
Extending Separation Logic with Fixpoints and

Postponed Substitution?

Élodie-Jane Sims

École Polytechnique ??, 91128 Palaiseau, France
Elodie-Jane.Sims@polytechnique.fr

Abstract. We are interested in separation-logic-based static analysis of
programs that use shared mutable data structures. In this paper, we
introduce backward and forward analysis for a separation logic called
BIµν , an extension of separation logic [Ishtiaq & O’Hearn, POPL’01],
to which we add fixpoint connectives and postponed substitution. This
allows us to express recursive definitions within the logic as well as the
axiomatic semantics of while statements.

Keywords: separation logic, fixpoint, wlp, sp, abstract interpretation

1 Introduction

In this paper we address the problem of doing static analysis of programs [2]
which use shared mutable data structures. The final goal of our work is to detect
errors in a program (problems of dereferencing, aliasing, etc.) or to prove that
a program is correct (with respect to these problems) in an automatic way.
John Reynolds, Peter O’Hearn and others have developed [7, 10] an extension
of Hoare logic called separation logic (also known as BI logic) that permits
reasoning about such programs. The classical definition of predicates on abstract
data structures is extended by introducing a “separating conjunction”, denoted
∗, which asserts that its sub-formulae hold for disjoint parts of the heap, and
a closely related “separating implication”, denoted →∗. This extension permits
the concise and flexible description of structures with controlled sharing.

We extend this logic with fixpoint connectives to define recursive properties
and to express the axiomatic semantics of a while statement. We present for-
ward and backward analyses (sp (strongest postcondition), wlp (weakest liberal
precondition) expressed for all statements and all formulae).

Organization of the paper The structure of the paper goes as follow: In Sect.
2 we describe the command language we analyze and in Sect. 3 we present our

? extended version of [12].
?? CNRS Doctoral Thesis Fellowship. Doctoral Thesis in collaboration with Kansas

State University.

logic BIµν . In Sect. 4, we provide a backward analysis with BIµν in terms of
“weakest liberal preconditions”. We express the wlp for the composition, if−
then−else and while commands. In Sect. 5, we provide a forward analysis
with BIµν in terms of “strongest postconditions”. In Sect. 6, we discuss another
possibility for adding fixpoints to separation logic.

Background Hoare logic [6] and Dijkstra-style weakest-precondition logics [5]
are well known. It is also well known that these logics disallow aliasing, that is,
the logics require that each program variable names a distinct storage location.
Therefore, it is difficult to reason about programs that manipulate pointers or
heap storage.

Through a series of papers [?,7, 10], Reynolds and O’Hearn have addressed
this foundationally difficult issue. Their key insight is that a command executes
within a region of heap storage: they write

s, h |= φ

to denote that property φ holds true within heap subregion h and local-variable
stack s. One could also say that a formula describes some properties of the
memories it represents. For example, φ might be:
emp means that the heap is empty
E 7→ a, b means that there is exactly one cell in the heap, the one

containing the values of a and b and that E points to it.
E ↪→ a, b is the same except that the heap can contain additional

cells
With the assistance of a new connective, the “separating conjunction”, de-

noted ∗, Reynolds and O’Hearn write

s, h1 · h2 |= φ1 ∗ φ2

to assert that both φ1 and φ2 hold but use disjoint heap subregions to justify
their truth — there is no aliasing between the variables mentioned in φ1 and φ2.
For example, consider the two cases below.

If s =

[

x → l1
y → l2

]

, h =

[

l1 → 〈3, 4〉
l2 → 〈1, 2〉

]

then s, h |= (x 7→ 3, 4) ∗ (y 7→ 1, 2) or also

s, h |= (x ↪→ 3, 4) but s, h 6|= (x 7→ 3, 4).

If s =

[

x → l1
y → l1

]

, h = [l1 → 〈3, 4〉] then s, h |= (x 7→ 3, 4) ∧ (y 7→ 3, 4) but

s, h 6|= (x 7→ 3, 4) ∗ (y 7→ 3, 4).
Adjoint to the separating conjunction is a “separating implication”:

s, h |= φ1→∗ φ2

asserts, “if heap region h is augmented by h′ such that s, h′ |= φ1, then s, h ·

h′ |= φ2”. For example: if s =

[

x → l1
y → l2

]

, h = [l1 → 〈3, 4〉] then s, h |= (y 7→

1, 2)→∗((x 7→ 3, 4) ∗ (y 7→ 1, 2)).

2

Istiaq and O’Hearn [7] showed how to add the separating connectives to a
classical logic, producing a bunched implication logic (BI or separation logic)
in which Hoare-logic-style reasoning can be conducted on while-programs that
manipulate temporary-variable stacks and heaps.

A Hoare triple, {φ1}C{φ2}, uses assertions φi, written in separation logic;
the semantics of the triple is stated with respect to a stack-heap storage model.

Finally, there is an additional inference rule, the frame rule, which formalizes
compositional reasoning based on disjoint heap regions:

{φ1}C{φ2}

{φ1 ∗ φ′}C{φ2 ∗ φ′}

where φ′’s variables are not modified by C.

The reader interested in the set-of-inference-rules approach for separation
logic is invited to read [7], and [17] for details on the frame rule. The rules could
also be found in a survey on separation logics [10]. We do not present the set of
rules in this paper.

Our contribution Istiaq and O’Hearn’s efforts were impressive but incomplete:
the weakest-precondition and strongest postcondition semantics for their while-
language were absent, because these require recursively defined assertions, which
were not in their reach.

The primary accomplishment of this paper is to add least- and greatest-fixed-
point operators to separation logic, so that pre- and post-condition semantics
for the while-language can be wholly expressed within the logic. As a pleasant
consequence, it becomes possible to formalize recursively defined properties on
inductively (and co-inductively) defined data structures, e.g.,

nonCircularList(x) =
µXv. (x = nil) ∨ ∃x1, x2.(isval(x1) ∧ (x 7→ x1, x2 ∗ Xv[x2/x]))

asserts that x is a linear, non-circular list (isval(x1) insures that x1 is a value,
this predicate is defined later).

The addition of the recursion operators comes with a price: the usual defi-
nition of syntactic substitution and the classic substitution laws become more
complex; the reasons are related both to the semantics of stack- and heap-storage
as well as the inclusion of the recursion operators; details are given later in the
paper.

2 Commands and basic domains

We consider a simple “while”-language with Lisp-like expressions for accessing
and creating cons cells.

