
THÈSE
présentée à

l’ÉCOLE POLYTECHNIQUE

pour l’obtention du titre de

DOCTEUR DE L’ÉCOLE POLYTECHNIQUE
EN INFORMATIQUE

Élodie-Jane Sims

1er décembre 2007

Analyses de Pointeurs et Logique de
Séparation

Pointer Analysis and Separation Logic

Président: Reinhard Wilhelm

Professeur, Universität des Saarlandes, Saarbrücken, Allemagne

Rapporteurs: Hongseok Yang

Queen Mary, University of London, London, Royaume Uni

Reinhard Wilhelm

Professeur, Universität des Saarlandes, Saarbrücken, Allemagne

Examinateurs: Roberto Giacobazzi

Professeur, Universita’ degli Studi di Verona, Italie

David Schmidt

Professeur, Kansas State University, Manhattan Kansas, USA

Directrice de thèse: Radhia Cousot

Directeur de recherche au CNRS, École Normale Supérieure, Paris

École Polytechnique

Thèse en co-tutelle École Polytechnique (France) et Kansas State University (USA) sous
la direction de Radhia Cousot, CNRS/École normale supérieure (France) et David Schmidt,
Kansas State University (USA).

École Polytechnique (France) and Kansas State University (USA) co-directed Ph.D de-
gree under the direction of Radhia Cousot, CNRS/École normale supérieure (France) and
David Schmidt, Kansas State University (USA).

Copyright

Élodie-Jane Sims

2007

Résumé

Le cadre de cette thèse est l’analyse statique modulaire par interprétation abstraite de

logiciels en vue de leur vérification automatique. Nous nous intéressons en particulier aux

programmes comportant des objets alloués dynamiquement sur un tas et repérés par des

pointeurs. Le but final étant de trouver des erreurs dans un programme (problèmes de

déréférencements et d’alias) ou de prouver qu’un programme est correct (relativement à ces

problèmes) de façon automatique.

Isthiaq, Pym, O’Hearn et Reynolds ont développé récemment des logiques de fragmen-

tation (separation logics) qui sont des logiques de Hoare avec un langage d’assertions/de

prédicats permettant de démontrer qu’un programme manipulant des pointeurs sur un tas

est correct. La sémantique des triplets de la logique ({P}C{P ′}) est définie par des trans-

formateurs de prédicats de style plus faible pré-condition.

Nous avons exprimé et prouvé la correction de ces plus faibles pré-conditions (wlp) et

plus fortes post-conditions (sp), en particulier dans le cas de la commande while. L’avantage

par rapport à ce qui est fait dans la communauté est que les wlp et sp sont définis pour

toute formule alors que certaines des règles existantes avaient des restrictions syntaxiques.

Nous avons rajouté des points fixes à la logique ainsi qu’une substitution retardée per-

mettant d’exprimer des formules récursives. Nous avons exprimé les wlp et sp dans cette

logique avec points fixes et prouvé leur correction. La substitution retardée a une utilité

directe pour l’expression de formules récursives. Par exemple, nclist(x) = µXv. (x =

nil) ∨ ∃x1, x2.(isval(x1) ∧ (x 7→ x1, x2 ∗ Xv[x2/x])) décrit l’ensemble des mémoires où x

pointe vers une liste d’entiers.

Le but ensuite était d’utiliser cette logique de fragmentation avec points fixes comme

langage d’interface pour des analyses de pointeurs. Il s’agit de formuler une traduction

des domaines de ces analyses en formules de la logique (et inversement) et d’en prouver la

correction. On peut également parfois utiliser ces traductions pour prouver la correction de

ces analyses.

Nous avions déjà illustré cette approche pour une analyse très simple de partitionnement

des pointeurs. Nous avons traduit les formules de la logique dans un nouveau langage

abstrait permettant de décrire le type des valeurs associées aux variables dans la mémoire

(nil, entier, bool, pointeur vers une paire de tel type, etc.) ainsi que les relations d’aliasing

et non-aliasing entre variables et entre points de la mémoire. Le principal apport est la

définition de ce langage et de sa sa sémantique dans le domaine concret qui est celui utilisé

pour la sémantique des formules. En particulier, les variables auxiliaires dont la sémantique

est habituellement une question d’implémentation font ici explicitement part du langage et

de sa sémantique. Ce langage est un produit cartesien de plusieurs sous domaines et peut

être paramétré par les domaines numériques existants. Nous avons créé un sous-domaine qui

est un tableau permettant de compenser le manque de précision dû à l’utilisation de graphes

d’ensembles au lieu d’ensembles de graphes. Nous avons exprimé et prouvé les traductions

des formules dans ce langage abstrait.

Abstract

We are interested in modular static analysis to analyse softwares automatically. We

focus on programs with data structures, and in particular, programs with pointers. The

final goal is to find errors in a program (problems of dereferencing, aliasing, etc) or to prove

that a program is correct (regarding those problems) in an automatic way.

Isthiaq, Pym, O’Hearn and Reynolds have recently developed separation logics, which

are Hoare logics with assertions and predicates language that allow to prove the correctness

of programs that manipulate pointers. The semantics of the logic’s triples ({P}C{P ′}) is

defined by predicate transformers in the style of weakest preconditions.

