
MAS275 Probability Modelling

2 Renewal Theory

2.1 Renewal processes in discrete time

Renewal processes form a family of stochastic processes with a fairly simple
definition. They also appear in the study of the long-term behaviour of
Markov chains, so understanding their theory will be useful when we come
back to Markov chains later in the course.

We suppose that on a discrete scale, from time to time there is an occurrence
called a renewal, and at the points of time between these renewals, nothing
happens. For example, we assume that the light bulb in a room is inspected
at regular intervals, and if the bulb is found to have failed it is replaced with
a new one; the replacement of the light bulb here is a renewal.

We will model the lengths of time between renewals (e.g. the life-lengths of
light bulbs) as random variables, and we will assume that these lengths of
time are independent, identically distributed (i.i.d.) random variables,
which, because of the discrete time scale, will be positive integer valued.
Denote them by T1, T2, T3, . . ., and assume for the moment that the process
behaves as if there was an initial renewal at time zero. Then the “clock times”
of successive renewals will be

0, T1, T1 + T2, T1 + T2 + T3, . . . .

So the random behaviour of the process will be determined by specifying the
(common) distribution of T1, T2, T3, . . .. We use the notation

fn = P (Ti = n) for n = 1, 2, 3, . . .

to denote this distribution. (We do not allow two renewals at the same time,
so Ti cannot be zero. It will be useful to recognise this by adopting the
convention that f0 = 0.)
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A process constructed in this way is called a renewal process (in discrete
time). We may be interested in the number of renewals, Nt say, which have
occurred up to and including time t. In the light bulb example this is the
number of light bulbs which have been replaced. Considering the process in
this way allows us to fit it into the framework of stochastic processes described
previously.

Write f =
∑∞

n=1 fn. In applications such as the light bulb case, the fn will
form a proper probability distribution in the sense that fn ≥ 0 and f = 1.

However, in some applications we allow the possibility that

f =
∞∑
n=1

fn < 1

giving what is known as a defective probability distribution; the positive
number 1− f is called the defect of the distribution. This is interpreted as
follows: with probability 1− f the random variable Ti will take the value in-
finity (in the light bulb example, this means the ith light bulb is “immortal”)
and the first such infinite Ti represents the event that the ith inter-renewal
interval never ends, i.e. there is never any further renewal after the ith re-
newal.

The process is called recurrent if f = 1 and transient if f < 1. If a renewal
process is recurrent, then renewals will continue for ever; if it is transient,
then a fairly straightforward calculation (see Exercise 19) shows that with
probability 1 there will be an infinite Ti for some i, and so renewals will stop.

If a renewal process is recurrent, then the mean of the random variables Ti
may or may not be finite. The first case is called the positive recurrent
case and the second is called the null recurrent case. This dichotomy will
be important later in the course when we study the long term behaviour of
Markov chains.

Example 8. Bernoulli trials

12



2.2 Generating functions

Given a sequence (an) = a0, a1, a2, . . ., we can define the generating func-
tion of the sequence (an) to be the power series

A(s) =
∞∑
k=0

aks
k,

where s is a so-called dummy variable. In general, the generating function
may or may not converge, but in the case where the ak are probabilities
and therefore non-negative and not greater than 1, it can be seen that it
converges at least for |s| < 1 by comparison with a geometric series. The
generating function is a way of encoding the information about the sequence
in a function; note that it is possible to recover the sequence (an) from the
generating function by repeated differentiation:

dn

dsn
A(s) =

∞∑
k=n

k!

(k − n)!
aks

k−n,

and evaluating this at zero gives

an =
dn

dsnA(s) |s=0

n!
.

Generating functions are particularly useful in probability because if X is a
random variable taking non-negative integer values and we write fn = P (X =
n), we can use the definition of expectation to interpret the generating func-
tion FX(s) of the sequence f0, f1, f2, . . . (which we refer to as the generating
function – or probability generating function – of the distribution of X)
as

FX(s) =
∞∑
k=0

fks
k =

∞∑
k=0

P (X = k)sk = E(sX).

A simple application of this is the following result, which tells us that the
addition of independent random variables can be neatly represented using
generating functions:
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Lemma 3. If we have two independent random variables X and Y the gen-
erating function of the distribution of their sum X + Y is the product of the
generating functions of the distributions of X and Y .

Proof. By independence,

FX+Y (s) = E(sX+Y ) = E(sXsY ) = E(sX)E(sY ) = FX(s)FY (s).

We can extend this by induction to adding together larger numbers of inde-
pendent random variables, and we also note that the same result applies to
defective probability distributions.

