
MAS275 Probability Modelling

3 Limiting behaviour of Markov chains

3.1 Renewal processes and Markov chains

Suppose a Markov chain (Xn) is started in a particular fixed state i. If
it returns to i at some later (random) time, then, because of the Markov
property and time homogeneity, the future behaviour will be as if the process
had been started off in state i at this later time. Hence, returns to the starting
state form a renewal process. In this renewal process,

un = p
(n)
ii ,

where p
(n)
ii denotes the (i, i) element of the n-step transition matrix P (n) = P n.

(Note that although P (n) = P n it is not true in general that p
(n)
ii = pnii.)

The “fn” of the renewal process will then be the probability, starting in i, of
the first return to state i being at time n, namely

P (X1 6= i,X2 6= i, . . . , Xn−1 6= i,Xn = i|X0 = i).

We will write f
(n)
ii for this.

Also define

fii =
∞∑
n=1

f
(n)
ii ,

i.e. the probability, starting in state i, of ever returning to state i. If the
renewal process is recurrent this will be 1, and the process will keep returning
to i, and if it is transient then it will be strictly less than 1, and eventually,
with probability 1, the process will visit state i for the last time and never
return.

We can refer to a any state i of a Markov chain as being transient or recur-
rent if the corresponding renewal process is. Similarly, if state i is recurrent,
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we can describe it as positive recurrent or null recurrent if the corre-
sponding renewal process is, and we can define the period of state i as the
same as the period of the corresponding renewal process. Again, we describe
a state with period 1 as aperiodic.

These are called the recurrence properties of the states.

Example 16. Simple random walk

Example 17. Mean recurrence time

If we now take two different states, i and j say, and consider visits to state j
having started in state i, then, by a similar argument to the above, we have
a delayed renewal process, the delay being the time until the first visit to j.

We can identify the “bn” and “vn” of this delayed renewal process as

bn = f
(n)
ij = P (X1 6= j,X2 6= j, . . . , Xn−1 6= j,Xn = j|X0 = i)

(that is, the probability that the first visit to state j happens at time n,
starting from state i) and

vn = p
(n)
ij

where p
(n)
ij is the (i, j)-th element of the n-step transition matrix.

Note that it may be possible, starting in state i, never to visit state j, in
which case the delay distribution is defective: in fact

fij =
∞∑
n=1

f
(n)
ij

is the probability, starting in state i, of ever visiting state j.

The probabilities f
(n)
ij are called first passage probabilities.

Finite state spaces tend to be slightly easier to handle, as for example in the
following result.
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Theorem 8. If the state space is finite then some of the states must be positive
recurrent, and the rest, if there are any, must be transient.

Proof. First, in a finite state space the states cannot all be transient, because,
if they were, after the process had left each of the states for the last time
there would be nowhere left for it to go.

If a state i is recurrent, then, starting in i, then consider Vj, the number
of visits to another state, j say, before the first return to i. If qij is the
probability of visiting j before returning to i, starting in i, and qji is the
probability of visiting i before returning to j, then we can write

P (Vj = 0) = 1− qij

and, for n ≥ 1,
P (Vj = n) = qij(1− qji)n−1qji.

The distribution of Vj has finite mean (by essentially the same calculations
as for the geometric distribution) and so, as we are in a finite state space,
the total time spent away from i before the first return has finite mean, i.e.
the state i is positive recurrent. Hence there are no null recurrent states in a
chain with a finite state space.

3.2 Communication

Two states i and j of a Markov chain are said to communicate with each
other if it is possible, starting in i, to get to j (not necessarily at the next
step) and similarly possible, starting in j, to get to i. Formally, there exist

positive integers m and n such that p
(m)
ij > 0 and p

(n)
ji > 0.

This relationship is obviously symmetric, in the sense that if i and j com-
municate then so do j and i (which is implicit in the way we have defined
communication). It is also not hard to see that if i communicates with j
and also j communicates with k, then i communicates with k; formally, this
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follows most easily from the inequality

p
(m+r)
ik ≥ p

(m)
ij p

(r)
jk

which is a straightforward consequence of the Chapman-Kolmogorov equa-
tions; if we can find m and r such that the right hand side is positive, then
the left hand side must be positive. This property of the communication
relationship is called transitivity.