We expressed and proved the correctness of those weakest preconditions (wlp) and

strongest postconditions (sp), in particular in the case of while-loops. The advance from

the existing work is that wlp and sp are defined for any formula, while previously existing

rules had syntactic restrictions.

We added fixpoints to the logic as well as a postponed substitution which then allow to

express recursive formulae. We expressed wlp and sp in the extended logic and proved their

correctness. The postponed substitution is directly useful to express recursive formulae. For

example, nclist(x) = µXv. (x = nil) ∨ ∃x1, x2.(isval(x1) ∧ (x 7→ x1, x2 ∗ Xv[x2/x]))

describes the set of memory where x points to a list of integers.

Next, the goal was to use separation logic with fixpoints as an interface language for

pointer analysis. That is, translating the domains of those analyses into formulae of the

logic (and conversely) and to prove their correctness. One might also use the translations

to prove the correctness of the pointer analysis itself.

We illustrate this approach with a simple pointers-partitioning analysis. We translate

the logic formulae into an abstract language we designed which allows us to describe the

type of values registered in the memory (nil, integer, booleans, pointers to pairs of some

types, etc.) as well as the aliasing and non-aliasing relations between variables and loca-

tions in the memory. The main contribution is the definition of the abstract language and

its semantics in a concrete domain which is the same as the one for the semantics of for-

mulae. In particular, the semantics of the auxiliary variables, which is usually a question

of implementation, is explicit in our language and its semantics. The abstract language is

a partially reduced product of several subdomains and can be parametrised with existing

numerical domains. We created a subdomain which is a tabular data structure to cope with

the imprecision from not having sets of graphs. We expressed and proved the translations

of formulae into this abstract language.

Contents

Table of Contents i

List of Figures v

Acknowledgements vi

1 Introduction 1
1.1 Motivations . 1
1.2 Introduction to separation logic . 5
1.3 History of the project and contributions . 11
1.4 Structure of the manuscript . 18

2 Separation logic with fixpoints 19
2.1 Commands and basic domains . 19

2.1.1 Command syntax . 19
2.1.2 Semantic domains . 20
2.1.3 Small-step semantics . 21

2.2 BIµν . 22
2.2.1 Syntax of formulae . 22
2.2.2 Semantics of formulae . 23
2.2.3 Interpretation of Triples . 25
2.2.4 Fixpoints and postponed substitution 26

2.3 Backward analysis . 33
2.4 Forward analysis . 34
2.5 Variations of BIµν . 37
2.6 Appendix . 41

2.6.1 Definitions . 41
2.6.2 Stack Extension Theorem . 44
2.6.3 Variable Renaming Theorem for BIµν 48
2.6.4 Unfolding theorems . 55
2.6.5 Substitution theorems for BIµν . 55
2.6.6 Substitution theorems for BIµν general 60
2.6.7 µ and ν coincide . 64
2.6.8 Simplifications on [/] . 65
2.6.9 sp’s proofs . 68
2.6.10 wlp’s proofs . 74
2.6.11 Upper-continuous results . 74

i

2.6.12 Simplification theorems . 82

3 An abstract language for separation logic 84
3.1 Introduction . 84
3.2 Examples: Introduction to the language, translations of formulae 86

3.2.1 Full example: tree . 91
3.3 Definition of the language, AR . 92
3.4 Semantics of the language . 96
3.5 Operations on the language . 99

3.5.1 Extension . 100
3.5.2 Union . 103
3.5.3 Merging nodes . 107
3.5.4 Stabilization . 111
3.5.5 ast . 114
3.5.6 Intersection . 122

3.6 Translation of formulae . 127
3.6.1 Properties of the translation . 127
3.6.2 Translation of ∧ . 130
3.6.3 Translation of ∨ . 131
3.6.4 Translation of ∃ . 131
3.6.5 Translation of E1 = E2 . 132
3.6.6 Translation of x 7→ E1, E2 . 132
3.6.7 Translation of µ and ν . 133

3.7 Conclusion . 134
3.8 Appendix . 135

3.8.1 Replace . 135
3.8.2 Cheap extension proofs . 135
3.8.3 Extension proofs . 145
3.8.4 Union proofs . 155
3.8.5 Merging proofs . 158
3.8.6 Functions on CLeq proofs . 168
3.8.7 Widening proofs . 169
3.8.8 Basic ast proofs . 171
3.8.9 Extra ast proofs . 179
3.8.10 Basic equal proofs . 181
3.8.11 Reach functions proofs . 185
3.8.12 Class proofs . 188
3.8.13 Exists proofs . 192
3.8.14 Why using J·K′

? . 193

ii

4 Implementation 195
4.1 Introduction . 195
4.2 Software architecture . 196

4.2.1 Reading from files . 196
4.2.2 Computing informations . 197
4.2.3 Building executables . 198

4.3 Syntaxes of inputs and data structures . 198
4.3.1 Program syntax . 199
4.3.2 Formula syntax . 201
4.3.3 Abstract data syntax . 203

