
MAS275 Probability Modelling

Solutions to Exercises

1. (a) The transition matrix is 
0 1 0 0
1
3

0 2
3

0
0 2

3
0 1

3

0 0 1 0

 ,

where the rows and columns should be labelled 0, 1, 2, 3.

(b) The question implies that the distribution at time n, π(n), is (1
4

1
4

1
4

1
4
). So we

calculate

π(n+1) =
(
1
4

1
4

1
4

1
4

)
0 1 0 0
1
3

0 2
3

0
0 2

3
0 1

3

0 0 1 0

 =
(

1
12

5
12

5
12

1
12

)
.

So the probability that there are no ducks in pond B, i.e. that Xn+1 = 3, is 1/12.

2. (a)

P =


0 p 0 0 1− p

1− p 0 p 0 0
0 1− p 0 p 0
0 0 1− p 0 p
p 0 0 1− p 0

 ,

where the rows and columns are labelled 1, 2, 3, 4, 5.

(b) The required probability is

π
(0)
1 P12P23P34P45 =

1

5
(0.3)4 = 0.00162,

so there is a non-zero probability of observing the appearance of this “determin-
istic motion” after 4 steps. With each successive step, this probability becomes
smaller by a factor of 0.3.
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3. (a)

P (X0 = 3, X1 = 2, X2 = 1) = π
(0)
3 P32P21

=
1

3
× 1

4
× 1 =

1

12
.

(b) (
1
2

1
6

1
3

) 1
3

1
6

1
2

1 0 0
1
2

1
4

1
4

 =
(
1
2

1
6

1
3

)
,

so the distribution of X1 is the same as that of X0.

4.

P 2 =

 7
12

1
4

1
6

1
3

2
3

0
2
3

0 1
3

 ,

so (a) is (P 2)22 = 2
3

and (b) is (P 2)13 = 1
6
.

To get (c), we need to calculate π(0)P 2 =
(
19
36

11
36

1
6

)
. So P (X(2) = 1) = 19

36
, P (X(2) =

2) = 11
36

, P (X(2) = 3) = 1
6
.

5. With the states in the order

000, 001, 010, 011, 100, 101, 110, 111,

the transition matrix is 

0 1
3

1
3

0 1
3

0 0 0
1
3

0 0 1
3

0 1
3

0 0
1
3

0 0 1
3

0 0 1
3

0
0 1

3
1
3

0 0 0 0 1
3

1
3

0 0 0 0 1
3

1
3

0
0 1

3
0 0 1

3
0 0 1

3

0 0 1
3

0 1
3

0 0 1
3

0 0 0 1
3

0 1
3

1
3

0


.

6. (a) The state space is {0, 1, 2}. This is a special case of (b), and the transition matrix
is 0 1 0

1
4

1
2

1
4

0 1 0

 .
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(b) If there are i black particles in container A, then (by the description of the process)
there are also i white particles in container B. So the probability that a black
particle in container A swaps with a white particle in container B is i2

N2 , the
probability that a white particle in container A swaps with a black particle in

container B is (N−i)2
N2 , and the probability that the two particles swapped are the

same colour (in which case there is no change) is 2i(N−i)
N2 .

So, for 0 ≤ i ≤ N ,

pi,i+1 =
(N − i)2

N2

pi,i−1 =
i2

N2

pi,i =
2i(N − i)

N2
,

and pi,j = 0 if j /∈ {i− 1, i, i+ 1}.
With the states {0, 1, 2, . . . , N − 1, N}, the transition matrix looks like

0 1 0 0 . . . 0 0 0(
1
N

)2 2(N−1)
N2

(
N−1
N

)2
0 . . . 0 0 0

0
(

2
N

)2 4(N−2)
N2

(
N−2
N

)2
. . .

0 0
(

3
N

)2 6(N−3)
N2 . . .

...
...

...

0 0 4(N−2)
N2

(
2
N

)2
0

0 0
(
N−1
N

)2 2(N−1)
N2

(
1
N

)2
0 0 . . . 0 1 0


7. For gambler A, with states {0, 1, 2, 3, . . .}, the transition matrix is

1 0 0 0 0 . . .
0.4 0 0.6 0 0 . . .
0 0.4 0 0.6 0 . . .
0 0 0.4 0 0.6 . . .
...

...
. . .

 .
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For gambler B, again with states {0, 1, 2, 3, . . .}, the transition matrix is
1 0 0 0 0 . . .

0.55 0 0 0.45 0 . . .
0 0.55 0 0 0.45 . . .
0 0 0.55 0 0 . . .
...

...
. . .

 .

8. Labelling the states as

1 player 2 has won
2 player 1 behind
3 scores level
4 player 1 ahead
5 player 1 has won

The transition matrix is 
1 0 0 0 0

1− p 0 p 0 0
0 1− p 0 p 0
0 0 1− p 0 p
0 0 0 0 1

 .

This is a Gambler’s Ruin Markov chain with N = 4.

9. The states are:

1 scores level, player 1 serving
2 scores level, player 2 serving
3 player 1 ahead and serving
4 player 2 ahead and serving
5 player 1 behind and serving
6 player 2 behind and serving
7 player 1 has won
8 player 2 has won
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With this labelling the transition matrix is

0 0 0 1− p 0 p 0 0
0 0 1− r 0 r 0 0 0

1− p 0 0 0 0 0 p 0
0 1− r 0 0 0 0 0 r
p 0 0 0 0 0 0 1− p
0 r 0 0 0 0 1− r 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


.

10. We have

P 2 =

0 1 0
1
2

0 1
2

0 1 0

0 1 0
1
2

0 1
2

0 1 0

 =

1
2

0 1
2

0 1 0
1
2

0 1
2

 6= P,

and

P 3 = P 2P =

1
2

0 1
2

0 1 0
1
2

0 1
2

0 1 0
1
2

0 1
2

0 1 0

 =

0 1 0
1
2

0 1
2

0 1 0

 = P.

So P 4 = P 3P = PP = P 2, P 5 = P 4P = P 2P = P 3 = P , etc., and P n does not
converge, but alternates indefinitely between two different matrices. (Formally, the
“etc.” here represents a proof by induction: for the odd powers, the base case is that
P = P , and the induction step is that if P 2k+1 = P , then P 2k+3 = P 2P 2k+1 = P 2P =
P . You can then deduce the even case from this, or do an induction for that too.)

11. The eigenvalues λ satisfy ∣∣∣∣∣∣
λ −1

2
−1

2

−1
2

λ −1
2

−1
2
−1

2
λ

∣∣∣∣∣∣ = 0.

λ3 − 3

4
λ− 1

4
= 0.

(λ− 1)

(
λ2 + λ+

1

4

)
= 0.

(λ− 1)

(
λ+

1

2

)2

= 0.
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So the roots are λ = 1 (as always for a stochastic matrix) and λ = −1
2

(twice). To find
right eigenvectors corresponding to λ = −1

2
solve0 1

2
1
2

1
2

0 1
2

1
2

1
2

0

xy
z

 = −1

2

xy
z


which gives three equations all amounting to x + y + z = 0. So any two linearly
independent vectors satisfying this equation will do; for example take

C =

1 1 0
1 −1 1
1 0 −1


and then

P n = C

1 0 0
0 (−1

2
)n 0

0 0 (−1
2
)n

C−1 → C

1 0 0
0 0 0
0 0 0

C−1 =

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3


as n→∞ .

