Intégrabilité quantique de certaines chaînes de spins et théories de champs conformes

Systèmes quantiques

- Integrabilité des chaînes de spins XXX
- Perspectives

Outline

- Systèmes quantiques
 - $\bullet \ Ondes \leftrightarrow particules$
 - Équation de Schrödinger
 - Chaîne de Spins
- 2 Integrabilité des chaînes de spins XXX
 - "Coordinate Bethe Ansatz"
 - "Wronskian Bethe Ansatz"
 - Completude
- 3 Perspectives
 - Intégrabilité
 - Équations fonctionelles
 - Observables physiques

Perspectives

Fentes de Young : caractère ondulatoire de la lumière

écran

L'écran présente une alternance de franges sombres et de franges éclairées.

• Angle multiple de λ/a : ondes en phase

• Angle $\frac{2k+1}{2}\frac{\lambda}{a}$: opposition de phase

laser

 \overleftarrow{a}

Systèmes	quantiques
000000	

Perspectives

Fentes de Young : caractère ondulatoire de la lumière

L'écran présente une alternance de franges sombres et de franges éclairées.

- Angle multiple de λ/a : ondes en phase
- Angle $\frac{2k+1}{2}\frac{\lambda}{a}$: opposition de phase

Ondes / particules

- Étude du rayonnement de corps noir (phénomène qui fait fonctionner les ampoules à incandescence)
 ~ quantité élémentaire d'énergie lumineuse.
 - ightarrow Particule lumineuse : "photon"
 - ightarrow Physique "quantique"
- Fentes de Young avec des électrons, des neutrons, ou de petits atomes :

Ondes / particules

- Étude du rayonnement de corps noir (phénomène qui fait fonctionner les ampoules à incandescence)

 quantité élémentaire d'énergie lumineuse.
 - \rightarrow Particule lumineuse : "photon"
 - ightarrow Physique "quantique"
- Fentes de Young avec des électrons, des neutrons, ou de petits atomes :

Ondes / particules

- Étude du rayonnement de corps noir (phénomène qui fait fonctionner les ampoules à incandescence)

 quantité élémentaire d'énergie lumineuse.
 - \rightarrow Particule lumineuse : "photon"
 - ightarrow Physique "quantique"
- Fentes de Young avec des électrons, des neutrons, ou de petits atomes :

Dualité onde-particule

- Étude du rayonnement de corps noir (phénomène qui fait fonctionner les ampoules à incandescence)

 quantité élémentaire d'énergie lumineuse.
 - \rightarrow Particule lumineuse : "photon"
 - ightarrow Physique "quantique"
- Fentes de Young avec des électrons, des neutrons, ou de petits atomes :

Perspectives

Probabilités et fonction d'onde

Particule quantique

Densité de probabilité $\rho(\vec{x}) = |\psi(\vec{x})|^2$ où $\psi(\vec{x})$ est la fonction d'onde

Systèmes quantiques

Description d'un système quantique :

- États : éléments d'un espace de Hilbert \mathcal{H} . \mathbb{C} -ev + produit scalaire + completude Notation : $|\psi\rangle \in \mathcal{H}$
- **Observables** : opérateurs hermitiens sur \mathcal{H} . Dans un état $|\psi\rangle$, une observable A vaut en moyenne $\frac{\langle \psi | A | \psi \rangle}{\||\psi\||^2}$

Exemple : "fonction d'onde" comme dans les "fentes de Young"

- "fonction d'onde" $\psi \in L^2(\mathbb{R}^n,\mathbb{C})$
- densité de probabilité $\rho(x) = |\psi(x)|^2$
- probabilité d'être dans $E \subset \mathbb{R}^n$

Équation de Schrödinger

Description d'un système quantique :

• États : éléments d'un espace de Hilbert \mathcal{H} . \mathbb{C} -ev + produit scalaire + completude Notation : $|\psi\rangle \in \mathcal{H}$

• **Observables** : opérateurs hermitiens sur \mathcal{H} . Dans un état $|\psi\rangle$, une observable A vaut en moyenne $\frac{\langle \psi | A | \psi \rangle}{||\psi||^2}$.

Exemple : "fonction d'onde" comme dans les "fentes de Young"

- "fonction d'onde" $\psi \in L^2(\mathbb{R}^n,\mathbb{C})$
- densité de probabilité $ho(x) = |\psi(x)|^2$
- probabilité d'être dans $E \subset \mathbb{R}^n$

Équation de Schrödinger

Description d'un système quantique :

• États : éléments d'un espace de Hilbert \mathcal{H} . \mathbb{C} -ev + produit scalaire + completude Notation : $|\psi\rangle \in \mathcal{H}$

• **Observables** : opérateurs hermitiens sur \mathcal{H} . Dans un état $|\psi\rangle$, une observable A vaut en moyenne $\frac{\langle \psi|A|\psi\rangle}{||\psi||^2}$.

Exemple : "fonction d'onde" comme dans les "fentes de Young"

- "fonction d'onde" $\psi \in L^2(\mathbb{R}^n,\mathbb{C})$
- densité de probabilité $ho(x) = |\psi(x)|^2$

• probabilité d'être dans $E \subset \mathbb{R}^n$

Équation de Schrödinger

Description d'un système quantique :

• États : éléments d'un espace de Hilbert \mathcal{H} . \mathbb{C} -ev + produit scalaire + completude Notation : $|\psi\rangle \in \mathcal{H}$

• **Observables** : opérateurs hermitiens sur \mathcal{H} . Dans un état $|\psi\rangle$, une observable A vaut en moyenne $\frac{\langle \psi|A|\psi\rangle}{||\psi||^2}$.

Exemple : "fonction d'onde" comme dans les "fentes de Young"

- "fonction d'onde" $\psi \in L^2(\mathbb{R}^n,\mathbb{C})$
- densité de probabilité $\rho(x) = \frac{|\psi(x)|^2}{\int |\psi(x)|^2}$
- probabilité d'être dans $E \subset \mathbb{R}^n$ $\mathbb{E}[\mathbb{1}_E] = \frac{\int \psi(x) \mathbb{1}_E(x) \psi(x) dx}{\|x_0\|^2}$

Équation de Schrödinger

Description d'un système quantique :

• États : éléments d'un espace de Hilbert \mathcal{H} . \mathbb{C} -ev + produit scalaire + completude Notation : $|\psi\rangle \in \mathcal{H}$

• **Observables** : opérateurs hermitiens sur \mathcal{H} . Dans un état $|\psi\rangle$, une observable A vaut en moyenne $\frac{\langle \psi|A|\psi\rangle}{||\psi||^2}$.

Exemple : "fonction d'onde" comme dans les "fentes de Young"

- "fonction d'onde" $\psi \in L^2(\mathbb{R}^n,\mathbb{C})$
- densité de probabilité $\rho(x) = \frac{|\psi(x)|^2}{\int |\psi(x)|^2}$
- probabilité d'être dans $E \subset \mathbb{R}^n$ $\mathbb{E}[\mathbb{1}_E] = \frac{\int \psi(x) \mathbb{1}_E(x) \psi(x) dx}{\|\psi\|_2^2}$

Équation de Schrödinger

Description d'un système quantique :

• États : éléments d'un espace de Hilbert \mathcal{H} . \mathbb{C} -ev + produit scalaire + completude Notation : $|\psi\rangle \in \mathcal{H}$

- **Observables** : opérateurs hermitiens sur \mathcal{H} . Dans un état $|\psi\rangle$, une observable A vaut en moyenne $\frac{\langle \psi|A|\psi\rangle}{||\psi||^2}$.
- Évolution : $i \frac{\partial}{\partial_t} |\psi\rangle = H |\psi\rangle$,

où le Hamiltonien H est un opérateur Hermitien sur \mathcal{H} .

Équation de Schrödinger

Description d'un système quantique :

- États : éléments de \mathcal{H}/\sim où \mathcal{H} est un espace de Hilbert et \sim est la colinéarité. Notation : $|\psi\rangle \in \mathcal{H}$
- **Observables** : opérateurs hermitiens sur \mathcal{H} . Dans un état $|\psi\rangle$, une observable A vaut en moyenne $\frac{\langle \psi|A|\psi\rangle}{||\psi||^2}$.
- Évolution : $i\frac{\partial}{\partial_t}|\psi\rangle = H|\psi\rangle$,

où le Hamiltonien H est un opérateur Hermitien sur \mathcal{H} .

 $\rightsquigarrow \quad \frac{\partial}{\partial_t} \|\psi\| = 0$

Équation de Schrödinger

Systèmes quantiques

· · · ·

Description d'un système quantique :

- États : éléments de \mathcal{H}/\sim où \mathcal{H} est un espace de Hilbert et \sim est la colinéarité. Notation : $|\psi\rangle \in \mathcal{H}$
- **Observables** : opérateurs hermitiens sur \mathcal{H} . Dans un état $|\psi\rangle$, une observable A vaut en moyenne $\frac{\langle \psi|A|\psi\rangle}{||\psi||^2}$.
- Évolution : i∂/∂t |ψ⟩ = H |ψ⟩,
 où le Hamiltonien H est un opérateur Hermitien sur H.
 → ∂/∂t ||ψ|| = 0

On s'intéressera ici à diagonaliser le Hamiltonien H : Ses valeurs propres sont les *énergies* des *états propres* du système

Perspectives

Spin Quantique

Spin : objet quantique pointant dans une direction

"Directions" : éléments de $\mathcal{S}_2 = \mathbb{P}_1(\mathbb{C}) = \mathbb{C}^2/\sim$

• On note $|\uparrow\rangle = \left(\begin{smallmatrix}1\\0\end{smallmatrix}\right) \in \mathbb{C}^2$ et $|\downarrow\rangle = \left(\begin{smallmatrix}0\\1\end{smallmatrix}\right) \in \mathbb{C}^2$.

Direction arbitraire : $\ket{\psi} = lpha \ket{\uparrow} + eta \ket{\downarrow}$

Chaîne de spins : succession de *L* sites avec chacun un spin

Espace de Hilbert $(\mathbb{C}^2)^{\otimes l}$

$$(\dim \mathcal{H} = 2^L).$$

Exemple : si L = 3, c'est

Sébastien Leurent, IMB, Math-Phys

Intégrabilité quantique

18 novembre 2022

Perspectives

Spin Quantique

Spin : objet quantique pointant dans une direction

''Directions'' : éléments de $\mathcal{S}_2 = \mathbb{P}_1(\mathbb{C}) = \mathbb{C}^2/\sim$

• On note $|\uparrow\rangle = \left(\begin{smallmatrix}1\\0\end{smallmatrix}\right) \in \mathbb{C}^2$ et $|\downarrow\rangle = \left(\begin{smallmatrix}0\\1\end{smallmatrix}\right) \in \mathbb{C}^2$.

