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Properties of the Poisson distribution

Introduction

Poisson processes are a particularly important topic in probability
theory.

The one-dimensional Poisson process, which most of this section will
be about, is a model for the random times of occurrences of
instantaneous events.
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Properties of the Poisson distribution

Applications

There are many examples of things whose random occurrences in
time can be modelled by Poisson processes, for example

customers arriving in a queue

incoming calls to a phone

eruptions of a volcano

and so on

Higher dimensional analogues of the basic Poisson process are also
useful as models for random locations of objects in space.
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Properties of the Poisson distribution

Properties of the Poisson distribution
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Properties of the Poisson distribution

The Poisson distribution

Recall that the Poisson distribution with parameter λ, denoted
Po(λ), has probability function

p(x) =
λxe−λ

x!
, x = 0, 1, 2, 3, . . .

and a random variable with Po(λ) distribution has
E (X ) = Var(X ) = λ.
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Properties of the Poisson distribution

Additivity

Proposition
The Poisson distribution is additive.

More precisely, if X and Y are independent random variables with
distributions Po(λ) and Po(µ) respectively, then X + Y has the
distribution Po(λ + µ)

This property extends in an obvious way to more than two
independent random variables.

Proof: See Exercise 17(b)(i).
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Properties of the Poisson distribution

Limit of binomials

Proposition
The Poisson distribution is a limit of binomial distributions.

Consider the sequence of binomial distributions Bi(n, µ/n) for fixed µ.

Then the number of trials n is increasing but the probability of
success on a trial is µ/n which is decreasing in proportion, so that
the mean µ remains fixed.

In the limit, the distribution is Poisson with parameter µ.

(See MAS113 for proof.)
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The basic Poisson process

The basic Poisson process
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The basic Poisson process

Time scale

We now move to a continuous time scale which is usually regarded as
starting at time zero, so that it consists of the positive real numbers,
and denote our time variable typically by t.

When we refer to a time interval, we adopt the convention that it
excludes the left hand end point but includes the right hand
end-point, say

(u, v ] = {t : u < t ≤ v}.
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The basic Poisson process

Basic Poisson process I

The Poisson process is described in terms of the random variables
Nu,v for 0 ≤ u ≤ v , where Nu,v is the number of occurrences in the
time interval (u, v ].

The process has one parameter, which is a positive number λ known
as the rate of the process.

λ is meant to measure the average or expected number of
occurrences per unit time.
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The basic Poisson process

Basic Poisson process II

The basic Poisson process is then defined by the following two
assumptions:

(a) For any 0 ≤ u ≤ v , the distribution of Nu,v is Poisson with
parameter λ(v − u).

(b) If (u1, v1], (u2, v2], . . . , (uk , vk ] are disjoint time intervals then
Nu1,v1 ,Nu2,v2 , . . . ,Nuk ,vk are independent random variables.
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The basic Poisson process

Basic Poisson process III

Note that by assumption (a) and the mean of a Poisson random
variable, Nu,v has mean λ(v − u), which gives the correct
interpretation to the rate λ as described above.
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The basic Poisson process

Do these work?

To show that a process actually exists which satisfies these
assumptions still requires a bit of work.

The special properties of Poisson distributions are important: if say
u < v < w then

Nu,w = Nu,v + Nv ,w

Because all three of these random variables are to have Poisson
distributions, and the two on the RHS are independent, the
assumptions can only work because of the additivity property.

We will see a bit more on justifying the existence of a process
satisfying the assumptions later.

SoMaS, University of Sheffield MAS275 Probability Modelling Spring Semester, 2020 13 / 63



The basic Poisson process

Why Poisson?

We can also ask about why the assumption of Poisson distributions
might make sense in a modelling context.

Divide (0, t] up into n small intervals, and assume that there is the
same small probability of an occurrence in each, assuming that the
probability of more than one occurrence in an interval is negligible.

In order to fix the expected number of occurrences at λt, this
probability must be set equal to λt/n.
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The basic Poisson process

Binomial limit

Then the number of occurrences in the interval has the binomial
distribution Bi(n, λt/n).

As we let n tend to infinity, the small intervals become smaller and so
the approximation to the continuous time scale becomes closer

By the relationship between the Poisson and Binomial distributions
(see Proposition 17) the distribution of the number of occurrences
approaches the Poisson distribution with parameter λt.

This suggests the Poisson distribution as a sensible model in the
genuinely continuous time setting.
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The basic Poisson process

Other distributions?