12. The equations for the stationary distribution π are

π1 =
1

2
π2 +

1

2
π3 (1)

π2 =
1

2
π1 +

1

2
π3 (2)

π3 =
1

2
π1 +

1

2
π2. (3)

Substituting (2) into (1) gives π1 = π3, and (2) then becomes π2 = π1. We must have
π1 + π2 + π3 = 1, so π =

(
1
3

1
3

1
3

)
. It is easy to check that this does indeed satisfy

the equations.

13. The equations for the stationary distribution are

π1 =
1

3
π1 + π2 +

1

2
π3 (4)

π2 =
1

6
π1 +

1

4
π3 (5)

π3 =
1

2
π1 +

1

4
π3. (6)
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By (6), π3 = 2
3
π1, and substituting this into (5) we get π2 = 1

6
π1 + 1

6
π1 = 1

3
π1. We

must have π1 + π2 + π3 = 1, so π1 + 1
3
π1 + 2

3
π1 = 1, giving π1 = 1

2
and hence π2 = 1

6
,

π3 = 1
3
. Hence

(
1
2

1
6

1
3

)
is the unique stationary distribution. (That it is a stationary

distribution was already shown in question 3(b).)

14. Looking down the column corresponding to state j(≥ 1), there is 1/j in row j − 1 and
(j + 1)/(j + 2) in row j + 1, and zero everywhere else. Hence the general equilibrium
equation is

πj = πj−1
1

j
+ πj+1

(j + 1)

(j + 2)
.

Substituting the given form for πj on the RHS,

k
j

(j − 1)!

1

j
+ k

j + 2

(j + 1)!

j + 1

j + 2
= k

1

(j − 1)!
+ k

1

j!
=
k

j!
{j + 1} = k

j + 1

j!

which is the LHS as required. (In fact k = (2e)−1, since

∞∑
j=0

(j + 1)

j!
=
∞∑
j=0

j

j!
+
∞∑
j=0

1

j!
=
∞∑
j=1

1

(j − 1)!
+ e = e+ e = 2e.)

15. There are eight possible ways in which a renewal can occur at time 4, listed below with
their corresponding probabilities. (Renewals are marked by x.)

0 1 2 3 4 probability
x x f4
x x x f1f3
x x x f 2

2

x x x f3f1
x x x x f 2

1 f2
x x x x f1f2f1
x x x x f2f

2
1

x x x x x f 4
1

So
u4 = f4 + 2f1f3 + f 2

2 + 3f 2
1 f2 + f 4

1 .

Similarly
u5 = f5 + 2f1f4 + 3f 2

1 f3 + 4f 3
1 f2 + 3f1f

2
2 + 2f2f3 + f 5

1 .
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16. (a) Here
∑∞

n=1 fn = 1/2 (geometric series) so the renewal process is transient.

(b) Here
∑∞

n=1 fn = 6
π2

∑∞
n=1

1
n2 = 1, by the hint, so the renewal process is recurrent.

The expected time until the first renewal will be 6
π2

∑∞
n=1 n

1
n2 , but the sum here

is infinite, so the renewal process is null recurrent.

Note: if we try to work out the generating function, we get

F (s) =
6

π2

∞∑
n=1

sn

n2
.

This probably isn’t a series you’ve seen before, and its sum can’t be expressed in
terms of standard functions, though it can be written in terms of the polylogarithm
function. We can, however, find F ′(s) by differentiating term by term:

F ′(s) =
6

π2

∞∑
n=1

sn−1

n
.

This can be related to a standard series, the logarithmic one, and if we multiply
through by s we can see that

F ′(s) = − 6

π2s
log(1− s).

We can now see that F ′(s) → ∞ as s ↑ 1, by considering the behaviour of log x
as x ↓ 0. This confirms null recurrence, though in this case the method above,
without the generating functions, is easier.

(c) Here we work out the generating function F (s):

F (s) =
∞∑
n=1

4

5

((
1

2

)n
−
(
−1

3

)n)
sn

=
4

5

(
∞∑
n=1

(
1

2
s

)n
−
∞∑
n=1

(
−1

3
s

)n)

=
4

5

( 1
2
s

1− 1
2
s

+
1
3
s

1 + 1
3
s

)
.

Evaluating F (s)|s=1 gives F (1) = 4
5
(1 + 1

4
) = 1, so the process is recurrent.

Differentiating gives

F ′(s) =
4

5

( 1
2

(1− s/2)2
+

1
3

(1 + s/3)2

)
,
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and evaluating at s = 1 gives F ′(s)|s=1 = 4
5

(
2 + 3

16

)
= 7

4
, so the process is positive

recurrent.

17. (a) The generating function is

F (s) =
∞∑
k=0

λke−λ

k!
sk = e−λ

∞∑
k=0

(λs)k

k!
= e−λeλs = eλ(s−1).

(b) i. The distribution of X has generating function FX(s) = eλ(s−1), and that of Y
has generating function FY (s) = eµ(s−1). By independence, the distribution of
X+Y has generating function FX+Y (s) = e(λ+µ)(s−1), which is the generating
function of a Po(λ+ µ) distribution, and hence X + Y has this distribution.

ii. If F (s) = eλ(s−1), then
d

ds
F (s) = λeλ(s−1),

and we find the mean by evaluating this at s = 1, which gives λ.

18. Firstly, F (s) = as+ bs2. So

U(s) =
1

1− F (s)

=
1

1− as− bs2

=
1

(1− s)(1 + bs)

(using the fact that a+ b = 1 to factorise the quadratic)

=
1

1 + b

{
1

1− s
+

b

1 + bs

}
in partial fractions

=
1

1 + b

{(
1 + s+ s2 + . . .

)
+ b
(
1− bs+ b2s2 − . . .

)}
.

Then un is the coefficient of sn in U(s), so

un =
1 + b(−b)n

1 + b
=

1− (−b)n+1

1 + b
.

As n→∞,

un →
1

1 + b
,
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since | − b| < 1.

The mean inter-renewal time is µ = a+ 2b = 1 + b. So

un →
1

µ
as n→∞.

19. (a) The event {R = r} is the same as the event that the first r inter-renewal times are
finite and the r+ 1th is infinite. The probability that an individual inter-renewal
time is finite is f , so independence immediately gives us P (R = r) = f r(1− f).

(b) We require P (R = 0) and P (R = 2) where R is the total number of visits. By
(a), P (R = r) = f r(1− f) for r = 0, 1, 2, . . . From the proof of Theorem 5,

U(1) =
1

|1− 2p|
=

1

1− 2p

since p < 1
2
. Hence

f = F (1) = 1− 1

U(1)
= 1− (1− 2p) = 2p.

So the answers are

i. f 0(1− f) = 1− 2p.

ii. f 2(1− f) = (2p)2(1− 2p).

20. If the chain is in state 0 at time n and has taken m upward steps, then it must have
taken 2m downward steps. Hence n = 3m, so n must be a multiple of 3 if un is
non-zero. We can check that u3 = 3p(1− p)2 > 0, so d = 3.

If the chain is at zero at time 3m, then of the first 3m steps exactly m have been
upward. The number of upward steps has a Binomial distribution with parameters 3m
and p, so

u3m =

(
3m

m

)
pm(1− p)2m.