4.4 The translation of formula into elements of the domain: sl2ar.ml 210
4.5 Analysis . 214

5 Comparison with other works 216
5.1 Smallfoot . 216

5.1.1 Smallfoot: Modular Automatic Assertion Checking with Separation
Logic (FMCO’05) . 216

5.1.2 A local shape analysis based on separation logic (TACAS’06) 219
5.1.3 Shape analysis for composite data structures (CAV’07) 222
5.1.4 Footprint Analysis: A Shape Analysis that Discovers Preconditions

(SAS’07) . 225
5.1.5 Conclusions about smallfoot/space invader 228

5.2 TVLA . 228
5.3 others . 235
5.4 Conclusion . 235

5.4.1 Modularity . 236
5.4.2 Expressibility of heap logic . 236
5.4.3 Folding/unfolding . 237
5.4.4 Theorem provers . 238
5.4.5 Auxiliary variables . 238
5.4.6 Analysis versus verification . 238
5.4.7 What is distinctive about our system 239

6 Conclusion 241

Bibliography 246

Appendix 246

A Junk: ast algorithm 247

B Intersection 254

C Intersection proof 255

iii

D Clean proof 266

iv

List of Figures

1.1 Examples of separation formulae and memory satisfying them 10
1.2 Example of separation logic formulae which caracterize a piece of code insert-

ing a cell in a linked list, on the right is a graphical view of memory satifying
the formulae . 12

1.3 Local reasoning: exemple of Fig. 1.2 for an extended heap 13

2.1 Operational small-step semantics of the commands 21
2.2 Semantics of BIµν . 24
2.3 Weakest liberal preconditions . 35
2.4 Strongest postconditions . 38

3.1 Introduction examples . 86
3.2 Introduction examples . 87
3.3 Syntax of the language . 93
3.4 Constraints on the language . 94

4.1 Reading a program in a file . 197
4.2 Reading a formula in a file . 197
4.3 Computing pre- and post-conditions, computing the abstraction 197
4.4 The executables produces by the analyses . 200
4.5 The result domain structure . 207

5.1 Table from the article . 220
5.2 Return of example for SAS’07 . 227
5.3 TVLA’s core predicates . 229
5.4 some TVLA’s instrumentation predicates . 230
5.5 TVLA’s formula syntax . 230
5.6 TVLA’s formula semantics . 231
5.7 TVLA’s list-reversal program . 232
5.8 TVLA’s list-reversal result of analysis . 233
5.9 TVLA’s example . 234
5.10 Frame rule . 236

v

Acknowledgments

I would like to warmly thank all those I will not mention here and were there during this heavy
period as a PhD student and in particular all those who went all the way up hill in the maze to
attend my defense !

I am very proud that Reinhard Wilhelm and Hongseok Yang accepted to be my reviewers and
grateful for the work they have done. I have been impressed by the interest and kindness they
shown and the quality of their remarks. I would like to thank Roberto Giacobazzi for accepting to
be a member of my jury, it was an honor.

The most important person involved in a PhD, after the student is its adviser. I was glad to
be granted of two advisers, Radhia Cousot and David Schmidt. They both were very helpful, and
supporting, in their own domains of action. I obviously wouldn’t have started this thesis without
them, but I also wouldn’t have finished it ! My biggest thanks go for them.

I naturally come to thank Patrick Cousot after them, he is the one who introduced me to them
both, and to my area of work. He also was a great scientific help and trigger during my DEA’s
internship and at the very beginning of my thesis.

I was surprised to get so many and great gifts after my defense, but the best one was three big
brothers: Charles Hymans, Georg Jung and Francesco Logozzo. I haven’t been as supportive to
the youngest as I received, but I was very happy to be with Guillaume Capron and Pietro Ferrara.
I believe co-PhDs remain co-PhDs after their defenses !

I was so lucky to have great colleagues and would like to thank: Anindya Banerjee, Julien
Bertrane, Bruno Blanchet, Simon Bliudze, Gilles Dowek, Jérôme Feret, Bertrand Jeannet, Gurvan
Le Guernic, Mathieu Martel, Isabella Mastroeni, Laurent Mauborgne, Antoine Miné, Alexander
Serebrenik, Axel Simon, Allen Stoughton, Xavier Rival, Robby and Sarah Zennou.

I would like to thank Kansas State University and in particular CIS department, for their
kindness when I was there and all the administrative organisation.

I am sincerely glad my family is there for me, in particular my american family who is so
supportive from far away. Je tiens à remercier mon grand-père André Pichard qui fut mon modèle.
Sans ma formidable grand-mère Jeanne Pichard, j’aurais fini cette thèse transformée en pizza ! Je
remercie ma grand-tante Paulette Côme pour son écoute et ses encouragements. Je remercie ma
mère Anne-Lise Pichard pour le soutien qu’elle a su m’apporter. Je tiens à remercier mon affreuse
frangine, Anne-Orlis Pigneur (et son mari Thomas), pour mon adorable nièce Mathilde, bon je
plaisante, je la remercie aussi pour bien bien d’autres choses.

