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Mean-field optimization

We consider a general “mean-field” function(al) F: P (RY) — R. We
study the optimization problem: inf,, F(m). Examples:

e Linear: F(m ffdm Ex~m [AX)]
e Quadratic: F = [ fdm+ [ k(x, y)dm(x)dm(y)

@ Fancy: Neural networks
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Neural networks

@ One hidden layer

@ j=1,...,n— neurons

e ¢ : R — R — activation function, e.g. ¢ (x) = x4 (ReLU)
@ Quadratic cost

Problem: minimize

2

2~ -3 ep(aiZ + b

i=1

Fn(a,b,c)=E

When n — oo,
Fa = E[If(2) ~ En[Cp (AZ+ B))I’| =: F(m)

where (A, B, C) ~ m.

Remarks: Fis convex in m. It is no longer true when # layer > 2.
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Regularizations

Examples:
e entropy: H(m) = H(m|eY) = [(log m+ U)dm
@ Fisher information:

m2
I(m) = f% = [|Viogm|?*dm =4 [ |Vy/m|]* = 4|Vv/ml| 2(re)

Regularized problem: F7 = F+ ‘772H(m) or F7F =F+ %zl(m).
Entropic case [Hu, Ren, Sigka, Szpruch, 2019]: the gradient descent w.r.t.
W, gives the marginal low of “mean-field Langevin”

dX; = —DF (my, X) dt + odW;, m; ~ X

m; converges to the unique minimizer of F7(m) = F(m) + cr;H(m).
We consider the Fisher regularization in the following.
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Mean-field Ct

Definition (“Functional”, “flat”, “L?" derivative)

We say F: P (RY) — R is C' if there exists a continuous
2E P (RY) x RY — R s.t. for all mg, my € P

1
F(my) — F(mo) :/0 [ 5 (m) d (m — mo) (9

where my = (1 — t) mg + tmy, t € (0,1).

Remarks :
o g—g is defined up to a cst.

@ (Fis convex). If m minimize F, then (‘;57’; (m,-) is cst.
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First-order condition

Recall: I(m) = f%
We calculate formally:

2 2
1(m) = [ 2mom — 8C5m — [ (—2v - (S2) - 525 ) om.
Define

Sm ~ om 2

4 m?

OF7  OF U2V Vm o? |Vm[2

- .

If Fis convex, F7 = F+ %2/ is strictly convex and we expect
o if %L,:(m*, -) = cst, then m, is the unique minimizer

e for all my, my, we have F7(my) > F7(my) + [ %Lnj(ml, (my — my)
Caveats:
@ Fisher /is not strictly convex if the support of measures are disjoint

° %—f: is singular and doesn't exist for general m s.t. I(m) < +oc.
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Observations

Denote 1 = /m. The FOC is equivalent to

cst = oF
T om

& cst-y) = g—;¢ — o’ A

P w2 om

1) is a eigenfunction of the mean-field Schrédinger operator

oF
2 —_— — .
oA 6m(m’ ).

Denote u = —log m. The FOC is equivalent to
5F o2 o? >
t=—+ —Au— — .
ost= < + 5 Au— |V ul

e (W) 2O _6F Ay

(8

It is a mean-field HJB equation associated to an ergodic control problem.
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Definition of the dynamics

We consider the dynamics:

Omy = ——— (’77t,') my

om

where £ is chosen such that [ 3£ (m, x) dm = 0.

Sanity check: 0 (1, m¢) = 0. Mass conserved.
Formally F7 is decreasing:

dF? (me) _ 5F" ) 2 J
(m m
dt ty " t
We can expect that m; — the minimizer.
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Equivalent Formulations

Dynamics
dme _ _5_FU(m )m
dt ~ ém > 0

Recall

Sm dm 2

4 m?

The dynamics of 1) = /m : “mean-field dynamical Schrédinger”

0 _OF oo (@) o2 |[Vm|?
p :

o2 16F
O = 7A¢t - 56_m (mt, ) (o
The dynamics of u = —log m: “mean-field dynamical HJB"

o? o2 5 OF
Oru = 7Au vy |Vu|”+ Sm (my,-)
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Assumptions

F is continuous w.r.t. Wi and convex.

