos uniforme en temps pour de diverses di{usions

de McKean-Vlasov. En particulier, pour le modèle de
vortex visqueux en 2D, nous développons des bornes
de régularité fortes sur sa limite de champ moyen sur
l’espace entier et nous montrons sa propagation du
chaos par la méthode de Jabin-Wang ; nous étudions
également son problème de taille du chaos en utilisant
l’approche entropique de Lacker et nous obtenons des
bornes optimales et uniformes en temps dans le ré-
gime de haute viscosité. Dans la dernière partie de la
thèse, nous explorons d’autres dynamiques de champ
moyen qui proviennent de problèmes d’optimisation
convexes. Pour l’optimisation régularisée par l’entro-
pie, nous étudions une dynamique d’auto-jeu ~ctif et
une di{usion auto-interagissante et nous montrons
leurs convergences en temps long vers la solution
du problème d’optimisation. Nous considérons égale-
ment un semigroupe de Schrödinger non linéaire, qui
est un �ot de gradient pour le problème d’optimisation
régularisé par l’information de Fisher, et nous mon-
trons sa convergence exponentielle sous une condi-
tion de trou spectral uniforme.

Title: Long-time behaviors of dynamics with mean ~eld interactions

Keywords: long-time behavior, mean ~eld interaction, propagation of chaos, gradient �ow, entropy, logarithmic
Sobolev inequality

Abstract: This thesis is devoted to the study of the
long-time behaviors of dynamics with mean ~eld in-
teractions and their associated particle systems. For
most cases treated in the thesis, the structural con-
dition for the long-time behaviors is the �at convexity
of the mean ~eld energy functional, which is di{erent
from the displacement convexity studied in the classi-
cal works of optimal transport and gradient �ow. The
thesis is comprised of three parts. In the ~rst part, we
study the overdamped and underdamped mean ~eld
Langevin dynamics, which are gradient dynamics as-
sociated to a mean ~eld free energy functional, and
show their time-uniform propagation of chaos prop-
erties by exploiting their gradient structures and a
uniform logarithmic Sobolev inequality. In the sec-
ond part, we ~rst develop some technical results on
logarithmic Sobolev inequalities and apply them to
get the time-uniform propagation of chaos for vari-

ous McKean–Vlasov di{usions. Speci~cally, for the
2D viscous vortex model, we develop strong regular-
ity bounds on its mean ~eld limit on the whole space
and show its propagation of chaos by the Jabin–Wang
method; we also study its size of chaos problem us-
ing the entropy approach of Lacker and obtain time-
uniform sharp bounds in the high viscosity regime.
In the last part of the thesis, we explore alternative
mean ~eld dynamics that originate from convex opti-
mization problems. For the entropy-regularized opti-
mization, we study a ~ctitious self-play dynamics and a
self-interacting di{usion and show their long-time con-
vergences to the solution of the optimization problem.
We also consider a non-linear Schrödinger semigroup,
which is a gradient �ow for the optimization problem
regularized by Fisher information, and show its expo-
nential convergence under a uniform spectral gap con-
dition.
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