Last but not least. Je tiens à remercier mes amis, mon plus important soutien, tout par-
ticulièrement ma meilleure amie Marion Martin dont le téléphone a supporté mes lamentations
journalières ! Je ne peux remercier ici que ceux qui m’ont promis des représailles en cas d’oubli ;-) :
Noémie Atlan, Térence Bayen, Anne-Marie Bleau, Denis Conduché, Florian Douetteau, Clémentine
Doumenc, Alain Frisch, Céline Georgin, Jean-Marc Léoni, Melanie Pfeiffer, Benôıt Piedallu, An-
drea Platz, Hélöıse Viard et Alexandra Vidalenc. I omit now unforgettable thanks.

vi

Chapter 1

Introduction

1.1 Motivations

Programs (also called software) are used in many places in our environment and a big part

of the effort of programing is used for the so called debugging part (finding errors). One

massively used technique for debugging is testing (trying to run the program in various

situations). Through testing, one can test only some values, thus testing never insures the

program has no error. You can not try all integers before answering that the program

works for all integers; you can not run the program forever before answering the program

will run without error forever. When programs are used in critical situations (for example,

in spaceships, public transportations, power plants, banking), it is then very important to

insure their safety, and it is even sometimes mandatory by laws. Formal methods try to

address the problem by providing mathematically sound techniques that guarantee a full

coverage of all program behaviours.

We are interested in doing static analysis. This consists of proving a program’s correct-

ness or other properties on the program without running the program. Running a program

uses a domain called the operational domain (like values assigned to variables, having mem-

ory locations, ...) and applies changes to elements of the domain following the instructions

given by the program. Static analysis uses a domain which abstracts (“represents”) the op-

erational domain and applies changes to elements on this abstracting domain. The changes

1

in the abstracting domain are related to the changes the program would operate on the

operational domain so that at the end, knowing the changes in the abstracting domain gives

us informations about how the program behaves on the operational domain.

Abstract interpretation 1–3 provides a framework which first helps proving that some prop-

erties on the abstracting domain (there called the abstract domain) implies some properties

on the operational domain; secondly, it helps designing abstracting domains.

Here, we give an example for non computer scientists. Imagine a program

that tries to compute an integer (a number). The program gives an error if

it attempts to do a division by 0 since the result would be infinity, which is

usually not represented in the machine. As said about testing, we can not try all

integers before answering there is no division by 0. Here, the integers would be

the operational domain. Now, we want an abstracting domain, which would allow

us to give an answer in a finite time (and preferably not in a century), but which

would also give a safe answer. We allow the analysis to say it cannot answer,

but if it says the program has no division by 0, we want to trust it. One simple

abstract domain is the domain of the signs: POSITIV E, NEGATIV E, ZERO,

DONT KNOW and ERROR. Then, we change the program on integers into

a program on this abstract domain, replacing the usual operation on integers

(+, −,...) by the sign rules (POSITIV E + POSITIV E = POSITIV E,

NEGATIV E+NEGATIV E = NEGATIV E, POSITIV E+NEGATIV E =

DONT KNOW ,..., POSITIV E/POSITIV E = POSITIV E,

POSITIV E/DONT KNOW = DONT KNOW , POSITIV E/ZERO =

ERROR,...). If the result at the end is POSITIV E, NEGATIV E or ZERO,

we know that the program ran without the error of division by 0 (we even know

a little more). If the result is DONT KNOW , we indeed don’t know anything

about the program. (This kind of result would in practice lead to the search for

a more precise abstract domain). If the result is ERROR, then we know for sure

2

that the program will reach an error of division by 0.

In this thesis, we focus on programs with data structures, and in particular programs with

pointers. Data structures could be “lists”, “trees” or others and are structures commonly

used by programmers. Programs that use data structures are a major field of research since

many real programs errors come from the use of pointers. Errors can come from aliasing,

two variables pointing to the same value, then when a variable changes its value, it also

changes what is pointed by the second one without mentioning its name. There are other

errors like trying to dereference a nil or trying to access a part of the memory which has

been freed earlier.

Now, we go back to the reader who does not know about pointers. You can

imagine that a program consists in putting things in boxes, moving things from

one box to another and so on. Then, this being not convenient enough, the

programmers also have a big board of mailboxes like in a post office. Then,

instead of putting things/mail directly in the first boxes, they will put in the

boxes the number of the mailbox, and to get the mail, they will find the number

of the mailbox in that box and get the mail in the mailbox. Things get a little

more complicated since the mailboxes can also contain mailboxes’s numbers

instead of mail and then one can go through several mailboxes before reaching

their mail. This structure is quite convenient for programming, but it brings

some errors not obvious for the programmers. First, two boxes can contain the

same mailbox address, then if you want to change the mail for one box, you will

go change the mail in its mailbox which will automatically change the mail of

the other box. Now, you have to realise that those mailboxes are something real

in your computer called memory. You don’t have infinite memory, like you don’t

have infinite space in a post office. So when some mailboxes are no more used,

they will be removed so that someone else can install its own mailboxes. This

3

leads to errors, when you forget that someone was using a mailbox, you remove

that mailbox and this someone now try to get its mail and cannot.

Analysing programs dealing with pointers is an old challenge but still alive. There

are many pointer analyses but none of them would be elected as the one which is precise

enough, efficient and entirely formally proved. A widespread approach is so called shape

analysis 4,5; those analyses are using as abstracting domains some sort of “graphs” which

represent the data structures implemented in the program. Nodes represent locations of the

memory (mailboxes) and edges represents the pointing relations (the mailboxes represented

by the origin of the arrow contain the addresses of the mailboxes represented by the node

pointed by the goal of the arrow). This approach is related to the programmers habits,

programmers have a big memory available, but when they program, they are thinking that

they are building lists, trees, or other peculiar data structures.

