I Cours

Donner des conditions (le moins stricte possibles) auxquelles les théorèmes suivants s'appliquent

- 1. Si une série $\sum u_n$ converge vers la somme S, alors pour toute permutation $\varphi \in \mathcal{S}(\mathbf{N}), \sum u_{\varphi(n)}$ converge aussi vers la somme S
- 2. Sommation par paquets : Soit $\psi : \mathbf{N} \to \mathbf{N}$ croissante, et

$$v_n = \sum_{i=\psi(n)+1}^{\psi(n+1)} u_n$$

Alors $\sum u_n$ converge ssi $\sum v_n$ converge

II Équivalents

1. Soit $\alpha < 1$. Donner un équivalent de

$$S_n = \sum_{k=1}^{N} \frac{1}{k^{\alpha}}$$

2. Pour $\alpha > 1$ donner un équivalent simple de

$$R_n = \sum_{n=N+1}^{\infty} \frac{1}{n^{\alpha}}$$

3. Déterminer la convergence de la série de terme général

$$u_n = \sum_{k=n+1}^{\infty} \frac{1}{k^2}$$

4. Déterminer

$$\lim_{a \to \infty} \sum_{n=1}^{\infty} \frac{a}{n^2 + a^2}$$

III Convergence

1. Discuter en fonction du paramètre $\alpha>0$ la nature de la série $\sum_{n>0}u_n$ où

$$\forall n \in \mathbf{N}^*, u_n = \frac{(-1)^{n-1}}{n^{\alpha} + (-1)^n}$$

2. Discuter en fonction des réels θ, φ la nature de la série $\sum_{n \geq 2} u_n$ où

$$\forall n \ge 2, u_n = \frac{e^{i \cdot n\theta}}{\sqrt{n} + e^{i \cdot n\varphi}}$$

3. Plus généralement, discuter en fonction des paramètres $\theta, \varphi \in \mathbf{R}$ et $\alpha>0$ la nature de la série $\sum_{n\geq 2}u_n$ où

$$\forall n \ge 2, u_n = \frac{e^{i \cdot n\theta}}{n^{\alpha} + e^{i \cdot n\varphi}}$$

IV Formule de Stirling

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par

$$\forall n \in \mathbf{N}, \ u_n = \frac{n^n e^{-n} \sqrt{n}}{n!}$$

1. Donner la nature de la série de terme général $v_n = \log(u_{n+1}/u_n)$. En déduire l'existence d'un réel k > 0 tel que $n! \sim k\sqrt{n}n^ne^{-n}$ (pour $n \to \infty$)

a) Si $\sum u_n$ diverge, discuter en fonction de $\alpha > 0$ la nature de la série

$$\sum \frac{u_n}{R_n^{\alpha}}, \text{ où } R_n = \sum_{k=n}^{\infty} u_k$$

b) On suppose $u_n \ll R_n$ lorsque $n \to \infty$. Exprimer en fonction de R_n un équivalent des sommes partielles (resp de restes) de la série $\sum u_n/R_n^{\alpha}$ lorsqu'elle diverge (resp lorsqu'elle converge).

2. Calculer cette constante $k \in \mathbf{R}$.

Indication: On pourra utiliser la formule de Wallis : $\frac{1}{p} \left[\frac{2p(2p-2)\cdots 2}{(2p-1)(2p-3)\cdots 1} \right]^2 \to \pi \text{ (quand } p \to \infty)$

V Équivalents et convergence

Soit $\sum u_n$ une série à termes > 0

1.

2.

a) Si $\sum u_n$ diverge, discuter en fonction de $\alpha>0$ la nature de la série

$$\sum \frac{u_n}{R_n^{\alpha}}, \text{ où } S_n = \sum_{k=1}^n u_k$$

b) On suppose $u_n \ll S_n$ lorsque $n \to \infty$. Exprimer en fonction de S_n un équivalent des sommes partielles (resp de restes) de la série $\sum u_n/S_n^{\alpha}$ lorsqu'elle diverge (resp lorsqu'elle converge).