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Theorem 5. If
- P is v-closed
- z 6∈ V ar(P )
- y 6∈ FV (P )

then P ≡ P{[z/y]} .

Lemma 1. [[E{E′/x}]]s = [[E]][s|x→[[E′]]s] if [[E′]]s exists

Proof. Lemma 1

– [[x{E′/x}]]s = [[E′]]s = [[x]][s|x→[[E′]]s]

– [[y{E′/x}]]s = [[y]]s = [[y]][s|x→[[E′]]s]

– [[True{E′/x}]]s = [[True]]s = true = [[True]][s|x→[[E′]]s]

– [[False{E′/x}]]s = [[False]]s = false = [[False]][s|x→[[E′]]s]

– [[42{E′/x}]]s = [[42]]s = 42 = [[42]][s|x→[[E′]]s]

– [[(E1 op E2){E
′/x}]]s = [[E1{E

′/x} op E2{E
′/x}]]s = [[E1{E

′/x}]]s op [[E2{E
′/x}]]s =

[[E1]]
[s|x→[[E′]]s] op [[E2]]

[s|x→[[E′]]s] = [[E1 op E2]]
[s|x→[[E′]]s]

Lemma 2. [[E{z/y}]]s = [[E]][s|y→s(z)] if z ∈ dom(s)

Proof. Lemma 2 By Lemma 1. �

Lemma 3. [[E{E′/x}]]s = [[E]]s if [[E′]]s doesn’t exists but [[E{E ′/x}]]s does

Proof. Lemma 3 [[x{E′/x}]]s = [[E′]]s

So x 6∈ V ar(E) and we directly have E{E ′/x} = E

Lemma 4. [[E{z/y}]]s = [[E]]s if z 6∈∈ dom(s)

Proof. Lemma 4 By Lemma 3. �

Let s• ,

[

[s | y → s(z)] if z ∈ dom(s)
s if z 6∈ dom(s)

Let ρ• be [∀Xv ∈ dom(ρ). Xv → {s, h | s•, h ∈ ρ(Xv)}]

Lemma 5. [[E{z/y}]]s = [[E]]s
•

Proof. Lemma 5 By Lemma 2 and 4. �

Remember that in case P is E = E ′, E 7→ E1, E2, false and emp we have
∀ρ.[[P ]]ρ = [[P ]] since they are v-closed, see Lemma 6.
Remember P ≡ Q iff ∀ρ. either ([[P ]]ρ and [[Q]]ρ do not exist) either [[P ]]ρ = [[Q]]ρ.

Proof (Th. 5). By Th. 6, [[P{[z/y]}]]ρ• = {s, h | s•, h ∈ [[P ]]ρ} in case nodep(z, ρ)
and z 6∈ V ar(P ), then [[P{[z/y]}]] = {s, h | s•, h ∈ [[P ]]} if z 6∈ V ar(P ).
Which is if z 6∈ dom(s) then s, h ∈ [[P{[z/y]}]]iffs, h ∈ [[P ]] and if z ∈ dom(s) we
have s, h ∈ [[P{[z/y]}]]iff[s | y → s(z)], h ∈ [[P ]].
Then since y 6∈ FV (P ) with the stack extension theorem 4 we have nodep(y, P )
and so s, h ∈ so [s | y → s(z)], h ∈ [[P ]]iffs, h ∈ [[P ]].
We then have [[P{[z/y]}]] = [[P ]] which is what we wanted since P is v-closed
(see Lemma 6). �
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Theorem 6. If
- nodep(z, ρ)
- z 6∈ V ar(P )

then [[P{[z/y]}]]ρ• = {s, h | s•, h ∈ [[P ]]ρ}

Proof (Th. 6). THE PROOF IS ONLY MADE IF ALL THE lfp and gpf are for
MONOTONIC FUNCTIONS. But this is the case for the wlp and sp formulas
and for the example in the paper.

