Solutions to series questions

1. This is a geometric series, with first term 1 and common ratio % As |§| <1,
it is convergent, and the sum is 1_% = 3.
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2. This is similar to the previous question, except that the common ratio is
now 2s%. Given that |s| < 1, |2s?| < 1, so again it is convergent, and the
sum is now
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3. We have, by factorising the quadratic and using partial fractions
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Expanding both terms as geometric series, we get
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which we can rearrange as a single sum
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Both geometric series expansions will be valid as long as |s| < 1.
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4. We know that >°°, 1/n? converges. We also know that log(n) > 1 for
n > 2 so

1
<1
log(n)
for n > 2. Hence
— n?log(n) <= n’

which converges. Hence
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converges by the comparison test.



5. This is quite similar to in the handout. We can write the series as
r(4+ 72 + 102" + 132° + . .),

where the term in the brackets is A, (z?), where A, is defined as in (L1)). So
it becomes
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which we can simplify to give
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6. By the Binomial Theorem, if | — | = || < 1 then
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For the first four terms, we can write this as (1—x)(1—3z+622—1023+. . .),
which gives 1 — 4x + 922 — 1623 + . . ..

For a general expression for the co-efficient of 2*, note that (from @ in the

handout) (3%) = (=1)*E2LER (o6 we can write (again for | —z| = |z| < 1),
Q-2)(1+2)° = (1—2) g(—l)k(k * 2)2““ 1)
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(relabelling the second sum by replacing k by k& — 1) which gives the co-
efficient of 2* as
k+2)(k+1 k+1)k —1)k
(—1)’“< )2( ) _ (—1)’“% = %((k +2)(k+1) + (k+ 1)k)

as you might have guessed from the first four terms.

The series converges for | — z| = || < 1,i.e. —1 <z < 1. The approxima-
tion from the first four terms when z = 0.1 is

1—-0.4+0.09 —-0.016 = 0.674
compared with an actual value of 0.9/(1.1)% = 0.676. . ..
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(the exponential series).
(b) The series is

1
1+ 42 +2°+... =
1— 22

(geometric series with common ratio 2.

()
Zn(n —1)a" = 2? Zn(n —1)a"?
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by the Binomial Theorem (see (9) in the handout) for |z| < 1.

[You can also do this by differentiating the geometric series » >, 2"
twice with respect to x.]



