
Series: revision

This document is intended to remind you about some important facts on series
which are important in MAS275, particularly in chapter 2. The material should
be familiar from MAS111.

Convergence and divergence

A series
∞∑
k=0

ak

is convergent if its partial sums

n∑
k=0

ak

converge to a limit L as n→∞, in which case we write

∞∑
k=0

ak = L.

If a series is not convergent then it is said to be divergent. (NB sometimes the
labelling will start with a1, or indeed perhaps a2 or a3 etc., rather than a0.)

If the terms ak do not tend to zero as k →∞ then the series cannot be convergent,
but the converse is not true: you cannot conclude that

∑∞
k=0 ak is convergent

because limk→∞ ak = 0. The most important counterexample is the harmonic
series

∞∑
k=1

1

k
,

which is divergent; more generally

∞∑
k=1

1

ks

is convergent if s > 1 and divergent otherwise.
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Geometric series

In a geometric series, the terms have a common ratio, in the sense that ak+1/ak =
r for all k. We can thus write ak as ark, where a = a0 is the first term.

For all r,
n∑

k=0

ark =
a(1− rn+1)

1− r
. (1)

If |r| < 1 then letting n→∞ in (1) gives

∞∑
k=0

ark =
a

1− r
. (2)

Tests for convergence

We start with the comparison test, which states that we can deduce information
about convergence by comparing with a series whose behaviour is known.

• If
∑∞

k=0 ck is known to be convergent, and for all k we have |ak| ≤ ck, then∑∞
k=0 ak is also convergent.

• If
∑∞

k=0 dk is known to be divergent, and for all k we have ak ≥ dk ≥ 0,
then

∑∞
k=0 ak is also divergent.

(In fact we don’t need “for all k” here: “for k ≥ N” for some fixed N is enough,
as the initial terms don’t affect convergence.)

The ratio test says that if we have a series
∑n

k=0 ak with non-negative terms
and the ratios of consecutive terms tend to a limit, i.e. that

lim
k→∞

ak+1

ak
→ ρ,

for some limit ρ ≥ 0, then the series is convergent if ρ < 1 and divergent if ρ > 1.
(But it doesn’t say what happens if ρ = 1.)
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Power series and differentiation

Frequently we will be working with power series of the form

A(s) =
∞∑
k=0

aks
k,

where s is thought of as a variable.

A power series has a radius of convergence R (which may be zero or infinity) such
that for |s| < R it converges, and for |s| > R it does not. (If |s| = R it may
converge, but it may not.)

Within the radius of convergence it is possible to differentiate the power series
term by term:

d

ds
A(s) =

∞∑
k=1

kaks
k−1.

Important examples of power series

Most of these are obtained as Maclaurin series of a function. All are valid if
|s| < 1; some are valid outside this range as well.

es =
∞∑
k=0

sn

n!
= 1 + s+

s2

2!
+
s3

3!
+
s4

4!
+ . . . (3)

log(1 + s) =
∞∑
k=1

(−1)k+1 s
k

k
= s− s2

2
+
s3

3
− s4

4
+ . . . (4)

1

1− s
=

∞∑
k=0

sk (5)

(6)

NB in (4) we mean natural log (also known as ln), not log to base 10, and (5) is
just the infinite geometric series again.

Note that rational functions can often be written in terms of sums of geometric
series, for example

3s− 2

2− 3s+ s2
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can be expanded using partial fractions as

1

1− s
− 4

2− s
=

1

1− s
− 2

1− s
2

.

Both terms can now be expanded as geometric series, giving

∞∑
k=0

sk − 2
∞∑
k=1

(s
2

)k
giving

∞∑
k=0

(
1− 1

2k−1

)
sk = −1 +

1

2
s2 +

3

4
s3 +

7

8
s4 + . . . ,

valid as long as |s| < 1.

The Binomial Theorem

Recall that

(1 + s)n =
n∑

k=0

(
n

k

)
sk

when n ∈ N, where (
n

k

)
=

n!

k!(n− k)!
=

∏k−1
i=0 (n− i)
k!

.

If |s| < 1, then this can be extended to n not a positive integer. The sum is now
an infinite series:

(1 + s)n =
∞∑
k=0

∏k−1
i=0 (n− i)
k!

sk. (7)

(Note that the case when n ∈ N can also be written as an infinite sum in this
way: the terms with k > n are simply zero.)

