I Vrai/Faux?

1. Si $A \subset X$ (où X est un espace métrique), et $f: X \to Y$ continue sur A, alors $f(\overline{A}) = \overline{f(A)}$

1'. Et si X compact?

 $2.\,\mathrm{Deux}$ normes sont équivalentes s
si elles définissent les mêmes applications continues

3. Une fonction C^2 est uniformément continue ssi sa dérivée est bornée

4. Si $A \subset X$ connexe par arc et $f: X \mapsto Y$ continue, alors f(A) est connexe par arc.

 $5.\,\mathrm{Sur}$ un compact, toute application uniformémént continue est lipschitzienne

6. Si $A \subset X$ est complet et $f: X \mapsto Y$ continue, alors f(A) est complet.

7. Les unions et intersections de connexes par arcs sont connexes par arcs.

8. Si (E,d) est métrique et $F\subset E$ fermé, tel que ∂F soit connexe par arc, alors F est connexe par arc.

8'. Et si F n'est pas fermé?

II Morphismes

Déterminer les morphismes continus de $(\mathbf{R}, +)$ dans $(\mathbf{R}, +)$, et ceux de $(\mathbf{R}, +)$ dans (\mathbf{R}^*, \times)

III Point fixe

Soit (E, d) métrique compact, et $f: E \to E$ telle que

$$\forall (x,y) \in E^2, (x \neq y) \Rightarrow d(f(x), f(y)) < d(x,y)$$

1. Montrer que f admet un point fixe α .

2. Montrer que toute suite $x_n \in E$ telle que $x_{n+1} = f(x_n)$ converge vers α .

3. Le résultat subsiste-t-il si E est seulement supposé complet?

IV Continuité

Soient E et F des espaces métriques, et K métrique compact.

On se donne
$$f: \left\{ \begin{array}{ccc} E \times K & \to & F \\ (\lambda, x) & \mapsto & f(\lambda, x) \end{array} \right.$$
 et on pose, pour $y \in F$, $E_y = \{\lambda \in E: \exists x \in K: f(\lambda, x) = y\}$

1. Montrer que E_y est fermé, quel que soit $y \in F$.

2. Soit $y \in E$ tel que $\forall \lambda \in E_y, \exists !x^* \in K: f(\lambda, x^*) = y.$ On note alors $\varphi(\lambda) = x^*.$

Montrer que φ est continue.

V Topologie sur les matrices

On se place dans $\mathcal{M}_n(\mathbf{K})$ (où $\mathbf{K} \in \{\mathbf{R}, \mathbf{C}\}$) muni de sa topologie usuelle.

1. Déterminer l'interieur et l'adhérence de l'ensemble des matrices de rang $r < r_0$ où $r_0 < n$.

2. $GL_n(\mathbf{K})$ est il connexe par arcs?

Indication: On pourra considérer l'application det : $\operatorname{GL}_n(\mathbf{R}) \to \mathbf{R}^*$

3. Qu'en est-il des matrices de rang $r \leq r_0$ pour r_0 fixé?

4. Pour $\mathbf{K} = \mathbf{C}$, montrer que les matrices diagonalisables à valeurs propres distinctes sont un ouvert dense et connexe par arc de $\mathcal{M}_n(\mathbf{C})$.

VI Distance à un fermé

Soit (E, d) un espace metrique.

1. Soit $F \subset E$ un fermé.

a) Montrer que $x \mapsto d(x, F)$ est continue.

b) Montrer que $d(x, F) = 0 \Leftrightarrow x \in F$

Soit $G \subset E$ un ouvert, et d' définie sur G par

$$d'(x,y) = d(x,y) + \left| \frac{1}{d(x,E \setminus G)} + \frac{1}{d(y,E \setminus G)} \right|$$

2. Montrer que d' est une distance définissant la même topologie que d.

Soient $(G_i)_{i \in \mathbb{N}}$ des ouverts, $A = \bigcap_{i \in \mathbb{N}} G_i$ et d'' définie sur A par

$$d''(x,y) = d(x,y) + \left| \frac{1}{d(x,E \setminus G)} + \frac{1}{d(y,E \setminus G)} \right|$$

3. Montrer que d'' est une distance définissant sur A la même topologie que d.

4. Si (E, d) est complet, montrer que (A, d'') l'est aussi.

VII Suite récurrente

Soit $f: \mathbf{R}^m \to \mathbf{R}^n$ continue et $u_0 \in \mathbf{R}^m$. On pose $u_{n+1} = f(u_n)$. On suppose que u_n admet une seule valeur d'adhérence, montrer qu'elle converge.

VIII Espace $\ell^1(\mathbf{R})$

Soit $\ell^1(\mathbf{R}) = \{(u_n) \in \mathbf{R}^{\mathbf{N}} : \sum_{n \in \mathbf{N}} u_n < \infty \}.$

1. Pour $u \in \ell^1(\mathbf{R})$, on pose $||u|| = \sum_{n \in \mathbf{N}} u_n$. Montrer que $(\ell^1(\mathbf{R}), ||\cdot||)$ est un espace vectoriel normé complet de dimension infinie.

2. Soit $\alpha_n \geq 0$. On note $A_{\alpha} = \{(u_n] \in \ell^1(\mathbf{R}) \forall n, u_n \leq \alpha_n\}$. Trouver une CNS sur α pour que A_{α} soit compact.