If we also, by convention, define a state to communicate with itself, then we
have a relationship which is reflexive.

A binary relationship between members of a set is called an equivalence
relation if it is reflexive, symmetric and transitive. The most important
consequence of having all three of these properties is that the set in question,
in this case the state space of the Markov chain, is partitioned into equiv-
alence classes, such that any two members of the same class communicate
with each other, and any two members of two different classes do not commu-
nicate with each other. These are called communicating classes or simply
classes.

A Markov chain is called irreducible if all its states communicate with each
other, i.e. they form a single large class.

Example 18. Irreducible Markov chains

Example 19. Gambler’s ruin

3.3 Solidarity of recurrence properties within classes

The solidarity property can be very simply stated as follows.

Theorem 9. All states within a communicating class share the same recur-
rence properties.

This theorem means, in particular, that if the Markov chain is irreducible
then all states share the same recurrence properties, and it is meaningful to
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refer to the recurrence properties of the whole Markov chain. In any event, we
can refer to the recurrence properties of classes as well as those of individual
states.

Proof. We will prove this for recurrence and transience and for period.

It is clearly sufficient to show that any two members of a class share the same
recurrence properties. So let i and j be two members of a class, and let m
and n be such that p

(m)
ij > 0 and p

(n)
ji > 0. The proof of the theorem depends

on the following inequality: for any r = 0, 1, 2, . . .,

p
(m+r+n)
ii ≥ p

(m)
ij p

(r)
jj p

(n)
ji . (1)

To see why this holds, note that to return to state i after m + r + n steps,
starting in state i, one possibility is to visit state j after m steps, then to
visit state j again after a further r steps, and then to go back to state i after
a further n steps.

The case r = 0 can be included in (1) if we adopt the natural convention that

p
(0)
jj = 1 for all j and p

(0)
ij = 0 if i 6= j.

The important thing about the inequality (1) is that the first and third factors
on the right hand side are positive and fixed, by definition ofm and n, and this
turns out to be enough to tell us all we need to know about the relationship
between p

(m+r+n)
ii and p

(r)
jj .

Suppose first that state i is transient. Then, from renewal theory,

∞∑
r=0

p
(r)
ii <∞.

Missing out the first m+ n terms,

∞∑
r=0

p
(m+r+n)
ii <∞.
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Then using our key inequality above,

∞∑
r=0

p
(r)
jj ≤ (p

(m)
ij p

(n)
ji )−1

∞∑
r=0

p
(m+r+n)
ii <∞.

Hence state j is transient. Similarly, if state j is transient then state i is
transient.

Now consider periodicity. Suppose state i has period d. Then the case r = 0
of our key inequality gives

p
(m+n)
ii ≥ p

(m)
ij p

(n)
ji > 0

and so m + n must be divisible by d. Then for all r which are not divisible
by d, p

(m+r+n)
ii = 0, and so by our key inequality, p

(r)
jj = 0. It follows that the

period of state j is divisible by d, i.e. the period of state i. Similarly, the
period of state i is divisible by the period of state j. Hence both states have
the same period.

The theorem also applies to positive versus null recurrence; this is a bit harder
to prove based on what we have seen so far. A proof is given in supplementary
notes.

We can immediately conclude the following:

Corollary 10. An irreducible chain with finite state space has all its states
positive recurrent.

Proof. By Theorem 8, some of the states must be positive recurrent. Hence
by solidarity (Theorem 9) they all are.

A class C is called closed if, once entered, the probability of leaving is zero.
It is also sometimes known as an absorbing class. Formally, C is closed if
pij = 0 for all i ∈ C and j /∈ C. In the irreducible case there is a single class
C = S, which is automatically closed.
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If a class is not closed, then, once it has been left, there is no possibility of
returning to it; if there were such a possibility then there would be at least one
state outside the class which communicates with it, which is a contradiction.