In the graph built by shape analyses, nodes represent one or more locations of the mem-

ory. The principal idea is that you do not record the whole memory, but only the part of

the memory which is pertinent for the analysis. Shape analysis abstraction is usually not

only forgetting about part of the memory, but also having nodes of the abstract graph rep-

resenting several locations of the memory (called summary nodes). For example, a memory

with a list from x with a next field called n could be represented like x // ?>=<89:;• n //

n
��

nil

instead of x // • n // ... • n // nil

There are many shape analyses, with different kind of additional informations (for example,

modality saying that an edge “must” or “may” exist), and different operations on how to

modify the graphs. The major default of existing shape analyses is that they use rules for

modifying graphs and for merging two graphs for calls of functions, and those rules are hard

to prove and lead to tricky and hard to imagine errors. Scalability (the analysis should not

take too much time when the programs are getting too big) is also a major concern.

When I started this thesis, separation logic 6 appeared as a promising approach to de-

scribing memory properties and has been used to do proofs on program, but only manually.

4

The idea behind separation logic is that there are spatial connectives which allow one to

speak about disjoints part of the memory. The logic appears to permit to describe the

memory in a very natural way. People do manual proofs using a set of rules, and the most

interesting for them was that, with some restrictions, they could prove some properties of

a program running on a memory and this would imply properties of that program on an

extended memory. The principal lack of this approach is that it requires to find a loop

invariant for analyzing a while-loop, and this step can never be fully automatic.

Following, in Section 1.2, we will give a detailed introduction about separation logic. In

Section 1.3, we will describe what was our project and what we achieved.

1.2 Introduction to separation logic

We first present what is a logic: a logic has symbols, a syntax for formulae, at least one

model and at least one semantics per model.

The symbols of the logic are usually infinitely many variables (for example x, y, z,...)

(in our case, some of them are program variables) and connectives (for example =, ∧, ∨,...).

We call syntax a set of rules which combine the symbols of the logic to build formulae (for

example x = 3 ∧ x = y). A rule of the syntax could be “If P and Q are two formulae then

P ∧ Q is also a formula.”

A program has an operational domain on which it runs. Similarly, a logic has a model (for

example, mappings from variables to integer values).

For a program, a semantics is related to an operational domain and describes how a com-

mand transforms an element of this domain (often called a memory).

For a logic, a semantics is related to a model and gives the “meaning” of a formula of the

logic in term of elements of this model (for example x = 3 ∧ y = x means that x has the

value 3 and y has the same value).

This relation of “meaning” between a formula and an element of its model is called satisfac-

tion and is usually written |= (for example, we could write [x 7→ 3 | y 7→ 3] |= (x = 3 ∧ y =

5

x)).

So the semantics for a model M would often be written as a set of rules like “For any

memory m element of M , if m |= P and m |= Q then m |= P ∧ Q.”

Here, we give a short example to explain why people decided to use logics to analyse

programs. Take a short program:

x := 3; y := x;

You can take as the operational domain the mapping of x and y to integers.

Then, you can imagine that you start with both x and y assigned to 0 and run the program:

[x 7→ 0 | y 7→ 0]
x:=3;
−−−−→ [x 7→ 3 | y 7→ 0]

y:=x;
−−−−→ [x 7→ 3 | y 7→ 3]

But if you had started with some other integer values, you could have for example

[x 7→ 5 | y 7→ 2]
x:=3;
−−−−→ [x 7→ 3 | y 7→ 2]

y:=x;
−−−−→ [x 7→ 3 | y 7→ 3]

If you want to analyse the program and prove that at the end both x and y are assigned

to 3, as explained earlier, you can not try all possible integers for the starting values of x

and y.

Logics appeared to be natural domains to express properties of the memory, and in

particular Hoare logic7, whose central feature is the Hoare triple {P}C{Q} where P and

Q are formulae and C a program. The meaning of such a Hoare triple is that: if we run

the program C on a memory which satisfies the formula P then if the program terminates

without error, it terminates on a memory which satisfies the formula Q.

For our example, we could write the triple

{true} x:=3; y:=x; {x = 3 ∧ y = x}

which means that in any case, if the program terminates at the end x has the value 3 and

y has the same value.

6

Then, people wanted those formulae to be automatically found (or as much automatically

as possible), so they wrote rules, for example, in fact we had

{true} x:=3; {x = 3}

and

{x = 3} y:=x; {x = 3 ∧ y = x}

and the results come from the use of the rule that for any formulae P, Q, R and any programs

C1 and C2 we have

If {P}C1{Q} and {Q}C2{R} then {P}C1; C2{R}

People also wanted the result to be as precise as possible. If you take the example, we

could also have written

{x = 5} x:=3; y:=x; {x = 3 ∧ y = x}

which means that if at the beginning x has the value 5, then at the end x has the value 3

and y has the same value.

This leads to the problem: for a formula Q, and a program C what is the least restrictive

formula P such that {P}C{Q} is correct ? This formula P is called the weakest precondition

and we would write rules of the form

{wp(C, Q)}C{Q}

Such rules can be found in Hoare logic7 and Dijkstra-style weakest-precondition logics8.