Direction arbitraire : $|\psi\rangle = \alpha |\uparrow\rangle + \beta |\downarrow\rangle$

Chaîne de spins : succession de *L* sites avec chacun un spin

Espace de Hilbert $(\mathbb{C}^2)^{\otimes l}$

$$(\dim \mathcal{H} = 2^L).$$

Exemple : si L = 3, c'est

Sébastien Leurent, IMB, Math-Phys

Intégrabilité quantique

18 novembre 2022

Perspectives

Spin Quantique

Spin : objet quantique pointant dans une direction

''Directions'' : éléments de $\mathcal{S}_2 = \mathbb{P}_1(\mathbb{C}) = \mathbb{C}^2/\sim$

• On note $|\uparrow\rangle=(\begin{smallmatrix}1\\0\end{smallmatrix})\in\mathbb{C}^2$ et $|\downarrow\rangle=(\begin{smallmatrix}0\\1\end{smallmatrix})\in\mathbb{C}^2.$

Direction arbitraire : $\left|\psi\right\rangle = \alpha\left|\uparrow\right\rangle + \beta\left|\downarrow\right\rangle$

Chaîne de spins : succession de *L* sites avec chacun un spin

Espace de Hilbert $(\mathbb{C}^2)^{\otimes l}$

$$(\dim \mathcal{H} = 2^L).$$

Exemple : si L = 3, c'est

Sébastien Leurent, IMB, Math-Phys

Intégrabilité quantique

18 novembre 2022

Perspectives

 $|\downarrow\rangle$

Chaîne de spins

Spin : objet quantique pointant dans une direction

''Directions'' : éléments de $\mathcal{S}_2 = \mathbb{P}_1(\mathbb{C}) = \mathbb{C}^2/\sim$

• On note
$$|\uparrow\rangle = \begin{pmatrix} 1\\0 \end{pmatrix} \in \mathbb{C}^2$$
 et $|\downarrow\rangle = \begin{pmatrix} 0\\1 \end{pmatrix} \in \mathbb{C}^2$.
Direction arbitraire : $|\psi\rangle = \alpha |\uparrow\rangle + \beta$

Chaîne de spins : succession de L sites avec chacun un spin

Espace de Hilbert
$$(\mathbb{C}^2)^{\otimes L}$$
 $(\dim \mathcal{H} = 2^L).$

Exemple : si L = 3, c'est $\operatorname{Vect}(|\uparrow\uparrow\uparrow\rangle, |\uparrow\uparrow\downarrow\rangle, |\uparrow\downarrow\uparrow\rangle, |\uparrow\downarrow\downarrow\rangle, |\downarrow\uparrow\uparrow\rangle, |\downarrow\uparrow\downarrow\rangle, |\downarrow\downarrow\downarrow\rangle, |\downarrow\downarrow\downarrow\rangle).$

Chaîne de spins "XXX": Hamiltonien $H = -L - \sum_{i=1}^{L} \vec{\sigma_i} \cdot \vec{\sigma_{i+1}}$ où $\vec{\sigma_i} \cdot \vec{\sigma_{i+1}} \equiv \sum_{k=1}^{3} \sigma_i^{(k)} \sigma_{i+1}^{(k)}$; $\sigma_i^{(k)}$ est $\sigma^{(k)}$ agissant sur le i^{ème} spin, et $\sigma^{(1)} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\sigma^{(2)} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$, $\sigma^{(3)} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. **Périodicité**: On identifie $\sigma_{L+1} = \sigma_1$.

Perspectives

 $\downarrow\rangle$

Chaîne de spins

Spin : objet quantique pointant dans une direction

''Directions'' : éléments de $\mathcal{S}_2 = \mathbb{P}_1(\mathbb{C}) = \mathbb{C}^2/\sim$

• On note
$$|\uparrow\rangle = \begin{pmatrix} 1\\0 \end{pmatrix} \in \mathbb{C}^2$$
 et $|\downarrow\rangle = \begin{pmatrix} 0\\1 \end{pmatrix} \in \mathbb{C}^2$.
Direction arbitraire : $|\psi\rangle = \alpha |\uparrow\rangle + \beta |$

Chaîne de spins : succession de L sites avec chacun un spin

Espace de Hilbert
$$(\mathbb{C}^2)^{\otimes L}$$
 $(\dim \mathcal{H} = 2^L).$

Exemple : si L = 3, c'est Vect($|\uparrow\uparrow\uparrow\rangle$, $|\uparrow\uparrow\downarrow\rangle$, $|\uparrow\downarrow\uparrow\rangle$, $|\downarrow\uparrow\downarrow\rangle$, $|\downarrow\uparrow\uparrow\rangle$, $|\downarrow\uparrow\downarrow\rangle$, $|\downarrow\downarrow\uparrow\rangle$, $|\downarrow\downarrow\downarrow\rangle$).

Chaîne de spins "XXX" : Hamiltonien $H = -L - \sum_{i=1}^{L} \vec{\sigma_i} \cdot \vec{\sigma_{i+1}}$ où $\vec{\sigma_i} \cdot \vec{\sigma_{i+1}} \equiv \sum_{k=1}^{3} \sigma_i^{(k)} \sigma_{i+1}^{(k)}$; $\sigma_i^{(k)}$ est $\sigma^{(k)}$ agissant sur le i^{ème} spin, et $\sigma^{(1)} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\sigma^{(2)} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$, $\sigma^{(3)} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. Périodicité : On identifie $\sigma_{L+1} = \sigma_1$.

Perspectives

 $\downarrow\rangle$

Chaîne de spins

Spin : objet quantique pointant dans une direction

''Directions'' : éléments de $\mathcal{S}_2 = \mathbb{P}_1(\mathbb{C}) = \mathbb{C}^2/\sim$

• On note
$$|\uparrow\rangle = \begin{pmatrix} 1\\0 \end{pmatrix} \in \mathbb{C}^2$$
 et $|\downarrow\rangle = \begin{pmatrix} 0\\1 \end{pmatrix} \in \mathbb{C}^2$.
Direction arbitraire : $|\psi\rangle = \alpha |\uparrow\rangle + \beta |$

Chaîne de spins : succession de L sites avec chacun un spin

Espace de Hilbert
$$(\mathbb{C}^2)^{\otimes L}$$
 $(\dim \mathcal{H} = 2^L).$

 $\operatorname{Vect}(|\uparrow\uparrow\uparrow\rangle, |\uparrow\uparrow\downarrow\rangle, |\uparrow\downarrow\downarrow\rangle, |\uparrow\downarrow\downarrow\rangle, |\downarrow\uparrow\uparrow\rangle, |\downarrow\uparrow\downarrow\rangle, |\downarrow\uparrow\downarrow\rangle, |\downarrow\downarrow\downarrow\rangle\rangle, |\downarrow\downarrow\downarrow\rangle\rangle.$

Chaîne de spins "XXX" : Hamiltonien $H = -L - \sum_{i=1}^{L} \vec{\sigma_i} \cdot \vec{\sigma_{i+1}}$ où $\vec{\sigma_i} \cdot \vec{\sigma_{i+1}} \equiv \sum_{k=1}^{3} \sigma_i^{(k)} \sigma_{i+1}^{(k)}$; $\sigma_i^{(k)}$ est $\sigma^{(k)}$ agissant sur le i^{ème} spin, et $\sigma^{(1)} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\sigma^{(2)} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$, $\sigma^{(3)} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. Périodicité : On identifie $\sigma_{L+1} = \sigma_1$.

Exemple : si L = 3, c'est

Outline

1 Systèmes quantiques

- Ondes↔particules
- Équation de Schrödinger
- Chaîne de Spins

Integrabilité des chaînes de spins XXX

- "Coordinate Bethe Ansatz"
- "Wronskian Bethe Ansatz"
- Completude

3 Perspectives

- Intégrabilité
- Équations fonctionelles
- Observables physiques

Vecteurs propres de H

pour la chaîne XXX

Notation : $\mathcal{P}_{1,2} |\downarrow\uparrow\downarrow\dots\rangle = |\uparrow\downarrow\downarrow\dots\rangle$ et $\mathcal{P}_{1,2} |\downarrow\downarrow\uparrow\dots\rangle = |\downarrow\downarrow\uparrow\dots\rangle$ $H = -2\sum_{i=1}^{L} \mathcal{P}_{i,i+1}$ a pour états propres : • "vide" : $|\downarrow\downarrow\dots\downarrow\rangle$ (valeur propre : -2L). • états à une "excitation" : combinaisons de $|\{k\}\rangle = |\downarrow\downarrow\dots\downarrow\uparrow\downarrow\downarrow\dots\downarrow\rangle$ $|\psi\rangle = \sum_{k} \Psi(k) |\{k\}\rangle$ $\Rightarrow H |\psi\rangle = -2\sum_{k} (\Psi(k+1) + \Psi(k-1) + (L-2)\Psi(k)) |\{k\}\rangle.$

états propres $|\psi
angle\propto\sum_k e^{i\,k\,p}\,|\{k\}
angle$ où $e^{2i\,p\,L}=1$

• combinaisons de $|\{j,k\}\rangle = |\downarrow\downarrow\downarrow\cdots\downarrow\uparrow\downarrow\downarrow\cdots\downarrow\uparrow\downarrow\downarrow\cdots\downarrow\rangle$

 $|\psi\rangle \propto \sum_{j < k} (e^{i(p_1 j + p_2 k)} + S e^{i(p_1 k + p_2 j)}) |\{j, k\}\rangle$ $a \text{vec } e^{i \perp p_2} = S = e^{-i \perp p_1}$