If the state space S is finite, then the concept of a closed class is equivalent to
that of a recurrent class, and that of a class which is not closed is equivalent
to that of a transient class. This is because, if a class is recurrent, then it is
impossible to leave it, because if it were possible and it happened, then return
to the class could not take place, and this contradicts recurrence; conversely
if a class is transient then each state of the class is only visited finitely many
times and so the class must eventually be left.

If the state space is infinite, there are more possibilities. For example, in
the simple random walk with p 6= 1

2 , all states are transient but they form a
single closed class.

Example 20. Finding classes and recurrence properties

3.4 Limiting/equilibrium behaviour

The aim of this section is to investigate how the distribution of the state a
Markov chain evolves with time. In particular we will see that many chains
evolve towards an equilibrium behaviour described by a stationary distribu-
tion.

We will first of all consider one case where this does not happen: when the
chain is transient.

Theorem 11. Assume we have a Markov chain (Xn) which is irreducible and
transient (which necessarily means that its state space S is infinite). Then,
for each state i ∈ S, P (Xn = i) → 0 as n → ∞. Furthermore, there is no
stationary distribution.

Proof. The transience of each state i tells us that there is some random time
Ti, finite with probability 1, when we visit i for the last time. (Set Ti = 0 if
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we never visit i.) We can then write

P (Xn = i) = P (Xn = i|Ti ≥ n)P (Ti ≥ n) + P (Xn = i|Ti < n)P (Ti < n).

But P (Xn = i|Ti < n) = 0 by the definition of Ti, and P (Ti ≥ n) → 0 as
n→∞ because of Ti being finite. Hence P (Xn = i)→ 0 as n→∞.

If a stationary distribution π existed, then we could start the chain in its
stationary distribution. Then P (Xn = i) = πi for all n, by stationarity, so,
as P (Xn = i)→ 0 as n→∞, we must have πi = 0 for all i, but this cannot
work as stationary distributions must sum to 1.

We now consider the case where the Markov chain is irreducible and aperiodic,
and we know that a stationary distribution exists. By Theorem 11 we know
that the chain must be recurrent.

Theorem 12. If a Markov chain (Xn) is irreducible and aperiodic and has
a stationary distribution π then the distribution of the state of the Markov
chain at time n converges to π, i.e.

π(n) → π

as n→∞.

Proof. We can prove this theorem using a “coupling” argument. The idea of
this argument is to consider a second Markov chain, (Yn), which has the same
transition matrix as the original chain (Xn) but has initial distribution given
by the stationary distribution π. The two Markov chains run independently
of each other. Then P (Xn = i) = π

(n)
i , while P (Yn = i) = πi.

Consider what happens if at some time m, the two chains are in the same
state: Xm = Ym. Then, by the Markov property, what happened before time
m does not affect the probabilities of what happens after time n, so for any
n > m the conditional probabilities that Xn = i and that Yn = i will be the
same.
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More formally, let T be the first time at which the two chains are in the
same state (note that, a priori, T could be infinite) and note that the Markov
property shows that

P (Xn = i|T ≤ n) = P (Yn = i|T ≤ n).

Now,

P (Xn = i)− P (Yn = i) = (P (Xn = i|T ≤ n)− P (Yn = i|T ≤ n))P (T ≤ n)

+(P (Xn = i|T > n)− P (Yn = i|T > n))P (T > n)

= (P (Xn = i|T > n)− P (Yn = i|T > n))P (T > n),

so if we can show that P (T > n) converges to zero as n → ∞ (which is the
same thing as saying that the chains will meet eventually with probability 1)

we will have that P (Xn = i)− P (Yn = i) = π
(n)
i − πi → 0 as n→∞, which

will give the result.

To show that the chains will meet eventually with probability 1, consider
the bivariate Markov chain on S × S obtained by considering the two chains
together, so that its state at time n is (Xn, Yn).

By the irreducibility and aperiodicity of our original chain, we know that
for any choice of i and j it is the case that for n large enough p

(n)
ij > 0.

So for any pair of states (i1, i2) and (j1, j2) of the bivariate Markov chain,

if n is large enough both p
(n)
i1,j1

and p
(n)
i2,j2

will be positive, showing that it is
possible for the bivariate Markov chain to get from (i1, i2) to (j1, j2). Hence
the bivariate Markov chain is irreducible. (Note that aperiodicity is crucial
to this argument.)

