
MAS275 Probability Modelling

Examples

1 Chapter 1

Example 1. Wet and dry days

Imagine that a wet day is followed by a dry day with probability α and
otherwise by another wet day, and that a dry day is followed by a wet day
with probability β and otherwise by another dry day.

This can be modelled (rather crudely) by a very simple Markov chain, with
two states W and D (or 1 and 2). The transition matrix is

P =

(
1− α α
β 1− β

)
.

Example 2. Gambler’s ruin

A gambler is playing a game in which, on each turn, the player wins 1 unit
with probability p and loses 1 unit with probability q = 1− p. The gambler
has a target N and will stop playing either when the money runs out or the
target is reached. Here the state space S = {0, 1, 2, . . . , N} and the transition
matrix looks like

P =



1 0 0 0 . . . 0 0 0
q 0 p 0 . . . 0 0 0
0 q 0 p . . . 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 . . . q 0 p
0 0 0 0 . . . 0 0 1


.

Example 3. Gambler’s ruin with no target
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This is the same as the previous example but now there is no target N . So
the state space is now infinite, S = N0, and the transition probabilities are

pij =


p j = i+ 1
q j = i− 1
0 otherwise

if i > 0, and p00 = 1.

Example 4. Ehrenfest model for diffusion

Two containers contain between them N particles. At each time point a par-
ticle is chosen at random and transferred to the other container. Let the state
of the system be the number of particles in container A, say. Then we have
a Markov chain with state space {0, 1, 2, . . . , N} and transition probabilities

pi,i+1 =
N − i
n

pi,i−1 =
i

N
pi,j = 0 if j /∈ {i− 1, i+ 1},

Example 5. Symmetric random walk on a graph

Six vertices, A,B,C,D,E, F , with edges AB, BC, BD, CD, CE, DE, EF.
The transition matrix is

P =


0 1 0 0 0 0
1
3

0 1
3

1
3

0 0
0 1

3
0 1

3
1
3

0
0 1

3
1
3

0 1
3

0
0 0 1

3
1
3

0 1
3

0 0 0 0 1 0

 .

Let the walk start either at A or F , each with probability 1/2. This is repre-
sented by π(0) =

(
1/2 0 0 0 0 1/2

)
. Then π(1) = π(0)P =

(
0 1/2 0 0 1/2 0

)
and π(2) = π(1)P = π(0)P 2 =

(
1/6 0 1/3 1/3 0 1/6

)
.
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Example 6. Diagonalisation

Let

P =

1
2

1
4

1
4

1
4

1
2

1
4

0 1 0

 .

The eigenvalues satisfy ∣∣∣∣∣∣
λ− 1

2
−1

4
−1

4

−1
4

λ− 1
2

0
1 0 λ− 1

2

∣∣∣∣∣∣ = 0,

so

λ((λ− 1

2
)2 − 1

16
) +

1

4
(
1

2
− λ)− 1

16
= 0

λ3 − λ2 − 1

16
λ+

1

16
= 0

(λ− 1)(λ2 − 1

16
) = 0

(λ− 1)

(
λ+

1

4

)(
λ− 1

4

)
= 0,

so the eigenvalues are 1 (as always), 1/4 and −1/4. We know

1
1
1

 is an

eigenvector with eigenvalue 1; to find eigenvectors with eigenvalue 1/4 solve1
2

1
4

1
4

1
4

1
2

1
4

0 1 0

xy
z

 =
1

4

xy
z

 ,

which implies y = 1
4
z and 1

2
x + 1

4
y + 1

4
z = 1

4
x, from which x = −5

4
z. Hence−5

4
1
4

1

 is an eigenvector with eigenvalue 1/4; to find eigenvectors with eigen-

value −1/4 solve 1
2

1
4

1
4

1
4

1
2

1
4

0 1 0

xy
z

 = −1

4

xy
z

 ,
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which implies y = −1
4
z and 1

2
x + 1

4
y + 1

4
z = −1

4
x, from which x = −1

4
z.