Vecteurs propres de H

pour la chaîne XXX

- Notation : $\mathcal{P}_{1,2} |\downarrow\uparrow\downarrow\dots\rangle = |\uparrow\downarrow\downarrow\dots\rangle$ et $\mathcal{P}_{1,2} |\downarrow\downarrow\uparrow\dots\rangle = |\downarrow\downarrow\uparrow\dots\rangle$ $H = -2\sum_{i=1}^{L} \mathcal{P}_{i,i+1}$ a pour états propres : • "vide" : $|\downarrow\downarrow\dots\downarrow\rangle$ (valeur propre : -2L).
 - états à une "excitation" : combinaisons de $|\{k\}\rangle = |\downarrow\downarrow\downarrow\cdots\downarrow\uparrow\uparrow\downarrow\cdots\downarrow\rangle$
 - $\begin{aligned} |\psi\rangle &= \sum_{k} \Psi(k) |\{k\}\rangle \\ \Rightarrow H |\psi\rangle &= -2 \sum_{k} (\Psi(k+1) + \Psi(k-1) + (L-2)\Psi(k)) |\{k\}\rangle. \end{aligned}$

états propres $\ket{\psi} \propto \sum_k e^{i\,k\,p} \ket{\{k\}}$ où $e^{2i\,p\,L} = 1$

• combinaisons de $|\{j,k\}\rangle = |\downarrow\downarrow\downarrow\cdots\downarrow\uparrow\downarrow\downarrow\cdots\downarrow\uparrow\downarrow\downarrow\cdots\downarrow\rangle$

 $|\psi\rangle \propto \sum_{j < k} (e^{i(p_1 j + p_2 k)} + S e^{i(p_1 k + p_2 j)}) |\{j, k\}$

I - k

Vecteurs propres de H

pour la chaîne XXX

k-1

- Notation : $\mathcal{P}_{1,2} |\downarrow\uparrow\downarrow\downarrow\dots\rangle = |\uparrow\downarrow\downarrow\downarrow\dots\rangle$ et $\mathcal{P}_{1,2} |\downarrow\downarrow\uparrow\uparrow\dots\rangle = |\downarrow\downarrow\uparrow\uparrow\dots\rangle$ $H = -2\sum_{i=1}^{L} \mathcal{P}_{i,i+1}$ a pour états propres :
 - "vide" : $|\downarrow\downarrow\cdots\downarrow\rangle$ (valeur propre : -2L).

• états à une "excitation" : combinaisons de $|\{k\}\rangle = |\downarrow\downarrow\downarrow\cdots\downarrow\uparrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\rangle$

- $\Rightarrow H |\psi\rangle = -2\sum_{k} \langle \Psi(k+1) + \Psi(k-1) + (L-2)\Psi(k) \rangle |\{k\}$
- états propres $|\psi\rangle \propto \sum_{k} e^{i\,k\,p} |\{k\}\rangle$ où $e^{2i\,p\,L} = 1$
- combinaisons de $|\{j,k\}\rangle = |\downarrow\downarrow\downarrow\cdots\downarrow\uparrow\downarrow\downarrow\cdots\downarrow\uparrow\downarrow\cdots\downarrow\rangle$
 - $|\psi\rangle = \sum_{j,k} \Psi(j,k) |\{j,k\}\rangle$ j-1 k-j-1 L-j-k

Vecteurs propres de H

pour la chaîne XXX

Notation : $\mathcal{P}_{1,2} |\downarrow\uparrow\downarrow\dots\rangle = |\uparrow\downarrow\downarrow\dots\rangle$ et $\mathcal{P}_{1,2} |\downarrow\downarrow\uparrow\uparrow\dots\rangle = |\downarrow\downarrow\uparrow\dots\rangle$ $H = -2\sum_{i=1}^{L} \mathcal{P}_{i,i+1}$ a pour états propres : • "vide" : $|\downarrow\downarrow\dots\downarrow\rangle$ (valeur propre : -2L). • états à une "excitation" : combinaisons de $|\{k\}\rangle = |\underbrace{\downarrow\downarrow\dots\downarrow}_{k-1}\uparrow\underbrace{\downarrow\dots\downarrow}_{L-k}$ $|\psi\rangle = \sum_{k} \Psi(k) |\{k\}\rangle$ $\Rightarrow H |\psi\rangle = -2\sum_{k} (\Psi(k+1) + \Psi(k-1) + (L-2)\Psi(k)) |\{k\}\rangle.$

états propres $|\psi\rangle\propto\sum_{k}e^{i\,k\,p}\,|\{k\}
angle$ où $e^{2i\,p\,L}=1$

• combinaisons de $|\{j,k\}\rangle = |\downarrow\downarrow\downarrow\cdots\downarrow\uparrow\downarrow\downarrow\cdots\downarrow\uparrow\downarrow\downarrow\cdots\downarrow\rangle$

Vecteurs propres de H

pour la chaîne XXX

Notation : $\mathcal{P}_{1,2} | \downarrow \uparrow \downarrow \dots \rangle = | \uparrow \downarrow \downarrow \dots \rangle$ et $\mathcal{P}_{1,2} | \downarrow \downarrow \uparrow \dots \rangle = | \downarrow \downarrow \uparrow \dots \rangle$ $H = -2\sum_{i=1}^{L} \mathcal{P}_{i,i+1}$ a pour états propres : • "vide" : $|\downarrow\downarrow\downarrow\cdots\downarrow\rangle$ (valeur propre : -2L). • états à une "excitation" : combinaisons de $|\{k\}\rangle = |\downarrow\downarrow\downarrow\cdots\downarrow\uparrow\downarrow\downarrow\cdots\downarrow\rangle$ k-1I - k $|\psi\rangle = \sum_{k} \Psi(k) |\{k\}\rangle$ $\Rightarrow H |\psi\rangle = -2\sum_{k} (\Psi(k+1) + \Psi(k-1) + (L-2)\Psi(k)) |\{k\}\rangle.$ états propres $|\psi\rangle \propto \sum_{k} e^{i k p} |\{k\}\rangle$ où $e^{2i p L} = 1$ • combinaisons de $|\{j,k\}\rangle = |\downarrow\downarrow\downarrow\cdots\downarrow\uparrow\downarrow\downarrow\cdots\downarrow\uparrow\downarrow\cdots\downarrow\rangle$

 $|\psi\rangle = \sum_{j,k} \Psi(j,k) |\{j,k\}\rangle$ j=1 k=j=1 L=j=k

 $|\psi\rangle \propto \sum_{j < k} (e^{i(p_1 j + p_2 k)} + S e^{i(p_1 k + p_2 j)}) |\{j, k\}\rangle$

Vecteurs propres de H

pour la chaîne XXX

- Notation : $\mathcal{P}_{1,2} |\downarrow\uparrow\downarrow\dots\rangle = |\uparrow\downarrow\downarrow\dots\rangle$ et $\mathcal{P}_{1,2} |\downarrow\downarrow\uparrow\uparrow\dots\rangle = |\downarrow\downarrow\uparrow\uparrow\dots\rangle$ $H = -2\sum_{i=1}^{L} \mathcal{P}_{i,i+1}$ a pour états propres :
 - "vide" : $|\downarrow\downarrow\cdots\downarrow\rangle$ (valeur propre : -2L).

• états à une "excitation" : combinaisons de $|\{k\}\rangle = |\downarrow\downarrow\downarrow\cdots\downarrow\uparrow\uparrow\downarrow\downarrow\cdots\downarrow\rangle$

- $|\psi\rangle\propto\sum_{k}e^{i\,k\,p}\,|\{k\}
 angle$ où $e^{2i\,p\,L}=1$
- combinaisons de $|\{j,k\}\rangle = |\underbrace{\downarrow\downarrow\cdots\downarrow}_{j-1} \uparrow \underbrace{\downarrow\cdots\downarrow}_{k-j-1} \uparrow \underbrace{\downarrow\cdots\downarrow}_{L-j-k}\rangle$

 $|\psi
angle \propto \sum_{j < k} (e^{i(
ho_1 j +
ho_2 k)} + S \, e^{i(
ho_1 k +
ho_2 j)}) |\{j,k\}
angle$

avec $e^{i L p_2} = S = e^{-i L p_1}$ et $S = -\frac{1+e^{i(p_1+p_2)}-2e^{ip_2}}{1+e^{i(p_1+p_2)}-2e^{ip_1}}$

Vecteurs propres de H

pour la chaîne XXX

- Notation : $\mathcal{P}_{1,2} |\downarrow\uparrow\downarrow\dots\rangle = |\uparrow\downarrow\downarrow\dots\rangle$ et $\mathcal{P}_{1,2} |\downarrow\downarrow\uparrow\dots\rangle = |\downarrow\downarrow\uparrow\dots\rangle$ $H = -2\sum_{i=1}^{L} \mathcal{P}_{i,i+1}$ a pour états propres : • "vide" : $|\downarrow\downarrow\dots\downarrow\rangle$ (valeur propre : -2L).
 - états à une "excitation" : combinaisons de $|\{k\}\rangle = |\downarrow\downarrow\downarrow\cdots\downarrow\uparrow\downarrow\downarrow\downarrow\downarrow\downarrow\rangle$
 - $|\psi\rangle \propto \sum_{k} e^{i\,k\,p} |\{k\}\rangle$ où $e^{2i\,p\,L} = 1$ k-1 L-k
 - combinaisons de $|\{j,k\}\rangle = |\underbrace{\downarrow\downarrow\cdots\downarrow}_{j-1}\uparrow\underbrace{\downarrow\cdots\downarrow}_{k-j-1}\uparrow\underbrace{\downarrow\cdots\downarrow}_{L-j-k}\rangle$

 $\begin{aligned} |\psi\rangle \propto \sum_{j < k} (e^{i(p_1 j + p_2 k)} + S e^{i(p_1 k + p_2 j)}) |\{j, k\}\rangle \\ \text{avec } e^{iLp_2} = S = e^{-iLp_1} \\ \text{et } S = -\frac{1 + e^{i(p_1 + p_2)} - 2e^{ip_2}}{1 + e^{i(p_1 + p_2)} - 2e^{ip_1}} \end{aligned}$