Symmetrically, if you take the example, we could also have written

{true} x:=3; y:=x; {x = 3}

That is correct, it means that in any case at the end x has value 3. But obviously it is

imprecise since it does not tell us information about y being equal to x.

7

This leads to the problem: for a formula, P , and a program, C, what is the most precise for-

mula Q such that {P}C{Q} is correct ? This formula Q is called the strongest postcondition,

and we would write rules of the form

{P}C{sp(C, P)}

Now, remember that we are interested in programs which manipulate data structures

and in particular in programs with pointers. So the operational domain would not be simple

mappings of variables but also location memory (what we explained in terms of mailboxes).

To be precise, we are interested in programs whose operational domain could be (we say

“could be”, because having locations mapping to pairs instead of other representations like

for example the ones using pointer arithmetic was just a choice and is not a limitation.) a

pair with a stack and a heap. The stack is a mapping from variables to values, like in the

previous examples, but the values could also be locations and the heap is a mapping from

locations to pairs of values.

Then, naturally, to express properties on this domain, we need a logic which has a

semantics in this domain and allows us to express properties of the memory.

One of the rules of Hoare logic is {P [E/x]}x := E{P}, this means that if the memory

satisfies the property P about x (in fact, x does not need to be mentioned by P) after

assigning the value of E to the variable x, then we know that at the beginning the memory

had the same property P but for E and not x. For example, we have {(x = y +1)[3/x]}x :=

3{x = y + 1} which is {3 = y + 1}x := 3{x = y + 1} or simply {y = 2}x := 3{x = y + 1},

this means that if we assign 3 to x and get that x is equal to y + 1, then we know that

before y was equal to 2.

When reasoning about programs that manipulate pointers or heap storage, Hoare logic7

and Dijkstra-style weakest-precondition logics8 appeared to be failing because the logics

require that each program variable names a distinct storage location.

If you consider the program

(1) x := new_pair (3, nil);

8

(2) y := x;

(3) y.first = 4;

after the command (1), the memory is such that
3 nil

x
, after the command (2) it

is like
3 nil

x
y , after the command (3) it is like

4 nil
x
y .

If we try to analyse it using the rule {P [E/x]}x := E{P}, you can prove that

{4 > 3} ⇒ {4 > new pair(3, nil).f irst}

x := new pair (3, nil);

{4 > x.first}

y := x;

{4 > x.first}

y.first := 4;

{y.first > x.first}

This is false, or as we say unsound, because at the end, as you can see in the drawing,

y.first and x.first are both equal to 4, so we do not have y.first > x.first.

Through a series of papers6,9,10, Reynolds and O’Hearn have addressed this founda-

tionally difficult issue of designing a logic for reasoning about programs that manipulate

pointers or heap storage. Their key insight is that a command executes within a region of

heap storage: they write

s, h |= φ

to denote that property φ holds true within heap subregion h and local-variable stack s. One

could also say that a formula describes a property of the states it represents. For example,

φ might be:
emp which means that the heap is empty
E 7→ a, b which means there is exactly one “cons” cell in the heap, containing the

values of a and b as its “head” and “tail” values and that E points to it.
E →֒ a, b which is the same as the previous example, except that the heap can

contain additional cells
With the assistance of a new connective, the “separating conjunction”, denoted ∗,

Reynolds and O’Hearn write

s, h1 · h2 |= φ1 ∗ φ2

9

Ex. 1 Ex. 2 Ex. 3

s = [x → l1, y → l2]

h1 = [l1 → 〈3, l2〉]

s = [x → l1, y → l2]

h2 = [l2 → 〈4, l1〉]

s = [x → l1, y → l2]

h1 · h2 =

[

l1 → 〈3, l2〉,

l2 → 〈4, l1〉

]

x y

3h1

s
x y

4h2

s
x y

3 4h1 ·h2

s

|= (x 7→ 3, y) |= (y 7→ 4, x)
|= (x 7→ 3, y)∗(y 7→ 4, x)
6|= (x 7→ 3, y)∧(y 7→ 4, x)

Figure 1.1: Examples of separation formulae and memory satisfying them

to assert that both φ1 and φ2 use disjoint heap subregions, h1 and h2, to justify the truth of

φ1 and φ2 respectively. There is no aliasing between the variables mentioned in φ1 and φ2.

For example, as shown in Figure 1.1, if s =

[

x → l1

y → l2

]

and h =

[

l1 → 〈3, l2〉

l2 → 〈4, l1〉

]

,

then s, h |= (x 7→ 3, y) ∗ (y 7→ 4, x) (Fig. 1.1, ex. 3) because if h1 = [l1 → 〈3, l2〉] and

h2 = [l2 → 〈4, l1〉] we have s, h1 |= x 7→ 3, y and s, h2 |= y 7→ 4, x (Fig. 1.1, ex. 1 and 2).

We also have s, h |= (x →֒ 3, y) but s, h 6|= (x 7→ 3, y).

If s =

[

x → l1

y → l1

]

and h = [l1 → 〈3, 4〉], then s, h |= (x 7→ 3, 4)∧ (y 7→ 3, 4) but s, h 6|= (x 7→

3, 4) ∗ (y 7→ 3, 4).