It is possible to show that this renewal process is recurrent if and only if p = 1/3.
The binomial expansion method used in the proof of Theorem 5 doesn’t work with
this example; however, we can use Stirling’s approximation to deal with the binomial
co-efficient. This says that n! ∼

√
2πnn+1/2e−n (in the sense that the ratio between
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the two sides converges to 1 as n → ∞), so applying it to
(
3m
m

)
= (3m)!

m!(2m)!
gives an

asymptotic form of
√

2π33m+1/2m3m+1/2e−3m√
2π22m+1/2m2m+1/2e−2m

√
2πmm+1/2e−m

,

which, simplifying, tells us(
3m

m

)
∼ 1√

2π

33m+1/2

22m+1/2
m−1/2 =

√
3√

4π

(
27

4

)m
m−1/2.

Hence

u3m ∼
√

3√
4π

(
27

4
p(1− p)2

)m
m−1/2.

If p = 1/3 then 27
4
p(1 − p)2 = 1, so in this case u3m ∼

√
3√
4π
m−1/2, which gives a series

which sums to infinity, so the process is recurrent. If p takes any other value then
27
4
p(1 − p)2 < 1, which means we have a series with a finite sum, so the process is

transient.

21. (a) i. A renewal at time 1 is impossible as it requires at least two heads. For n ≥ 2,
for the first renewal to occur at time n means the second head occurs on the
nth toss. There are then n − 1 possibilities for the time of the first head,
and each possible sequence for the first n tosses has probability

(
1
2

)n
. Hence

fn = (n− 1)
(
1
2

)n
as required.

ii. The mean time to the first renewal is

∞∑
n=1

nfn =
∞∑
n=2

n(n− 1)

(
1

2

)n
=

2
(
1
2

)2(
1− 1

2

)3 = 4,

using question ??(c) from the series handout.

(b) Let An be the event that there are an odd number of heads in the first n tosses,
and let Hn be the event that the nth toss is a head. We aim to prove P (An) = 1

2

for all n ≥ 1. For n = 1, there is one head with probability 1/2 and no heads
with probability 1/2, so the statement is true for n = 1. Assume true for n = k;
then by independence

P (Ak+1) = P (Hk+1)P (Ack) + P (Hc
k+1)P (Ak)

=
1

2
· 1

2
+

1

2
· 1

2
=

1

2
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by the induction hypothesis and the assumption the coin is fair, so the statement
is true for n = k + 1 and hence for all n.

In the renewal process, again by independence, for n ≥ 2

un = P (An−1 ∩Hn) = P (An−1)P (Hn) =
1

2
· 1

2
=

1

4
.

22. (a) Once there has been a renewal, the process behaves in exactly the same way as
that in question 21. So the values of fn and un are the same.

(b) Here, bn is the probability that the first renewal occurs at time n, which is the same
as the probability that the first head occurs at time n, which is the probability
that the first n − 1 tosses are tails and the nth is a head, which is (1/2)n. (The
delay has a geometric distribution.) Hence B(s) =

∑∞
n=1 bns

n = s
2(1−s/2) = s

2−s
for |s| < 2.

(c) Theorem 7 tells us that V (s) = B(s)U(s). From question 21, un = 1/4 for s ≥ 2,
and also u1 = 0 and u0 = 1 (as always). So

U(s) = 1 +
∞∑
n=2

1

4
sn = 1 +

s2

4(1− s)

for |s| < 1. Hence

V (s) =
s

2− s

(
1 +

s2

4(1− s)

)
=

s

2− s
+

s3

4(1− s)(2− s)

=
s

2− s
+

s3

4(1− s)
− s3

4(2− s)
(partial fractions)

=
s3

4(1− s)
+

1

2− s

(
s− s3

4

)
=

s3

4(1− s)
+

s

4(2− s)
(2− s)(2 + s)

=
s3

4(1− s)
+

1

2
s+

1

4
s2

=
1

2
s+

1

4

∞∑
n=2

sn.
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Hence v0 = 0, v1 = 1/2 and v2 = 1/4 for n ≥ 2. This makes sense: a renewal
cannot happen before the coin has been tossed, a renewal happens on the first
toss if it is a head (so v1 = 1/2), a renewal happens on the second toss if and
only if the first two are TH (so v2 = 1/4), and for larger n vn = 1/4 by a similar
argument to that in question 21.

23. (a) i. We treat occurrences of HT as a non-delayed renewal process, as two occur-
rences cannot overlap. Then u0 = 1 (usual convention), u1 = 0 (renewal after
one toss impossible), and un = 1

4
for n ≥ 2. So

U(s) = 1 +
1

4

{
s2 + s3 + s4 + . . .

}
= 1 +

s2

4(1− s)
=

4− 4s+ s2

4− 4s
.

By the basic relation,

F (s) = 1− 1

U(s)
= 1− 4− 4s

4− 4s+ s2
=

s2

4− 4s+ s2
.

Differentiating,

F ′(s) =
(4− 4s+ s2)(2s)− s2(−4 + 2s)

(4− 4s+ s2)2
,

and so

E(T1) = F ′(1) =
1× 2− 1(−2)

12
= 4.

ii. Occurrences of HH must be treated as a delayed renewal process, since two
occurrences can overlap. Then v0 = v1 = 0 (renewals impossible after no
steps or after 1 step), and vn = 1

4
for n ≥ 2. So

V (s) =
1

4

{
s2 + s3 + s4 + . . .

}
=

s2

4− 4s
.

Next u0 = 1 and u1 = 1
2

(if a renewal has just occurred at time k then another
renewal occurs at k + 1 if the next toss is H), and un = 1

4
if n ≥ 2. So

U(s) = 1 +
1

2
s+

s2

4− 4s
=

4− 2s− s2

4− 4s
.

Because V (s) = B(s)U(s) (in the notes)

B(s) =
V (s)

U(s)
=

s2

4− 2s− s2
.
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Differentiating,

B′(s) =
(4− 2s− s2)(2s)− s2(−2− 2s)

(4− 2s− s2)2
,

so

E(first HH) = E(delay) = B′(1) =
1× 2− 1(−4)

12
= 6.

(b) We have vn = 1/8 for n ≥ 3. Here v1 = 1/2 (an H will give us a renewal) and
similarly v2 = 1/4, while v0 = 0. So V (s) = s

2
+ s2

4
+ s3

8−8s .

Now u0 = 1 (as always), u1 = 1/2, u2 = 1/4, and un = 1/8 for n ≥ 3. So
U(s) = 1 + s

2
+ s2

4
+ s3

8−8s . Hence

B(s) =
V (s)

U(s)
=

8(1− s)( s
2

+ s2

4
) + s3

8(1− s)(1 + s
2

+ s2

4
) + s3

,

which has a derivative of 8 at s = 1. So the expected time until the next HHH
is 8.

24. (a) We treat occurrences of ABCDEFGHIJKLM as a non-delayed renewal process,
as two occurrences cannot overlap. Then u0 = 1 (usual convention), un = 0 for
1 ≤ n ≤ 12, and un = 1

2613
for n ≥ 13. So

U(s) = 1 +
s13

2613(1− s)
=

2613 − 2613s+ s13

2613 − 2613s
.

By the basic relation,

F (s) = 1− 1

U(s)
= 1− 2613 − 2613s

2613 − 2613s+ s13
=

s13

2613 − 2613s+ s13
.