3

2.1 Command syntax

The commands we consider are as follows.
C ::= x := E | x := E.i | E.i := E ′ | x := cons(E1, E2) | dispose(E)

| C1; C2 | if E then C1 else C2 | skip | while E do C1

i ::= 1 | 2
E ::= x | n | nil | True | False | E1 op E2

An expression can denote an integer, an atom, or a heap-location. Here x is
a variable in Var, n an integer and op is an operator in (Val × Val) → Val such
as + : (Int × Int) → Int, ∨ : (Bool × Bool) → Bool (for Var and Val, see Sect.
2.2).
The second and third assignment statements read and update the heap, respec-
tively. The fourth creates a new cons cell in the heap, and places a pointer to it
in x.
Notice that in our language we do not handle two dereferencings in a simple
statement (no x.i.j, no x.i := y.j); this restriction is for simplicity and does not
limit the expressivity of the language, requiring merely the addition of interme-
diate variables.

2.2 Semantic domains

Val = Int ∪ Bool ∪ Atoms ∪ Loc
S = Var ⇀ Val
H = Loc ⇀ Val × Val

Here, Loc = {l1, l2, ...} is an infinite set of locations, Var = {x, y, ...} is an
infinite set of variables, Atoms = {nil, a, ...} is a set of atoms, and ⇀ is for
partial functions. We call an element s ∈ S a stack, and h ∈ H a heap. We also
call the pair (s, h) ∈ S × H a state.

We use dom(h) to denote the domain of definition of a heap h ∈ H , and
dom(s) to denote the domain of a stack s ∈ S. Notice that we allow dom(h) to
be infinite.

An expression is interpreted as a heap-independent value: [[E]]s ∈ Val. For
example, [[x]]s = s(x), [[n]]s = n, [[true]]s = true, [[E1 + E2]]

s = [[E1]]
s + [[E2]]

s.
Since domain S allows partial functions, [[]]s is also partial. Thus [[E1 = E2]]

s

means [[E1]]
s and [[E2]]

s are defined and equal. From here on, when we write a
formula of the form · · · [[E]]s · · · , we are also asserting that [[E]]s is defined.

2.3 Small-step semantics

The semantics of statements, C, are given small-step semantics defined by the
relation on configurations. The configurations include triples C, s, h and ter-
minal configurations s, h for s ∈ S and h ∈ H . The rules are given in Fig. 1.
In the rules, we use r for elements of Val×Val; πir with i ∈ {1, 2} for the first or
second projection; (r|i → v) for the pair like r except that the i’th component
is replaced with v; and [s | x → v] for the stack like s except that it maps x to
v, (h − l) for h�dom(h)\{l}

.

4

The location l in the cons case is not specified uniquely, so a new location is
chosen non-deterministically.
Let the set of error configurations be: Ω = {C, s, h | @K. C, s, h K}.
We say that:

– “C, s, h is safe” if and only if ∀K. (C, s, h ∗ K ⇒ K 6∈ Ω)
– “C, s, h is stuck” if and only if C, s, h ∈ Ω

For instance, an error state can be reached by an attempt to dereference nil
or an integer. Note also that the semantics allows dangling references, as in stack
[x → l] with empty heap [].

The definition of safety is formulated with partial correctness in mind: with
loops, C, s, h could fail to converge to a terminal configuration but not get stuck.

We define the weakest liberal precondition in the operational domain:

Definition 1. For ∆ ⊆ S×H, wlpo(∆, C) = {s, h | (C, s, h ∗ s′, h′ ⇒ s′, h′ ∈
∆) ∧ C, s, h is safe}

We define the strongest postcondition similarly:

Definition 2. spo(∆, C) = {s′, h′ | ∃s, h ∈ ∆. C, s, h ∗ s′, h′}

[[E]]s = v

x := E, s, h � [s|x → v], h

[[E]]s = l h(l) = r

x := E.i, s, h � [s|x → πir], h

[[E]]s = l h(l) = r [[E′]]s = v′

E.i= E′, s, h � s, [h|l → (r|i → v′)]

l ∈ dom(h) [[E]]s = l

dispose(E), s, h � s, (h − l)

l ∈ Loc l 6∈ dom(h) [[E1]]
s = v1, [[E2]]

s = v2

x := cons(E1, E2), s, h
� [s|x → l], [h|l → 〈v1, v2〉]

C1, s, h
� C′, s′, h′

C1; C2, s, h
� C′; C2, s′, h′

C1, s, h
� s′, h′

C1; C2, s, h
� C2, s′, h′ skip, s, h � s, h

[[E]]s = True

if E then C1 else C2, s, h
� C1, s, h

[[E]]s = False

if E then C1 else C2, s, h
� C2, s, h

[[E]]s = False

while E do C, s, h � s, h

[[E]]s = True

while E do C, s, h � C; while E do C, s, h

Fig. 1. Operational small-step semantics of the commands

3 BI
���

In this section, we present the logic BIµν . It is designed to describe properties
of the state. Typically, for analysis it will be used in Hoare triples of the form
{P}C{Q} with P and Q formulae of the logic and C a command.

We present in Sect. 3.1 the syntax of the logic and in Sect. 3.2 its formal
semantics. In Sect. 3.3, we give the definition of a true triple {P}C{Q}. In
Sect. 3.4, we discuss the additions to separation logic (fixpoints and postponed
substitution).

5

3.1 Syntax of formulae

P, Q, R ::= E = E′ Equality | E 7→ E1, E2 Points to
| false Falsity | P ⇒ Q Classical Imp.
| ∃x.P Existential Quant. | emp Empty Heap
| P ∗ Q Spatial Conj. | P→∗ Q Spatial Imp.
| Xv Formula Variable | P � E/x � Postponed Substitution
| νXv.P Greatest Fixpoint | µXv.P Least Fixpoint

Fig. 2. Syntax of formulae

We have an infinite set of variables, Varv , used for the variables bound by µ
and ν and disjoint from the set Var. They range over sets of states, the others
(x,y,...) are variables which range over values. For emphasis, uppercase variables
subscripted by v are used to define recursive formulae. We use the term “closed”
for the usual notion of closure of variables in Var (closed by ∃ or ∀) and the term
“v-closed” for closure of variables in Varv (v-closed by µ or ν).

Our additions to Reynolds and O’Hearn’s separation logic are the fixpoint
operators µXv. P and νXv. P and the substitution construction P � E/x � .

We can define various other connectives as usual, rather than taking them
as primitives:
¬P , P ⇒ false

P ∨ Q , (¬P) ⇒ Q

∀x.P , ¬(∃x.¬P)

true , ¬(false)

P ∧ Q , ¬(¬P ∨ ¬Q)

E ↪→ a, b , true ∗ (E 7→ a, b)

x = E.i , ∃x1, x2. (E ↪→ x1, x2) ∧ (x = xi)
We could have only one fixpoint connective in the syntax, since the usual

equivalences, µXv. P ≡ ¬νXv .¬(P{¬Xv/Xv}) and νXv . P ≡ ¬µXv.¬(P{¬Xv/Xv}),
hold.