Another useful fact is that if F (s) is the generating function of a non-defective
probability distribution on the non-negative integers, then within the radius
of convergence

F ′(s) =
∞∑
n=1

fnns
n−1,

and so in particular if F (s) is differentiable at s = 1 we have

F ′(1) = µ = E(X),

where µ is the expected value of a random variable X with the given distribu-
tion. Hence we can find the mean by differentiating the generating function
and setting s equal to 1.

We additionally note that if F (s) is the generating function of the (possi-
bly defective) distribution of a random variable taking non-negative integer
values, then because

∑∞
k=0 ak ≤ 1 we have that for 0 ≤ s < 1

F (s) =
∞∑
k=0

aks
k ≤

∞∑
k=0

ak ≤ 1.

Example 9. Examples of generating functions

Example 10. Calculation of mean using generating function
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2.3 Generating functions and renewal processes

For each n = 0, 1, 2, . . . let En be the event that a renewal takes place at
(clock) time n, and let

un = P (En). (1)

Because, after a renewal at time t, the process starts again as if from the
beginning, we can also think of this as

un = P (Et+n|Et), (2)

which by the construction of the process does not depend on t. (Note that
this implies u0 = 1, consistent with the idea that we think of there being a
renewal at time 0.)

Then (un) is a sequence of probabilities, but it is not a probability distribu-
tion, since occurrences of renewals at different clock times are not mutually
exclusive events; in particular there is no need for it to sum to 1 and usually
it will not do so.

We can also write the probabilities fn in terms of the events E0, E1, E2, . . .:
we have

fn = P (Ec
1, E

c
2, . . . , E

c
n−1, En).

Again, because the process starts again as if from the beginning after a re-
newal, we can also write

fn = P (Ec
t+1, E

c
t+2, . . . , E

c
t+n−1, Et+n|Et).

(Summary of the difference between fn and un: fn is the conditional
probability, given that there was a renewal at time t, that the next renewal is
at time t+n, whereas un is simply the conditional probability that a renewal,
not necessarily the next one, occurs at time t+ n.)
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We may calculate

u1 = f1

u2 = f2 + f 21
u3 = f3 + 2f1f2 + f 31

and so on: for example, the second equation is found by noting that there are
two ways a renewal can occur at clock time 2: either the first renewal (after
0) occurs at that time, or the first renewal after t occurs at time 1 and then
a second renewal occurs at time 2.

To generalise these equations, we consider the generating functions of the
sequences (un) and (fn)

F (s) =
∞∑
k=1

fks
k

U(s) =
∞∑
k=0

uks
k.

We obtain the following result:

Theorem 4. The generating functions F (s) and U(s) satisfy

U(s) =
1

1− F (s)
for 0 ≤ s < 1.

Proof. We note that for n ≥ 1

un = P (En) = P (T1 + T2 + . . .+ Tk = n for some k).

Now the event {T1 + T2 + . . . + Tk = n} can only happen for at most one
value of k, since, by construction, the Ti are positive integer valued random
variables and so at most one renewal can occur at any particular time point.
It follows that

En =
∞⋃
k=1

{T1 + T2 + . . .+ Tk = n}
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and that this is a disjoint union. We have written this as a union of an infinite
sequence of events for convenience, but in fact for each n it is really only a
finite union because for k > n the event {T1 + T2 + . . . + Tk = n} is empty,
again because the Ti are positive integer valued.

It follows that

un =
∞∑
k=1

P (T1 + T2 + . . .+ Tk = n)

where, similarly, only at most the first n terms of this series are positive, and
the rest are zero.

Because adding together independent random variables corresponds to mul-
tiplying their generating functions (by Lemma 3), the random variable T1 +
T2 + . . .+ Tk has the generating function (F (s))k for each k = 1, 2, . . .. If we
now go back to our expression for un, multiply both sides by sn, and then
sum these equations over all n (including the trivial u0 = 1) we get

U(s) = 1 +
∞∑
k=1

( ∞∑
n=1

P (T1 + T2 + . . .+ Tk = n)sn

)

= 1 +
∞∑
k=1

(F (s))k.

This is the sum of an infinite geometric series, and the fact, already noted,
that 0 ≤ F (s) < 1 ensures that it converges for 0 ≤ s < 1. Summing this
series, we get the result:

U(s) =
1

1− F (s)
for 0 ≤ s < 1.

In principle this may be used to obtain U(s) in terms of F (s), or vice versa.

Example 11. Theorem 4 for Bernoulli trials

Example 12. Bernoulli trials with “blocking”
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Theorem 4 is a relationship between functions which we know exist and are
finite for 0 ≤ s < 1. Consider what happens when s approaches 1. Note that

F (1) =
∞∑
k=1

fk = f

where f is as defined previously, and so we conclude that F (1) = 1 if the
process is recurrent and F (1) < 1 if the process is transient. But then, in
Theorem 4, if the process is recurrent then as s → 1 the right hand side
tends to infinity since the denominator of the fraction tends to zero, whereas
if the process is transient then the right hand side tends to a finite limit. We
conclude that

• if U(1) =
∑∞

n=0 un =∞ then the process is recurrent;

• if U(1) =
∑∞

n=0 un <∞ then the process is transient.