You might like to think about which other distributions you have
encountered might have assumptions similar to (a) and (b) which
work.
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The basic Poisson process

Simulation

Figure: A simulation of a Poisson process with rate 1 up to time 10

SoMaS, University of Sheffield MAS275 Probability Modelling Spring Semester, 2020 17 / 63



The basic Poisson process

Example

Example
Volcanic eruptions
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Multiple occurrences and inter-occurrence times

Multiple occurrences and inter-occurrence

times
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Multiple occurrences and inter-occurrence times

Inter-occurrence times

Let T1 denote the length of time until the first occurrence, . . .

. . .T2 denote the length of time between the first and second
occurrences, . . .

. . . and so on, so that Tn represents the time between occurrences
n − 1 and n.

These random variables are called inter-occurrence times. We first
show that these cannot be zero, and we will then show which
distribution they have.
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Multiple occurrences and inter-occurrence times

No multiple occurrences

Theorem
The probability that in (0, t] two occurrences of a Poisson process
with rate λ occur at exactly the same time is zero.
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Multiple occurrences and inter-occurrence times

Exponential distribution

Theorem
Inter-occurrence times are independent of each other, and are
exponentially distributed with parameter λ.
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Variable rate Poisson process

Variable rate Poisson process
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Variable rate Poisson process

Variable rate

We can make the basic Poisson process more flexible and realistic as a
model by allowing the rate of the process to vary with time, λ(t) say.

This can take into account, for example, the fact that traffic is
heavier at rush hours, the rate of emission of particles from a
radioactive isotope declines with time, and so on.
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Variable rate Poisson process

Assumptions

The only change to the definition of the Poisson process is that the
assumption (a) is replaced by the following:

For any 0 ≤ u ≤ v , the distribution of Nu,v is Poisson with parameter∫ v

u
λ(t)dt.

This assumption generalises that of the constant rate case, and gives
the correct interpretation of “rate” when this rate is varying.

If λ(t) is a constant we recover the basic Poisson process.
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Variable rate Poisson process

Simulation

Figure: A simulation of a variable rate Poisson process with rate
30/(t + 1) up to time 10
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Variable rate Poisson process

Independence

The independence assumption (b) still holds when the rate is variable.

This still works because of the additivity property of Poisson random
variables, and also because of the additivity of integrals, namely that
if u < v < w then∫ w

u

λ(t)dt =

∫ v

u

λ(t)dt +

∫ w

v

λ(t)dt.
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Variable rate Poisson process

Example

Example
Email arrivals

SoMaS, University of Sheffield MAS275 Probability Modelling Spring Semester, 2020 28 / 63



Superposition, marking and thinning

Superposition, marking and thinning
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Superposition, marking and thinning

Superposition

In some situations we have more than one Poisson process running.

If these are independent, then the process formed by combining them
is also a Poisson process.

Theorem
Let (Nu,v ) and (Mu,v ) be independent Poisson processes with
(possibly variable) rates λ(t) and µ(t) respectively. Then
(Nu,v + Mu,v ) also forms a Poisson process, with rate λ(t) + µ(t).
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Superposition, marking and thinning

Marking

Sometimes the occurrences in a Poisson process may be categorised
as each belonging to one of a number of types.

This is sometimes referred to as marking: think of each occurrence
as being given a random “mark”.

Specifically we will assume that each occurrence in a Poisson process
with (possibly variable) rate λ(t) is given, independently of
everything else, one of k different marks with probabilities
p1, p2, . . . , pk respectively.

Write the total number of occurrences in (u, v ] as Nu,v (as before)

and write the number of occurrences of type i in (u, v ] as N
(i)
u,v .
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Superposition, marking and thinning

Lemma

The following result about Poisson random variables will be useful.

Lemma
Let X be a Poisson random variable with parameter µ, and imagine
that, conditional on X = x , we have x objects each of which is of
one of k types.
Assume further that each of these objects is of type i with probability
pi , independently of the other objects.
Let the number of objects of type i be Yi .
The (unconditional) joint distribution of Y1,Y2, . . . ,Yk is such that
they are independent Poisson, with parameters p1µ, p2µ, . . . and pkµ
respectively.
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Superposition, marking and thinning

Theorem

Theorem

For each i , the process given by (N
(i)
u,v ) (counting the occurrences

which are type i) is a Poisson process with rate λ(t)pi , and the k
processes for the different types are independent of each other.

Proof.
This essentially follows from Lemma 21 together with the
independence properties of Poisson processes.
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Superposition, marking and thinning

Variable rates

It is even possible to allow the probabilities of the marks to be
dependent on time, say p1(t), p2(t), . . . , pk(t).

Then the generalised result is that the marked processes are
independent Poisson processes with variable rates
p1(t)λ(t), p2(t)λ(t), . . . , pk(t)λ(t) respectively.
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Superposition, marking and thinning

Thinning

One special case of marking is where k = 2 and the process of
marking consists of either retaining the occurrence, with probability
p, or deleting it, with probability q = 1− p.