The set FV (P) of free variables of a formula is defined as usual. The set
Var(P) of variables of a formula is defined as usual with Var(P � E/x �) =
Var(P) ∪ Var(E) ∪ {x}.

3.2 Semantics of formulae

The semantics of the logic is given in Fig. 3.
We use the following notation in formulating the semantics:

– h]h′ indicates that the domains of heaps h and h′ are disjoint;
– h · h′ denotes the union of disjoint heaps (i.e., the union of functions with

disjoint domains).

We express the semantics of the formulae in an environment ρ mapping
formula variables to set of states: ρ : Varv ⇀ P(S × H). The semantics of a
formula in an environment ρ is the set of states which satisfy it, and is expressed
by: [[·]]ρ : BIµν ⇀ P(S × H)

6

We call [[P]] the semantics of a formula P in an empty environment [[P]] =
[[P]]∅. We also define a forcing relation of the form:

s, h |= P if and only if s, h ∈ [[P]]

and an equivalence:
P ≡ Q if and only if ∀ρ.([[P]]ρ = [[Q]]ρ) or ([[P]]ρ and [[Q]]ρ both do not exist).

[[E = E′]]ρ = {s, h | [[E]]s = [[E′]]s}
[[E 7→ E1, E2]]ρ = {s, h | dom(h) = {[[E]]s}

and h([[E]]s) = 〈[[E1]]
s, [[E2]]

s〉}
[[false]]ρ = ∅
[[P ⇒ Q]]ρ = ((S × H) \ [[P]]ρ) ∪ [[Q]]ρ
[[∃x.P]]ρ = {s, h | ∃v ∈ Val.[s|x → v], h ∈ [[P]]ρ}
[[emp]]ρ = {s, h | h = []}
[[P ∗ Q]]ρ = {s, h | ∃h0, h1. h0]h1, h = h0 · h1

s, h0 ∈ [[P]]ρ and s, h1 ∈ [[Q]]ρ}
[[P→∗Q]]ρ = {s, h | ∀h′. if h]h′ and s, h′ ∈ [[P]]ρ then

s, h · h′ ∈ [[Q]]ρ}
[[Xv]]ρ = ρ(Xv) , if Xv ∈ dom(ρ)

[[µXv . P]]ρ = lfp⊆
∅ λX. [[P]][ρ|Xv→X]

[[νXv . P]]ρ = gfp⊆
∅ λX. [[P]][ρ|Xv→X]

[[P � E/x �]]ρ = {s, h | [s | x → [[E]]s], h ∈ [[P]]ρ}

Fig. 3. Semantics of BIµν

In both cases µ and ν, the X in λX is a fresh variable over sets of elements
in S × H which does not already occur in ρ.

Notice that [[·]]ρ is only a partial function. In definitions above, lfp⊆
∅ φ (gfp⊆

∅ φ)
is the least fixpoint (greatest fixpoint) of φ on the poset 〈P(S×H),⊆〉, if it exists.
Otherwise, [[µXv .P]]ρ ([[νXv .P]]ρ) is not defined. For example, this is the case
for µXv . (Xv ⇒ false).

The syntactical criterions for formulae with defined semantics (like parity
of negation under a fixpoint, etc.) are the usual ones knowing that in terms
of monotonicity, →∗ acts like ⇒, ∗ acts like ∧, and � / � does not interfere.
The fixpoint theory gives us criteria (using Tarski’s fixpoint theorem) for the
existence of [[P]]ρ, but no criteria for nonexistence. Nonetheless, we have these
facts:

– if P is E = E or E 7→ E1, E2 or false or emp, then [[P]]ρ always exists;
λX.[[P]][ρ|Xv→X] is monotonic and antitonic.

– [[Xv]]ρ exists if and only if Xv ∈ dom(ρ); λX.[[Xv]][ρ|Yv→X] is monotonic and
not antitonic.

– If P is Q ⇒ R or Q→∗R, then [[P]]ρ exists if and only if [[Q]]ρ and [[R]]ρ exist;
λX.[[P]][ρ|Xv→X] is monotonic if and only if λX.[[R]][ρ|Xv→X] is monotonic
and λX.[[Q]][ρ|Xv→X] is antitonic; λX.[[P]][ρ|Xv→X] is antitonic if and only if
λX.[[R]][ρ|Xv→X] is antitonic and λX.[[Q]][ρ|Xv→X] is monotonic.

7

– [[Q ∗ R]]ρ exists if and only if [[Q]]ρ and [[R]]ρ exist; λX.[[Q ∗ R]][ρ|Xv→X] is
monotonic/antitonic if and only if λX.[[R]][ρ|Xv→X] and λX.[[Q]][ρ|Xv→X] are
monotonic/antitonic.

– If P is ∃x. Q or Q � E/x � , then [[P]]ρ exists if and only if [[Q]]ρ exists;
λX.[[P]][ρ|Xv→X] is monotonic/antitonic if and only if λX.[[Q]][ρ|Xv→X] is
monotonic/antitonic.

– If µν ∈ {µ, ν} and if λX.[[P]][ρ|Xv→X] exists and is monotonic, then [[µνXv . P]]ρ
exists and λX.[[µνXv . P]][ρ|Xv→X] is monotonic and antitonic.

– If µν ∈ {µ, ν} and if λX.[[P]][ρ|Xv→X|Yv→Y] is monotonic/antitonic, and
λY.[[P]][ρ|Xv→X|Yv→Y] exists and is monotonic, then λX.[[µνYv . P]][ρ|Xv→X]

is monotonic/antitonic.

3.3 Interpretation of Triples

Hoare triples are of the form {P}C{Q}, where P and Q are assertions in BIµν

and C is a command. The interpretation ensures that well-specified commands
do not get stuck. (In this, it differs from the usual interpretation of Hoare triples
[4].)

Definition 3. {P}C{Q} is a true triple if and only if ∀s, h, if s, h |= P and
FV (Q) ⊆ dom(s), then

– C, s, h is safe
– if C, s, h ∗ s′, h′, then s′, h′ |= Q.

This is a partial correctness interpretation; with looping, it does not guarantee
termination. This is the reason for expressing “weakest liberal preconditions”
for our backward analysis and not “weakest preconditions”. However, the safety
requirement rules out certain runtime errors and, as a result, we do not have that
{true}C{true} holds for all commands. For example, {true}x := nil; x.1 :=
3{true} is not a true triple.

3.4 Fixpoints and postponed substitution

In this section, we discuss our motivations for adding fixpoints and postponed
substitution to separation logic. We show that the postponed substitution con-
nective, � / � , is not classical substitution, { / }, and that the usual variable
renaming theorem does not hold for { / }. We develop the needed concepts in a
series of vignettes:

First motivation Our initial motivation for adding fixpoint operators to sepa-
ration logic came from the habit of the separation logic community of informally
defining recursive formulae and using them in proofs of correctness.