This gives us an alternative criterion for recurrence which is sometimes useful.

2.4 Simple random walk

A simple random walk on the integers is a Markov chain whose state space
is the integers Z and with transition probabilities

pij =


p j = i+ 1
1− p j = i− 1
0 otherwise.

(So, at each step, we move up one with probability p and down one with
probability 1− p, in a way which is independent of how we got to where we
are now. As we often do, we will sometimes write q for 1− p.)

Assume the walk starts at 0. Let En be the event that after n steps we return
to zero. Then because whenever this happens occurs the process effectively
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“starts again from scratch” independently of what went before, we may regard
visits to zero as forming a renewal process. (This is in fact true for returns
to the starting point in any Markov chain; we will come back to this later in
the course.)

We can ask whether this renewal process is recurrent or transient: will the
walk keep returning to its starting point, or will it eventually leave and never
come back?

Theorem 5. Returns to zero in the simple random walk, started from zero,
are recurrent if p = 1

2 and transient otherwise.

Proof. Obviously En cannot occur if n is odd, because return to zero can
only occur after an even number of steps. So un = 0 for odd n. If n is
even, n = 2m say, then return to zero occurs if and only if the first 2m steps
contain m upward steps and m downward steps, and since the number of
upward steps in 2m steps has the binomial distribution Bi(2m, p), we may
immediately write down, for m ≥ 1,

u2m =

(
2m

m

)
pmqm.

But note that (
2m

m

)
=

2m.(2m− 1).(2m− 2). . . . 2.1

(m!)2

= 2m
(2m− 1).(2m− 3). . . . 3.1

m!
,

cancelling each even number in the numerator with a factor in the denomi-
nator.

Now, reversing order of factors in the numerator and dividing each by −2
gives (

2m

m

)
= (−4)m

(−1
2).(−3

2). . . . (−1
2 − (m− 1))

m!
.

19



Substituting back,

u2m =
(−1

2).(−3
2). . . . (−1

2 − (m− 1))

m!
(−4pq)m

and so, by the binomial expansion with negative non-integer index and the
definition that u0 = 1,

U(s) = u0 +
∞∑

m=1

(−1
2).(−3

2). . . . (−1
2 − (m− 1))

m!
(−4pqs2)m

= 1 +
∞∑

m=1

(−1
2).(−3

2). . . . (−1
2 − (m− 1))

m!
(−4pqs2)m

= (1− 4pqs2)−
1
2

=
1√

1− 4pqs2
.

Putting s = 1, we get

U(1) =
1√

1− 4pq
.

Noting that

1− 4pq = 1− 4p(1− p) = 1− 4p+ 4p2 = (1− 2p)2

we deduce that

U(1) =
1

|1− 2p|
.

Hence if p = 1
2 then U(1) = ∞ (so returns are recurrent) whereas if p 6= 1

2

then U(1) <∞ (so returns are transient).

We can also ask whether in the recurrent case the expected time to return is
finite or infinite.

Theorem 6. In the simple random walk started from 0 with p = 1
2, returns

to zero are null recurrent.
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Proof. Putting p = q = 1
2 , we can see from the proof of Theorem 5 that

U(s) =
1√

1− s2
.

It follows easily from Theorem 4 that

F (s) = 1−
√

1− s2.
Differentiating,

F ′(s) = −1

2
(1− s2)−

1
2 .(−2s) =

s√
1− s2

which tends to infinity as s → 1, because the denominator tends to zero.
Hence the mean inter-renewal time F ′(1) is infinite and the process is null
recurrent.

2.5 Periodicity

The simple random walk of the previous section is an example where the only
values of n for which un > 0 are the even numbers, namely the multiples of
2; we call 2 the period of the renewal process. More generally, we define the
period of any renewal process as

d = h.c.f.{n : fn > 0},
where h.c.f. stands for highest common factor. In other words, d is the largest
positive integer such that a renewal can only occur at time n if n is a multiple
of d. d is not necessarily the smallest n such that fn > 0; for example, if
f1 = 0 but f2, f3, f4, . . . > 0 then

d = h.c.f.{2, 3, 4, . . .} = 1

and so in this case fd = 0.

If d = 1 (which will often be the case) we call the process aperiodic and if
d > 1 then we call it periodic with period d.

