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Candidates should attempt ALL four questions.
The maximum marks for the various parts of the questions are indicated.
The paper will be marked out of 100. (Q1�30; Q2�21; Q3�25; Q4�24)
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1 A group of four badgers share two setts, A and B. Each day, exactly one badger
moves from the sett it is currently in to the other one, each badger being equally
likely to move. Let Xn be the number of badgers in sett A on day n, and model
this as a Markov chain with state space {0, 1, 2, 3, 4}. Assume that, on day 0, two
of the badgers are in sett A.
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(b) Irreducible: all transitions from i to i − 1 or i + 1 within the state space
have positive probability, so it is always possible to get from state i to
state j in |i − j| steps, so all pairs of states communicate, so the chain is
irreducible. Also possible to single out a particular state and show that
all states communicate with it. Periodicity: consider state 0 (or any other
state). It is only possible to return to state 0 at time n by an equal number
of �up� moves and �down� moves, and so n = 2m for some m and must be
even, so the period is a multiple of 2. It is possible to return in 2 steps
(going to state 1 and then back again) so the period actually is 2. The
solidarity theorem and irreducibility now tell us that all the other states
also have period 2.
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1 (continued)

(c)

π0 =
1

4
π1

π1 = π0 +
1

2
π2

π2 =
3

4
π1 +

3

4
π3

π3 =
1

2
π2 + π4

π4 =
1

4
π3

Using the given distribution, the right hand sides become
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con�rming that the equations are satis�ed.

(d) (i) We have π(0) =
(
0 0 1 0 0

)
. Hence π(1) = π(0)P =(
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)
, con�rming the n = 1 case. Assume true for

n = k. Then π(2k−1) =
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, from which

π(2k) = π(2k−1)P =
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and thus

π(2k+1) = π(2k)P =
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,

giving the result by induction.

(ii) If we were to have convergence, then P (Xn = 1) would converge to
4

16
=

1

4
as n→∞, but we have just shown it is

1

2
for all odd n, so

this is impossible.
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1 (continued)

(e) Let pi be the probability of reaching state 4 before state 0. Then p4 = 1,
p0 = 0, and
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Thus p2 =
3

8
p2 +
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2
p3, so p2 =

4

5
p3, and now rearranging the last

equation shows that p3 = 5/8 and thus p2 = 1/2 and p1 = 3/8.
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2 (a) A renewal at time 1 must be the �rst renewal, so u1 = f1 = 1/12. For a
renewal at time 2, either there are renewals at both times 1 and 2, which
happens with probability f 2

1 = 1/144, or the �rst renewal happens at time
2, which happens with probability f2 = 7/144, so u2 = 1/144 + 7/144 =

8/144 = 1/18. (Can also use the formulae u1 = f1 and u2 = f2 + f 2
1 , which

are in the notes.)

(b) We have

F (s) =
∞∑
n=1

(
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3n
− 1

4n

)
sn
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1− s/3
− s/4
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.

(c) A renewal process is recurrent if
∞∑
n=1

fn = 1 and transient otherwise. We

have
∞∑
n=1

fn = F (1) = 1/6 < 1, so this renewal process is transient.

(d) By a result in the course,

U(s) =
1

1− F (s)
.

We have

1− F (s) = 1− s
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+

s

4− s
=

(3− s)(4− s)− s
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,

so

U(s) =
(3− s)(4− s)

(3− s)(4− s)− s
= 1 +

s

12− 8s+ s2
.

Either using partial fractions or comparison with the given answer shows
that this is equal to the given answer.

(e) Expanding the form for U(s) from (c),
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and therefore un = 1 if n = 0 and
1
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)
otherwise. As

1

2n
and

1

6n

both tend to zero as n→∞ so does un.
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3 (a) Irreducible: from state 1, states 2 and 3 can be reached in one step, and
state 4 can be reached in two steps (either via 2 or 3). State 1 can be
reached from state 4 in one step, and from states 2 and 3 in two steps (via
4). Hence all states communicate with state 1, and hence all with each
other by transitivity, so the chain is irreducible.

Aperiodic: consider state 1. It is possible to return to state 1 in 3
steps (via 3 and 4) or in 4 steps (via 2,3,4). The hcf of 3 and 4 is 1 so state
1 is aperiodic; hence all states are by the solidarity theorem.

(b) The chain is irreducible and aperiodic, and as it has a �nite state space
is thus positive recurrent. Hence, by results in the course, it has a unique
stationary distribution and the distribution of the chain at time n converges
to that distribution as n→∞.

The equations for the stationary distribution are

π1 = π4
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which are satis�ed by
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)
. This is unique, so we know from

the results that the distribution of the state of the chain must converge to
it. Hence, as n→∞,

P (Xn = 1) → 4

13

P (Xn = 2) → 2

13

P (Xn = 3) → 3

13

P (Xn = 4) → 4

13

(c) (i) Let ei be the length of time to reach state 2 given that we start at
state i. Then e2 = 0 and

e1 =
1

2
e2 +

1

2
e3 + 1 =

1

2
e3 + 1

e3 = e4 + 1

e4 = e1 + 1

So e1 =
1

2
(e1 + 2) + 1 giving e1 = 4.

(ii) By a result in the course the expected time µi to return to state i
given that we start there is 1/πi, where π is the unique stationary

distribution. So here µ2 =
13

2
.
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4 (a) The number within three light years has a Poisson distribution with param-

eter µ1 =
1

100

4

3
π33 = 1.131. The probability it is 1 is thus µ1e

−µ1 = 0.365.

(b) Given that there are exactly �ve star systems within �ve light years of a
speci�c point, �nd

(i) By independence of numbers in disjoint regions, this is the prob-
ability that there are exactly three within 6ly but not within 5ly.
The number within 6ly but not 5ly is Poisson with parameter µ2 =
1

100

4

3
π(63 − 53) = 3.81, and the probability there are exactly 3 is

µ3
2e
−µ2/6 = 0.204.

(ii) Each of the �ve can be considered to be within 3ly independently of

the others, with probability 33/53 = 27/125. So the number which
are has a Binomial distribution with parameters 5 and 27/125, and

so the probability there are none is (98/125)5 = 0.296

(c) Let R be the distance to the nearest system in ly. Then FR(r) = P (R ≤
r) = P (Nr ≥ 1) where Nr is the number of star systems within rly. Nt ∼

Poisson

(
4

300
πr3
)

so

P (Nr ≥ 1) = 1− P (Nr = 0) = 1− exp

(
− 4

300
πr3
)
.

Di�erentiating, the probability density function

fR(r) =
1

25
πr2 exp

(
− 1

75
πr3
)
.

(d) Assuming the presence of a habitable planet in a star system is independent
of other systems and has probability 0.1 for all systems, then the thinning
result for Poisson processes tells us that systems containing a habitable

planet form a spatial Poisson process with rate
1

1000
. Hence, the number

within 5ly has a Poisson distribution with parameter µ3 =
1

1000

4

3
π53 =

0.524. So the probability there is at least one is 1− e−µ3 = 0.408.

End of Question Paper
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