Vecteurs propres de H

pour la chaîne XXX

- Notation : $\mathcal{P}_{1,2} | \downarrow \uparrow \downarrow \dots \rangle = | \uparrow \downarrow \downarrow \dots \rangle$ et $\mathcal{P}_{1,2} | \downarrow \downarrow \uparrow \dots \rangle = | \downarrow \downarrow \uparrow \dots \rangle$ $H = -2 \sum_{i=1}^{L} \mathcal{P}_{i,i+1}$ a pour états propres : • "vide" : $| \downarrow \downarrow \dots \downarrow \rangle$ (valeur propre : -2L).
 - états à une "excitation" : combinaisons de $|\{k\}\rangle = |\underbrace{\downarrow\downarrow\cdots\downarrow}\uparrow\underbrace{\downarrow\cdots\downarrow}\rangle$
 - $|\psi\rangle \propto \sum_{k} e^{i\,k\,p} |\{k\}\rangle$ où $e^{2i\,p\,L} = 1$ k-1 L-k
 - combinaisons de $|\{j,k\}\rangle = |\underbrace{\downarrow\downarrow\cdots\downarrow}_{j-1}\uparrow\underbrace{\downarrow\cdots\downarrow}_{k-j-1}\uparrow\underbrace{\downarrow\cdots\downarrow}_{L-j-k}\rangle$

 $|\psi
angle \propto \sum_{j < k} (e^{i(p_1 j + p_2 k)} + S e^{i(p_1 k + p_2 j)}) |\{j, k\}
angle$

Vecteurs propres de H

pour la chaîne XXX

- Notation : $\mathcal{P}_{1,2} | \downarrow \uparrow \downarrow \dots \rangle = | \uparrow \downarrow \downarrow \dots \rangle$ et $\mathcal{P}_{1,2} | \downarrow \downarrow \uparrow \dots \rangle = | \downarrow \downarrow \uparrow \dots \rangle$ $H = -2 \sum_{i=1}^{L} \mathcal{P}_{i,i+1}$ a pour états propres : • "vide" : $| \downarrow \downarrow \dots \downarrow \rangle$ (valeur propre : -2L).
 - états à une "excitation" : combinaisons de $|\{k\}\rangle = |\downarrow\downarrow\downarrow\cdots\downarrow\uparrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\rangle$
 - $|\psi\rangle \propto \sum_{k} e^{i\,k\,p} \,|\{k\}\rangle$ où $e^{2i\,p\,L} = 1$ k-1 L-k
 - combinaisons de $|\{j,k\}\rangle = |\underbrace{\downarrow\downarrow\cdots\downarrow}_{j-1}\uparrow\underbrace{\downarrow\cdots\downarrow}_{k-j-1}\uparrow\underbrace{\downarrow\cdots\downarrow}_{L-j-k}\rangle$

 $|\psi
angle \propto \sum_{j < k} (e^{i(p_1 j + p_2 k)} + S e^{i(p_1 k + p_2 j)}) |\{j, k\}
angle$

avec
$$e^{i L p_2} = S = e^{-i L p_1}$$

et $S = -\frac{1+e^{i(p_1+p_2)}-2e^{ip_2}}{1+e^{i(p_1+p_2)}-2e^{ip_1}}$

Vecteurs propres de H

pour la chaîne XXX

- Notation : $\mathcal{P}_{1,2} |\downarrow\uparrow\downarrow\dots\rangle = |\uparrow\downarrow\downarrow\dots\rangle$ et $\mathcal{P}_{1,2} |\downarrow\downarrow\uparrow\dots\rangle = |\downarrow\downarrow\uparrow\dots\rangle$ $H = -2\sum_{i=1}^{L} \mathcal{P}_{i,i+1}$ a pour états propres : • "vide" : $|\downarrow\downarrow\dots\downarrow\rangle$ (valeur propre : -2L).
 - états à une "excitation" : combinaisons de $|\{k\}\rangle = |\downarrow\downarrow\downarrow\cdots\downarrow\uparrow\downarrow\downarrow\downarrow\downarrow\downarrow\rangle$
 - $|\psi\rangle \propto \sum_{k} e^{i\,k\,p} |\{k\}\rangle$ où $e^{2i\,p\,L} = 1$ k-1 L-k
 - combinaisons de $|\{j,k\}\rangle = |\underbrace{\downarrow\downarrow\cdots\downarrow}_{j-1}\uparrow\underbrace{\downarrow\cdots\downarrow}_{k-j-1}\uparrow\underbrace{\downarrow\cdots\downarrow}_{L-j-k}\rangle$

 $|\psi
angle \propto \sum_{j < k} (e^{i(p_1 j + p_2 k)} + S e^{i(p_1 k + p_2 j)}) |\{j, k\}
angle$

avec
$$e^{i L p_2} = S = e^{-i L p_1}$$

et $S = -\frac{1+e^{i(p_1+p_2)}-2e^{ip_2}}{1+e^{i(p_1+p_2)}-2e^{ip_1}}$

Vecteurs propres de H

pour la chaîne XXX

- Notation : $\mathcal{P}_{1,2} | \downarrow \uparrow \downarrow \dots \rangle = | \uparrow \downarrow \downarrow \dots \rangle$ et $\mathcal{P}_{1,2} | \downarrow \downarrow \uparrow \dots \rangle = | \downarrow \downarrow \uparrow \dots \rangle$ $H = -2 \sum_{i=1}^{L} \mathcal{P}_{i,i+1}$ a pour états propres : • "vide" : $| \downarrow \downarrow \dots \downarrow \rangle$ (valeur propre : -2L).
 - états à une "excitation" : combinaisons de $|\{k\}\rangle = |\downarrow\downarrow\downarrow\cdots\downarrow\uparrow\downarrow\downarrow\downarrow\downarrow\downarrow\rangle$
 - $|\psi\rangle \propto \sum_{k} e^{i k p} |\{k\}\rangle$ où $e^{2i p L} = 1$ k-1 L-k
 - combinaisons de $|\{j,k\}\rangle = |\underbrace{\downarrow\downarrow\cdots\downarrow}_{j-1}\uparrow\underbrace{\downarrow\cdots\downarrow}_{k-j-1}\uparrow\underbrace{\downarrow\cdots\downarrow}_{L-j-k}\rangle$

 $|\psi\rangle \propto \sum_{i < k} (e^{i(p_1 j + p_2 k)} + S e^{i(p_1 k + p_2 j)}) |\{j, k\}\rangle$

Vecteurs propres de H

pour la chaîne XXX

- Notation : $\mathcal{P}_{1,2} |\downarrow\uparrow\downarrow\downarrow\dots\rangle = |\uparrow\downarrow\downarrow\downarrow\dots\rangle$ et $\mathcal{P}_{1,2} |\downarrow\downarrow\downarrow\uparrow\dots\rangle = |\downarrow\downarrow\uparrow\uparrow\dots\rangle$ $H = -2\sum_{i=1}^{L} \mathcal{P}_{i,i+1}$ a pour états propres : • "vide" : $|\downarrow\downarrow\cdots\downarrow\rangle$ (valeur propre : -2L).
 - états à une "excitation" : combinaisons de $|\{k\}\rangle = |\downarrow\downarrow\downarrow\cdots\downarrow\uparrow\downarrow\downarrow\cdots\downarrow\rangle$
 - $|\psi\rangle \propto \sum_{k} e^{i\,k\,p} \,|\{k\}\rangle$ où $e^{2i\,p\,L} = 1$ k-1 L-k
 - combinaisons de $|\{j,k\}\rangle = |\underbrace{\downarrow\downarrow\cdots\downarrow}_{j-1} \uparrow \underbrace{\downarrow\cdots\downarrow}_{k-j-1} \uparrow \underbrace{\downarrow\cdots\downarrow}_{L-j-k}\rangle$

$$|\psi
angle \propto \sum_{j < k} (e^{i(p_1 j + p_2 k)} + S e^{i(p_1 k + p_2 j)}) |\{j, k\}
angle$$

avec
$$e^{i L p_2} = S = e^{-i L p_1}$$

et $S = -\frac{1+e^{i(p_1+p_2)}-2e^{ip_2}}{1+e^{i(p_1+p_2)}-2e^{ip_1}}$
Perspectives

Vecteurs propres de H

pour la chaîne XXX

États à *n* "excitations"

$$|\Psi\rangle = \sum_{1 \le j_1 < j_2 < \dots < j_n} \sum_{\sigma \in \mathfrak{S}_n} \mathcal{A}_{\sigma} e^{j \sum_k p_{\sigma(k)} j_k} |\underbrace{\downarrow \downarrow \dots \downarrow}_{j_1 - 1} \uparrow \underbrace{\downarrow \downarrow \dots \downarrow}_{j_2 - j_1 - 1} \uparrow \downarrow \dots \rangle$$

C'est un vecteur propre si

•
$$\mathcal{A}_{\sigma} \propto (-1)^{\sigma} \prod_{j < k} \left(1 + e^{i(p_{\sigma(j)} + p_{\sigma(k)})} - 2e^{ip_{\sigma(k)}} \right)$$

Équations de Bethe

•
$$\forall j, e^{i \, L \, p_j} = \prod_{k \neq j} S(p_j, p_k)$$
 où $S(p, p') \equiv -\frac{1 + e^{i(p+p')} - 2e^{i \, p}}{1 + e^{i(p+p')} - 2e^{i \, p'}}$

Valeur propre :
$$E = -2L + 4 \sum_{k} (1 - \cos p_k)$$

Completude : existence d'une base de vecteurs propres sous cette forme

Sébastien Leurent, IMB, Math-Phys

Intégrabilité quantique

pour la chaîne XXX

Vecteurs propres de H

États à *n* "excitations"

$$|\Psi\rangle = \sum_{1 \le j_1 < j_2 < \cdots < j_n} \sum_{\sigma \in \mathfrak{S}_n} \mathcal{A}_{\sigma} e^{i \sum_k p_{\sigma(k)} j_k} |\underbrace{\downarrow \downarrow \cdots \downarrow}_{j_1 - 1} \uparrow \underbrace{\downarrow \downarrow \cdots \downarrow}_{j_2 - j_1 - 1} \uparrow \downarrow \cdots \rangle$$

C'est un vecteur propre si

•
$$\mathcal{A}_{\sigma} \propto (-1)^{\sigma} \prod_{j < k} \left(1 + e^{i(p_{\sigma(j)} + p_{\sigma(k)})} - 2e^{ip_{\sigma(k)}} \right)$$

Équations de Bethe

•
$$\forall j, e^{j \ L \ p_j} = \prod_{k \neq j} S(p_j, p_k)$$
 où $S(p, p') \equiv -\frac{1 + e^{i(p+p')} - 2e^{i \ p}}{1 + e^{i(p+p')} - 2e^{i \ p'}}$