Since we have added fixpoint operators to the logic, we can formally and
correctly express, for example, that x is a non-cyclic finite linear list as

nclist(x) = µXv . (x = nil) ∨ ∃x1, x2.(isval(x1) ∧ (x 7→ x1, x2 ∗ Xv � x2/x �))

8

and that x is non-cyclic finite or infinite list

nclist(x) = νXv. (x = nil) ∨ ∃x1, x2.(isval(x1) ∧ (x 7→ x1, x2 ∗ Xv � x2/x �))

where isval(x) = (x = true) ∨ (x = false) ∨ (∃n.n = x + 1)

In earlier papers [18], Reynolds and O’Hearn use the definition,

nclist(x) = (x = nil) ∨ ∃x1, x2.(isval(x1) ∧ (x 7→ x1, x2 ∗ nclist(x2)))

which is not within the syntax of separation logic.

Second motivation The second motivation was the formulations of the wlp
({ ? }C{P}) and sp ({P}C{ ? }) in the case of while commands, which was
not possible earlier. This problem is nontrivial: For separation logic without
fixpoints, we might express sp as

sp(P, while E do C) = (lfp
|=
false

λX.sp(X∧E = true, C)∨P)∧ (E = false)

with lfp
|=
false

λX.F (X) defined, if it exists, as a formula P which satisfies:

– P ≡ F (P)

– for any formula Q, (Q ≡ F (Q) implies P |= Q)

where

– Q |= P if and only if [[Q]] ⊆ [[P]] or [[Q]] and [[P]] are both not defined;

– P ≡ Q if and only if P |= Q and Q |= P .

This implies that during the computation of the sp, each time a while loop
occurs, we must find a formula in existing separation logic that was provably the
fixpoint, so that we could continue the computation of the sp. In another sense,
this “work” could be seen as the “work” of finding the strongest loop invariant
in the application of the usual rule for while loop.

Our addition of fixpoints (and the related postponed substitution) allows us
to express the sp directly within the logic:

sp(P, while E do C) = (µXv .sp(Xv ∧ E = true, C) ∨ P) ∧ (E = false).

Although the definitions of the wlp and sp for the while loop are simple and
elegant, the “work” of finding loop invariants is not skipped, however it is now
postponed for when we have a specific proof to undertake. For example, we are
working on translations of formulae into some other domains, and we have to
find an approximation of the translation of fixpoints which is precise and not
too expensive to compute. The advantage here is that this work of building the
translation is done once and for all, then the analysis can be fully automated
while the methodology of a proof system and finding loop invariant implies hand
work.

9

� / � is not { / } In this paper, we use the notation P{E/x} for capture-
avoiding syntactical substitution (that is, the usual substitution of variables).
Recall that � / � is a connective of the logic (called postponed substitution) and
is not equivalent to { / }. It might be helpful for the reader to understand � / �
to look at the formula P � E/x � as (Moggi’s [9]) call-by-value, let x = E in P .

The distinction between � / � and { / } can be viewed in this example,
where the command will be stuck in any state that has no value in its stack for
y:

{true}x := y{true} is false

This implies that the classical axiom for assignment, {P{y/x}}x := y{P}, is
unsound.

In other versions of separation logic [10], {P{y/x}}x := y{P} was sound,
since the definition of a true triple required FV (C, Q) ⊆ dom(s) and not merely
FV (Q) ⊆ dom(s), as here, and also because there was no recursion.

We believe that our definition (and our choice to allow stacks to be partial
functions) is better since it does not require variables of the program to have
a default value in the stack and it checks whether a variable has been assigned
before we try to access its value. In any case, the addition of fixpoints does not
require stacks to be partial functions. (Indeed, if stacks were total functions,
then more laws would hold for � / � , but the latter’s definition would remain
different from { / }’s.)

Unfolding As usual, we have µXv .P ≡ P{µXv.P/Xv}
and νXv .P ≡ P{νXv.P/Xv}

{/}: No variable renaming Surprisingly, we have ∃y.P 6≡ ∃z.P{z/y} with
z 6∈ Var(P) (when y 6= z). Here are two counterexamples, which expose the
difficulties:

Counterexample 1:

[[νXv .y = 3 ∧ ∃y.(Xv ∧ y = 5)]] 6≡ [[νXv .y = 3 ∧ ∃z.(Xv ∧ z = 5)]]

The left-hand side denotes the empty set, while the right-hand side denotes
[[y = 3]]. Here are the detailed calculations:

[[νXv .y = 3 ∧ ∃y.(Xv ∧ y = 5)]]∅
= gfp⊆

∅ λY. [[y = 3 ∧ ∃y.(Xv ∧ y = 5)]][Xv→Y]

= gfp⊆
∅ λY. [[y = 3]][Xv→Y] ∩ [[∃y.(Xv ∧ y = 5)]][Xv→Y]

= gfp⊆
∅ λY. {s, h | s(y) = 3} ∩ {s, h | ∃v.[s | y → v], h ∈ [[Xv ∧ y = 5]][Xv→Y]}

= gfp⊆
∅ λY. {s, h | s(y) = 3} ∩ {s, h | ∃v.[s | y → v], h ∈ Y ∧ [s | y → v](y) = 5}

= gfp⊆
∅ λY. {s, h | s(y) = 3} ∩ {s, h | [s | y → 5], h ∈ Y }

= ∅

10

[[νXv .y = 3 ∧ ∃z.(Xv ∧ z = 5)]]∅
= gfp⊆

∅ λY. [[y = 3 ∧ ∃z.(Xv ∧ z = 5)]][Xv→Y]

= gfp⊆
∅ λY. [[y = 3]][Xv→Y] ∩ [[∃z.(Xv ∧ z = 5)]][Xv→Y]

= gfp⊆
∅ λY. {s, h | s(y) = 3} ∩ {s, h | ∃v.[s | z → v], h ∈ [[Xv ∧ z = 5]][Xv→Y]}

= gfp⊆
∅ λY. {s, h | s(y) = 3} ∩ {s, h | ∃v.[s | z → v], h ∈ Y ∧ [s | z → v](z) = 5}

= gfp⊆
∅ λY. {s, h | s(y) = 3} ∩ {s, h | [s | z → 5], h ∈ Y }

= {s, h | s(y) = 3}

Here is some intuition: For the left-hand side, y = 3 says that all the states
defined by the assertion must bind y to 3, and “∃y.Xv ∧ y = 5” says that for all
those states defined by the assertion, we can bind y such that it satisfies y = 5,
even as it satisfies y = 3, due to the recursion, which is impossible, so we have
∅ as the denotation.