Differentiating,

F ′(s) =
(2613 − 2613s+ s13)(13s12)− s13(−2613 + 13s12)

(2613 − 2613s+ s13)2
,

and so
E(T1) = F ′(1) = 2613.
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(b) Occurrences of TOBEORNOTTOBE must be treated as a delayed renewal pro-
cess, since two occurrences can overlap. Then vn = 0 for n ≤ 12 , and vn = 1

2613

for n ≥ 13. So

V (s) =
s13

2613 − 2613s
.

Next u0 = 1 and u9 = 1
269

(the probability that the next nine letters after a
renewal are ORNOTTOBE), un = 0 for 1 ≤ n ≤ 8 and 10 ≤ n ≤ 12, and
un = 1

2613
if n ≥ 13. So

U(s) = 1 +
1

269
s9 +

s13

2613 − 2613s
=

2613 − 2613s+ 264s9 − 264s10 + s13

2613 − 2613s
.

As in the previous question

B(s) =
V (s)

U(s)
=

s13

2613 − 2613s+ 264s9 − 264s10 + s13
.

Differentiating and setting s = 1,

E(first TOBEORNOTTOBE) = E(delay) = B′(1) = 2613 + 264.

(Via Maple, the answer to (a) is 2,481,152,873,203,736,576 and the answer to (b) is
2,481,152,873,204,193,552; both are 19-digit numbers. If the monkey types one letter
every second the expected time until TOBEORNOTTOBE appears is over 1010 years,
greater than the age of the Earth.)

25. (Open ended question)

26. A diagram could be drawn of the possible one-step transitions, but, without doing this,
we can argue as follows. As long as the set is still being played, it is possible to visit
any other state. However, once the set has been completed by either player winning
it, no other state is visited. So states {1, 2, 3, 4, 5, 6} form a class, which is not closed,
and {7} and {8} are closed (absorbing) classes, which are trivially aperiodic.

It remains to note that to return to a state in {1, 2, 3, 4, 5, 6} after a sequence of n
points played, there must be equal numbers of points won by each player, so that n is
even, and the server at the end must be the same as at the beginning, which means
that n must be a multiple of 4. Since for example 1→ 4→ 2→ 3→ 1 is possible, this
confirms that this class is periodic with period 4.
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27. (a) When a transition takes place, one of the co-ordinates of the point changes and
the others stay the same. Hence the number of (say) “ones” in the co-ordinates
always alternates between an odd number and an even number. So a return to
a state can only happen after an even number of steps, and it can happen after
two steps. Hence the period of any state is 2. (Another way of looking at this
is that if the states {000, 011, 101, 110} are painted one colour and the states
{001, 010, 100, 111} are painted another colour, then the random walk always
alternates between one colour and the other.)

(b) The simplest example is the random walk on a triangle, where it is possible to
return after two steps, and also after three steps (by going right round the trian-
gle). Since h.c.f.{2, 3, . . .} = 1, the states are aperiodic. (In fact the transition
matrix of question 11 is of this random walk.)

28. (a) If the chain starts in A, then after an odd number of steps it must always be in
B, and it will then go to A or C at the next (even) step each with probability
1/2. (This can also be seen by considering the matrices in question 10.) So if n

is odd un = p
(n)
AA = 0, and if n is even (and n ≥ 2) un = p

(n)
AA = 1/2.

(b) We have

U(s) = 1 +
∞∑
m=1

u2ms
2m = 1 +

1
2
s2

1− s2
=

1− 1
2
s2

1− s2
.

By Theorem 4,

F (s) = 1− 1

U(s)
=

1
2
s2

1− 1
2
s2
.

(c) Differentiating gives

F ′(s) =
s

(1− 1
2
s2)2

,

and evaluating at s = 1 gives F ′(1) = 4 so the expected time until the first return
to A is 4.

29. The sequence 1→ 2→ 5→ 1→ . . . is possible, showing that 1, 2 and 5 communicate,
but this set can be left, via 2 → 3, and it cannot be returned to, once left. Also, the
only way of staying is to cycle round as indicated above. Hence {1, 2, 5} is a class
which is not closed and has period 3.

The sequence 3→ 4→ 6→ 3→ . . . is possible, and so these three states communicate,
but it is impossible to leave this set. As p44 > 0, state 4 is aperiodic and so the class
is aperiodic. So {3, 4, 6} is a class which is closed and aperiodic.
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Finally (similarly), {7, 8} is a class which not closed and is periodic with period 2.

To summarise:

(a) The classes are {1, 2, 5}, {3, 4, 6} and {7, 8}.
(b) The only closed class is {3, 4, 6}.
(c) {1, 2, 5} has period 3, {3, 4, 6} is aperiodic and {7, 8} has period 2.
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A diagram as shown can help with this:

1
2

3

4
5

6
7

8

30. (a) The chain is irreducible as it is possible to get from state 1 to any other state,
and it is also possible to get from any other state back to state 1, which is enough
to show that all states communicate with state 1 and hence with each other. It
is aperiodic as it is possible to return to state 1 in one step, and so state 1 is
aperiodic and by the solidarity theorem the chain is aperiodic.

(b) The equations are

π1 =
1

3
π1 + π2 +

1

2
π3 (7)

π2 =
1

6
π1 +

1

4
π3 (8)

π3 =
1

2
π1 +

1

4
π3. (9)

By (9), π3 = 2
3
π1 and substituting this into (8) gives π2 = 1

3
π1. For a stationary

distribution π1 + π2 + π3 = 1, so we get π =
(
1
2

1
6

1
3

)
.

(c) The chain is irreducible and aperiodic and as it has finite state space is positive
recurrent. Hence the convergence results apply, and so as n → ∞, π(n) →(
1
2

1
6

1
3

)
, regardless of π(0), and p

(
ijn) → πj. Assuming n = 20 is large enough

for p
(n)
13 to be close to its limit we have P (X20 = 3|X0 = 1) = p

(20)
13 ≈ 1

3
. [In fact

it is indistinguishable from 1/3 to 10dp.]
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31. (a) The equations for the stationary distribution are

πA = πB
1

3
+ πC

1

3
(10)

πB = πA
1

2
+ πC

1

3
+ πD

1

4
(11)

πC = πA
1

2
+ πB

1

3
+ πD

1

4
(12)

πD = πB
1

3
+ πC

1

3
+ πE

1

3
+ πF

1

3
(13)

πE = πD
1

4
+ πF

1

3
+ πG

1

2
(14)

πF = πD
1

4
+ πE

1

3
+ πG

1

2
(15)

πG = πE
1

3
+ πF

1

3
(16)

By symmetry and the uniqueness of the stationary distribution, πA = πG and
πB = πC = πE = πF . By (10), πB = 3

2
πA. By (10) and (13), πD = 4

3
πB =

2πA. Everything is now expressed in terms of πA. Because we are looking for a
probability distribution,

πA + πB + πC + πD + πE + πF + πG = 1,

which becomes

πA +
3

2
πA +

3

2
πA + 2πA +

3

2
πA +

3

2
πA + πA = 1.

Hence 10πA = 1, so πA = 1
10

, and so

πA = πG =
1

10
, πB = πC = πE = πF =

3

20
, πD =

1

5
,

or
π =

(
1
10

3
20

3
20

1
5

3
20

3
20

1
10

)
.