Valeur propre :
$$E = -2L + 4 \sum_{k} (1 - \cos p_k)$$

Completude : existence d'une base de vecteurs propres sous cette forme

Vecteurs propres de H

États à *n* "excitations"

$$|\Psi\rangle = \sum_{1 \leq j_1 < j_2 < \cdots < j_n} \sum_{\sigma \in \mathfrak{S}_n} \mathcal{A}_{\sigma} e^{i \sum_k p_{\sigma(k)} j_k} |\underbrace{\downarrow \downarrow \cdots \downarrow}_{j_1 - 1} \uparrow \underbrace{\downarrow \downarrow \cdots \downarrow}_{j_2 - j_1 - 1} \uparrow \downarrow \cdots \rangle$$

C'est un vecteur propre si

•
$$\mathcal{A}_{\sigma} \propto (-1)^{\sigma} \prod_{j < k} \left(1 + e^{i(p_{\sigma(j)} + p_{\sigma(k)})} - 2e^{ip_{\sigma(k)}} \right)$$

Équations de Bethe

•
$$\forall j, e^{j L p_j} = \prod_{k \neq j} S(p_j, p_k)$$
 où $S(p, p') \equiv -\frac{1 + e^{i(p+p')} - 2e^{i p}}{1 + e^{i(p+p')} - 2e^{i p'}}$

Valeur propre :
$$E = -2L + 4 \sum_{k} (1 - \cos p_k)$$

Completude : existence d'une base de vecteurs propres sous cette forme

Sébastien Leurent, IMB, Math-Phys

pour la chaîne XXX

pour la chaîne XXX

Vecteurs propres de H

États à *n* "excitations"

$$|\Psi\rangle = \sum_{1 \le j_1 < j_2 < \cdots < j_n} \sum_{\sigma \in \mathfrak{S}_n} \mathcal{A}_{\sigma} e^{i \sum_k p_{\sigma(k)} j_k} |\underbrace{\downarrow \downarrow \cdots \downarrow}_{j_1 - 1} \uparrow \underbrace{\downarrow \downarrow \cdots \downarrow}_{j_2 - j_1 - 1} \uparrow \downarrow \cdots \rangle$$

C'est un vecteur propre si

•
$$\mathcal{A}_{\sigma} \propto (-1)^{\sigma} \prod_{j < k} \left(1 + e^{i(p_{\sigma(j)} + p_{\sigma(k)})} - 2e^{ip_{\sigma(k)}} \right)$$

Équations de Bethe

•
$$\forall j, e^{j L p_j} = \prod_{k \neq j} S(p_j, p_k)$$
 où $S(p, p') \equiv -\frac{1 + e^{i(p+p')} - 2e^{i p}}{1 + e^{i(p+p')} - 2e^{i p'}}$

Valeur propre :
$$E = -2L + 4 \sum_{k} (1 - \cos p_k)$$

Completude : existence d'une base de vecteurs propres sous cette forme

Opérateurs T de la chaîne de Heisenberg

trace partielle : $\langle y | \operatorname{tr}_a M | x \rangle = \sum_{z \in \mathcal{B}_a} (\langle y | \otimes \langle z |) M (|x\rangle \otimes |z\rangle)$ où $M \in \mathcal{L}(\mathcal{H}_p \otimes \mathcal{H}_a)$, $\operatorname{tr}_a(M) \in \mathcal{L}(\mathcal{H}_p)$, $x, y \in \mathcal{H}_p$; \mathcal{B}_a : b.o.n. de \mathcal{H}_a .

• $((u-v)\mathbb{I} + \mathcal{P}_{i,j})(u\mathbb{I} + \mathcal{P}_{i,k})(v\mathbb{I} + \mathcal{P}_{j,k})$ = $(v\mathbb{I} + \mathcal{P}_{j,k})(u\mathbb{I} + \mathcal{P}_{i,k})((u-v)\mathbb{I} + \mathcal{P}_{i,j})$

Opérateurs T de la chaîne de Heisenberg

trace partielle : $\langle y | \operatorname{tr}_{a} M | x \rangle = \sum_{z \in \mathcal{B}_{a}} (\langle y | \otimes \langle z |) M (|x\rangle \otimes |z\rangle)$ où $M \in \mathcal{L}(\mathcal{H}_{p} \otimes \mathcal{H}_{a})$, $\operatorname{tr}_{a}(M) \in \mathcal{L}(\mathcal{H}_{p})$, $x, y \in \mathcal{H}_{p}$; \mathcal{B}_{a} : b.o.n. de \mathcal{H}_{a} .

•
$$((u - v)\mathbb{I} + \mathcal{P}_{i,j})(u\mathbb{I} + \mathcal{P}_{i,k})(v\mathbb{I} + \mathcal{P}_{j,k})$$

= $(v\mathbb{I} + \mathcal{P}_{j,k})(u\mathbb{I} + \mathcal{P}_{i,k})((u - v)\mathbb{I} + \mathcal{P}_{i,j})$

Opérateurs T de la chaîne de Heisenberg

trace partielle : $\langle y | \operatorname{tr}_{a} M | x \rangle = \sum_{z \in \mathcal{B}_{a}} (\langle y | \otimes \langle z |) M (|x\rangle \otimes |z\rangle)$ où $M \in \mathcal{L}(\mathcal{H}_{p} \otimes \mathcal{H}_{a})$, $\operatorname{tr}_{a}(M) \in \mathcal{L}(\mathcal{H}_{p})$, $x, y \in \mathcal{H}_{p}$; \mathcal{B}_{a} : b.o.n. de \mathcal{H}_{a} .

•
$$((u - v)\mathbb{I} + \mathcal{P}_{i,j})(u\mathbb{I} + \mathcal{P}_{i,k})(v\mathbb{I} + \mathcal{P}_{j,k})$$

= $(v\mathbb{I} + \mathcal{P}_{j,k})(u\mathbb{I} + \mathcal{P}_{i,k})((u - v)\mathbb{I} + \mathcal{P}_{i,j})$

Commutation des operators T

Commutation des operators T

Perspectives

Opérateurs T de la chaîne de Heisenberg

$$H = -2\sum_{i} \mathcal{P}_{i,i+1} = -2 \frac{d}{du} \log T(u) \Big|_{u=0}$$

$$T(u) = \operatorname{tr}_{a} \left((u \mathbb{I} + \mathcal{P}_{L,a}) \cdot (u \mathbb{I} + \mathcal{P}_{L-1,a}) \cdots (u \mathbb{I} + \mathcal{P}_{1,a}) \right)$$
opérateurs sur l'espace de Hilbert $(\mathbb{C}^{2})^{\otimes L}$

$$L = 1 \qquad L = 2 \qquad d \qquad 3 \qquad 2 \qquad 1$$

trace partielle : $\langle y | \operatorname{tr}_{a} M | x \rangle = \sum_{z \in \mathcal{B}_{a}} (\langle y | \otimes \langle z |) M (|x\rangle \otimes |z\rangle)$ où $M \in \mathcal{L}(\mathcal{H}_{p} \otimes \mathcal{H}_{a})$, $\operatorname{tr}_{a}(M) \in \mathcal{L}(\mathcal{H}_{p})$, $x, y \in \mathcal{H}_{p}$; \mathcal{B}_{a} : b.o.n. de \mathcal{H}_{a} . • [T (u), T (v)] = 0

Perspectives

Opérateurs T généralisant la chaîne de Heisenberg

$$H = -2\sum_{i} \mathcal{P}_{i,i+1} = -2 \frac{d}{du} \log T(u) \big|_{u=0}$$

$$T(u) = \operatorname{tr}_{a} \left((u \mathbb{I} + \mathcal{P}_{L,a}) \cdot (u \mathbb{I} + \mathcal{P}_{L-1,a}) \cdots (u \mathbb{I} + \mathcal{P}_{1,a}) \right)$$
opérateurs sur l'espace de Hilbert $(\mathbb{C}^{K})^{\otimes L}$

$$L = 1 \qquad L = 2 \qquad 4 \qquad 3 \qquad 2 \qquad 1$$

trace partielle : $\langle y | \operatorname{tr}_{a} M | x \rangle = \sum_{z \in \mathcal{B}_{a}} (\langle y | \otimes \langle z |) M (|x\rangle \otimes |z\rangle)$ où $M \in \mathcal{L}(\mathcal{H}_{p} \otimes \mathcal{H}_{a})$, $\operatorname{tr}_{a}(M) \in \mathcal{L}(\mathcal{H}_{p})$, $x, y \in \mathcal{H}_{p}$; \mathcal{B}_{a} : b.o.n. de \mathcal{H}_{a} . • [T (u), T (v)] = 0

Perspectives

Opérateurs T généralisant la chaîne de Heisenberg

trace partielle : $\langle y | \operatorname{tr}_{a} M | x \rangle = \sum_{z \in \mathcal{B}_{a}} (\langle y | \otimes \langle z |) M (|x\rangle \otimes |z\rangle)$ où $M \in \mathcal{L}(\mathcal{H}_{p} \otimes \mathcal{H}_{a})$, $\operatorname{tr}_{a}(M) \in \mathcal{L}(\mathcal{H}_{p})$, $x, y \in \mathcal{H}_{p}$; \mathcal{B}_{a} : b.o.n. de \mathcal{H}_{a} . • [T (u), T (v)] = 0

Perspectives

Opérateurs T généralisant la chaîne de Heisenberg

Operateur de permutation géneralisé : $\mathcal{P}_{i,j} = \sum_{\alpha,\beta} e_{\alpha,\beta}^{(i)} \otimes \pi_{\lambda}(e_{\beta,\alpha}^{(j)})$

• $\left[T^{\lambda}(u), T^{\mu}(v)\right] = 0$

Perspectives

Opérateurs T généralisant la chaîne de Heisenberg

Operateur de permutation géneralisé : $\mathcal{P}_{i,j} = \sum_{\alpha,\beta} e_{\alpha,\beta}^{(i)} \otimes \pi_{\lambda}(e_{\beta,\alpha}^{(j)})$

•
$$\left[T^{\lambda}(u), T^{\mu}(v)\right] = 0$$

Perspectives

Opérateurs T généralisant la chaîne de Heisenberg

Operateur de permutation géneralisé : $\mathcal{P}_{i,j} = \sum_{\alpha,\beta} e_{\alpha,\beta}^{(i)} \otimes \pi_{\lambda}(e_{\beta,\alpha}^{(j)})$