It also has a stationary distribution, given by

P (Xn = i, Yn = j) = πiπj

by independence. An irreducible Markov chain with a stationary distribution
cannot be transient, by Theorem 11. Hence it is recurrent, and so all states are
visited, with probability 1. This includes states where the two co-ordinates
are the same, so this shows that the chains (Xn) and (Yn) will meet, with
probability 1, and thus completes the proof of the theorem.
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Corollary 13. If a Markov chain (Xn) is irreducible and aperiodic, and has
a stationary distribution π, then that stationary distribution is unique.

Proof. If another stationary distribution ψ exists, then we can start a chain
with the same transition matrix with initial distribution π(0) = ψ. By sta-
tionarity we have π(n) = ψ for all n and hence limn→∞ π

(n)
i = ψi, but we have

shown above that this must be πi.

Now, we show that if we have an irreducible and positive recurrent Markov
chain we can construct a stationary distribution. For each state j, let µj be
the expected time until the first return to state j, given that the chain starts
there. Write π for the row vector with entry j being 1

µj
, for j ∈ S. The

following theorem gives the main results of this section.

Theorem 14. Assume the Markov chain is irreducible, aperiodic and positive
recurrent. Then

(a) The distribution π is a stationary distribution, and is unique.

(b) The distribution of the state of the Markov chain at time n converges to
π, i.e.

π(n) → π

as n→∞.

Proof. Select a state i of the Markov chain, and assume that the chain starts
in i (or start a chain in i which has the same transition matrix). Because the
chain is positive recurrent, it will return to i, with probability 1, at a random
time T with finite mean µi.

For any state j, let Vj be the number of visits to j in times 1, 2, . . . , T . By the

definition of T , Vi = 1, and it is also the case that E
(∑

j∈S Vj

)
= E(T ) = µi.

Also, for n ≥ 1, let En be the event that T ≥ n, i.e. that the chain does not
visit i between times 1 and n − 1 inclusive. Note that E(Vj) is the sum of
the probabilities P (Xn = j, En) over all n.
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Define a row vector ψ by ψj = E(Vj); now

(ψP )k =
∑
j∈S

ψjpjk

=
∑
j∈S

E(Vj)pjk

=
∑

j∈S,j 6=i

∞∑
n=1

P (Xn = j, En)pjk + pik

=
∞∑
n=1

∑
j∈S,j 6=i

P (Xn = j, En)pjk + pik

=
∞∑
n=1

P (Xn+1 = k,En+1) + pik

=
∞∑
n=2

P (Xn = k,En) + pik

=
∞∑
n=1

P (Xn = k,En)

= E(Tk) = ψk.

(Note that it is possible to reverse the order of summation when terms in the
sum are non-negative.)

Hence ψP = ψ, so ψ is a left eigenvector of the transition matrix with
eigenvalue 1. All its elements are non-negative, and they sum to µi, so we
can obtain a stationary distribution π by defining

πj =
ψj
µi

=
E(Vj)

µi
.

Because Vi = 1, we must have πi = 1/µi. However, our choice of i was
arbitrary, and we know from Corollary 13 that the stationary distribution is
unique. Hence πi must be 1/µi for all i, and this is a stationary distribution.
So applying Theorem 12 gives the result.
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Note that because we know that π is a unique stationary distribution, it is
usually easiest to find it by solving the equilibrium equations of section 1.7,
and then to apply the above results.

Example 21. Modelling the game of Monopoly

Finally we note that the results of Theorem 11 (that for any state i P (Xn =
i) → 0 as n → ∞, and that there are no stationary distributions) apply to
irreducible null recurrent chains as well as irreducible transient chains. This
is a bit harder to prove, and we omit the proof; however a proof that there
are no stationary distributions is given in supplementary notes.

To summarise:

• If a chain has finite state space and is irreducible and all states are
aperiodic, then it is positive recurrent by Corollary 10, and by Theorem
14 it has a unique stationary distribution, to which the distribution of
the chain at time n converges as n→∞.