Note: A bit more on why the symmetry assumptions can be made: it is possible
to “reflect” the graph so that vertices A,B,C are mapped to G,E, F and vice
versa, with the structure of the graph being otherwise unchanged. This means
that if we can find a stationary distribution

(
πA πB πC πD πE πF πG

)
then(

πG πE πF πD πB πC πA
)

would also be a stationary distribution. As the
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stationary distribution is unique, these must in fact be the same, so πA = πG,
πB = πE, πC = πF . A similar argument with a different transformation gives
πB = πC .)

(b) The chain is irreducible, because the graph is connected, so there is a possible
route from each vertex to every other vertex. To see that it is aperiodic, consider
state A. It is possible to return to A after two steps (go to B, then back to A)
or after three (go to B, then to C, then back to A) and the hcf of 2 and 3 is 1,
so A is aperiodic; by solidarity so are all other states. An irreducible chain with
a finite state space is positive recurrent, so the results apply. Hence, as n → ∞,
P (Xn = A) → 1/10, P (Xn = B) → 3/20, P (Xn = C) → 3/20, P (Xn = D) →
1/5, P (Xn = E)→ 3/20, P (Xn = F )→ 3/20 and P (Xn = G)→ 1/10.

(c) Let di be the degree of vertex i. Then the transition probabilities of the symmetric
random walk are given by pij = 1/di if there is an edge between i and j, and zero
otherwise.

Label the vertices 1 to N , and let π be defined by πi = di/
∑N

k=1 dk. Then

(πP )j =
N∑
i=1

(di/
N∑
k=1

dk)pij =
∑
i↔j

(di/
N∑
k=1

dk)/di.

(Here i ↔ j means that there is an edge between i and j in the graph.) Simpli-
fying,

(πP )j =
∑
i↔j

1∑N
k=1 dk

.

Because there are dj vertices i which are connected to j, there are dj terms in this
sum, so

(πP )j =
dj∑N
k=1 dk

= πj.

Hence πP = π, so π is a stationary distribution.

If the graph is connected, the chain is irreducible and the stationary distribution
is unique. If the graph is not connected, the chain will not be irreducible and
there will be other stationary distributions.
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32. Checking the stationary distribution equations, for i ∈ N0

(πP )i = π0fi+1 + πi+1

=
1

µ
fi+1 +

1

µ
(1− f1 − f2 − . . .− fi − fi+1)

=
1

µ
(1− f1 − f2 − . . .− fi)

= πi.

Hence πP = π.

33. By the definition of conditional probability

P (Xn = j|Xn+1 = i) =
P (Xn = j,Xn+1 = i)

P (Xn+1 = i)

=
P (Xn = j)P (Xn+1 = i|Xn = j)

P (Xn+1 = i)

=
πjpji
πi

since the Markov chain is in equilibrium. This is the typical “backwards” transition
probability of the Markov chain. It will be the same as the corresponding “forwards”
transition probability if and only if

πjpji
πi

= pij,

that is
πipij = πjpji

for all i and j.

34. (a) The possible one-step transitions are 1→ 1, 1→ 2, 2→ 3, 3→ 2 and 3→ 3. So
states 2 and 3 communicate with each other but state 1 does not communicate
with any other state. Hence the classes are {1} and {2, 3}; the latter is closed as
it is not possible to leave, but the former is not closed as it can be left.

(b) The equations are

π1 =
1

3
π1 (17)

π2 =
2

3
π1 +

1

2
π3 (18)

π3 = π2 +
1

2
π3. (19)

21



Then (17) immediately gives π1 = 0, and (18) then gives π2 = 1
2
π3. For a

stationary distribution π1 + π2 + π3 = 1, so π =
(
0 1

3
2
3

)
is a unique stationary

distribution.

(c) If we start in state 2, then the chain remains in {2, 3} for ever, so we can consider
it as a Markov chain on {2, 3} with transition matrix(

0 1
1
2

1
2

)
.

The stationary distribution is
(
1
3

2
3

)
, and this reduced chain is irreducible and

aperiodic. So as n→∞ p
(n)
22 → 1

3
and p

(n)
23 → 2

3
, and the approximate probabilities

asked for in the question are 1/3 for state 2 and 2/3 for state 3.

35. (a) Obviously states 1 and 2 communicate and states 3 and 4 communicate, but no
other pairs of different states do. So the classes are {1, 2} and {3, 4}; neither class
can be left so both are closed. It is possible to return to either 1 or 2 in one step
so this class is aperiodic, while starting from state 3 the chain will return there
only after 2 steps, so by solidarity this class has period 2.

(b) The equations for a stationary distribution are

π1 =
1

3
π1 +

2

3
π2 (20)

π2 =
2

3
π1 +

1

3
π2 (21)

π3 = π4 (22)

π4 = π3. (23)

Clearly (22) and (23) are equivalent, and then (20) and (21) both imply π1 = π2.
These equations give no more information, so the only remaining information we
have is that π1 + π2 + π3 + π4 = 1. Hence we can get a stationary distribution
πα =

(
α α 1

2
− α 1

2
− α

)
for any α ∈ [0, 1

2
].

36. (a) All states can be reached from state 1 (states 4 and 5 via state 2) and it is possible
to reach state 1 from every other state (from states 2 and 3 via state 4). So, by
transitivity, the chain is irreducible. Starting in state 1 the chain will always
return to state 1 after exactly 3 steps (one of 1,2,4,1; 1,2,5,1; 1,3,4,1) so p

(n)
11 will

be 1 if n is a multiple of 3 and zero otherwise. Hence state 1 has period 3, and
hence, by the solidarity theorem, so does the chain.
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(b) The initial distribution π(0) =
(
1 0 0 0 0

)
. By matrix multiplication,

π(1) =
(
0 1

2
1
2

0 0
)

π(2) =
(
0 0 0 5

8
3
8

)
π(3) =

(
1 0 0 0 0

)
.

Hence (formally by induction) for n ≥ 0,

π(n) =


(
1 0 0 0 0

)
n ≡ 0 (mod 3)(

0 1
2

1
2

0 0
)

n ≡ 1 (mod 3)(
0 0 0 5

8
3
8

)
n ≡ 2 (mod 3)

so there cannot be convergence to a stationary distribution.

37. (a) This renewal process is aperiodic and has mean inter-renewal time 7/4. So, by
the renewal theorem, un → 4/7 as n→∞.

(b) This renewal process has period 2 and mean inter-renewal time 14/3. So, by the
renewal theorem, u2n → 3/7 as n→∞.

38. (Open ended question)

39. (a) The transition matrix is 
0 1/2 1/2 0 0
0 0 0 1/2 1/2
0 0 0 1/2 1/2
0 1/2 1/2 0 0
0 0 0 1 0

 .

This chain is not irreducible, because state 1 cannot be reached from any other
state.

(b) The equations for a stationary distribution are

π1 = 0 (24)

π2 =
1

2
π1 +

1

2
π4 (25)

π3 =
1

2
π1 +

1

2
π4 (26)

π4 =
1

2
π2 +

1

2
π3 + π5 (27)

π5 =
1

2
π2 +

1

2
π3 (28)
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Obviously π2 = π3 = 1
2
π4, and from (27) we get π5 = 1

2
π4 too. Because a

stationary distribution must sum to 1 we get that
(
0 1/5 1/5 2/5 1/5

)
is the

unique stationary distribution.