•
$$\left[T^{\lambda}(u), T^{\mu}(v)\right] = 0$$

Perspectives

Opérateurs T généralisant la chaîne de Heisenberg

$$\begin{split} H &= \langle -2 \sum_{i} \mathcal{P}_{i,i+1} \rangle = -2 \frac{\mathrm{d}}{\mathrm{du}} \log \mathcal{T}^{\Box}(u) \big|_{u=0} \\ \mathcal{T}^{\lambda}(u) &= \mathrm{tr}_{a} \left(\left((u - \xi_{L}) \mathbb{I} + \mathcal{P}_{L,a} \right) \cdots \left((u - \xi_{1}) \mathbb{I} + \mathcal{P}_{1,a} \right) \cdot \pi_{\lambda}(g) \right) \\ & \text{opérateurs sur l'espace de Hilbert } \left(\mathbb{C}^{\mathcal{K}|\mathcal{M}} \right)^{\otimes L} \end{split}$$

•
$$\left[T^{\lambda}(u), T^{\mu}(v)\right] = 0$$

• représentation de dimension infinie \rightsquigarrow Operateurs Q. $[Q_{12...}(u), Q_{13...}(v)] = 0$ $[Q_{12...}(u), T^{\lambda}(v)] = 0$

Propriétés des opérateurs T et Q

- Commutent entre eux, et avec le hamiltonien
- Dépendance polynomiale en *u*

Relations fonctionnelles

•
$$Q_{123} = \begin{vmatrix} Q_1(u) & Q_2(u) & Q_3(u) \\ Q_1(u-1)/x_1 & Q_2(u-1)/x_2 & Q_3(u-1)/x_3 \\ Q_1(u-2)/x_1^2 & Q_2(u-2)/x_2^2 & Q_3(u-2)/x_3^2 \end{vmatrix} / \begin{vmatrix} 1 & 1 & 1 \\ 1/x_1 & 1/x_2 & 1/x_3 \\ 1/x_1^2 & 1/x_2^2 & 1/x_3^2 \end{vmatrix}$$

for twist $g = \text{diag}(x_1, x_2, \cdots)$

 $T^{\mathbb{H}}(u) = \begin{vmatrix} Q_1(u) & 1 & Q_2(u) & 2 & Q_3(u) & \dots \\ Q_1(u-2)/x_1^2 & Q_2(u-2)/x_2^2 & Q_3(u-2)/x_3^2 & \dots \end{vmatrix} / \begin{vmatrix} 1 & 1 & 1 \\ 1/x_1 & 1/x_2 & 1/x_3 \\ 1/x_1^2 & 1/x_3^2 & 1/x_3^2 \end{vmatrix}$

- Une base d'états propres simultanée de tous ces opérateurs
- États propres caractérisés par les valeurs propres de ces opérateurs (polynômes en u)
- Équations de Bethe ⇔ existence de polynômes satisfaisant ces relations fonctionnelles
 (avec u = \frac{e^{ip}}{1 - e^{ip}})

Propriétés des opérateurs T et Q

- Commutent entre eux, et avec le hamiltonien
- Dépendance polynomiale en *u*

Relations fonctionnelles

• $Q_{123} = \begin{vmatrix} Q_{123} \\ Q_{123} \end{vmatrix}$	$\begin{array}{c} Q_{1}(u) \\ Q_{1}(u-1)/x_{1} & Q \\ Q_{1}(u-2)/x_{1}^{2} & Q \end{array}$	$Q_{2}(u)$ $Q_{2}(u-1)/x_{2} Q_{2}$ $Q_{2}(u-2)/x_{2}^{2} Q_{2}$	$\left. \begin{array}{c} Q_{3}(u) \\ g_{3}(u-1)/x_{3} \\ g_{3}(u-2)/x_{3}^{2} \end{array} \right / $	$\left \begin{array}{c} 1\\ 1/x_1\\ 1/x_1^2 \end{array} \right $	$\begin{array}{c c}1 & 1\\ 1/x_2 & 1/x_3\\ 1/x_2^2 & 1/x_3^2\\ \end{array}$
• $T^{\oplus}(u) =$	$Q_1(u+2)x_1^2$ $Q_1(u)$ $Q_1(u-2)/x_1^2$.	$Q_2(u+2)x_2^2$ $Q_2(u)$ $Q_2(u-2)/x_2^2$	$Q_{3}(u+2)x_{3}^{2}$ $Q_{3}(u)$ $Q_{3}(u-2)/x_{3}^{2}$		$\begin{vmatrix} 1 & 1 & 1 \\ 1/x_1 & 1/x_2 & 1/x_3 \\ 1/x_1^2 & 1/x_2^2 & 1/x_3^2 \end{vmatrix}$

- Une base d'états propres simultanée de tous ces opérateurs
- États propres caractérisés par les valeurs propres de ces opérateurs (polynômes en u)
- Équations de Bethe ⇔ existence de polynômes satisfaisant ces relations fonctionnelles
 (avec u = \frac{e^{ip}}{1 - e^{ip}})

Propriétés des opérateurs T et Q

- Commutent entre eux, et avec le hamiltonien
- Dépendance polynomiale en *u*

Relations fonctionnelles

•
$$Q_{123} = \begin{vmatrix} Q_1(u) & Q_2(u) & Q_3(u) \\ Q_1(u-1)/x_1 & Q_2(u-1)/x_2 & Q_3(u-1)/x_3 \\ Q_1(u-2)/x_1^2 & Q_2(u-2)/x_2^2 & Q_3(u-2)/x_3^2 \end{vmatrix} / \begin{vmatrix} 1 & 1 & 1 & 1 \\ 1/x_1 & 1/x_2 & 1/x_3 \\ 1/x_1^2 & 1/x_2^2 & 1/x_3^2 \end{vmatrix}$$

for twist $g = \text{diag}(x_1, x_2, \cdots)$
• $T^{\text{T}}(u) = \begin{vmatrix} Q_1(u+2)x_1^2 & Q_2(u+2)x_2^2 & Q_3(u+2)x_3^2 & \dots \\ Q_1(u) & Q_2(u) & Q_3(u) & \dots \\ Q_1(u-2)/x_1^2 & Q_2(u-2)/x_2^2 & Q_3(u-2)/x_3^2 & \dots \\ \vdots & \vdots & \ddots \end{vmatrix} / \begin{vmatrix} 1 & 1 & 1 & 1 \\ 1/x_1 & 1/x_2 & 1/x_3 \\ 1/x_1^2 & 1/x_2^2 & 1/x_3^2 \end{vmatrix}$

- Une base d'états propres simultanée de tous ces opérateurs
- États propres caractérisés par les valeurs propres de ces opérateurs (polynômes en u)
- Équations de Bethe ⇔ existence de polynômes satisfaisant ces relations fonctionnelles
 (avec u = \frac{e^{ip}}{1 - e^{ip}})

Propriétés des opérateurs T et Q

- Commutent entre eux, et avec le hamiltonien
- Dépendance polynomiale en *u*

Relations fonctionnelles

•
$$Q_{123} = \begin{vmatrix} Q_1(u) & Q_2(u) & Q_3(u) \\ Q_1(u-1)/x_1 & Q_2(u-1)/x_2 & Q_3(u-1)/x_3 \\ Q_1(u-2)/x_1^2 & Q_2(u-2)/x_2^2 & Q_3(u-2)/x_3^2 \end{vmatrix} / \begin{vmatrix} 1 & 1 & 1 & 1 \\ 1/x_1 & 1/x_2 & 1/x_3 \\ 1/x_1^2 & 1/x_2^2 & 1/x_3^2 \end{vmatrix}$$

for twist $g = \text{diag}(x_1, x_2, \cdots)$
• $T^{\text{IP}}(u) = \begin{vmatrix} Q_1(u+2)x_1^2 & Q_2(u+2)x_2^2 & Q_3(u+2)x_3^2 & \cdots \\ Q_1(u) & Q_2(u) & Q_3(u) & \cdots \\ Q_1(u-2)/x_1^2 & Q_2(u-2)/x_2^2 & Q_3(u-2)/x_3^2 & \cdots \\ \vdots & \vdots & \ddots \end{vmatrix} / \begin{vmatrix} 1 & 1 & 1 \\ 1/x_1 & 1/x_2 & 1/x_3 \\ 1/x_1^2 & 1/x_2^2 & 1/x_3^2 \end{vmatrix}$

- Une base d'états propres simultanée de tous ces opérateurs
- États propres caractérisés par les valeurs propres de ces opérateurs (polynômes en u)
- Équations de Bethe ⇔ existence de polynômes satisfaisant ces relations fonctionnelles
 (avec u = ^{e^{i p}}/_{1-e^{i p}})

Propriétés des opérateurs T et Q

- Commutent entre eux, et avec le hamiltonien
- Dépendance polynomiale en *u*

Relations fonctionnelles

•
$$Q_{123} = \begin{vmatrix} Q_1(u) & Q_2(u) & Q_3(u) \\ Q_1(u-1)/x_1 & Q_2(u-1)/x_2 & Q_3(u-1)/x_3 \\ Q_1(u-2)/x_1^2 & Q_2(u-2)/x_2^2 & Q_3(u-2)/x_3^2 \end{vmatrix} / \begin{vmatrix} 1 & 1 & 1 \\ 1/x_1 & 1/x_2 & 1/x_3 \\ 1/x_1^2 & 1/x_2^2 & 1/x_3^2 \end{vmatrix}$$

for twist $g = \text{diag}(x_1, x_2, \cdots)$
• $T^{\text{T}}(u) = \begin{vmatrix} Q_1(u+2)x_1^2 & Q_2(u+2)x_2^2 & Q_3(u+2)x_3^2 & \cdots \\ Q_1(u) & Q_2(u) & Q_3(u) & \cdots \\ Q_1(u-2)/x_1^2 & Q_2(u-2)/x_2^2 & Q_3(u-2)/x_3^2 & \cdots \\ \vdots & \vdots & \ddots \end{vmatrix} / \begin{vmatrix} 1 & 1 & 1 \\ 1/x_1 & 1/x_2 & 1/x_3 \\ 1/x_1^2 & 1/x_2^2 & 1/x_3^2 \end{vmatrix}$

- Une base d'états propres simultanée de tous ces opérateurs
- États propres caractérisés par les valeurs propres de ces opérateurs (polynômes en *u*)
- Équations de Bethe ⇔ existence de polynômes satisfaisant ces relations fonctionnelles
 (avec u = \frac{e^{ip}}{1 - e^{ip}})

