I Cours

- 1. Dérivation sous le signe ∫
- 2. Interversion de \sum et \int

II Une série de fonctions

Soit (λ_n) une suite de réels croissante, positive, tendant vers $+\infty$ On pose $f(x)=\sum_{n=0}^\infty (-1)^n e^{-\lambda_n x}$

- 1. Justifier brièvement la définition et la continuité de f
- 2. Calculer $\int_0^\infty f(t) dt$

III Calcul d'intégrale

Pour x > 0, on pose $H(x) = \int_{\mathbf{R}_+} |\sin y| e^{-xy} dy$.

- 1. Convergence de H(x). Calculer H(x) Montrer que $H(x) = \mathcal{O}(1/x^2)$.
- 2. Étudier de même $\int_{\mathbf{R}_+} \sin xy e^{-zy} \mathrm{d}y$
- 3. Montrer que pour tout $t \in \mathbf{R}$ et x > 1, $\int_{\mathbf{R}_+} e^{-xy} \frac{\sin(ty)}{e^y 1} dy = \sum_{n \ge 1} \frac{t}{t^2 + (n+x)^2}$

Indication: $\frac{1}{e^y-1} = \sum \cdots$

IV Quelques intégrales à paramètre

- 1. Calculer $\int_{\mathbf{R}} e^{-\imath tx} e^{-t^2} dt$
- 2. Calculer, pour tout $x \ge 0$, la valeur de l'intégrale

$$I(x) = \int_0^\infty \frac{\sin xt}{t} e^{-t} dt$$

V Intégrale de Dirichlet

- 1. Montrer que $\int_{\mathbf{R}_{\perp}} \frac{\sin t}{t}$ est semi-convergente.
- 2. CALCUL PAR TRANFORMÉE DE LAPLACE : On considère

$$F(x) = \int_0^\infty e^{-xt} \frac{\sin t}{t} dt$$

- S.LEURENT sleurent@clipper.ens.fr
 - a) Domaine de définition de F
 - b) Calcul de F sur \mathbf{R}_+^* :
 - c) Montrer que pour tout 0 < U < V,

$$\left| \int_{U}^{V} e^{-xt} \frac{\sin t}{t} dt \right| \le \frac{2}{U}$$

En déduire que F est continue en zéro.

- d) Conclure
- 3. Lemme de Riemann-Lebesgues
 - a) Montrer que $\forall n \in \mathbf{N}$,

$$\int_0^{\pi} \frac{\sin((n+\frac{1}{2})t)}{\sin\frac{t}{2}} dt = \pi$$

Indication: On pourra utiliser une relation entre $\sin((n+\frac{1}{2})t)$ et $\sin((n-\frac{1}{2})t)$

b) Montrer que pour $f \in \mathcal{C}([a, b], \mathbf{C})$,

$$\lim_{\lambda \to \infty} \int_a^b e^{i\lambda t} f(t) dt = 0$$

c)En déduire que

$$\lim_{n \to \infty} \int_0^{\pi} \frac{\sin\left((n + \frac{1}{2})t\right)}{t} dt = \frac{\pi}{2}.$$

d) Conclure