F e C! and its derivative g—n': can decompose into

oF

£ (mx) = () + G(m, )

where
Q@ xid < V?g < Cid;
@ G is uniformly Lipschitz in x : sup,, |[VG(m,")| ., < Le.
© VGis Lipschitz in m,x : Vm, m', x, X

|VG(m,x) = VG(m',X)| < Le¢( Wi (m,m)+|x—X]|).
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Decomposition

o? o? oF
Oru = 7Au -7 IVu]® + Sm (my,-)
2 2

o o
= Au—— |Vuf> +g+ G(my, ")

2 4

We want to decompose the value function u = v+ w where v, w solves
resp.

o2 o2
8t\/: ?AV— T |VV|2 +g
2 2 2
0w = %AW— %Vv' Vw— % \VW|2 + G(my, )
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Convexity of v

2 2

Opv = %Av— % Vv + g

The equation is classic (without mean-field). We have a classical solution.
Moreover we have

Proposition

If vo =v(0,-) is 6p-convex, then vy = v(t,-) is 0;-convex where 6; solves
Riccati: )

dgt g~ o

e U

de 2
One proof: dX; = —% VYT — t, X;)dt + 0dWs, Y: = V(T — t, X;), they
solves FBSDE

2
dX, = —% Yidt + odW,, Xo = x

C/Yt = —vg(T— t, Xt)dt+ thWt, YT = VV(O, XT)

Consider two solutions (X, Y), (X, Y'), take the difference, use convexity...
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A priori estimates of w

Recall that w solves

2 2 2
Ow = %AW— %V% Vw-— UI |VW|2 + G(my,-)

Proposition
We suppose w solves classically on [0, T]

0.2 2

ow=ZAw- L Vv Vw- £ IVw]® + L(t,x)
T2 2 4 ’

where L is uniformly Lipschitz in x and the initial value wy = w(0, -) is
also Lipschitz. We suppose moreover w, Vw is of polynomial growth.
Then supsq [[VW(t, -)||oo < C < +o00.
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|deas of proof

Write the optimal control problem

t 2
w(t, x) =infE [/ L(t—sXs)+ % s ds + W(O,Xt)]
@ 0

2
dXs = _% (as + Vves (X)) ds+ odWs,  Xo = x

Define X starting from X, using the optimal control for x, and the same
BM:

t 2
w(t ) <E [/ L(t=5.X) + 7 Josf ds+ W(o,x;)]
0

2
dX, =~ (as+ Vves (X)) ds+odW, X =

X:, X, becomes exponentially small thanks to the convexity of v. Then
subtract...
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Reflection coupling

Theorem (Eberle, 2011)
Let by, by : RY — R, of which by is strictly decreasing:
(x=y) - (b1 (x) = b1 (y)) < =0 |x— y?

and by is bounded. b= by + by. If the diffusion dX; = b(X;) dt + dW;
does not explode, then there exist csts c, C s.t. the marginals my, m, of the
diffusion with mg = 6x, my = 5 satisfies

Wi (mt, m’t) < Ce ¢ }x— >(| .
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Stability of Vu

Proposition

Let uy = v+ wy, up = v+ wy be sums of form k-convex + L-Lipschitz. Let
m; = Z,.—1 exp(—u;). Then for a constant C depending only on k, L, the
bound holds

Wi(my, mp) < C/ Vwi — Vws|dps

Ideas of proof: consider diffusion
dX; = —Vwi(Xp)dt + vV2dW;

and use Eberle's reflection coupling.
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Stability

Fora f: RY — R,a > 1, define norm Hﬂ|(a) = Supy (1|4’;(|Xx)||a)'

Proposition
Suppose wy, my (U, M) solve
o2 2

2
Ow = ?AW— %Vv- Vw— UT |Vw|2 + G(my, ) resp. tilde version

Then there exists a constant Ct such that

.
[Vwr = Virr| @ < Cr (/ Wi(me, ing)dt + [ Vwo — v‘2’0”(01))
0
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Estimate on second-order derivatives