Then the process of retained points is Poisson with rate pλ, and in
this context the property is often known as the thinning property.
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Superposition, marking and thinning

Example

Example
University applications
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Conditioning on the number of occurrences in an interval

Conditioning on the number of occurrences in

an interval
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Conditioning on the number of occurrences in an interval

Conditioning

Sometimes we know how many occurrences there are in a given
interval, and are interested in how they are distributed within the
interval.

Theorem
Assume that we have a Poisson process with constant rate λ.
Given that there are n occurrences in the time interval (0, t] say, the
positions of these occurrences are distributed as a random sample of
size n from the uniform distribution on that interval.
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Conditioning on the number of occurrences in an interval

Binomial

Note that this implies that, conditional on there being n occurrences
in (0, t], the number of occurrences in any interval (u, v ] ⊆ (0, t] (so
0 ≤ u < v ≤ t) has a Bi(n, (v − u)/t) distribution,. . .

. . . as each of the n occurrences would have probability (v − u)/t of
being in (u, v ], independently of the others.

We will prove this latter version of the statement.
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Conditioning on the number of occurrences in an interval

Variable rate version

This result generalises to the variable rate case, but the uniform
distribution is replaced by the distribution which has p.d.f.

f (s) =
λ(s)∫ t

0
λ(x)dx

,

which is the distribution on (0, t] whose density is proportional to the
rate of the original process.

So the number of occurrences in any interval (u, v ] ⊆ (0, t] has a

Bi

(
n,

∫ v

u
λ(s)ds∫ t

0
λ(s)ds

)
distribution.
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Conditioning on the number of occurrences in an interval

Example

Example
Conditioning on number of events
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Conditioning on the number of occurrences in an interval

Simulation I

We can reverse this idea to construct a Poisson process, for example
for simulation purposes, or to convince ourselves that Poisson
processes really exist.
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Conditioning on the number of occurrences in an interval

Simulation II

Assuming that we want to construct a variable rate Poisson process
with rate λ(t), we can do the following:

Divide the positive real line up into intervals (n − 1, n] for each
positive integer n.

To each of these intervals (n − 1, n] assign a Poisson random
variable Xn with parameter

∫ n

n−1
λ(t) dt. These Poisson random

variables should be independent of each other.
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Conditioning on the number of occurrences in an interval

Simulation III

If Xn = 0, then there will be no occurrences in the interval
(n − 1, n]; if Xn = x > 0, then we create a random sample of x
random variables on (n − 1, n] with probability density function

f (s) = λ(s)∫ n
n−1 λ(x)dx

, in a similar manner to above. The values of

these random variables will give the times of occurrences in the
interval.
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Conditioning on the number of occurrences in an interval

Simulation IV

The second step assumes the integral is finite; if for one of the
intervals it is not we will need to be more careful.

It is not too hard to show, using the marking and additivity properties
of the Poisson distribution, that a process of occurrences constructed
in this way will satisfy the assumptions with which we defined the
Poisson process.
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The spatial Poisson process

The spatial Poisson process
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The spatial Poisson process

The spatial Poisson process

An important generalisation of the basic Poisson process is to replace
the time scale with a space, and the aim is to model a random
scattering of points in this space.

The space may be one-dimensional – for example if we wish to
consider defects on a length of cable – and in that case it looks like
the time scale, . . .

. . . or it may be in a higher dimension – two dimensions for positions
of spots of rain on a pavement, three dimensions for positions of
stars in space, for example.
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The spatial Poisson process

Generalising length

To generalise the assumptions we made for the basic Poisson process,
we need an analogue of the length of a time interval.

The natural way to do this is to consider length in one dimension,
area in two dimensions, volume in three dimensions, and so on.

We will refer to length, area or volume, as appropriate, as measure,
and denote the measure of the set A by |A|.
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The spatial Poisson process

Number of points in a subset

The behaviour of the process can be described by random variables
N(A) for subsets A with finite measure:

N(A) represents the number of points of the process which fall inside
the set A.

The parameter λ is in this context called the density of the process.
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The spatial Poisson process

Definition

A spatial Poisson process is now defined to be a process which
satisfies the following assumptions, which are generalisations of those
we used in the time setting.

1 For any set A of finite measure, N(A) has the Poisson
distribution with parameter λ|A|.

2 If A1,A2, . . . ,Ak are disjoint sets of finite measure, then
N(A1),N(A2), . . . ,N(Ak) are independent random variables.
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The spatial Poisson process

Properties

The assumptions work for essentially the same reasons as before,
notably the additivity of independent Poisson random variables.