Hence

−1
4

−1
4

1

 is an eigenvector with eigenvalue −1/4.

So if

C =

1 −5
4
−1

4

1 1
4
−1

4

1 1 1

 , D =

1 0 0
0 1

4
0

0 0 −1
4


then P = CDC−1 and so P n = CDnC−1. We can calculate

C−1 =

 4
15

8
15

3
15

−2
3

2
3

0
2
5
−6

5
4
5

 .

As

Dn →

1 0 0
0 0 0
0 0 0


as n→∞, we also have

P n → C

1 0 0
0 0 0
0 0 0

C−1 =

 4
15

8
15

1
5

4
15

8
15

1
5

4
15

8
15

1
5

 .

(Do not include full details of linear algebra in lecture.)

Example 7. Stationary distribution for random walk on a graph

We find the stationary distribution for the symmetric random walk on a
graph with four vertices A,B,C,D and edges AB,AC,BC,AD. The states
are {A,B,C,D} and the transition matrix

P =


0 1

3
1
3

1
3

1
2

0 1
2

0
1
2

1
2

0 0
1 0 0 0

 .
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The equations are

πA =
1

2
πB +

1

2
πC + πD (1)

πB =
1

3
πA +

1

2
πC (2)

πC =
1

3
πA +

1

2
πB (3)

πD =
1

3
πA (4)

Obviously πA = 3πD, and then by (1) 1
2
(πB + πC) = 2

3
πA. From (2), πB −

1
2
πC = 1

3
πA = 1

4
(πB + πC) giving πB = πC . Hence πB = πC = 2

3
πA = 2πD.

Then
∑

i πi = 1 becomes 8πD = 1, so πA = 3
8
, πB = πC = 1

4
and πD = 1

8
. So

π =
(
3
8

1
4

1
4

1
8

)
.

(Make symmetry comment after obtaining the answer.)

2 Chapter 2

Example 8. Bernoulli trials

We have a sequence of Bernoulli trials with “success” probability p, and we
have a renewal every time there is a success.

Then fn = qn−1p (where q = 1− p) because once a success has occurred, to
get the next success after a further n trials requires n − 1 failures followed
by a success. So Ti has a geometric distribution and the renewal process is
recurrent.

Example 9. Examples of generating functions

(a). Let ai = 1 for i = 0, 1, 2, . . .. Then the generating function A(s) of this
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sequence is given by

A(s) =
∞∑
k=0

1 · sk =
1

1− s

for −1 < s < 1 (geometric series).

(b). (Bernoulli distribution) Let X be a random variable with P (X = 0) =
1−p and P (X = 1) = p. Then we can write f0 = 1−p, f1 = p, and the
probability generating function F (s) = (1− p)s0 + ps1 = ps+ (1− p).

(c). (Binomial distribution) Let X ∼ Bin(n, p). Then X = Z1 +Z2 + . . .+
Zn, where the Zi have the Bernoulli distribution and are independent.
So by Lemma 4 the probability generating function of X is found by
multiplying together the p.g.f.s of the Zi, so is FX(s) = (ps+ (1− p))n.
(Note: we can expand this using the Binomial Theorem as

FX(s) =
n∑
k=0

(
n

k

)
pk(1− p)n−ksk,

from which we can recover fk =
(
n
k

)
pk(1− p)n−k, as expected.)

(d). (Geometric distribution) Let X be a random variable with P (X =
n) = (1 − p)n−1p for n ≥ 1 (NB this is the variant of the geometric
distribution which counts the total number of trials needed for the first
success, so zero is not a possible value). Then fn = qn−1p (writing
q = 1−p) and so FX(s) =

∑∞
n=1 q

n−1psn = ps
1−qs for |qs| < 1 (geometric

series).