For the right-hand side, y = 3 asserts again that y binds to 3, and ∃z.Xv∧z =
5 says that for all states in the assertion’s denotation, we bind 5 to z, which is
indeed possible, so we have [[y = 3]] as the denotation of the assertion.

Counterexample 1 shows that variable renaming has a special behavior when
applied to a formula which is not v-closed.

Counterexample 2:

[[∃y.νXv .y = 3 ∧ ∃y.(Xv ∧ y = 5)]] 6≡ [[∃z.νXv.z = 3 ∧ ∃y.(Xv ∧ y = 5)]]

The left-hand side denotes the empty set, while the right-hand side denotes
S × H .

To see this, note that the left-hand side’s semantics is essentially the same
as its counterpart in the first counterexample. As for the right-hand side, if we
apply the semantics of the right-hand side of the first counterexample, we see
that [[νXv .z = 3 ∧ ∃y.(Xv ∧ y = 5)]] = [[z = 3]], signifying that all the states are
such that we bind 5 to z. So, we have S ×H as the denotation of the right-hand
side.

Counterexample 2 shows that variables occurring free in the bodies of fixpoint
formulae are subject to dynamic binding with respect to unrolling the recursive
formulae via postponed substitution.

Full substitution The previous counterexample 2 leads to the definition of a
new substitution:

Definition 4. Let {[/]} be a full syntactical variable substitution: P{[z/y]} is
P in which all y are replaced by z wherever they occur, for example:
(∃y.P){[z/y]} , ∃z.(P{[z/y]}), (P � E/x �){[z/y]} , (P{[z/y]})[E{z/y}/x{z/y}]

The variable renaming theorem for BIµν (Th. 1) We define class(z, s, h)
as the set of states containing the state, s, h, and all other states identical to s, h
except for z:

Definition 5. class(z, s, h) = {s′, h | for all v ∈ V al, [s′ | z → v] = [s | z → v]}

11

Alternatively, we can say that class(z, s, h) is that set which satisfies:

– s�dom(s)\{z}
, h ∈ class(z, s, h)

– ∀v.[s | z → v], h ∈ class(z, s, h)

Definition 6. For z ∈ V ar, X ∈ P(S × H), define

nodep(z, X) , True iff ∀s, h ∈ X.class(z, s, h) ⊆ X

We extend this definition to environments as well:

nodep(z, ρ) , True iff (∀Xv ∈ dom(ρ).nodep(z, ρ(Xv))

Proposition 1. If nodep(z, ρ), FVv(P) ⊆ dom(ρ), z 6∈ FV (P) and [[P]]ρ exists,
then nodep(z, [[P]]ρ)

The idea is, if P is v-closed and z does not occur free in P , then ∀v. (s, h ∈
[[P]] iff [s | z → v], h ∈ [[P]]). Yet another phrasing goes, if z does not occur free
in a v-closed formula, then the set of states satisfying the formula does not have
any particular values for z.

Now, let

– s•y,z ,

[

[s | y → s(z)] if z ∈ dom(s)
s if z 6∈ dom(s)

– ρ•y,z , [∀Xv ∈ dom(ρ). Xv → {s, h | s•y,z, h ∈ ρ(Xv)}]

Proposition 2. If nodep(z, ρ) and z 6∈ V ar(P), then [[P{[z/y]}]]ρ•
y,z

= {s, h |
s•y,z, h ∈ [[P]]ρ}

Theorem 1. If P is v-closed, z 6∈ V ar(P) and y 6∈ FV (P), then P ≡ P{[z/y]}.
In particular, ∃y.P ≡ ∃z.(P{[z/y]}).

Proof (Th. 1). The proof follows from Propositions 1 and 2, assuming that all
fixpoints are defined from monotonic functionals.
�

Equivalences on � / � We define is(E) , E = E, which is just a formula
ensuring that E has a value in the current state. If we had chosen that stacks
were only total functions, is(E) would always be equivalent to true and there
would be more simplifications. We have these facts:

– If P does not contain any v-variable or fixpoint or postponed substitution,
then P � E/x � ≡ P{E/x} ∧ is(E).

– If x 6∈ V ar(E) then P � E/x � ≡ ∃x.x = E ∧ P
– If P is v-closed and if x1 6∈ Var(E) and x1 6= x2, then:

(∃x1.P) � E/x2 � ≡ ∃x1.(P � E/x2 �).
– (∃x.P) � E/x � ≡ (∃x.P) ∧ is(E).
– (A ∨ C) � E/x � ≡ (A � E/x �) ∨ (C � E/x �).

12

– If y 6∈ Var(P), then
(µXv .P) � y/x � ≡ (µXv .P{ � y/x � }) ∧ is(y)
(νXv .P) � y/x � ≡ (νXv .P{ � y/x � }) ∧ is(y).

Concerning the last item, one would want a similar equivalence for E instead
of y, but this is not possible since (P � E ′/x �){[E/x]} is not defined because
P � E′/E � is not defined. (The last argument must be a variable.) This explains
why � / � must be a connective.
To understand the last equivalence, we must return to the programming point
of view, seeing fixpoints as while loops and � / � as assignments, so that the
precondition for x := w; while x = y do x := x + 1 is the same as the one
for while w = y do w := w + 1. (In Sect. 4, we will learn that this will be
(νXv .(x 6= y)∨ ((x = y)∧Xv � x+1/x �)) � w/x � ≡ is(w)∧ (νXv .(w 6= y)∨ ((w =
y) ∧ Xv � w + 1/w �)).)

Example of unfolding Let nclist42(x) , µXv.(x = nil) ∨ ∃x2.((x 7→
42, x2) ∗ Xv � x2/x �) with x2 6= x. Let’s prove that Xv � x2/x � is equivalent
to nclist42(x2).

nclist42(x) , µXv.(x = nil) ∨ ∃x2.((x 7→ 42, x2) ∗ Xv � x2/x �)
(unfolding) = (x = nil) ∨ ∃x2.((x 7→ 42, x2)∗

((µXv.(x = nil) ∨ ∃x2.((x 7→ 42, x2) ∗ Xv � x2/x �)) � x2/x �))
(Th. 1) = (x = nil) ∨ ∃x2.((x 7→ 42, x2)∗

((µXv.(x = nil) ∨ ∃x3.((x 7→ 42, x3) ∗ Xv � x3/x �)) � x2/x �))
(simplify � / � case µ) = (x = nil) ∨ ∃x2.((x 7→ 42, x2)∗

(µXv .(x2 = nil) ∨ ∃x3.((x2 7→ 42, x3) ∗ Xv � x3/x2 �)))
, (x = nil) ∨ ∃x2.((x 7→ 42, x2) ∗ nclist42(x2))

So we have nclist42(x2) ≡ (nclist42(x)) � x2/x � , as expected.