Proposition
Let u solves for some flow of measures (m;) on R4
o? o? oF
8tu = ?AU — T |VU|2 T ﬁ (mt, )

then supysg || V2ue|| < +oc.
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Estimate on second-order derivatives: ideas of proof
Vu solves
0.2

2
AV - %Vu-v2u+V6F

8tVu = %

Probabilistic representation:

t_6F
Vu(t,x) =E [/ V— (me_s, Xs) + Vu(0, X¢)
0 om

dXs = —0*Vu(t — s, X;) ds+ adW,
= —02(Vv+ Vw) (t— s X;) ds+ adW,

Drift = monotone + bounded. We use the reflection coupling to find a
probability s.t. (X follows the same diffusion whose starting point is x)

E|X. - X, < Ce|x— x|
So Vu is uniformly Lipschitz in x, i.e. sup; HVzutHoo < 4o00.
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e ConVErgence
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Decrease of energy

Proposition
dF” (m 5F° 2
% = — / ‘5—m (mt; X) mth.
Tools: convexity, dominated convergence.
Convexity:
oF
S (Meehy X) (Mo — my) dx > F7 (megp) — F7 (my)

0F°
> /m (mie, x) (Meyn — me) dx

where m; solves classically the dynamics, i.e.

h
Y
Merp — My = —/ / S (Mpyp, X) My pdxdr.
0 m
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Decrease of energy (continued)

To apply the dominated convergence, we need
Q sup; ‘%L,: (me, x)| < C(l + \x|2>;
@ sup, [ |x*" mudx < +oo.

so that the integrand ‘% (my, x)‘2 m; is bounded.
Recall: ‘;L,: = g—z + %QAU - %2 |Vu|?. Note that
© We can prove (“turnpike” property, by Bernstein or BSDE)
sup; |[Vv(x)| < C(1+ |x]);
@ Vu=Vv+ Vwwhere Vv is of linear growth, Vw bounded;
© sup; HVZVtHOO < 400
Q@ m; =exp(—v: — wt). We can use the concentration (or estimate
directly the density) [ |x|P medx < C, for all p > 1.
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Convergence
Theorem

my — my in LY, where m, is the unique minimizer to F°. Moreover,
lim F7(m;) = F7(m,).

Ideas of proof:

@ use structure of m; (which follows from the estimates) to derive
compactness

@ use energy decrease formula and LaSalle’s invariance principle to show
all limit points m of m; satisfy %Ln:(ﬁv, ) =0.
o for the convergence of energy,

F(m)— F(m) < [ 2 (me, Y(me—m.)

(o) sty
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@ Gradient descent
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A gradient descent framework

Consider a C convex F:RY — R, let d(x,y) = 3 [x — y|?, h > 0. Define
iteratively

Ynt1 = argmin, h™d(y, yn) + F(¥) € Ynt1 = yn — BV F(yni1)

In continuous time this becomes % = —VF(y), i.e. gradient descent.
Generalizations to the space of measures:

o F:P2(RY) — R and d(my, mp) = W2(my, mp). This corresponds to

the marginal of

dX;
— = —DF(X;).
dt (%)

e FF=F+ %ZH(m). d = W2. This corresponds to the marginal of
dXt = —DF(Xt)dt+ O'th.
o FF = F+ %ZH(m). d(m1, my) = H(m1|my). [Liu, Majka, Szpruch,
2022
e FF =F+ %zl(m). d(my, mp) = H(my|m5).
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Entropy-Fisher gradient descent
d(my, mp) = H(m1|my), regularization by /.
At each step,
mZH = argmin,, h"1H (m|m2> + F7 (m)

Formal first-order calculus:

0= hlé/logn;m+5FU (m)
m
k

1 m oF°
so that

mp SF” SF”
migsy = 7: exp <—h5m (mZH» )) ~ my, (1 —hs (m’k’ﬂ, )) .

We expect mzh — ms when h — 0 and kh — t, where m; solves

dmt Y ad

= om e
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Conclusions

@ Optimization problem with Fisher regularization (FOC)

@ Dynamics (MF Schrédinger, MF HJB, GD entropy-Fisher)

@ Convergence (no obvious rate — spectral inequalities destroyed by MF)
© No numerics (for the moment)
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