Example 10. Calculation of mean using generating function

Let X be a random variable with P (X = n) = (1 − p)n−1p. Then (again
writing q for 1 − p) for |s| < 1/q FX(s) =

∑∞
n=1 q

n−1psn = ps
1−qs by part (d)

of Example 9. Differentiating,

F ′X(s) =
p(1− qs) + qps

(1− qs)2

and evaluating this at s = 1 (which is within the range of validity) gives
E(X) = p/(1− q)2 = p/p2 = 1/p.
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Example 11. Theorem 4 for Bernoulli trials

Here F (s) = ps
1−qs (part (d) of Example 9), so by Theorem 4

U(s) =
1

1− ps
1−qs

=
1− qs

1− qs− ps
,

but q + p = 1 so

U(s) =
1− qs
1− s

= (1− qs)
∞∑
n=0

sn

= 1 + (1− q)s+ (1− q)s2 + (1− q)s3 + . . .

= 1 + ps+ ps2 + ps3 + . . . ,

giving u0 = 1 (always true, by convention) and un = p for n ≥ 1. (Obvious
from definition of process.)

Example 12. Bernoulli trials with “blocking”

Again we have a sequence of Bernoulli trials with “success” probability p, and
we have a renewal every time there is a success, except now the renewal is
“blocked” if there was a renewal the previous trial, so we do not get renewals
on consecutive trials.

Here f1 = 0, and for n ≥ 2 fn = qn−2p (to get a renewal on the nth trial it
does not matter whether the first trial is a success or failure, the next n− 2
must be failures, and the nth must be a success). Hence

F (s) =
∞∑
n=2

qn−2psn =
ps2

1− qs
.

Then we can find the mean time to renewal by differentiating:

F ′(s) =
(1− qs) · 2ps = ps2(−q)

(1− qs)2
=

2ps− pqs2

(1− qs)2
,

and so µ = F ′(1) = 2p−pq
(1−q)2 = 2−q

p
= 1+p

p
.
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By Theorem 4

U(s) =
1

1− ps2

1−qs

=
1− qs

1− qs− ps2

=
1− qs

(1− s)(1 + ps)

=
1

1 + p

(
p

1− s
+

1

1 + ps

)
(partial fractions)

=
1

1 + p
(p(1 + s+ s2 + s3 + . . .) + (1− ps+ p2s2 − p3s3 + . . .)).

So un, the coefficient of sn in U(s), is 1
1+p

(p+ (−p)n). As n→∞, un → p
1+p

.

Note that this is 1/µ.

Example 13. Equalisations in rolling a six-sided dice

Let En be the event that after n rolls of an ordinary dice, the total numbers
of 1s, 2s, 3s, 4s, 5s and 6s are all equal. Then En can occur if and only if n is
a multiple of 6, so if we construct a renewal process by saying that a renewal
occurs at n if and only if En occurs,

{n : fn > 0} = {0, 6, 12, 18, 24, . . .}

and so the renewal process is periodic with period 6.

Example 14. Bernoulli trials with blocking revisited

Consider the Bernoulli trials with blocking in Example 12, but now assume
that the process does not behave as if there was a renewal at time 0, so the
renewal at time 1 is not blocked. Then the time D until the first renewal
occurs has a geometric distribution (as for Bernoulli trials): bn = qn−1p for
n ≥ 1, with generating function B(s) = ps

1−qs . Once the first renewal has

occurred the distributions of T1, T2, . . . are as in Example 12, so F (s) = ps2

1−qs .
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By Theorem 7,

V (s) =

ps
1−qs

1− ps2

1−qs

=
ps

1− qs− ps2

=
p

1 + p

(
1

1− s
− 1

1 + ps

)
(partial fractions)

=
p

1 + p
((1 + s+ s2 + s3 + . . .)− (1− ps+ p2s2 − p3s3 + . . .)).

So vn, the coefficient of sn in V (s), is p
1+p

(1 − (−p)n) (e.g. v0 = 0, v1 = p,

v2 = p
1+p

(1− p2) = p(1− p)). As before, n→∞, vn → p
1+p

.

Example 15. Expected time until sequence completed

Assuming the coin fair, find the expected number of tosses up to and including
the first occurrence of (a) HHT; (b) THT.