(c) The transition matrix is

5

11


1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

+
6

11


0 1

2
1
2

0 0
0 0 0 1

2
1
2

0 0 0 1
2

1
2

0 1
2

1
2

0 0
0 0 0 1 0

 =
1

11


1 4 4 1 1
1 1 1 4 4
1 1 1 4 4
1 4 4 1 1
1 1 1 7 1

 .

We can check that if this is P and π = 1
55

(
5 11 11 17 11

)
as given in the

question, then

πP =
1

55

1

11

(
55 121 121 187 121

)
=

1

55

(
5 11 11 17 11

)
= π,

so π is a stationary distribution. By irreducibility, aperiodicity and positive
recurrence, it is unique, so gives the PageRanks.

40. The one step transitions are shown in the diagram:

7
1

3

4 5

6

2

The closed classes are {2, 6} and {7}.
Let qi be the probability of absorption in {2, 6} starting in i, with boundary conditions
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q2 = q6 = 1, q7 = 0:

q1 =
1

2
q2 +

1

4
q3 +

1

4
q7 =

1

2
+

1

4
q3 (29)

q3 =
1

2
q4 +

1

2
q5 (30)

q4 = q1 (31)

q5 =
1

3
q1 +

2

3
q6 =

1

3
q1 +

2

3
(32)

Substitute (31) and (32) into (30):

q3 =
1

2
q1 +

1

6
q1 +

1

3
=

2

3
q1 +

1

3
.

Substitute this into (29):

q1 =
1

2
+

1

6
q1 +

1

12
=

7

12
+

1

6
q1.

Rearranging this, we get q1 = 7
10

and hence q3 = 4
5
, q4 = 7

10
, q5 = 9

10

The probability of absorption in {7} starting in i is then 1− qi.

41. The equations are

q1 = (1− p)q4 + pq6 (33)

q2 = (1− r)q3 + rq5 (34)

q3 = (1− p)q1 + p (35)

q4 = (1− r)q2 (36)

q5 = pq1 (37)

q6 = rq2 + (1− r) (38)

Substituting (35) to (38) into (33) and (34)

q1 = (1− p)(1− r)q2 + prq2 + p(1− r) = (1− p− r + 2pr)q2 + p(1− r)
q2 = (1− r)(1− p)q1 + (1− r)p+ rpq1 = (1− p− r + 2pr)q1 + p(1− r)

By symmetry or by subtracting one equation from the other, we see that q1 = q2 and
then

(p+ r − 2pr)q1 = p(1− r)
giving the stated result.
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42. Let qi be the probability of visiting G first, starting at i. Then qA = 0, qG = 1 and, by
symmetry, qB = qC , qE = qF .

qB =
1

3
qA +

1

3
qC +

1

3
qD =

1

3
qB +

1

3
qD (39)

qD =
1

4
qB +

1

4
qC +

1

4
qE +

1

4
qF =

1

2
qB +

1

2
qE (40)

qE =
1

3
qD +

1

3
qF +

1

3
qG =

1

3
qD +

1

3
qE +

1

3
(41)

From (41),

qE =
1

2
qD +

1

2
.

Substituting this into (40),

qD =
1

2
qB +

1

4
qD +

1

4

qD =
2

3
qB +

1

3

Substituting this into (39),

2

3
qB =

2

9
qB +

1

9

qB =
1

4
,

so the probability of reaching G before A starting at B is 1
4
.

43. Let ei be the expected time to absorption in either {2, 6} or {7}, starting from i. Then
the boundary conditions are e2 = e6 = e7 = 0.

e1 = 1 +
1

4
e3 (42)

e3 = 1 +
1

2
e4 +

1

2
e5 (43)

e4 = 1 + e1 (44)

e5 = 1 +
1

3
e1 (45)

Substitute (44) and (45) into (43):

e3 = 1 +
1

2
+

1

2
e1 +

1

2
+

1

6
e1 = 2 +

2

3
e1.
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Substitute this into (42):

e1 = 1 +
1

2
+

1

6
e1.

Rearranging gives

e1 =
9

5

and hence

e1 =
9

5
, e3 =

16

5
, e4 =

14

5
, e5 =

8

5
.

44. Let ei be the expected time to absorption in either {7} or {8}, starting from i. Then
the boundary conditions are e7 = e8 = 0.

e1 = 1 + (1− p)e4 + pe6 (46)

e2 = 1 + (1− r)e3 + re5 (47)

e3 = 1 + (1− p)e1 (48)

e4 = 1 + (1− r)e2 (49)

e5 = 1 + pe1 (50)

e6 = 1 + re2 (51)

Substituting (48) to (51) into (46) and (47):

e1 = 1 + (1− p) + (1− p)(1− r)e2 + p+ pre2

e2 = 1 + (1− r) + (1− r)(1− p)e1 + r + rpe1.

These simplify to

e1 = 2 + (1− p− r + 2pr)e2

e2 = 2 + (1− p− r + 2pr)e1.

Again by symmetry or by subtracting one equation from the other, we see that e1 = e2
and then

(p+ r − 2pr)e1 = 2

giving the stated result.

27



45. This is a symmetric random walk on the described graph, so can be modelled as a
Markov chain with transition matrix

P =


0 1 0 0 0 0
1
3

0 1
3

1
3

0 0
0 1

4
0 1

4
1
4

1
4

0 1
3

1
3

0 0 1
3

0 0 1 0 0 0
0 0 1

2
1
2

0 0

 .

Let ei be the expected time to reach D, starting in i. Then eD = 0, and

eA = 1 + eB (52)

eB = 1 +
1

3
(eA + eC) (53)

eC = 1 +
1

4
(eB + eE + eF ) (54)

eE = 1 + eC (55)

eF = 1 +
1

2
eC (56)

Substituting (55) and (56) into (54) gives eC = 1 + 1
4
eB + 1

4
+ 1

4
eC + 1

4
+ 1

8
eC =

3
2

+ 1
4
eB + 3

8
eC , so

5

8
eC =

3

2
+

1

4
eB.

Substituting (52) into (53) gives

2

3
eB =

4

3
+

1

3
eC ,

and solving for eB gives eB = 4. Hence eA = 5.

46. (a) The state space S = {0, H,HT} (0 representing no progress towards HT , H that
the last toss was a head, and HT that HT has been completed) and the transition
matrix is 1

2
1
2

0
0 1

2
1
2

1
2

1
2

0

 .

Letting ei be the expected time until reaching HT starting from i,

e0 = 1 +
1

2
e0 +

1

2
eH ,
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which can be rearranged as
e0 = 2 + eH ,

and

eH = 1 +
1

2
eH

giving eH = 2 and hence e0 = 4.

(b) The state space S = {0, H,HH} (0 representing no progress towards HH, H
that the last toss was a head not preceded by a head, and HH that HH has been
completed) and the transition matrix is1

2
1
2

0
1
2

0 1
2

1
2

0 1
2

 .

Letting ei be the expected time until reaching HH starting from i,

e0 = 1 +
1

2
e0 +

1

2
eH ,

giving e0 = 2 + eH , and

eH = 1 +
1

2
e0 = 1 + 1 +

1

2
eH

giving eH = 4 and hence e0 = 6.