Propriétés des opérateurs T et Q

- Commutent entre eux, et avec le hamiltonien
- Dépendance polynomiale en *u*

Relations fonctionnelles

•
$$Q_{123} = \begin{vmatrix} Q_1(u) & Q_2(u) & Q_3(u) \\ Q_1(u-1)/x_1 & Q_2(u-1)/x_2 & Q_3(u-1)/x_3 \\ Q_1(u-2)/x_1^2 & Q_2(u-2)/x_2^2 & Q_3(u-2)/x_3^2 \end{vmatrix} / \begin{vmatrix} 1 & 1 & 1 \\ 1/x_1 & 1/x_2 & 1/x_3 \\ 1/x_1^2 & 1/x_2^2 & 1/x_3^2 \end{vmatrix}$$

for twist $g = \text{diag}(x_1, x_2, \cdots)$
• $T^{\text{T}}(u) = \begin{vmatrix} Q_1(u+2)x_1^2 & Q_2(u+2)x_2^2 & Q_3(u+2)x_3^2 & \cdots \\ Q_1(u) & Q_2(u) & Q_3(u) & \cdots \\ Q_1(u-2)/x_1^2 & Q_2(u-2)/x_2^2 & Q_3(u-2)/x_3^2 & \cdots \\ \vdots & \vdots & \ddots \end{vmatrix} / \begin{vmatrix} 1 & 1 & 1 \\ 1/x_1 & 1/x_2 & 1/x_3 \\ 1/x_1^2 & 1/x_2^2 & 1/x_3^2 \end{vmatrix}$

- Une base d'états propres simultanée de tous ces opérateurs
- États propres caractérisés par les valeurs propres de ces opérateurs (polynômes en *u*)
- Équations de Bethe \Leftrightarrow existence de polynômes satisfaisant ces relations fonctionnelles (avec $u = \frac{e^{ip}}{1 e^{ip}}$)

Propriétés des opérateurs T et Q

- Commutent entre eux, et avec le hamiltonien
- Dépendance polynomiale en *u*

Relations fonctionnelles

•
$$Q_{123} = \begin{vmatrix} Q_1(u) & Q_2(u) & Q_3(u) \\ Q_1(u-1)/x_1 & Q_2(u-1)/x_2 & Q_3(u-1)/x_3 \\ Q_1(u-2)/x_1^2 & Q_2(u-2)/x_2^2 & Q_3(u-2)/x_3^2 \end{vmatrix} / \begin{vmatrix} 1 & 1 & 1 \\ 1/x_1 & 1/x_2 & 1/x_3 \\ 1/x_1^2 & 1/x_2^2 & 1/x_3^2 \end{vmatrix}$$

for twist $g = \text{diag}(x_1, x_2, \cdots)$
• $T^{\text{IP}}(u) = \begin{vmatrix} Q_1(u+2)x_1^2 & Q_2(u+2)x_2^2 & Q_3(u+2)x_3^2 & \dots \\ Q_1(u) & Q_2(u) & Q_3(u) & \dots \\ Q_1(u-2)/x_1^2 & Q_2(u-2)/x_2^2 & Q_3(u-2)/x_3^2 & \dots \\ \vdots & \vdots & \ddots \end{vmatrix} / \begin{vmatrix} 1 & 1 & 1 \\ 1/x_1 & 1/x_2 & 1/x_3 \\ 1/x_1^2 & 1/x_2^2 & 1/x_3^2 \end{vmatrix}$

- Une base d'états propres simultanée de tous ces opérateurs
- États propres caractérisés par les valeurs propres de ces opérateurs (polynômes en *u*)
- Équations de Bethe \Leftarrow existence de polynômes satisfaisant ces relations fonctionnelles (avec $u = \frac{e^{ip}}{1 e^{ip}}$)

Comptage des solution polynomiales de ces équations fonctionnelles

- Exemple du cas périodique (twist g = 1).
- Des polynômes $\mathbb{Q}_{a,s}$ tels que $\mathbb{Q}_{a+1,s+1}\mathbb{Q}_{a,s} \propto \begin{vmatrix} \mathbb{Q}_{a+1,s}(u) & \mathbb{Q}_{a,s+1}(u) \\ \mathbb{Q}_{a+1,s}(u-1) & \mathbb{Q}_{a,s+1}(u-1) \end{vmatrix}$
- Limite où $1 \ll \xi_1 \ll \xi_2 \ll \cdots \ll \xi_L$
- Solutions indexées par des tableaux de Young standards :
- \rightsquigarrow comptage des solutions

→ complétude

Systèmes quantiques	Ansatz de Bethe
000000	0000000

Comptage et caractérisation des solution polynomiales de ces équations fonctionnelles

- Exemple du cas périodique (twist g = 1).
- Des polynômes $\mathbb{Q}_{a,s}$ tels que $\mathbb{Q}_{a+1,s+1}\mathbb{Q}_{a,s} \propto \begin{vmatrix} \mathbb{Q}_{a+1,s}(u) & \mathbb{Q}_{a,s+1}(u) \\ \mathbb{Q}_{a+1,s}(u-1) & \mathbb{Q}_{a,s+1}(u-1) \end{vmatrix}$
- Limite où $1 \ll \xi_1 \ll \xi_2 \ll \cdots \ll \xi_L$
- Solutions indexées par des tableaux de Young standards :
- \rightsquigarrow comptage des solutions

\rightsquigarrow complétude

Sébastien Leurent, IMB, Math-Phys

Perspectives

Systèmes quantiques	Ansatz de Bethe	Perspectives
000000	0000000	0000

Comptage et caractérisation des solution polynomiales de ces équations fonctionnelles

- Exemple du cas périodique (twist g = 1).
- Des polynômes $\mathbb{Q}_{a,s}$ tels que $\mathbb{Q}_{a+1,s+1}\mathbb{Q}_{a,s} \propto \begin{vmatrix} \mathbb{Q}_{a+1,s}(u) & \mathbb{Q}_{a,s+1}(u) \\ \mathbb{Q}_{a+1,s}(u-1) & \mathbb{Q}_{a,s+1}(u-1) \end{vmatrix}$
- Limite où $1 \ll \xi_1 \ll \xi_2 \ll \cdots \ll \xi_L$
- Solutions indexées par des tableaux de Young standards :
- → comptage des solutions

→ complétude

Systèmes quantiques	Ansatz de Bethe	Perspectives
000000	0000000	0000

Comptage et caractérisation des solution polynomiales de ces équations fonctionnelles

- Exemple du cas périodique (twist g = 1).
- Des polynômes $\mathbb{Q}_{a,s}$ tels que $\mathbb{Q}_{a+1,s+1}\mathbb{Q}_{a,s} \propto \begin{vmatrix} \mathbb{Q}_{a+1,s}(u) & \mathbb{Q}_{a,s+1}(u) \\ \mathbb{Q}_{a+1,s}(u-1) & \mathbb{Q}_{a,s+1}(u-1) \end{vmatrix}$
- Limite où $1 \ll \xi_1 \ll \xi_2 \ll \cdots \ll \xi_L$
- Solutions indexées par des tableaux de Young standards :
- → comptage des solutions

→ complétude
Systèmes quantiques	Ansatz de Bethe	Perspectives
000000	0000000	0000

- Exemple du cas périodique (twist g = 1).
- Des polynômes $\mathbb{Q}_{a,s}$ tels que $\mathbb{Q}_{a+1,s+1}\mathbb{Q}_{a,s} \propto \begin{vmatrix} \mathbb{Q}_{a+1,s}(u) & \mathbb{Q}_{a,s+1}(u) \\ \mathbb{Q}_{a+1,s}(u-1) & \mathbb{Q}_{a,s+1}(u-1) \end{vmatrix}$
- Limite où $1 \ll \xi_1 \ll \xi_2 \ll \cdots \ll \xi_L$
- Solutions indexées par des tableaux de Young standards :

→ comptage des solutions

→ complétude

Systèmes quantiques	Ansatz de Bethe	Perspectives
000000	0000000	0000

- Exemple du cas périodique (twist g = 1).
- Des polynômes $\mathbb{Q}_{a,s}$ tels que $\mathbb{Q}_{a+1,s+1}\mathbb{Q}_{a,s} \propto \begin{vmatrix} \mathbb{Q}_{a+1,s}(u) & \mathbb{Q}_{a,s+1}(u) \\ \mathbb{Q}_{a+1,s}(u-1) & \mathbb{Q}_{a,s+1}(u-1) \end{vmatrix}$
- Limite où $1 \ll \xi_1 \ll \xi_2 \ll \cdots \ll \xi_L$
- Solutions indexées par des tableaux de Young standards :

→ comptage des solutions

→ complétude

Systèmes quantiques	Ansatz de Bethe	Perspectives
000000	0000000	0000

- Exemple du cas périodique (twist g = 1).
- Des polynômes $\mathbb{Q}_{a,s}$ tels que $\mathbb{Q}_{a+1,s+1}\mathbb{Q}_{a,s} \propto \begin{vmatrix} \mathbb{Q}_{a+1,s}(u) & \mathbb{Q}_{a,s+1}(u) \\ \mathbb{Q}_{a+1,s}(u-1) & \mathbb{Q}_{a,s+1}(u-1) \end{vmatrix}$
- Limite où $1 \ll \xi_1 \ll \xi_2 \ll \cdots \ll \xi_L$
- Solutions indexées par des tableaux de Young standards :
- \rightsquigarrow comptage des solutions

→ complétude

Systèmes quantiques	Ansatz de Bethe	Perspectives
000000	0000000	0000

- Exemple du cas périodique (twist g = 1).
- Des polynômes $\mathbb{Q}_{a,s}$ tels que $\mathbb{Q}_{a+1,s+1}\mathbb{Q}_{a,s} \propto \begin{vmatrix} \mathbb{Q}_{a+1,s}(u) & \mathbb{Q}_{a,s+1}(u) \\ \mathbb{Q}_{a+1,s}(u-1) & \mathbb{Q}_{a,s+1}(u-1) \end{vmatrix}$
- Limite où $1 \ll \xi_1 \ll \xi_2 \ll \cdots \ll \xi_L$
- Solutions indexées par des tableaux de Young standards :
- \rightsquigarrow comptage des solutions

→ complétude

Outline

- 1 Systèmes quantiques
 - Ondes↔particules
 - Équation de Schrödinger
 - Chaîne de Spins
- 2 Integrabilité des chaînes de spins XXX
 - "Coordinate Bethe Ansatz"
 - "Wronskian Bethe Ansatz"
 - Completude

3 Perspectives

- Intégrabilité
- Équations fonctionelles
- Observables physiques

Systèmes intégrables : Valeurs propres de H sont

$$E = E_0 + \sum_k e(p_k)$$
 où $\forall j, e^{j L p_j} = \prod_{k \neq j} S(p_j, p_k)$

où les fonctions e(p) et S(p, p') dépendent du modèle.