Most of the properties of the basic Poisson process have analogues in
more than one dimension.
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The spatial Poisson process

Superposition

Two independent spatial Poisson processes with rates λ and µ can be
combined to form a spatial Poisson process with rate λ + µ.
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The spatial Poisson process

Marking

If the points of a spatial Poisson process with rate λ are given
independent marks (from 1, 2, . . . , k) with probabilities p1, p2, . . . , pk
then the points with mark i form a spatial Poisson process with rate
λpi , and the processes corresponding to the different marks are
independent.
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The spatial Poisson process

Conditioning

If we know that there are n points of the process in A, then the
conditional distribution of the location of the points is that of a
random sample of size n from the uniform distribution on A.

In particular, if B ⊆ A, then the number of points in B is Binomial
with parameters n and |B |/|A|.
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The spatial Poisson process

Proofs

The proofs of all of these properties are natural generalisations of the
proofs of the one-dimensional versions.

It is also possible to simulate from a spatial Poisson process in a
similar way to the one described for the variable rate time Poisson
process.
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The spatial Poisson process

Simulation

Figure: A simulation of a spatial Poisson process with rate 40 on a unit
square
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The spatial Poisson process

Inter-occurrence times?

One property of the basic Poisson process which does not naturally
carry over is the joint distribution of inter-occurrence times.

There is no natural ordering of points in two or more dimensions, and
so the analogue of inter-occurrence times does not exist.

However, it is possible to use a similar idea to calculate the
distribution of the distance to the nearest point in the process from a
given point.
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The spatial Poisson process

Example

Example
Trees in a forest
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The spatial Poisson process

Variable rate

It is also possible to define variable rate spatial Poisson processes.

The parameter of the Poisson distribution giving the number of
points in a set A will be the integral over A of the rate function, just
as for the one-dimensional case, but the integral is now a
multidimensional one.
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The spatial Poisson process

Clustering and regularity

An actual scatter of points may be clustered relative to the true
randomness of the Poisson process –

for example, positions of plants each of which self-propagates within
a local area –

or regular relative to the Poisson process –

for example, positions of birds’ nests when there is a territorial effect
inhibiting nests from being too close together.
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The spatial Poisson process

Regularity

regular
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Figure: A simulation of a spatial process more regular than a Poisson
process
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The spatial Poisson process

Clustering
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Figure: A simulation of a spatial process more clustered than a Poisson
process
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Compound Poisson processes*

Compound Poisson processes*
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Compound Poisson processes*

Compound Poisson process

Suppose that events occur at random times but also each event
carries with it some numerical value, and the chief interest is in the
sum of these numerical values over a period of time.

Examples might be

claims on an insurance company, which occur at random times
but they differ in size

fatalities in road accidents, where the accidents occur at random
times but each accident may incur a number of deaths.
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Compound Poisson processes*

Model

The simplest model for such situations is to take the times of
occurrences as a basic Poisson process and . . .

. . . then to assume that the sizes of the occurrences are random
variables each with some known distribution, which may be discrete
or continuous.

These random variables are independent of each other and of the
times of the occurrences

This gives what is known as a compound Poisson process.
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Compound Poisson processes*

Notation

We will use the following notation.

N(t) denotes the number of occurrences in the time interval (0, t],
previously written as N0,t .

The sizes of the occurrences in chronological order are denoted by
Y1,Y2, . . ..

Then the sum of these over the time interval (0, t] may be written

X (t) =

N(t)∑
i=1

Yi .
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Compound Poisson processes*

Graphs

If we think graphically of plotting N(t) and X (t) against t, then

the graph of N(t) jumps upwards by 1 at each occurrence and
stays constant in between

the graph of X (t) jumps (upwards or downwards, since Yi could
be negative) by the random quantities Y1,Y2, . . . at the times of
the occurrences, and stays constant in between.

The process is completely specified by the rate λ of the Poisson
process and the common distribution of the random variables
Y1,Y2, . . ..
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Compound Poisson processes*

Simulation

Figure: A simulation of a compound Poisson process with rate 1 and
jumps having χ2

4 distribution up to time 10

SoMaS, University of Sheffield MAS275 Probability Modelling Spring Semester, 2020 68 / 63



Compound Poisson processes*

Further generalisations

We can combine the ideas of compound Poisson processes with
variable rate and spatial Poisson processes as well.

For example, we might be modelling the locations of nests of some
species of bird within some region.

We could treat the locations as points in two dimensional space to be
modelled by a spatial Poisson process.
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Compound Poisson processes*

Further generalisations II

If some parts of the region are more favourable to the species than
others, then we would expect a higher density of nests in these areas,
so the model would have a variable rate which is higher in favourable
areas and lower elsewhere.

If we wanted to model the total number of offspring raised, then a
compound spatial Poisson model might be appropriate.
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