We will prove by structural induction on P :
(recall that for E1 = E2, E 7→ E1, E2, false, emp ∀ρ.[[P ]]ρ = [[P ]])

– [[(E1 = E2){[z/y]}]]
= [[(E1{z/y} = E2{z/y}]]
= {s, h | [[E1{z/y}]]s = [[E2{z/y}]]s}
= {s, h | [[E1]]

s•

= [[E2]]
s•

}
= {s, h | s•, h ∈ [[E1 = E2]]}

– [[(E 7→ E1, E2){[z/y]}]]
= [[E{z/y} 7→ E1{z/y}, E2{z/y}]]
= {s, h | dom(h) = {[[E{z/y}]]s} and h([[E{z/y}]]s) = 〈[[E1{z/y}]]s, [[E2{z/y}]]s〉
= {s, h | dom(h) = {[[E]]s

•

} and h([[E]]s
•

) = 〈[[E1]]
s•

, [[E2]]
s•

〉}
= {s, h | s•, h ∈ [[E 7→ E1, E2]]}

– [[false{[z/y]}]]
= [[false]]
= ∅
= {s, h | s•, h ∈ [[false]]

– If [[P ⇒ Q]]ρ exists then
[[(P ⇒ Q){[z/y]}]]ρ•

= [[P{[z/y]} ⇒ Q{[z/y]}]]ρ•

= (> \ [[P{[z/y]}]]ρ•) ∪ [[Q{[z/y]}]]ρ•

= (> \ {s, h | s•, h ∈ [[P ]]ρ}) ∪ {s, h | s• ∈ [[Q]]ρ} (ind.hyp.)
= {s, h | s•, h ∈ (> \ [[P ]]ρ) ∪ [[Q]]ρ}
= {s, h | s•, h ∈ [[P ⇒ Q]]ρ}

– [[(∃x. P ){[z/y]}]]ρ• when x 6= y
= [[∃x. (P{[z/y]})]]ρ•

= {s, h | ∃v.[s | x → v], h ∈ [[P{[z/y]}]]ρ•}
= {s, h | ∃v.[s | x → v], h ∈ {s, h | s•, h ∈ [[P ]]ρ}} (ind.)
= {s, h | ∃v.[s | x → v]•, h ∈ [[P ]]ρ}
= {s, h | ∃v.[s• | x → v], h ∈ [[P ]]ρ} (since x 6= y, z)
= {s, h | s•, h ∈ [[∃x.P ]]ρ}

– [[(∃y. P ){[z/y]}]]ρ•

= [[∃z. (P{[z/y]})]]ρ•

= {s, h | ∃v.[s | z → v], h ∈ [[P{[z/y]}]]ρ•}
= {s, h | ∃v.[s | z → v], h ∈ {s, h | s•, h ∈ [[P ]]ρ}} (ind.)
= {s, h | ∃v.[s | z → v]•, h ∈ [[P ]]ρ}
= {s, h | ∃v.[s | z → v | y → v], h ∈ [[P ]]ρ}
= {s, h | ∃v.[s | y → v | z → v], h ∈ [[P ]]ρ} (since z 6= y)
= {s, h | ∃v.[s | y → v], h ∈ [[P ]]ρ} (from stack extension theorem)
= {s, h | ∃v.[s• | y → v], h ∈ [[P ]]ρ}
= {s, h | s•, h ∈ [[∃y.P ]]ρ}
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– [[emp{[z/y]}]]
= [[emp]]
= {s, h | h = []}
= {s, h | s•, h ∈ [[emp]]}

– [[(P ∗ Q){[z/y]}]]ρ•

= [[(P{[z/y]} ∗ Q{[z/y]})]]ρ•

= {s, h | ∃h0, h1. h0]h1, h0.h1 = h, s, h0 ∈ [[P{[z/y]}]]ρ• and s, h1 ∈ [[Q{[z/y]}]]ρ•}
= {s, h | ∃h0, h1. h0]h1, h0.h1 = h, s•, h0 ∈ [[P ]]ρ and s•, h1 ∈ [[Q]]ρ} (ind. hyp.)
= {s, h | s•, h ∈ [[P ∗ Q]]ρ}