47. (a) After the nth toss, let Xn be the length of the current run of heads (setting
Xn = 0 if the nth toss was a tail) and let Yn be the length of the run of tails
which preceded it (setting Yn = 0 if there were no tails, i.e. the current run of
heads started from the first toss). We then have a Markov chain on the following
12 states:
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Label Description Notes
1 Xn = 0, Yn = 0 (i.e. before the first toss)
2 Xn = 1, Yn = 0 (i.e. after 1 toss, and it was a head)
3 Xn = 2, Yn = 0
4 Xn ≥ 3, Yn = 0 HHH completed
5 Xn = 0, Yn = 1 (i.e. last toss was a tail not preceded by a tail)
6 Xn = 1, Yn = 1
7 Xn = 2, Yn = 1
8 Xn ≥ 3, Yn = 1 HHH completed
9 Xn = 0, Yn ≥ 2 (i.e. last toss was a tail preceded by a tail)
10 Xn = 1, Yn ≥ 2
11 Xn = 2, Yn ≥ 2 TTHH completed
12 Xn ≥ 3, Yn ≥ 2 HHH completed, but TTHH completed previously

The transition matrix is

P =



0 1
2

0 0 1
2

0 0 0 0 0 0 0
0 0 1

2
0 1

2
0 0 0 0 0 0 0

0 0 0 1
2

1
2

0 0 0 0 0 0 0
0 0 0 1

2
1
2

0 0 0 0 0 0 0
0 0 0 0 0 1

2
0 0 1

2
0 0 0

0 0 0 0 1
2

0 1
2

0 0 0 0 0
0 0 0 0 1

2
0 0 1

2
0 0 0 0

0 0 0 0 1
2

0 0 1
2

0 0 0 0
0 0 0 0 0 0 0 0 1

2
1
2

0 0
0 0 0 0 1

2
0 0 0 0 0 1

2
0

0 0 0 0 1
2

0 0 0 0 0 0 1
2

0 0 0 0 1
2

0 0 0 0 0 0 1
2



.

Let qn be the probability that TTHH is completed before HHH, starting in state

30



n. Then q4 = q8 = q12 = 0, and q11 = 1, and we need q1. We have

q10 =
1

2
(q5 + 1) (57)

q9 =
1

2
(q9 + q10), so q9 = q10 (58)

q7 =
1

2
q5 (59)

q6 =
1

2
(q5 + q7) =

3

4
q5 (60)

q5 =
1

2
(q6 + q9) (61)

q3 =
1

2
q5 (62)

q2 =
1

2
(q3 + q5) (63)

q1 =
1

2
(q2 + q5) (64)

Substituting (57) and (60) into (61), q5 = 3
8
q5 + 1

4
(q5 + 1), giving q5 = 2

3
. Then

the last three equations give q3 = 1
3
, q2 = 1

2
and finally q1 = 7

12
.

(b) We showed in question 23b that the expected time until a HHH occurs, given
that a TTHH has just done so, is 8. Similarly, it is possible to show that the
expected time until a TTHH occurs, given that a HHH has just done so, is 16,
and it is also possible to show (by the same method as for question 23a) that
the expected times from the start of a sequence are 16 for TTHH and 14 for
HHH. Let the times of the first occurrence of TTHH and HHH be T1 and
T2 respectively. Then we have E(T1) = 16 and E(T2) = 14. Now, consider the
difference between T1 and T2. If TTHH occurs first, then T2−T1 is the time until
an HHH occurs, given than TTHH has just done so, which we saw above has
expectation 8. So we can write

E(T2 − T1|T2 > T1) = 8.

Similarly we can write
E(T1 − T2|T1 > T2) = 16.

Let p = P (T2 > T1) (so P (T1 > T2) = 1− p, as T1 = T2 is impossible). Then

E(T2 − T1) = pE(T2 − T1|T2 > T1) + (1− p)E(T2 − T1|T2 < T1)

= 8p− 16(1− p) = 24p− 16.
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But E(T2 − T1) = E(T2) − E(T1) = 14 − 16 = −2, hence −2 = 24p − 16, giving
24p = 14, giving p = 7/12.

(c) (Open ended question)

48. (a) This is

P (N0,1 = 3) = e−4
43

6
=

32

3
e−4 = 0.195.

(b) By the Poisson process assumptions, N0,3−N0,1 = N1,3 has the Po(8) distribution
and is independent of N0,1. So

P (N0,1 = 3, N0,3 = 12) = P (N0,1 = 3, N1,3 = 9)

= P (N0,1 = 3).P (N1,3 = 9)

=
32

3
e−4.e−8

89

9!
= 0.024.

(c) Using the definition of conditional probability,

P (N0,1 = 3|N0,3 = 12) =
P (N0,1 = 3, N0,3 = 12)

P (N0,3 = 12)

=
43

3!
e−4.e−8 8

9

9!

e−12 12
12

12!

=
12!

3!9!

(
1

3

)3(
2

3

)9

= 0.212.

[This is the probability that a Bin(12, 1/3) random variable takes the value 3;
this is a special case of the result we will prove in Theorem 23.]

(d) You can get the solution quickly by dividing the answer to (b) by that for (a).
However, if you get something like this in the future, note that since the time at
which we condition is prior to that of the main event, we have a nice cancellation
which simplifies the calculation:

P (N0,3 = 12|N0,1 = 3) =
P (N0,1 = 3, N0,3 = 12)

P (N0,1 = 3)

=
P (N0,1 = 3).P (N1,3 = 9)

P (X(1) = 3)

(using independence assumption)

= P (N1,3 = 9) = 0.124
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49. The rate is 0.7 per week, so the mean for 2 weeks is 1.4.

(a)

P (N0,2 > 2) = 1− P (N0,2 ≤ 2)

= 1− 0.8335

= 0.1665.

by ppois(2,1.4) in R.

(b) The mean for the first week is 0.7; mean for next 12 is 8.4.

P (N0,1 ≥ 2, N1,13 ≤ 8) = (1− P (N0,1 ≤ 1))P (N1,13 ≤ 8)

= (1− 0.8442)(0.5369)

(using R)

= 0.0837.

50. The number of events in the first hour is N0,60 ∼ Po(60) ∼ N(60, 60) approx.

P (N0,60 < 50) = P (N0,60 < 49.5)

≈ Φ

(
49.5− 60√

60

)
' Φ(−1.356)

= 0.0875.

The time of the fiftieth occurrence is U50 = T1 + T2 + . . . + T50. Each Ti has the
exponential distribution with mean 1 and variance 1, and they are independent, so
U50 has mean 50 and variance 50. It is approximately normal by the Central Limit
Theorem.

P (U50 > 60) ' 1− Φ

(
60− 50√

50

)
' 1− Φ(1.414)

= 0.0787.

(Via R, the exact answer is 0.0844 (to 4dp).)

51. Let FS2(s) = P (S2 ≤ s) be the distribution function of S2. Then

FS2(s) = P (N0,s ≥ 2)

= 1− P (N0,s ≤ 1)

= 1− (P (N0,s = 0) + P (N0,s = 1))

= 1− (e−λs + λse−λs)

= 1− (1 + λs)e−λs.
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Hence the probability density function of S2 is

fS2(s) = F ′S2
(s) = λ(1 + λs)e−λs − λe−λs = λse−λs.