(a) This can be treated as a non-delayed renewal process, with renewals
being completions of HHT. Then u0 = 1 (convention), u1 = u2 = 0 (renewals
impossible), and un = 1/8 for n ≥ 3. So

U(s) = 1 +
1

8

∞∑
n=3

sn = 1 +
1

8

s3

1− s
=

8− 8s+ s3

8− 8s
.

Then

F (s) = 1− 8− 8s

8− 8s+ s3
=

s3

8− 8s+ s3
.

We want the mean time to a renewal, which is F ′(1). Now

F ′(s) =
(8− 8s+ s3)(3s2)− s3(−8 + 3s2)

(8− 8s+ s3)2
,

and evaluating this at s = 1 gives µ = 8.
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(b) This has to be treated as a delayed renewal process, and we want the
mean time to the first renewal, B′(1). Here the probabilities of completing
THT at time n give v0 = v1 = v2 = 0 and vn = 1/8 if n ≥ 3, but u0 = 1
(convention), u1 = 0, u2 = 1/4 (because after a renewal another renewal
occurs if the first two tosses are HT), un = 1/8 for n ≥ 3.

So U(s) = 1 + 1
4
s2 + 1

8
s3

1−s and V (s) = 1
8
s3

1−s . Using V (s) = B(s)U(s),

B(s) =
V (s)

U(s)
=

s3

8(1− s)
8(1− s)

8− 8s+ 2s2 − s3
=

s3

8− 8s+ 2s2 − s3
,

and

B′(s) =
(8− 8s+ 2s2 − s3)(3s2)− s3(−8 + 4s− 3s2)

(8− 8s+ 2s2 − s3)2
,

giving B′(1) = 10.

(Is this counterintuitive? Note that the probability of getting the first THT
after 5 tosses is different from the probability of getting the first HHT after
5 tosses: the latter is 1/8 but the former is only 3/32.)

3 Chapter 3

Example 16. Random walk and coin tossing

In the simple random walk (Section 2.4) we have already considered the
renewal process of returns to zero given that we started there. So each state
is null recurrent if p = 1

2
(i.e. the random walk is symmetric) and transient

otherwise. Also, each state is periodic with period 2.

Example 17. Mean recurrence time

Consider the wet/dry days Markov chain of Example 1, with

P =

(
1− α α
β 1− β

)
.
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If the chain starts in state 1 (wet) then with probability 1−α the first return

to state 1 happens at time 1, so f
(1)
11 = 1− α. For the first return to state 1

to happen at time n, we must move to state 2 at time 1, and then we must
remain in state 2 until we move to state 1 at time n, which happens with
probability α(1− β)n−2β. So f

(n)
11 = α(1− β)n−2β for n ≥ 2. The generating

function of this sequence is

F (s) = (1− α)s+
∞∑
n=2

α(1− β)n−2βsn = (1− α)s+
αβs2

1− (1− β)s
.

We can check that F (1) = 1, so the state is recurrent, and

F ′(s) = (1− α) +
(1− (1− β)s)(2sαβ) + (1− β)αβs2

(1− (1− β)s)2
,

so the mean time to the first renewal is

F ′(1) = (1− α) +
β(2αβ) + (1− β)αβ

β2
=
α + β

β
.

So the state is positive recurrent.

Example 18. Irreducible Markov chains

The simple random walk and the Ehrenfest model for diffusion (Examples
2.4 and 4 are examples of irreducible Markov chains. So is a random walk
on a graph (Example 5) as long as the graph is connected.

Example 19. Gambler’s ruin

In the gambler’s ruin Markov chain (Example 2) the states 0 and N do not
commnunicate with any other states, since once entered they cannot be left.
The states 1, 2, . . . , n− 1 do communicate with each other, so the classes are
{0}, {N} and {1, 2, . . . , N − 1}.