Why is BI +µ+ν 6= BIµν? Or, why do we need to add � / � to the syntax?
Informally stated, one can view the fixpoint as a while loop and � / � as an
assignment, then if we have a while loop followed by an assignment, we cannot
include the assignment within the loop. So, if an analysis postponed the compu-
tation of while loop (fixpoint), then it also has to postpone the computation of
assignment (� / �).

The need for � / � is not surprising. In [4], de Bakker proved that for his
simple logic with fixpoints, there was no sp for the while loop statements.

Indeed, for P without any µ, ν, Xv in it, we have P � E/x � ≡ P{E/x}∧is(E).
But for BIµν without the connective � / � , there is no formula in the logic
equivalent to P � E/x � , which means that � / � has to be in the logic syntax.
For example, (∃y.P) � E/x � 6≡ ∃y.(P � E/x �) when y 6= x but y ∈ Var(E) but
the renaming theorem: ∃y.P ≡ ∃z.P{z/y} with z 6∈ Var(P) does not hold, so
the attempt to find an equivalent formula for (∃y.P) � E/x � will fail.

13

4 Backward analysis

We now define the weakest liberal precondition (wlp) semantics of the while-loop
language with pointers; see Fig. 4. Most of the clauses are from Ishtiaq and
O’Hearn [7], but our definition for while E do C is new and crucial. We add to
wlp a parameter V ∈ P(V ar), such that when choosing fresh variables, they are
not in V .

If we can establish {P}C{true}, then we will know that execution of C is
safe in any state satisfying P . So for our backward analysis, in Fig. 4 we express
wlp such that

Theorem 2. [[wlp(P, C)]] = wlpo([[P]], C).

Corollary 1. {wlp(P, C)}C{P} is true.

Proof. To prove that our definition indeed defines wlp, we formally relate it to
the inverse state-transition function wlpo: The definition of a true triple implies
that:

{wlp(P, C)}C{P} true
if and only if

(

[[wlp(P, C)]]
∩{s, h | FV (P) ⊆ dom(s)}

)

⊆ wlpo([[P]], C)

BIµν

[[·]]

��

� � ���
� � 	�
BIµν

wlp

��

[[·]]

��

op ⊆ op
wlpo

��

To prove that our analysis is correct, we express wlpo for each command,
and prove by induction on the syntax of C that for each C and P , we have
[[wlp(P, C)]] ⊆ wlpo([[P]], C). To prove that those preconditions are the weakest
we establish that [[wlp(P, C)]] = wlpo([[P]], C)
�

Example: wlp(true, while i > 0 do (x := x · 2; i := i − 1)) , νXv .((x ≤
0 ∧ true) ∨ (i > 0 ∧ ∃x1, x2. (Xv � i − 1/i � � x2/x �) ∧ (x 7→ x1, x2))), which
simplifies to νXv .i ≤ 0 ∨ (i > 0 ∧ ∃x1, x2. Xv � i − 1/i � � x2/x � ∧ x 7→ x1, x2).

5 Forward analysis

In the previous section, we defined wlp for C and P such that {wlp(P, C)}C{P}
is true. Unfortunately, the strongest postcondition semantics sp(P, C) is not al-
ways defined — we can find C and P such that there exists no Q that makes
{P}C{Q} true. This is due to the fact that a true triple requires C to be exe-
cutable from all states satisfying P and also such that FV (Q) ⊆ dom(s) which
is obviously not the case for some C and P . (For example, {true}x := nil; y :=
x.1{?} has no solution, since all states satisfy P but the command can never be
executed — nil.1 is not defined).

We therefore split the analysis into two steps. The first step checks whether C
is executable from all states satisfying P or not. The second step gives sp(P, C)

14

wlp(P, C) = wlp∅(P, C)
wlpV (P, x := E) = P � E/x �

wlpV (P, x := E.i) = ∃x1∃x2.(P � xi/x � ∧ (E ↪→ x1, x2))
with xi 6∈ V ∪ FV (E, P)

wlpV (P, E.1 := E′) = ∃x1∃x2.(E 7→ x1, x2) ∗ ((E 7→ E′, x2)→∗P)
with xi 6∈ V ∪ FV (E, E′, P)

wlpV (P, E.2 := E′) = ∃x1∃x2.(E 7→ x1, x2) ∗ ((E 7→ x1, E
′)→∗P)

with xi 6∈ V ∪ FV (E, E′, P)
wlpV (P, x := cons(E1, E2)) = ∀x′.(x′ 7→ E1, E2)→∗P � x′/x �

with x′ 6∈ V ∪ FV (E1, E2, P)
wlpV (P, dispose(E)) = P ∗ (∃a∃b.(E 7→ a, b))

with a, b 6∈ V ∪ FV (E)
wlpV (P, C1; C2) = wlpV (wlpV (P, C2), C1)

wlpV (P, if E then C1 else C2) = (E = true ∧ wlpV (P, C1))
∨(E = false ∧ wlpV (P, C2))

wlpV (P, skip) = P
wlpV (P, while E do C1) = νXv.((E = true ∧ wlpV ∪V ar(E,P)(Xv , C1))

∨(E = false ∧ P))
with Xv not in P

Fig. 4. Weakest liberal preconditions

that makes the triple {P}C{sp(P, C)} true if C is executable from all states
satisfying P . Step 1 : wlp(true, C):

(∀s, h ∈ [[P]]. C, s, h is safe) if and only if (P |= wlp(true, C))

The first step expresses the wlp(true, C) formulae, which are the formulae given
in Fig. 4, instantiated for P = true.
Step 2: sp(P, C): This is given in Fig. 5.
This gives us

Theorem 3. spo([[P]], C) = [[sp(P, C)]].

Corollary 2. {P ∧ wlp(true, C)}C{sp(P ∧ wlp(true, C), C)} is always true.
In case P |= wlp(true, C) this is equivalent to {P}C{sp(P, C)} is true.

Corollary 3. If P 6|= wlp(true, C), then C cannot be executable from all states
satisfying P . But for those states from which C is executable, the final states
satisfy sp(P ∧ wlp(true, C), C).

Our sp(P, C) makes the triple {P}C{sp(P, C)} always true in the usual defini-
tion of Hoare triples (which is {P}C{Q} true iff spo([[P]], C) ⊆ [[Q]]).

Proof. To prove that our definition indeed defines sp, we formal relate it to the
inverse state-transition function spo. The definition of a true triple implies that

{P}C{Q} true if and only if P |= wlp(true, C) ∧ spo([[P]], C) ⊆ [[Q]]

15

To prove that our analysis is correct, we expressed spo for each command,
and proved by induction on the syntax of C that for each C, and P , we have

If P |= wlp(true, C)
then spo([[P]], C) ⊆ [[sp(P, C)]]

� � ���
� � ���BIµν

sp 	

[[·]]

��

BIµν

[[·]]

��

op
spo 	

⊆ op

But since spo is defined such that it only collects the final states of success-
ful computations, we must only prove that for each C and P : spo([[P]], C) ⊆
[[sp(P, C)]].