52. (a) The observable supernovas, by the thinning property, form a Poisson process with
rate 0.004, so the number in a period of length t will have a Poisson distribution
with parameter 0.004t.

(b) The number in a 100 year period will be Po(0.4), so this is 1 − e−0.4 = 0.3297
(4dp).

(c) Conditional on having 2 in a 600 year period, the times will look like a random
sample of size 2 from a uniform distribution on the 600 year period. So this is
(1/3)2 = 1/9.

53. (a) The number who arrive in (0, 1] is Poisson with parameter∫ 1

0

(1 + 2t) dt =
[
t+ t2

]1
0

= 2

and the number who arrive in (7, 8] is Poisson with parameter∫ 8

7

(17− 2t) dt =
[
17t− t2

]8
7

= 136− 64− 119 + 49 = 2.

So
P (N0,1 = 0)P (N7,8 = 0) = e−2e−2 = (0.1353)2 = 0.0183.

(b) Similar integration gives parameters 2, 4, 6, 8, 8, 6, 4 and 2 for the eight periods.
So the required probability is

= (1− 0.4060)2(1− 0.0916)2(1− 0.0174)2(1− 0.0030)2

= {0.5940× 0.9084× 0.9826× 0.9970}2 = 0.2794.

(c) Each independently has probability∫ 1

0
(1 + 2t) dt∫ 2

0
(1 + 2t) dt

=
2

6
=

1

3

of being in the first hour. So the required probability is

1−
(

2

3

)5

− 5

(
2

3

)4
1

3
=

131

243
(≈ 0.5391).
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54. (a) Let Nu,v be the number of records broken in (u, v].

P (Nu,v = 0) = exp

{
−
∫ v

u

t−1 dt

}
= exp {− log v + log u}
=

u

v
.

The best performance in (0, v] lies in (0, u] if and only if there are no new records
in (u, v]. If the time of the best performance is uniformly distributed, then this
event has probability u/v as required.

(b) For t ≥ 0,

P (T ≤ t) = P (Nu,u+t ≥ 1)

= 1− u

u+ t

=
t

u+ t
.

Differentiating,

fT (t) =
u

(u+ t)2
,

The mean is

E(T ) =

∫ ∞
0

tu

(u+ t)2
dt =

∫ ∞
u

u

x
dx−

∫ ∞
u

u2

x2

(substituting x = u+t), of which the second integral is finite but the first diverges
at infinity, since it involves the logarithm of x. Hence the mean is not finite.

55. (a) Let NA be the number of oaks in A and MA be the number of ashes in A. Then
NA ∼ Po(a/50) and MA ∼ Po(a/40), and they are independent, so

P (NA ≥ 1,MA ≥ 1) = (1− e−a/40)(1− e−a/50) = 1 + e−9a/200 − ea/40 − e−a/50.

(b) Using the same notation, NB ∼ Po(80) ≈ N(80, 80) and MB ∼ Po(100) ≈
N(100, 100). By independence, NB − MB has an approximately N(−20, 180)
distribution, so

P (NB > MB) ≈ 1− Φ

(
0.5 + 20√

180

)
= 0.063 . . . .
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56. (a) There are n2 small squares, and each has a “success” with probability θ inde-
pendently of the others, so this distribution will be Bin(n2, θ). This gives the
expected number of trees (which should be λ) as n2θ, so we want n2θ = λ and so
θ = λ/n2.

(b) For large n, Bin(n2, λ/n2) is approximately Poisson with parameter λ, so using
the same idea as in the discrete-time approximation to the basic Poisson process
we can use a Poisson(λ) random variable as a model for the total number of trees
in the large square.

57. (a) It is impossible to complete the pattern 1, 2, 3, 4, 5, 6 before the 6th roll, so un = 0
for n ≤ 5. For n ≥ 6 the probability of completing the pattern on the nth toss is
1/66, so un = 1/66. Also u0 = 1.

(b) From above

U(s) =
∞∑
n=0

uns
n = 1 +

∞∑
n=6

sn

66
=

66(1− s) + s6

66(1− s)
.

By the basic relation,

F (s) = 1− 1

U(s)
= 1− 66(1− s)

66(1− s) + s6
=

s6

66(1− s) + s6
.

Differentiating,

F ′(s) =
(66(1− s) + s6)(6s5)− s6(−66 + 6s5)

(66(1− s) + s6)2
,

and so the expected time of the first renewal is F ′(1) = 66.

58. (a) The equations are

π1 =
1

3
π2 +

1

3
π4 (65)

π2 =
1

2
π1 +

1

2
+ π3 +

1

3
π4 (66)

π3 =
1

3
π2 +

1

3
π4 (67)

π4 =
1

2
π1 +

1

2
+ π3 +

1

3
π2 (68)

Either by symmetry or by rearranging the equations, π1 = π3 and π2 = π4. Hence
π1 = 2

3
π2, and we must have π1 + π2 + π3 + π4 = 1, giving π =

(
1
5

3
10

1
5

3
10

)
. (This

can also be obtained using the result of question 31(c).)
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(b) The chain is irreducible, because the graph is connected, so there is a possible
route from each vertex to every other vertex. To see that it is aperiodic, consider
state A. It is possible to return to A after two steps (go to B, then back to A)
or after three (go to B, then to D, then back to A) and the hcf of 2 and 3 is
1, so A is aperiodic; by solidarity so are all other states. An irreducible chain
with a finite state space is positive recurrent, so the results apply. Hence, as
n → ∞, P (Xn = A) → 1/5, P (Xn = B) → 3/10, P (Xn = C) → 1/5, and
P (Xn = D)→ 3/10.

59. (a) Let qi be the probability of reaching C before D, starting in i. Then qC = 1 and
qD = 0, and

qA =
1

2
qB (69)

qB =
1

3
qA +

1

3
. (70)

Substituting (69) into (70) gives qB = 1
6
qB + 1

3
, so qB = 2

5
and qA = 1

5
.

(b) Let ei be the expected time to reach C, starting in i. Then eC = 0, and

eA =
1

2
(eB + eD) + 1 (71)

eB =
1

3
(eA + eD) + 1 (72)

eD =
1

3
(eA + eB) + 1 (73)

Substituting (73) into (72) gives eB = 4
9
eA + 1

9
eB + 2 and hence eB = 1

2
eA + 3

2
.

Similarly substituting (72) into (73) gives eD = 1
2
eA+ 3

2
(or alternatively symmetry

implies eB = eD). Substituting these into (71) gives eA = 1
2
eA + 5

2
, and hence

eA = 5. (Also eB = eD = 4.)

60. (a) The number of occurrences in (0, 1] is Poisson with parameter
∫ 1

0
2t dt = 1, so

this is e−1/2 = 0.184.

(b) Each of the two can be thought of as occurring in (0, 3/4] independently of the

others with probability
∫ 3
0 /42t dt∫ 1
0 2t dt

= 9/16, so the number which do has a Bi(2, 9/16)

distribution, and the probability that it is 1 is thus 2(9/16)(7/16) = 126/256 =
0.492.
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(c) This will now be a Poisson process with variable rate 2t/3, by the thinning prop-
erty. So the number of retained occurrences in (0, 1] is Poisson with parameter∫ 1

0
2t/3 dt = 1/3, so the probability there are none is e−1/3 = 0.717.
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