Example 20. Finding classes and recurrence properties
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Find the classes, the closed classes and the periods of the classes of a Markov
chain on {1, 2, 3, 4, 5, 6, 7} with transition matrix

P =



0 1
2

1
2

0 0 0 0
0 0 1

2
0 1

6
1
3

0
0 0 1 0 0 0 0
0 0 0 0 0 0 1
1
7

0 0 6
7

0 0 0
1
3

0 0 0 0 0 2
3

0 0 0 1 0 0 0


.

(Draw graph showing possible one step transitions)

State 3 cannot be left once entered, so {3} is a closed class (absorbing),
obviously aperiodic. It is possible to get from 1 to 2, from 2 to 5, and from 5
to 1, and also from 2 to 6 and from 6 to 1, so all these classes communicate.
States 4 and 7 communicate with each other but with no other states (as
{4, 7} cannot be left) so {4, 7} is a closed class, whose period is obviously 2.
The remaining class {1, 2, 5, 6} is not closed, as it is possible to go from state
6 to state 7, from state 5 to state 4 or from state 1 to state 3, and its period
is 3 as it is only possible to return to state 1 after passing through state 2
and then either state 5 or state 6.

Example 21. Modelling the game of Monopoly

See separate slides.

Example 22. A non-irreducible chain

Let

P =


1
3

0 0 2
3

0 1 0 0
0 1

2
1
2

0
1
2

0 0 1
2

 .

Here the classes are {1, 4}, {2} and {3}, of which the first two are closed.
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The equations for a stationary distribution are

π1 =
1

3
π1 +

1

2
π4 (5)

π2 = π2 +
1

2
π3 (6)

π3 =
1

2
π3 (7)

π4 =
2

3
π1 +

1

2
π4 (8)

Immediately from (7) π3 = 0, and either (8) or (5) gives π4 = 4
3
π1. The

remaining equation (6) gives no information. So there is a continuum of
stationary distributions, of the form

(
3
7
(1− α) α 0 4

7
(1− α)

)
, for any α ∈

[0, 1].

Example 23. A periodic chain

Consider a Markov chain with transition matrix

P =

0 1 0
1
2

0 1
2

0 1 0


(e.g. random walk on three vertex path).

This chain is irreducible with period 2. The equations for a stationary dis-
tribution are π1 = 1

2
π2, π2 = π1 + π3 and π3 = 1

2
π2, with unique solution

π =
(
1
4

1
2

1
4

)
.

However, if π(0) =
(
1
2

0 1
2

)
, then

π(1) = π(0)P =
(
0 1 0

)
and

π(2) = π(1)P =
(
1
2

0 1
2

)
= π(0).

So for all n ∈ N0, π
(2n) =

(
1
2

0 1
2

)
and π(2n+1) =

(
0 1 0

)
. Hence we do

not get convergence to the stationary distribution.

Example 24. Bernoulli trials with blocking
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Consider the Bernoulli trials with blocking renewal process (Example 12).
We calculated µ = 1+p

p
, so the renewal theorem tells us that un → p

1+p
as

n → ∞. (We already saw this from the direct calculation of un in Example
12, but there are some processes where it is not easy to get a general form
for un.)

4 Chapter 4

Example 26. Random surfer on a mini-Web

Use example from admissions talk

Example 27. PageRank for a mini-Web

Use example from admissions talk

5 Chapter 5

Example 28. University course model

A university course has three levels. Each year, independently, a student
passes and progresses (with probability p), quits with probability q, or repeats
the year with probability r, with p, q, r > 0 and p + q + r = 1. What is the
probability that the student will graduate?

Markov chain with 5 states: the three levels 1,2,3; “graduated” (4), “left
without graduating” (5). The transition matrix is

r p 0 0 q
0 r p 0 q
0 0 r p q
0 0 0 1 0
0 0 0 0 1
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and the absorbing classes are {4} and {5}. We are interested in the proba-
bility of absorption in {4}, starting in state 1. We have boundary conditions
q4 = 1 and q5 = 0, and equations

q1 = rq1 + pq2 + qq5 = rq1 + pq2 (9)

q2 = rq2 + pq3 + qq5 = rq2 + pq3 (10)

q3 = rq3 + pq4 + qq5 = rq3 + p (11)

Solving in reverse order, q3 = p
1−r , then q2(1− r) = p2

1−r so q2 = p2

(1−r)2 , then

q1(1− r) = p3

(1−r)2 so q1 = p3

(1−r)3 .