– [[(P→∗Q){[z/y]}]]ρ•

= [[P{[z/y]}→∗Q{[z/y]}]]ρ•

= {s, h | ∀h′. if h′]h and s, h′ ∈ [[P{[z/y]}]]ρ• then s, h.h′ ∈ [[Q{[z/y]}]]ρ•}
= {s, h | ∀h′. if h′]h and s•, h′ ∈ [[P ]]ρ then s•, h.h′ ∈ [[Q]]ρ} (ind. hyp.)
= {s, h | s•, h ∈ [[P→∗Q]]ρ}

– [[Xv{[z/y]}]]ρ•

= [[Xv]]ρ•

= ρ•(Xv)
= {s, h | s•, h ∈ ρ(Xv)}
= {s, h | s•, h ∈ [[Xv ]]ρ}

– [[P [E/x]{[z/y]}]]ρ• if x 6= y
= [[(P{[z/y]})[E{z/y}/x]]]ρ•

= {s, h | [s | x → [[E{[z/y]}]]s], h ∈ [[P{[z/y]}]]ρ•}
= {s, h | [s | x → [[E]]s

•

], h ∈ [[P{[z/y]}]]ρ•}
= {s, h | [s | x → [[E]]s

•

], h ∈ {s, h | s•, h ∈ [[P ]]ρ}} (ind.)

= {s, h | ([s | x → [[E]]s
•

])•, h ∈ [[P ]]ρ}
= {s, h | [s• | x → [[E]]s

•

], h ∈ [[P ]]ρ} (since x 6= y, z)
= {s, h | s•, h ∈ [[P [E/x]]]ρ}

– [[P [E/y]{[z/y]}]]ρ•

= [[(P{[z/y]})[E{z/y}/z]]]ρ•

= {s, h | [s | z → [[E{[z/y]}]]s], h ∈ [[P{[z/y]}]]ρ•}
= {s, h | [s | z → [[E]]s

•

], h ∈ [[P{[z/y]}]]ρ•}
= {s, h | [s | z → [[E]]s

•

], h ∈ {s, h | s•, h ∈ [[P ]]ρ}} (ind.)

= {s, h | ([s | z → [[E]]s
•

])•, h ∈ [[P ]]ρ}
= {s, h | [s | z → [[E]]s

•

| y → [[E]]s
•

], h ∈ [[P ]]ρ}
= {s, h | [s | y → [[E]]s

•

], h ∈ [[P ]]ρ} (from stack extension th.)

= {s, h | [s• | y → [[E]]s
•

], h ∈ [[P ]]ρ}
= {s, h | s•, h ∈ [[P [E/y]]]ρ}

– If [[µX.P ]]ρ exists:
[[(µX.P ){[z/y]}]]ρ•

= [[µX.P{[z/y]}]]ρ•

= lfp⊆
∅ λX.[[P{[z/y]}]][ρ•|Xv→X]

see proof below

= {s, h | s•, h ∈ lfp⊆
∅ λX.[[P ]][ρ|Xv→X]}

= {s, h | s•, h ∈ [[µX.P ]]ρ}
Let
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F , λX.[[P{[z/y]}]][ρ•|Xv→X]

A , lfp⊆
∅ F

G , λX.[[P ]][ρ|Xv→X]