Adjoint to the separating conjunction is a “separating implication,”

s, h |= φ1→∗ φ2

which asserts, “if heap region h is augmented by h′ such that s, h′ |= φ1, then

s, h · h′ |= φ2”. For example, if s =

[

x → l1

y → l2

]

and h1 = [l1 → 〈3, l2〉], then

s, h1 |= (y 7→ 4, x)→∗((x 7→ 3, y) ∗ (y 7→ 4, x)), because ∀h′.(l1 6∈ dom(h′) ∧ s, h′ |= y 7→ 4, x)

implies that h′ = [l2 → 〈4, l1〉] which is h′ = h2 and s, h1 · h2 |= (x 7→ 3, y) ∗ (y 7→ 4, x).

10

Ishtiaq and O’Hearn10 showed how to add the separating connectives to a classical logic,

producing separation logic in which Hoare-logic-style reasoning can be conducted on while-

programs that manipulate temporary-variable stacks and heaps.

A Hoare triple, {φ1}C{φ2}, uses assertions φi, written in separation logic; the semantics

of the triple is stated with respect to a stack-heap storage model.

Finally, there is an additional inference rule, the frame rule, which formalizes composi-

tional reasoning based on disjoint heap regions:

{φ1}C{φ2}

{φ1 ∗ φ′}C{φ2 ∗ φ′}

where φ′’s variables are not modified by C.

In Figure 1.2 is the example of the analysis of a piece of program and in Figure 1.3 is an

example of how the frame rule can be applied using the previous example.

The reader interested in the set-of-inference-rules approach for separation logic is invited

to read10, and also11 for details on the frame rule. The rules can also be found in the survey

on separation logics6. We do not present the rule set here since we were not interested in

them during the project.

1.3 History of the project and contributions

We now present a short history of our project and finish this section with a list of contribu-

tions of our work. When we started, separation logic appeared as a promising approach to

describe memory properties. It was applied to do proofs of program correctness, but only

manually.

Separation logic is a very natural language to describe memory, and it allows to speak of

only part of the memory and does not require to define the data structures (like lists, trees)

to describe properties of the memory. One can write assertions like:

• x points to a list of [1;2;3]

∃x2, x3. (x →֒ 1, x2) ∗ (x2 →֒ 2, x3) ∗ (x3 →֒ 3, nil)

11

y

{(x 7→ 1, y) ∗ (y 7→ 3, nil)}

x y

1

s

h 3 nil

t := cons(2, y);

{(x 7→ 1, y) ∗ (y 7→ 3, nil)∗(t 7→ 2, y)}

x y

1

s

h 3 nil 2

t

x · 2 := t;

{(x 7→ 1, t) ∗ (t 7→ 2, y) ∗ (y 7→ 3, nil)}

x y

1

s

h 3 nil 2

t

F
ig

u
re

1
.2

:
E
xa

m
p
le

o
f
sepa

ra
tio

n
logic

fo
rm

u
la

e
w
h
ich

ca
ra

cterize
a

p
iece

o
f
cod

e
in

sertin
g

a
cell

in
a

lin
ked

list,
o
n

th
e

righ
t
is

a
gra

p
h
ica

l
view

o
f
m

em
o
ry

sa
tifyin

g
th

e
fo

rm
u
la

e

12

y

{

(x 7→ 1, y) ∗ (y 7→ 3, nil)

∗(z 7→ 4, y)

}

x y

1

s

h 3 nil 4

z

t := cons(2, y);

{

(x 7→ 1, y) ∗ (y 7→ 3, nil)∗(t 7→ 2, y)

∗(z 7→ 4, y)

}

x

1

y
s

h 3 nil 2

t z

4

x · 2 := t;

{

(x 7→ 1, t) ∗ (t 7→ 2, y) ∗ (y 7→ 3, nil)

∗(z 7→ 4, y)

}

x

1

y
s

h 3 nil 2

t z

4

F
ig

u
re

1
.3

:
L
oca

l
rea

so
n
in

g:
exem

p
le

o
f
F
ig.

1
.2

fo
r

a
n

exten
d
ed

h
ea

p

13

• x and y are aliased pointers

x = y ∧ ∃x1, x2. (x →֒ x1, x2)

• Partitioning: x and y belong to two disjoint parts of the heap which have no pointers

from one to the other.

We wanted to use this logic as an interface language for modular analysis, where the formula

of the logic would be used to characterise the pre- and post-conditions of a library function,

F , and would be used during the analysis of a call to F from another analysis.

Call

function
F

F ′

D

D′

Our first step was to transform the logic. As we said earlier, most of the precondition

formulae were already expressible in the existing logic, but for while-loops, there were none

because these require recursively defined assertions, which were not in the logic’s reach. So

people would have to find the loop invariant manually, which can not be automated in all

cases.