Example 29. Gambler’s ruin

(See Example 2.) States 0 (ruin) and N (target reached) are absorbing states.
Let qi be the probability of reaching N starting in state i. Then

qi = pqi+1 + qqi−1

for i = 1, 2, . . . , N − 1, and the boundary conditions are q0 = 0 and qN = 1.

Using p+q = 1, the general equation can be re-written pqi+qqi = pqi+1+qqi−1
and hence

p(qi+1 − qi) = q(qi − qi−1).
So if we write di = qi+1 − qi we have di = (q/p)di−1 = (q/p)id0. Because
q0 = 0 we know d0 = q1, so di = (q/p)iq1.

Now, note that

k−1∑
i=0

di =
k−1∑
i=0

(qi+1 − qi) = qk − q0 = qk.

So

qk =
k−1∑
i=0

di = q1

k−1∑
i=0

(q/p)i = q1
1− (q/p)k

1− q/p

(geometric series) unless q = p. Hence

qk = q1
1− (q/p)k

1− q/p
(12)
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We now use qN = 1. Hence

q1
1− (q/p)N

1− q/p
= 1,

and so q1 = 1−q/p
1−(q/p)N . Substituting into (12) we get

qk =
1− (q/p)k

1− (q/p)N
.

If q = p = 1
2
, then di = d0 = q1 for all i. Thus

qk =
k−1∑
i=0

di = kq1,

so qk = kq1). Using qN = 1 gives q1 = 1/N , so we have qk = k/N .

Example 30. Random walk on cube

One face has vertices labelled A, B, C, D cyclically, opposite face has E, F,
G, H.

What is the probability of reaching {E,F,G,H} before C, starting in A?
Treat {E,F,G,H} and {C} as absorbing classes; then we have boundary
conditions qC = 0 and qE = qF = qG = qH = 1.

Equations:

qA =
1

3
(qB + qD + qE) =

1

3
(qB + qD + 1) (13)

qB =
1

3
(qA + qC + qF ) =

1

3
(qA + 1) (14)

qD =
1

3
(qA + qC + qH) =

1

3
(qA + 1) (15)

so qA = 1
9
(2qA + 5), giving qA = 5

7
. (Also qB = qD = 4

7
.)

Example 31. University course model revisited
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Recall the university course model in Example 28. What is the expected
number of years spent at university by the student?

Let ei be the expected time to absorption in state 4 or 5 starting in state i.
We have e4 = e5 = 0, and

e1 = 1 + re1 + pe2 + qe5 = 1 + re1 + pe2 (16)

e2 = 1 + re2 + pe3 + qe5 = 1 + re2 + pe3 (17)

e3 = 1 + re3 + pe4 + qe5 = 1 + re3 (18)

Solving in reverse order, e3 = 1
1−r , then

e2 =
1 + pe3
1− r

=
1

1− r
+

p

(1− r)2

and

e1 =
1 + pe2
1− r

=
1

1− r
+

p

(1− r)2
+

p2

(1− r)3
.

Example 32. Patterns in coin tossing

This uses a Markov chain method to solve the same problem as Example
15(b): find the expected number of tosses of a fair coin until the first appear-
ance of THT.

(b) Define states of “partial achievement” of THT by 0 (not started), 1
(last toss was T not preceded by TH), 2 (last two tosses were TH) and 3
(THT completed). Then the sequence of these states is a Markov chain with
transition matrix 

1
2

1
2

0 0
0 1

2
1
2

0
1
2

0 0 1
2

0 1
2

1
2

0
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This time

e3 = 0 (19)

e2 = 1 +
1

2
(e0 + e3) = 1 +

1

2
e0 (20)

e1 = 1 +
1

2
(e1 + e2) (21)

e0 = 1 +
1

2
(e0 + e1) (22)

Substituting (20) into (21) gives 1
2
e1 = 1 + 1

2
+ 1

4
e0 or e1 = 3 + 1

2
e0. Into (22):

1
2
e0 = 1 + 3

2
+ 1

4
e0, giving 1

4
e0 = 5

2
hence e0 = 10 (as before). (Also: e1 = 8,

e2 = 6.)