So if we define (
n

k

)
=

∏k−1
i=0 (n− i)
k!

for any n ∈ R, and k ∈ N0, we can write

(1 + s)n =
∞∑
k=0

(
n

k

)
sk,
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for |s| < 1.

For example (relevant in the proof of Theorem 5), if 0 ≤ s < 1, 0 < p < 1 and
q = 1− p it is guaranteed that 0 ≤ 4pqs2 < 1, so we can write

(1− 4pqs2)−1/2 =
∞∑
k=0

(
−1

2

k

)
(−4pqs2)k =

∞∑
k=0

∏k−1
i=0

(
1−2i
2

)
k!

(−4pqs2)k.

Where n is a negative integer, −a say, it is possible to write
(
n
r

)
=
(−a

r

)
in terms

of a familiar binomial coefficient. We have(
−a
r

)
=

∏r−1
i=0 (−a− i)

r!
,

and taking out a factor of −1 in each term in the product gives(
−a
r

)
= (−1)r

∏r−1
i=0 (a+ i)

r!
= (−1)k

(a+ r − 1)!

(a− 1)!r!
= (−1)r

(
a+ r − 1

a− 1

)
.

A useful special case (see the next section) is when a = 2:(
−2

r

)
= (−1)r(r + 1). (8)

Similarly, (
−3

r

)
= (−1)r

(
r + 2

2

)
= (−1)r(r + 2)(r + 1)/2. (9)

Recognising binomial and related series

Frequently (for example when calculating the mean of a geometric random vari-
able) we encounter power series where the co-efficients of sk increase linearly with
k, for example

A1(s) = s+ 2s2 + 3s3 + 4s4 + . . . (10)

or
A2(s) = 4 + 7s+ 10s2 + 13s3 + 16s4 + . . . (11)

Considering (7) with n = −2 gives, for |s| < 1,

(1− s)−2 = 1 + 2s+ 3s2 + 4s3 + . . .
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(which can also be obtained by differentiating a geometric series term by term).
Comparing with (10), we can now see that

A1(s) = s(1− s)−2.

Series like (11) can be summed by treating them as a sum of a geometric series
and a series like (10):

A2(s) = 4(1 + s+ s2 + s3 + . . .) + 3A1(s) =
4

1− s
+

3s

(1− s)2
,

again for |s| < 1.

Other series where the co-efficients of sk are polynomials in k can be summed in
a similar way. For example, consider

A3(s) =
∞∑
k=0

(k + 1)(k + 2)sk = 2 + 6s+ 12s2 + 20s3 + 30s4 + . . . . (12)

By (9) and the Binomial Theorem, this is

∞∑
k=0

2(−1)k
(
−3

k

)
sk = 2(1− s)−3,

again for |s| < 1.

Exercises

1. (From MAS111) Find the sum of the series

1 +
2

3
+

4

9
+

8

27
+

16

81
+ . . .

2. Find the sum of the power series

1 +
2

3
s2 +

4

9
s4 +

8

27
s6 +

16

81
s8 + . . .

if |s| < 1.

3. Use partial fractions and expansion as geometric series to expand the func-
tion

A(s) =
2

2− s− s2
as a series, giving the range of s for which the expansion is valid.
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4. (From MAS111) Use the fact that log(n) > 1 for n > 1 and the comparison
test to show that the series

∞∑
n=2

1

n2 log(n)

converges.

5. Find a closed form expression for the sum of the infinite series

4x+ 7x3 + 10x5 + 13x7 + . . .

and state for what values of x the series converges.

6. Find the first four terms in the power series expansion of

(1− x)

(1 + x)3

and state for what values of x the series converges. Can you find a general
formula for the co-efficient of xk in this expansion?

Compare the sum of these first four terms with the actual value (to three
decimal places) of the function when x = 0.1.

7. Find a closed form expression for the sum of the power series
∑∞

n=0 anx
n in

each of the following cases. You may assume |x| < 1 if you need to.

(a)

an =
1

n!
for n = 0, 1, 2, . . .

(b)

an =

{
1 if n is even;
0 if n is odd.

(c)
an = n(n− 1) for n = 0, 1, 2, . . .

(HINT: note the similarity to (12).)
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