• If a chain with infinite state space is irreducible, aperiodic and positive
recurrent, then again by Theorem 14 it has a unique stationary distri-
bution, to which the distribution of the chain at time n converges as
n→∞.

• If a chain with infinite state space is irreducible and is either transient
or null recurrent, then it does not have a stationary distribution and for
any state i P (Xn = i)→ 0 as n→∞.

3.5 Non-irreducible and periodic chains

Consider a Markov chain which has a closed class C which is positive recurrent
and not the whole state space. Then the behaviour of the process if it starts
inside C is that of a Markov chain in which the states outside C have been
removed from the state space, and the corresponding rows and columns of
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the transition matrix have been deleted. This “reduced” Markov chain will
be irreducible and will have a stationary distribution, and if this distribution
is extended to the original state space by assigning probability zero to each
of the states outside C, we have a stationary distribution for the original
Markov chain.

It follows that if there are two or more positive recurrent closed classes,
then the stationary distribution is not unique: there will be, at least, one
corresponding to each of these classes. Furthermore, any “mixture” of the
form

απ + (1− α)ψ

where π and ψ are stationary distributions and 0 < α < 1, will also be a
stationary distribution, and so there will be a continuum of them. In the
case of a finite state space, this situation corresponds to the space of left
eigenvectors of the transition matrix corresponding to eigenvalue 1 being
more than one-dimensional, and the eigenvalue 1 having multiplicity greater
than 1.

Example 22. A non-irreducible chain

Periodicity is a nuisance when it comes to looking at limiting behaviour; the
following example illustrates how things can differ from the aperiodic case.

Example 23. A periodic chain

3.6 The renewal theorem

It is possible to apply the ideas of long-run behaviour of Markov chains
to renewal theory. Given a renewal process, recall the following notation:
fk is the probability that a given inter-renewal time takes the value k
uk is the probability that there is a renewal at time k
d is the period of the renewal process
µ is the mean inter-recurrence time, if the process is positive recurrent
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Also define K to be the largest value of k such that fk is non-zero (i.e. the
largest possible inter-renewal time) if this is finite.

Given a renewal process, let Xn be the number of time steps from time n
until the next renewal; this is called the forward recurrence time. (Set
Xn = 0 if there is a renewal at time n.) Then P (Xn+1 = i − 1|Xn = i) = 1
unless i = 0, and for i ≥ 0 we have P (Xn+1 = i|Xn = 0) = fi+1. (To see
the latter, note that Xn = 0 means there is a renewal at time n and that
Xn+1 = i means that the next renewal after the one at time n occurs at time
n + i + 1, which has probability fi+1.) By the construction of the renewal
process, the process (Xn) satisfies the Markov property, so is a Markov chain
with transition matrix 

f1 f2 f3 f4 . . .

1 0 0 0 . . .

0 1 0 0 . . .
0 0 1 0 . . .

0 0 0 1 . . .
...

...
...

... . . .


and state space {0, 1, 2, . . . , K−1} if K is finite, and the non-negative integers
N0 otherwise.

This chain is irreducible, and if the renewal process is positive recurrent, then
the Markov chain is too (we can see this by considering returns to state zero)
and it has a stationary distribution given by

πi =
1

µ
(1− f1 − . . .− fi)

for i = 0, 1, 2, . . .. Similarly, if the renewal process is transient or null recur-
rent, then the Markov chain will be too. We can use the results on Markov
chains to deduce the following theorem.

Theorem 15. (Erdős, Feller, Pollard) (The Discrete Renewal Theorem)

If a renewal process is recurrent and has period d and finite mean inter-
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renewal time µ, then

und →
d

µ
as n→∞.

In all other cases,
un → 0 as n→∞.

Proof. We observe that un = P (Xn = 0), as both are the probability that
we have a renewal at time n. So, if the renewal process is aperiodic and
positive recurrent, we can immediately deduce un → π0 = 1

µ from the results
on Markov chains. If the renewal process is transient or null recurrent, then
we can similarly deduce un → 0 as n→∞.

We can handle the periodic case by defining a new aperiodic renewal process
which has renewals at time n if our periodic renewal process has a renewal
at time nd, and applying the theorem to that.

Example 24. Bernoulli trials with blocking
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