Finally, to prove that those postconditions are the strongest we have estab-
lished that spo([[P]], C) = [[sp(P, C)]] �

sp(P, C) = sp∅(P, C)
spV (P, x := E) = ∃x′. P � x′/x � ∧ x = E{x′/x}

with x′ 6∈ V ∪ FV (E,P)
spV (P, x := E.i) = ∃x′. P � x′/x � ∧ x = (E{x′/x}).i

with x′ 6∈ V ∪ FV (E,P)
spV (P, E.1 := E′) = ∃x1∃x2.(E 7→ E′, x2) ∗ ((E 7→ x1, x2)→∗P)

with xi 6∈ V ∪ FV (E,E′, P)
spV (P, E.2 := E′) = ∃x1∃x2.(E 7→ x1, E

′) ∗ ((E 7→ x1, x2)→∗P)
with xi 6∈ V ∪ FV (E,E′, P)

spV (P, x := cons(E1, E2)) = ∃x′.(P � x′/x � ∗ (x 7→ E1{x
′/x}, E2{x

′/x}))
with x′ 6∈ V ∪ FV (E1, E2, P)

spV (P, dispose(E)) = ∃x1, x2. ((E 7→ x1, x2)→∗P)
with x1, x2 6∈ V ∪ FV (E, P)

spV (P, C1; C2) = spV (spV (P, C1), C2)
spV (P, if E then C1 else C2) = spV (P ∧ E = true, C1)

∨spV (P ∧ E = false, C2)
spV (P, skip) = P

spV (P, while E do C1) = (µXv.spV ∪V ar(E,P)(Xv ∧ E = true, C1) ∨ P)

∧ (E = false)
with Xv not in P

Fig. 5. Strongest postconditions

Example: sp(true, i := 0; x := nil; while i 6= 5 do x := cons(i, x); i := i + 1) ,
i = 5 ∧ µXv.((∃x′.(∃i′.true � i′/i � ∧ i = 0) � x′/x � ∧ x = nil) ∨ ∃i′.(∃x′.(Xv ∧
i 6= 5) � x′/x � ∗ (x 7→ i, x′)) � i′/i � ∧ i = i′ + 1), which is after simplifications,
i = 5∧µXv.((i = 0∧x = nil)∨∃x′.i′.i = i′+1∧i′ 6= 5∧(Xv[x

′/x]∗(x 7→ i′, x′)))

16

6 Variations of BI
���

Our version of BIµν is not unique. One variant would preserve the usual re-
naming theorem but at the price of additional complexity in defining fixpoint
formulas: the v-variables become functions whose parameters are the free vari-
ables of the formula. Instead of having postponed substitution, one would have
an application connective. The syntax reads

nonCircularList(x) =
µXv(x). (x = nil) ∨ ∃x1, x2.(isval(x1) ∧ (x 7→ x1, x2 ∗ Xv(x2)))

When considering our example to the renaming theorem, one states

∃y.νXv(y).y = 3 ∧ ∃y.(Xv(y) ∧ y = 5)

which becomes equivalent to

∃z.νXv(z).z = 3 ∧ ∃y.(Xv(y) ∧ y = 5)

Those formulas are not precisely stated; let us try to formalize. The changes
are that ρ : Varv ⇀ (P(V ar) × P(S × H)) and that [[·]]ρ : BIµνΛ ⇀ (P(S ×
H)] (P(V ar) ×P(S × H))).

The semantics for fixpoints and postponed substitution would be:

[[µXv(x1, ..., xn) . P]]ρ = lfp⊆
∅ λX. [[P]][ρ|Xv→((x1,...,xn),X)]

[[νXv(x1, ..., xn) . P]]ρ = gfp⊆
∅ λX. [[P]][ρ|Xv→((x1,...,xn),X)]

[[P (E1, ..., En)]]ρ =

{

s, h |
∃x1, ..., xn, X. [[P]]ρ = ((x1, ..., xn), X)
∧[s | x1 → [[E1]]

s | ... | xn → [[En]]s], h ∈ X

}

But this implies that to write µXv(x1, ..., xn). P , we must consider the free
variables in P . (Maybe this would help the users of the logic!)

Another important point is that [[νXv .Xv]] = S×H , while [[νXv(x).Xv(x)]] =
{s, h | x ∈ dom(s)}. That is, if one allows partial functions for stacks (as we do),
the meaning changes.

To update our definition, wlp(P, x := E) = P � E/x � , we require a function
connective, and we write wlp(P, x := E) = (Λx.P)(E). (we use Λ instead of λ to
avoid confusion between a real function and the new function connective.) And
instead of writing µXv(x1, ..., xn).P , we would write µ(Λ(x1, ..., xn).Xv).P . The
non-circular linear list example reads as follows:

nonCircularList(x) =
µXv. (x = nil) ∨ ∃x1, x2.(isval(x1) ∧ (x 7→ x1, x2 ∗ (Λx.Xv)(x2)))

This implies a new semantics: First, we define a new recursive type, res =
P(S × H)] (V ar × res). Next, we define

apply : (Exp × (V ar × res)) → res
apply(E, (x, S)) = {s, h | [s | x → [[E]]s], h ∈ S} if S ∈ P(S × H)
apply(E, (x, (y, S))) = (y, apply(E, (x, S)))

17

[[.]]ρ : BIµνΛ ⇀ res
...

[[Λx.P]]ρ = ((x), [[P]]ρ)

[[µXv . P]]ρ = lfp⊆
∅ λX. [[P]][ρ|Xv→X]

[[νXv . P]]ρ = gfp⊆
∅ λX. [[P]][ρ|Xv→X]

[[P (E)]]ρ = apply(E, [[P]]ρ) if ∃x, X. [[P]]ρ = (x, X)

With this semantics, in wlp or sp, the only change is that wherever P � E/x �
appears, it should be replaced by (Λx.P)E.

As for our counterexample of the renaming theorem,

∃y.νXv .y = 3 ∧ ∃y.(((Λy.Xv)y) ∧ y = 5)

becomes equivalent to

∃z.νXv.z = 3 ∧ ∃y.(((Λz.Xv)y) ∧ y = 5)

But again, this is not the usual renaming theorem.
What we propose now is a mix of the last two semantics, where the renaming

theorem will not always hold, but if one wants it to hold, then one must verify,
wherever there is a fixpoint, that the fixpoint should be written in the format,
µXv(FV (P)).P . The user must be aware that (Λx.P)(x) is not always equivalent
to P (because (Λx.P)(x) implies that x can be evaluated in the actual context
(i.e. x ∈ dom(s))).

