G μ and ν coincide

Theorem 11.
$$\begin{array}{l} \mu X_v. \ P \equiv \neg \nu X_v. \neg (P\{\neg X_v\}) \\ \nu X_v. \ P \equiv \neg \mu X_v. \neg (P\{\neg X_v\}) \end{array}$$

Proof (Theorem 11). First we recall the definition of equivalence between formulae $P \equiv Q$ iff $\forall \rho.(\llbracket P \rrbracket_{\rho} = \llbracket Q \rrbracket_{\rho}) \lor (\llbracket P \rrbracket_{\rho} \text{ and } \llbracket Q \rrbracket_{\rho})$ both do not exist.

- In this proof, we write \top for $S \times H$, we sometime write C^c for $\top \setminus C$.
- Let $B = \llbracket \nu X_v \cdot P \rrbracket_{\rho}$ and $A = \llbracket \mu X_v \cdot \neg (P\{\neg X_v / X_v\}) \rrbracket_{\rho}$, we want to prove that $(B \text{ exists} \Rightarrow A \text{ exists and } B^c = A)$, and $(A \text{ exists} \Rightarrow B \text{ exists and } A^c = B)$. If B exists, then
- $B = \operatorname{gfp}_{\emptyset}^{\subseteq} \lambda X. \llbracket P \rrbracket_{[\rho|X_v \to X]}, \text{ so}$
- $B = \sup_{\mu} \max_{\mu} \sup_{\mu} \sup_{\mu} \sum_{\nu \to X_1, \nu \to X_1} \sum_{\nu} \sum_{\nu \to X_1, \nu \to X_1} B^c$ B is the biggest such that $B = \llbracket P \rrbracket_{[\rho|X_v \to B]}$, so B^c is the smallest such that $T \setminus B^c = \llbracket P \rrbracket_{[\rho|X_v \to T \setminus B^c]}$, so B^c is the smallest such that $B^c = T \setminus \llbracket P \rrbracket_{[\rho|X_v \to T \setminus B^c]}$, so
- $B^c = \operatorname{lfp}_{\emptyset}^{\subseteq} \lambda X. \top \setminus \llbracket P \rrbracket_{[\rho|X_v \to \top \setminus X]}$, then from Th. 10 $B^c = \operatorname{lfp}_{\emptyset}^{\subseteq} \lambda X. \top \setminus \llbracket P \{\neg X_v / X_v\} \rrbracket_{[\rho|X_v \to X]}$, which is
- $B^c = \operatorname{lfp}_{\emptyset}^{\subseteq} \lambda X. [\![\neg P\{\neg X_v / X_v\}]\!]_{[\rho|X_v \to X]}, \text{ so}$
- A exists and $B^c = A$ If A exists, then
- $A = \operatorname{lfp}_{\emptyset}^{\subseteq} \lambda X$. $\llbracket \neg P\{\neg X_v/X_v\} \rrbracket_{[\rho|X_v \to X]}$, so $A = \operatorname{lfp}_{\emptyset}^{\subseteq} \lambda X$. $\top \setminus \llbracket P\{\neg X_v/X_v\} \rrbracket_{[\rho|X_v \to X]}$, then from Th. 10
- $A = \mathrm{lfp}_{\emptyset}^{\subseteq} \lambda X. \top \setminus \llbracket P \rrbracket_{[\rho | X_v \to \top \setminus X]}$, which is
- A is the smallest such that $A = \top \setminus \llbracket P \rrbracket_{[\rho|X_v \to \top \setminus A]}$, so A is the smallest such that $\top \setminus A = \llbracket P \rrbracket_{[\rho|X_v \to \top \setminus A]}$, so
- A^c is the biggest such that $A^c = \llbracket P \rrbracket_{[\rho|X_v \to A^c]}$, so
- $A^c = \operatorname{gfp}_{\emptyset}^{\subseteq} \lambda X. \llbracket P \rrbracket_{[\rho|X_v \to X]}$, so B exists and $A^c = B$
- For the case $\mu X_v \cdot P \equiv \neg \nu \cdot \neg (P\{\neg X_v / X_v\})$, we proceed the same way. \Box