Propriété emblématique : Équation de Yang-Baxter

Conditions (en général) :

- espace unidimensionnel, périodique
- interactions à faible portée (comparé à la taille de l'espace)
- "beaucoup" de symétries
- " Thermodynamic Bethe Ansatz" : continuation analytique pour une petite période spatiale

Systèmes intégrables : Valeurs propres de H sont

$$E = E_0 + \sum_k e(p_k)$$
 où $\forall j, e^{i L p_j} = \prod_{k \neq j} S(p_j, p_k)$

où les fonctions e(p) et S(p, p') dépendent du modèle.

Propriété emblématique : Équation de Yang-Baxter

Conditions (en général) :

- espace unidimensionnel, périodique
- interactions à faible portée (comparé à la taille de l'espace)
- "beaucoup" de symétries
- " Thermodynamic Bethe Ansatz" : continuation analytique pour une petite période spatiale

Systèmes intégrables : Valeurs propres de H sont

 $E = E_0 + \sum_k e(p_k)$ où $\forall j, e^{j L p_j} = \prod_{k \neq j} S(p_j, p_k)$

où les fonctions e(p) et S(p, p') dépendent du modèle.

Propriété emblématique : Équation de Yang-Baxter

Conditions (en général) :

- espace unidimensionnel, périodique
- interactions à faible portée (comparé à la taille de l'espace)
- "beaucoup" de symétries
- " Thermodynamic Bethe Ansatz" : continuation analytique pour une petite période spatiale

Systèmes intégrables : Valeurs propres de H sont

 $E = E_0 + \sum_k e(p_k)$ où $\forall j, e^{j L p_j} = \prod_{k \neq j} S(p_j, p_k)$

où les fonctions e(p) et S(p, p') dépendent du modèle.

Propriété emblématique : Équation de Yang-Baxter

Conditions (en général) :

- espace unidimensionnel, périodique
- interactions à faible portée (comparé à la taille de l'espace)
- "beaucoup" de symétries
- " Thermodynamic Bethe Ansatz" : continuation analytique pour une petite période spatiale

Exemples d'autres modèles intégrables

Beaucoup de modèles où le spectre se déduit d'équations fonctionelles et conditions d'analyticité :

- Théorie de super-Yang Mills avec $\mathcal{N}=4$ supersymmétries :
 - mêmes equations fonctionnelle que précédemment
 - \bullet "polynomialité" remplacée holomorphie sur $\mathbb{C}\setminus\mathbb{R}$ et une coupure $\subset\mathbb{R}$
- Chaîne de spins de symétrie SO
 - polynomialité
 - equations fonctionnelles différentes de celles présentées ici
- ABJM, Fishnet (autres théories des champs)
 - fonctions non-polynomiales
 - équations fonctionelles différentes de celles présentées ici

bonus : Les fonctions Q sur lesquelles portent ces équations apparaissent aussi dans le calcul d'autres observables physiques (fonctions de corrélation)

Exemples d'autres modèles intégrables

Beaucoup de modèles où le spectre se déduit d'équations fonctionelles et conditions d'analyticité :

- Théorie de super-Yang Mills avec $\mathcal{N}=4$ supersymmétries :
 - mêmes equations fonctionnelle que précédemment
 - "polynomialité" remplacée holomorphie sur $\mathbb{C}\setminus\mathbb{R}$ et une coupure $\subset\mathbb{R}$
- Chaîne de spins de symétrie SO
 - polynomialité
 - equations fonctionnelles différentes de celles présentées ici
- ABJM, Fishnet (autres théories des champs)
 - fonctions non-polynomiales
 - équations fonctionelles différentes de celles présentées ici

bonus : Les fonctions Q sur lesquelles portent ces équations apparaissent aussi dans le calcul d'autres observables physiques (fonctions de corrélation)

Exemples d'autres modèles intégrables

Beaucoup de modèles où le spectre se déduit d'équations fonctionelles et conditions d'analyticité :

- Théorie de super-Yang Mills avec $\mathcal{N}=4$ supersymmétries :
 - mêmes equations fonctionnelle que précédemment
 - "polynomialité" remplacée holomorphie sur $\mathbb{C}\setminus\mathbb{R}$ et une coupure $\subset\mathbb{R}$
- Chaîne de spins de symétrie SO
 - polynomialité
 - equations fonctionnelles différentes de celles présentées ici
- ABJM, Fishnet (autres théories des champs)
 - fonctions non-polynomiales
 - équations fonctionelles différentes de celles présentées ici

bonus : Les fonctions Q sur lesquelles portent ces équations apparaissent aussi dans le calcul d'autres observables physiques (fonctions de corrélation)

Exemples d'autres modèles intégrables

Beaucoup de modèles où le spectre se déduit d'équations fonctionelles et conditions d'analyticité :

- Théorie de super-Yang Mills avec $\mathcal{N}=$ 4 supersymmétries :
 - mêmes equations fonctionnelle que précédemment
 - "polynomialité" remplacée holomorphie sur $\mathbb{C}\setminus\mathbb{R}$ et une coupure $\subset\mathbb{R}$
- Chaîne de spins de symétrie SO
 - o polynomialité
 - equations fonctionnelles différentes de celles présentées ici
- ABJM, Fishnet (autres théories des champs)
 - fonctions non-polynomiales
 - équations fonctionelles différentes de celles présentées ici

bonus : Les fonctions Q sur lesquelles portent ces équations apparaissent aussi dans le calcul d'autres observables physiques (fonctions de corrélation)

Exemples d'autres modèles intégrables

Beaucoup de modèles où le spectre se déduit d'équations fonctionelles et conditions d'analyticité :

- Théorie de super-Yang Mills avec $\mathcal{N}=$ 4 supersymmétries :
 - mêmes equations fonctionnelle que précédemment
 - "polynomialité" remplacée holomorphie sur $\mathbb{C}\setminus\mathbb{R}$ et une coupure $\subset\mathbb{R}$
- Chaîne de spins de symétrie SO
 - polynomialité
 - equations fonctionnelles différentes de celles présentées ici
- ABJM, Fishnet (autres théories des champs)
 - fonctions non-polynomiales
 - équations fonctionelles différentes de celles présentées ici

bonus : Les fonctions Q sur lesquelles portent ces équations apparaissent aussi dans le calcul d'autres observables physiques (fonctions de corrélation)

Exemples d'autres modèles intégrables

Beaucoup de modèles où le spectre se déduit d'équations fonctionelles et conditions d'analyticité :

- Théorie de super-Yang Mills avec $\mathcal{N}=$ 4 supersymmétries :
 - mêmes equations fonctionnelle que précédemment
 - "polynomialité" remplacée holomorphie sur $\mathbb{C}\setminus\mathbb{R}$ et une coupure $\subset\mathbb{R}$
- Chaîne de spins de symétrie SO
 - polynomialité
 - equations fonctionnelles différentes de celles présentées ici
- ABJM, Fishnet (autres théories des champs)
 - fonctions non-polynomiales
 - équations fonctionelles différentes de celles présentées ici

bonus : Les fonctions Q sur lesquelles portent ces équations apparaissent aussi dans le calcul d'autres observables physiques (fonctions de corrélation)

Exemples d'autres modèles intégrables

Beaucoup de modèles où le spectre se déduit d'équations fonctionelles et conditions d'analyticité :

- Théorie de super-Yang Mills avec $\mathcal{N}=4$ supersymmétries :
 - mêmes equations fonctionnelle que précédemment
 - "polynomialité" remplacée holomorphie sur $\mathbb{C}\setminus\mathbb{R}$ et une coupure $\subset\mathbb{R}$
- Chaîne de spins de symétrie SO
 - polynomialité
 - equations fonctionnelles différentes de celles présentées ici
- ABJM, Fishnet (autres théories des champs)
 - fonctions non-polynomiales
 - équations fonctionelles différentes de celles présentées ici

bonus : Les fonctions Q sur lesquelles portent ces équations apparaissent aussi dans le calcul d'autres observables physiques (fonctions de corrélation)

Exemples d'autres modèles intégrables

Beaucoup de modèles où le spectre se déduit d'équations fonctionelles et conditions d'analyticité :

- Théorie de super-Yang Mills avec $\mathcal{N}=4$ supersymmétries :
 - mêmes equations fonctionnelle que précédemment
 - "polynomialité" remplacée holomorphie sur $\mathbb{C}\setminus\mathbb{R}$ et une coupure $\subset\mathbb{R}$
- Chaîne de spins de symétrie SO
 - polynomialité
 - equations fonctionnelles différentes de celles présentées ici
- ABJM, Fishnet (autres théories des champs)
 - fonctions non-polynomiales
 - équations fonctionelles différentes de celles présentées ici

bonus : Les fonctions Q sur lesquelles portent ces équations apparaissent aussi dans le calcul d'autres observables physiques (fonctions de corrélation)

Exemples d'autres modèles intégrables

Beaucoup de modèles où le spectre se déduit d'équations fonctionelles et conditions d'analyticité :

- Théorie de super-Yang Mills avec $\mathcal{N}=$ 4 supersymmétries :
 - mêmes equations fonctionnelle que précédemment
 - "polynomialité" remplacée holomorphie sur $\mathbb{C}\setminus\mathbb{R}$ et une coupure $\subset\mathbb{R}$
- Chaîne de spins de symétrie SO
 - polynomialité
 - equations fonctionnelles différentes de celles présentées ici
- ABJM, Fishnet (autres théories des champs)
 - fonctions non-polynomiales
 - équations fonctionelles différentes de celles présentées ici

bonus : Les fonctions Q sur lesquelles portent ces équations apparaissent aussi dans le calcul d'autres observables physiques (fonctions de corrélation)