Now ρ : V arv ⇀ res, and the example becomes

∃y.νXv(y).y = 3 ∧ ∃y.(Xv(y) ∧ y = 5)

which is equivalent to

∃z.νXv(z).z = 3 ∧ ∃y.(Xv(y) ∧ y = 5)

The semantics goes as follows; omitted clauses are the same as those in Sect. 3.2.

[[.]]ρ : BIµνΛ ⇀ res
...

[[Λx.P]]ρ = ((x), [[P]]ρ)

[[µXv . P]]ρ = lfp⊆
∅ λX. [[P]][ρ|Xv→X]

[[µXv(x1, ..., xn) . P]]ρ = lfp⊆
∅ λX. [[P]][ρ|Xv→(x1,(...,(xn,X)))]

[[νXv . P]]ρ = gfp⊆
∅ λX. [[P]][ρ|Xv→X]

[[νXv(x1, ..., xn) . P]]ρ = gfp⊆
∅ λX. [[P]][ρ|Xv→(x1,(...,(xn,X)))]

[[P (E)]]ρ = apply(E, [[P]]ρ) if ∃x, X. [[P]]ρ = (x, X)

(We gave the semantics for µXv .P and νXv.P separately but they are the
nullary case of the other considering that (x1, (..., (x0, X))) = X).

This semantics preserves our wlp and sp formulas (switching P � E/x � with
(Λx.P)(E)) and allows the user to have functions for v-variable and a restricted
renaming theorem.

18

Remark Since the first draft of this paper, Yang et al. [16] present another
way to add fixpoints to separation logic. They add the connective let rec

Xv(x1, ..., xn) = P in Q which is a mix of let and recursion. Their logic is
not equivalent to ours, even just for the let part. To be equivalent, “let” should
only be a substitution i.e [[let Xv = P in Q]]ρ , [[Q]][ρ|Xv→[[P]]ρ] but they de-

fine it as [[let Xv = P in Q]]yρ ,
{

s, h | s, h ∈ [[Q]]y
[ρ|Xv→S×{h|s,h∈[[P]]yρ}]

}

. This

could be seen roughly as a “postponed substitution” on v-variables. It behaves
not as usual, for example [[let Xv = (x = 5) in ∃x.Xv]] = [[x = 5]]. One de-
ficiency of their work is that its correctness proof relies on the correctness of
separation-logic triples, which is not proved for their version of separation logic
with fixpoints. They cannot directly use our triples because of the inequivalence
between our logic and theirs. Still, we believe that we can express in our logic
let rec Xv(x1, ..., xn) = P in Q when FV (P) ⊆ {x1, ..., xn}, but this will not
be simple since their recursion represents fixpoints on P(H) while ours represents
fixpoints on P(S × H).

7 Conclusion

We have proposed an extension of separation logic, with fixpoint connectives
and postponed substitution. This lets us express formulae of recursive defini-
tions within the logic and solve problems that cannot be handled by lightweight
checking tools. Second, we can now express the sp and wlp in the case of while
statements. (To the best of our knowledge, there is no forward analysis using
separation logic in the literature). We expressed the sp and wlp operators for
all commands without any syntactical restrictions on the formulae provided as
pre- or post-conditions. This leads to automatic analysis which take a differ-
ent approach from the usual set-of-rules analysis that require significant human
intervention.

We are applying our extended separation logic to develop verification tools
that go beyond lightweight checking: we use separation logic as an interface
language for abstract interpretation of programs that manipulate heap storage.
Recursively defined assertions summarize the shape properties [11, 8] of objects
that live in the heap, permitting abstract interpretation to compute the shape
of a program’s dynamic data structures. The wp- and sp-semantic formulations
given in this paper express the denotations of program components, allowing
compositional abstract interpretation [3]. (A typical abstract interpretation is a
whole-program analysis using a weakly expressive property language; a compo-
sitional analysis requires a richer property language, which is often defined in an
ad-hoc fashion). Research in these directions is underway, both in the author’s
own work and in other recent efforts [16].

Acknowledgments I am grateful to Patrick Cousot, Radhia Cousot, and David
Schmidt for their guidance and helpful discussions. I would like to thank Josh
Berdine for discussions and comments that helped improve this version of the
article and inspired Sect. 6.

19

References

1. P. Cousot and R. Cousot. Abstract Interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints In POPL’77,
pages 238-252, Los Angeles, CA, 1977. ACM Press.

2. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In
POPL’79, pages 269–282, San Antonio, Texas, 1979. ACM Press.

3. P. Cousot and R. Cousot. Modular Static Program Analysis. In LNCS 2304, page
159-178, 2002.

4. J. W. de Bakker. Mathematical Theory of Program Correctness. Prentice Hall,
Englewood Cliffs, NJ, 1980.

5. E. W. Dijkstra. A Discipline of Programming. Prentice Hall, NJ, 1976.
6. C. A. R. Hoare. An axiomatic basis for computer programming. Comm. ACM,

12:576–580, 1969.
7. S. Ishtiaq and P. O’Hearn. BI as an assertion language for mutable data structures.

In POPL’01, pages 14–26, 2001.
8. P. Lam, V. Kuncak and M. Rinard Generalized Typestate Checking for Data

Structure Consistency In VMCAI’05, 2005.
9. E. Moggi. Notions of Computation and Monads. In Information and Computation,

Vol. 93, pages 55–92, 1991.
10. J. C. Reynolds. Separation logic : A logic for shared mutable data structures. In

LICS’02, pages 55–74, Denmark, 2002. IEEE Computer Society.
11. M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic.

ACM Transactions on Programming Languages and Systems, 2002.
12. É.-J. Sims. Extending Separation Logic with Fixpoints and Postponed Substitu-

tion. In AMAST’04, LNCS 3116, pages 475–490, 2004. Springer.
13. É.-J. Sims. Pointers static analysis and BI-logic. Mémoire de DEA, École Poly-

technique, France, DEA Programmation, 2002.
14. P. R. Wilson. Uniprocessor garbage collection techniques. In Proc. Int. Workshop

on Memory Management, number 637, Saint-Malo, France, 1992. Springer-Verlag.
15. H. Yang An example of local reasoning in BI pointer logic:the Schorr-Waite graph

marking algorithm In SPACE’01, London, 2001.
16. H. Yang O. Lee and K. Yi Automatic Verification of Pointer Programs Using

Grammar-Based Shape Analysis In ESOP’05, Edinburgh, 2005.
17. H. Yang and P. O’Hearn. A semantic basis for local reasoning. In FoSSaCS’02,

Lecture Notes in Computer Science, pages 402–416. Springer, 2002.
18. H. Yang P. O’Hearn and J. Reynolds. Syntactic control of interference. In

POPL’04, Italy, 2004. ACM Press, New York, NY.

20