Example 13. Equalisations in rolling a six-sided dice
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2.6 Delayed renewal processes

It is sometimes useful, instead of assuming that a renewal has happened at
time zero, to allow a random length of time D, known as a delay, to elapse
until the first renewal occurs, after which the process carries on as before,
independently of the length of the delay. This delay will have its own (possibly
defective) distribution, whose generating function we will denote by

B(s) =
∞∑
n=0

bns
n

where bn = P (D = n) is the probability that the delay is of length n, n ≥ 0.
The clock times of renewals are now D,D + T1, D + T1 + T2, . . ..

Previously, we had two definitions, (1) and (2), for un. In the non-delayed
case these were the same, but with a delay we now need to distinguish them.
We introduce the notation vn for the probability of a renewal happening at
time n, vn = P (En) (where again we let En be the event that there is a
renewal at time n) with corresponding generating function

V (s) =
∞∑
n=0

vns
n.

We retain the notation un for P (Et+n|Et), the probability that, given that
there is a renewal at time t, there is another renewal n steps later, and we
write the corresponding generating function U(s).

In this context, we define

fn = P (Ti = n) = P (Ec
t+1, E

c
t+2, . . . , E

c
t+n−1, Et+n|Et),

with corresponding generating function F (s). Here fn is the probability, given
that there is a renewal at time t, than the next renewal occurs after another
n time steps, i.e. at time t+ n.

Using a similar technique to the one by which we derived Theorem 4 in
Section 2.3, we can obtain the following extension to the delayed case.
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Theorem 7. The generating functions V (s), B(s) and F (s) are related by

V (s) =
B(s)

1− F (s)
= B(s)U(s).

Proof. We note that for n ≥ 0

vn = P (En) = P (D + T1 + T2 + . . .+ Tk = n for some k ≥ 0).

(If n = 0, the only possibility is that D = 0: there is a renewal at time zero
if and only if the delay is zero.)

As in the proof of Theorem 4, the event {D + T1 + T2 + . . . + Tk = n} can
only happen for at most one value of k, so

En =
∞⋃
k=0

{T1 + T2 + . . .+ Tk = n}

and that this is a disjoint union.

It follows that

vn =
∞∑
k=0

P (D + T1 + T2 + . . .+ Tk = n)

where, again as in the proof of Theorem 4, only finitely many of the terms in
the sum are positive, and the rest are zero.

Because adding together independent random variables corresponds to multi-
plying their generating functions (by Lemma 3), the random variable D+T1+
T2 + . . .+Tk has the generating function B(s)(F (s))k for each k = 0, 1, 2, . . ..
If we multiply both sides of the expression for vn by sn, and then sum these
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equations over all n we get

V (s) =
∞∑
k=0

( ∞∑
n=0

P (D + T1 + T2 + . . .+ Tk = n)sn

)

=
∞∑
k=0

B(s)(F (s))k

= B(s)
∞∑
k=0

(F (s))k.

Summing the geometric series as in the proof of Theorem 4, we get the result:

V (s) =
B(s)

1− F (s)
for 0 ≤ s < 1.

(That U(s) = 1
1−F (s) can be seen by considering a non-delayed renewal process

with the same renewal time distribution and applying Theorem 4.)

Example 14. Bernoulli trials with blocking revisited

2.7 Recurrent patterns in coin-tossing

If a coin is tossed repeatedly, then the outcome of the whole experiment may
be written as a string such as

HHTTHTTTHHHTHTHT . . .

If we focus attention on a particular short finite sequence such as HHT , then
every so often it will appear in this string; in the above example it appears
twice:

HHTTHTTTHHHTHTHT . . .

Assuming as usual that different tosses are independent with constant prob-
abilities of H and T , as soon as the sequence HHT has appeared, the whole
process effectively starts again from scratch, independently of what happened
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before; hence the index numbers of the tosses on which the sequence is com-
pleted form a renewal process. In the above example, renewals occur at the
tosses numbered 3 and 12.

However, if we change our sequence to say THT , we have an example of one
which can overlap with itself; in the above string we have

HHTTHTTTHHHTHTHT . . .

where the tosses numbered from 12 to 16 inclusive yield two overlapping
occurrences of the sequence THT . We can overcome this complication by
noting that if a THT has just occurred, we know that we have just had a
T , and so a further occurrence of THT can be achieved either by immedi-
ately tossing another HT , or by not doing so and then later tossing another
complete THT , disjoint from the previous one. Therefore the numbers of
tosses between occurrences will be independent and identically distributed,
but the number of tosses until the first occurrence will have a different dis-
tribution, because at the start of the sequence we do not already have a T ,
so to achieve a THT we have to toss a complete THT . So occurrences form
a delayed renewal process.

Example 15. Expected time until sequence completed
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