B , lfp⊆
∅ G

C , {s, h | s•, h ∈ B}
We want then A = C.
We know that B exists.
Notice that ([ρ | Xv → B])• = [ρ• | Xv → C].
First we prove that A ⊆ C, we prove it by proving that C = F (C).
Since B = [[µX.P ]][ρ|Xv→X], by the stack extension theorem, we have nodep(z, B)
so nodep(z, [ρ | Xv → B]) and we can use the induction.
By definition, B = G(B), so B = [[P ]][ρ|Xv→B]

and then C = {s, h | s•, h ∈ [[P ]][ρ|Xv→B]}
by induction we then have C = [[P{z/y}]]([ρ|Xv→B])• , which is C = [[P{z/y}]][ρ•|Xv→C],
we then have C = F (C) and so A exists and A ⊆ C.
Now we want to prove that C ⊆ A.
Let D be the biggest set such that nodep(z, D) and {s, h | s•, h ∈ D} ⊆ A.
By the stack extension theorem, nodep(z, [[P ]][ρ|Xv→D]) and we can use the
induction.
Since we said we are working with monotonic functions, we have F ({s, h |
s•, h ∈ D}) ⊆ F (A)
since A is a fix point we have then F ({s, h | s•, h ∈ D}) ⊆ A
which is [[P{[z/y]}]][ρ•|Xv→{s,h|s•,h∈D}] ⊆ A
by induction we have then {s, h | s•, h ∈ [[P ]][ρ|Xv→D]} ⊆ A
which is {s, h | s•, h ∈ G(D)} ⊆ A
Then by construction of D as the biggest set we have G(D) ⊆ D
and then D is a postfixpoint of G and then B ⊆ D and then {s, h | s•, h ∈
B} ⊆ {s, h | s•, h ∈ D} which is C ⊆ A.

– If [[νX.P ]]ρ exists:
[[(νX.P ){[z/y]}]]ρ•

= [[νX.P{[z/y]}]]ρ•

= gfp⊆
∅ λX.[[P{[z/y]}]][ρ•|Xv→X]

see proof below

= {s, h | s•, h ∈ gfp⊆
∅ λX.[[P ]][ρ|Xv→X]}

= {s, h | s•, h ∈ [[νX.P ]]ρ}
Let
F , λX.[[P{[z/y]}]][ρ•|Xv→X]

A , gfp⊆
∅ F

G , λX.[[P ]][ρ|Xv→X]

B , gfp⊆
∅ G

C , {s, h | s•, h ∈ B}
We want then A = C.
We know that B exists.
Notice that ([ρ | XvB])• = [ρ• | Xv → C].
First we prove that A ⊇ C, we prove it by proving that C = F (C).
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Since B = [[νX.P ]][ρ|Xv→X], by the stack extension theorem, we have nodep(z, B)
so nodep(z, [ρ | Xv → B]) and we can use the induction.
By definition, B = G(B), so B = [[P ]][ρ|Xv→B]

and then C = {s, h | s•, h ∈ [[P ]][ρ|Xv→B]}
by induction we then have C = [[P{z/y}]]([ρ|Xv→B])• , which is C = [[P{z/y}]][ρ•|Xv→C],
we then have C = F (C) and so A exists and A ⊇ C.

Now we want to prove that C ⊇ A.
Let D be the smallest set such that nodep(z, D) and {s, h | s•, h ∈ D} ⊇ A.
By the stack extension theorem, nodep(z, [[P ]][ρ|Xv→D]) and we can use the
induction.
Since we said we are working with monotonic functions, we have F ({s, h |
s•, h ∈ D}) ⊇ F (A)
since A is a fix point we have then F ({s, h | s•, h ∈ D}) ⊇ A
which is [[P{[z/y]}]][ρ•|Xv→{s,h|s•,h∈D}] ⊇ A
by induction we have then {s, h | s•, h ∈ [[P ]][ρ|Xv→D]} ⊇ A
which is {s, h | s•, h ∈ G(D)} ⊇ A
Then by construction of D as the smallest set we have G(D) ⊇ D
and then D is a prefixpoint of G and then B ⊇ D and then {s, h | s•, h ∈
B} ⊇ {s, h | s•, h ∈ D} which is C ⊇ A.
�

Lemma 6. If P is v-closed formula: ∀ρ.[[P ]]ρ = [[P ]].

Proof (Lemma 6). The simple case are direct from the definition of [[·]]ρ, the
others come by induction. �
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