6 Chapter 6

Example 33. Volcanic eruptions

Eruptions of a volcano occur, on average, once per century. Making suitable
assumptions, find the probabilities of the following events:

(a). There are exactly two eruptions in the next 80 years.

(b). The time until the next eruption is at least t years.

We use a Poisson process model with rate 1/100. Then for (a) the number of
eruptions is a Poisson random variable with parameter 80× 0.01 = 0.8, and
so the probability that it is equal to 2 is e−0.8×0.82

2
= 0.1438 (also obtained by

dpois(2,0.8) in R).

For (b), the event of interest is the same as saying that there are no eruptions
in the next t years. Under the Poisson process model, the number of eruptions
in the next t years has a Po(0.01t) distribution, so the probability that it is
zero is e−0.01t.
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Example 34. Email arrivals

Suppose that emails arise over the course of a day with rate function λ(t) =
t(24− t)/12 for 0 ≤ t ≤ 24, with time measured in hours.

Then the number of emails up to time t is Poisson with parameter
∫ t
0
(24s−

s2)/12 ds = s2 − s3/36. For example the probability that there are no
emails between midnight and 2am can be calculated as the probability that
a Po(34/9) random variable is zero, which is exp(−34/9) = 0.0229.

Example 35. University applications

Modelling applications for Maths at Sheffield. Overall applications Poisson
process with variable rate λ(t); candidate applying at time t for BSc with
probability p(t) (otherwise MMath) independently of others. Marking gives
BSc and MMath applications as independent Poisson processes with variable
rates λ(t)p(t) and λ(t)(1− p(t)) respectively.

Example 36. Conditioning on number of events

Let λ(t) = a+b cos(2πt) with a > b > 0 (so that λ(t) > 0 everywhere). Given
that there were three occurrences in (0, 1], what is the probability that they
all occurred in (1/4, 3/4]?

The times of the three occurrences will be a random sample from the distri-
bution with pdf

f(u) =
a+ b cos(2πu)∫ 1

0
(a+ b cos(2πv)) dv

=
a+ b cos(2πu)

a
,

for u ∈ (0, 1). So the probability that a given occurrence is in (1/4, 3/4] is∫ 3/4

1/4

(
1 +

b

a
cos(2πu)

)
du =

[
u+

b

2πa
sin(2πu)

]3/4
1/4

=
1

2
− b

πa
,

and the probability that all three are will, by independence, be (1
2
− b

πa
)3.

Example 37. Distance to nearest tree
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The positions of trees in an infinite forest are modelled by a two-dimensional
Poisson process with density λ.

(a). Given there are 3 trees within 10m of a given point, find the probability
none are within 5m;

(b). Find the pdf of the distance R from a chosen point to the nearest tree.

Let A be a disc of radius 10m, and B be a disc of radius 5m, both centred on
our given point. Then N(A) ∼ Po(100πλ) and N(B) ∼ Po(25πλ). Given
N(A) = 3, the distribution of those three points will be that of a random
sample of 3 points from the uniform distribution on A. Each is then in B
with probability |B|/|A| = 25πλ

100πλ
= 1/4. Hence the probability there are none

in B is (3/4)3 = 27/64.

The distribution function of R is given for r ≥ 0 by P (R ≤ r), which is the
probability that a disc of radius r centred on our point contains at least one
tree. The number of trees Nr in this disc is Poisson with parameter λπr2,
so this probability is 1− P (N(r) = 0) = 1− e−λπr2 . Differentiate to get the
pdf:

fR(r) = 2λπre−λπr
2

,

for r ≥ 0.
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