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4 Google PageRank

4.1 Introduction

In this section we introduce the PageRank algorithm developed by Google as
a method for ranking web pages in a search. The aim of PageRank was to
find a measure of “quality” for a web page, to try to ensure that the answers
returned for a search query were high quality pages as well as relevant to the
query. The details of the algorithm were published in a paper by S. Brin and
L. Page (1998), The anatomy of a large-scale hypertextual web search engine,
Computer Networks and ISDN Systems 30: 107117. A version of the paper
is available online at http://infolab.stanford.edu/pub/papers/google.
pdf.

4.2 Random walk on a directed graph

The idea of PageRank is similar to that of a random walk on a graph in
section 1.5. Consider the Web as a graph, where the vertices represent the
pages, and edges represent links between them. In fact, because of the nature
of web links, it makes sense to consider the Web as a directed graph, so
that each edge has an inherent direction and can only be traversed in one
direction. (A pair of pages may, of course, have links going in both directions
between them.)

Given a directed graph, we can define a random walk on the graph in essen-
tially the same way as we did in section 1.5: we imagine a particle moving
from vertex to vertex in such a way that at each step, it chooses one of the
possible edges leaving its current vertex, each with equal probability, and
travels along that edge. In the context of the Web, you can think of a “ran-
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dom surfer”: start at a web page, and click on one of the links at random,
then click on one of the links from the new page at random, and keep go-
ing. We can write the transition probabilities as pij = `ij/di, where `ij is the
number of links from page i to page j, and di is the total number of links
from page i.

[There is a small complication: it is possible for there to be a page with no
links, in which case our random surfer gets stuck. One way to solve this
problem is to assume that if we reach such a dead end then the surfer starts
again at a random page. In what follows, we will assume that such pages do
not exist.]

This random walk as described is a Markov chain, whose state space is the
set of pages of the Web. If it is irreducible and aperiodic, then by the results
of section 3.4 it will have a unique stationary distribution, and this stationary
distribution will represent the limiting probabilities that our random surfer is
on each page, far into the future. We can use the values from this stationary
distribution as rankings for our pages.

Example 26. Random surfer on a mini-Web

4.3 Damping

A modification to the random surfer Markov chain of the previous section
is to say that, from time to time, the random surfer gives up following links
and starts again from a page chosen totally at random. We assume that this
happens at each time step with probability 1−d; with probability d the surfer
behaves as in the previous section. [In the paper by Brin and Page referred to
above, they say that d was usually set to 0.85.] The transition probabilities
are now

pij = d

(
`ij
di

)
+ (1 − d)

1

N
,

where N is the total number of pages in the system.
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This modification ensures that the Markov chain is irreducible and aperiodic.
So by the results of section 3.4 it will have a unique stationary distribution
π. The PageRank of page i is then defined by its probability under the
stationary distribution, πi.

Example 27. PageRank for a mini-Web
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