I Cours

- 1. Déterminer le rayon de courbure de l'arc $\gamma(t)=(t,\int_1^\infty \frac{\ln u+1/(ut)^2}{u}\mathrm{d}u)$
- $2.\,{\rm Pour}$ recevoir les satellites, pour quoi utilise t'on des paraboles et non des patatoïdes de révolution?
- 2'. On pourra aussi énnoncer des propriétés analogues pour d'autres coniques...
- 3. On se donne deux fonctions γ et τ définies sur un intervalle I. Existe t'il un arc Γ : $I \to \mathbf{R}^3$ tels qu'en $\Gamma(s)$ la courbure soit $\gamma(s)$ et la torsion $\tau(s)$?

II Coniques

- 1. On se donne une conique (C) et une droite (D). Étudier les milieux des cordes (de(C)) qui sont parallèles à (D)
- 2. Montrer que si un paralélograme stricte est inscrit dans une conique, alors son centre est le centre de la conique

III Plan osculateur

Soit $\alpha: I \to \mathbf{R}^3$ une courbe régulière où I est un intervalle ouvert non trivial. Soit $t_0 \in I$. On suppose que la courbure de α en t_0 est non nulle. On se donne un plan (affine) P vérifiant les hypothèses suivantes :

- a. $\alpha(t_0) \in P$
- b. $\overrightarrow{T}(t_0) \in \overrightarrow{P}$
- c. L'image de tout voisinage de t_0 dans I par α possède des points de chaque côté du plan P .

Montrer que P est le plan osculateur en $\alpha(t_0)$.

IV Courbe polaire

Soit Γ la courbe $\rho(\theta) = \sqrt{\sin(2\theta)}$.

- 1. Tracer cette courbe.
- 2. Calculer le rayon de courbure.
- 3. Soient I le centre de courbure en M et H le projeté orthogonal de I sur (OM). Déterminer \overrightarrow{MH} .
- 4. En déduire une construction géométrique de la développée de $\Gamma.$

V Théorème des extrema liés

Soit E un \mathbf{R} -ev de dimension 2, et f et g dans $\mathcal{C}^1(E, \mathbf{R})$.

Notons $\Gamma = \{x \in E \mid g(x) = 0\}.$

Soit $x_0 \in E$: $dg_{x_0} \neq 0$. Montrer que si $f_{|\Gamma}$ admet un extremum en x_0 , alors $\exists \lambda \in \mathbf{R} : df_{x_0} = \lambda dg_{x_0}$

Remarque : Vous avez sans doute déjà utilisé en physique une généralisation de ce résulatat en dimension quelconque. Rapellons-en l'ennoncé :

Soient f, g_1, \ldots, g_p des fonctions de classe \mathcal{C}^1 sur un ouvert U de \mathbf{R}^n , à valeurs dans \mathbf{R} et X l'ensemble défini par : $X = x \in U; g_1(x) = \ldots = g_p(x) = 0.$

Si la restriction de f à X admet un extrémum local en a, et si les différentielles $\mathrm{d}g_1(a),\ldots,\mathrm{d}g_p(a)$ sont des formes linéaires indépendantes, alors il existe des réels c_1,\ldots,c_p tels que : $\mathrm{d}f(a)=c_1\mathrm{d}g_1(a)+\ldots+c_p\mathrm{d}g_p(a)$ Ces réels c_1,\ldots,c_p sont appelés multiplicateurs de Lagrange.

VI Courbes tracées sur une sphère

Soit $\mathcal S$ la sphère de centre O et de rayon R et Γ une courbe paramétrée de classe C^2 tracée sur $\mathcal S$.

- 1. Montrer que le rayon de courbure en tout point de Γ est inférieur ou égal à R.
- 2. Déterminer les courbes Γ dont le rayon de courbure en tout point est R.
- 3. Déterminer les courbes Γ dont le rayon de courbure est constant.