One primary accomplishment of this thesis was to add least- and greatest-fixed-point op-

erators to separation logic, so that pre- and post-condition semantics for the while-language

can be wholly expressed within the logic. As a pleasant consequence of the addition of

fixpoints, it becomes possible to formalize recursively defined properties on inductively (and

co-inductively) defined data structures. In the past, people were forced to write formulae

about data structures in a recursive way without having a formal definition and use them

to instantiate rules which were only proved for non-recursive formulae. We made it possible

14

to express, for example,

nonCircularList(x) ,

µXv. (x = nil) ∨ ∃x1, x2.(isval(x1) ∧ (x 7→ x1, x2 ∗ Xv[x2/x]))

which asserts that x is a linear, non-circular list, where isval(x1) ensures that x1 is a value

(this predicate is defined shortly) and [/] denotes postponed substitution. The recursion

variable, Xv, is subscripted by v for emphasis.

Another example is the definition of non-circular binary tree:

nctree(x) ,

µXv.(x = nil)∨ ∃xv, xl, xr, x
′.isval(xv)∧

(x 7→ xv, x
′ ∗ x′ 7→ xl, xr ∗ Xv[xl/x] ∗ Xv[xr/x])

We wish to advise the reader who is surprised by the postponed substitution (the con-

nective, [/]) to read the formula, P [E/x], as (Moggi’s12) call-by-value let-expression,

“let x = E in P”. A precise semantics is given later in Chapter 2.

The addition of the recursion operators comes with a price: the usual definition of syn-

tactic substitution and the classic substitution laws become more complex; the reasons are

related to the semantics of stack- and heap-storage as well as to the inclusion of the recur-

sion operators. We proved several key properties about substitutions, variable renaming,

and unfolding (for example: µXv. P ≡ P{(µXv. P)/Xv}).

Now we have all the pre- and post-conditions for all commands, including the while-loop.

But not surprisingly, when computing the pre- or post-conditions, we obtained formulae that

were so complicated to read that their meanings are too difficult to understand. And, as we

wanted to use the logic for modularity with other analysis domains, we decided to create an

intermediate language for separation-logic formulae such that:

• it resembles the existing shape/alias analysis domains to allow translations from/to

those domains

• it comes with a concrete semantics in term of sets of states which is the same domain

as for the formulae’s semantics

15

• we can translate the formulae into our domain

• our domain is a partially reduced product of different subdomains so that we can

cheaply tune the precision depending on the needs. For example, the domain is

parametrised by a numerical domain which can be forgotten if we do not care about

numericals.

At very beginning, we tried to implement a translation to a very simple language which

would only say if a variable is nil or not. If we think of the earlier example of trying to

find division by 0 errors, if you start with a domain which would only say if the variable

is 0 or not, soon you will find that your analysis can rarely answer and you will think of

adding POSITIV E and NEGATIV E to the domain. Then, you will want to increase the

precision and define a numerical domain, and so on, getting a more precise analysis while

keeping it efficient.

As for the abstract language we designed, the process was the same: we started with

a very simple domain, nil or not, then we added graphs that were quite similar to shape

graphs. Then, we needed auxiliary variables to say“x = y” and then say “x = nil” but yet

not have to re-check which values equal to x when refining the informations about “x” and

its aliases: x // α //GFED@ABC⊤
y

66nnnnnn

then x // α // _^]\XYZ[6 ⊤ nil

y

77oooooo

.

We designed a semantics for the language in the same domain as the model of the logic

and itself. This was important in particular for auxiliary variables. First, we wanted that

the semantics of a graph would be the intersection of the semantics of its arrows. Secondly,

because it permits to write precise proofs about the functions which manipulates elements of

the language , the functions that translate formulae while manipulating auxiliary variables

are usually presented in papers as part of the implementation and not precisely described.

We made this precise and explicit.

To resemble existing shape graphs, we naturally added summary nodes, nodes which

represent several locations, to the graphs to bring some abstraction, but we generalised

16

them so that they would represent not only multiple locations but they could also represent

any kind of values (numerical, boolean, etc.).

At this point, we did not have information about numericals and as a result most of

the time, our result would say “the result is this but may be there is a numerical error”

while in fact no numerical would be involved or there were no errors of numericals. So, we

parametrised the domain by a numerical domain.

We did not want to record sets of graphs, but only one graph with sets of arrows, but

this would imply imprecision during the union, so we created a new subdomain which is

table-based, which allows us to keep additional information when we want to make a precise

union.

Lastly, the arrows of the graphs include separation information.

Since we can express all pre- and post-conditions in our logic with fixpoints, we can

already get information about the program by expressing the pre- and post-conditions and

then translating them into our abstract language.

The principal place of abstraction comes when translating fixpoints and building sum-

mary nodes. This is interesting because it can provide useful information without knowing

in advance the form of data structures used by a program.

If we may summarize the main accomplishments of the thesis, these would be:

• adding fixpoints to separation logic, which provides a way to express recursive for-

mulae, expressing preconditions for while-loops, and expressing all post-conditions,

letting us prove useful properties about the extended logic

• giving a precise semantics of the abstract domain of separation formulae in terms of

sets of memory

• designing the abstract language as a partially reduced product of subdomains

• giving a semantics to auxiliary variables and not leaving this as an implementation

design question

17

• combining the domain’s heap analysis with a numerical domain which could be chosen

from existing ones (e.g. polyhedra, octogons)

• designing the novel tabular data structure which allows extra precision by using a

graph of sets instead of sets of graphs

1.4 Structure of the manuscript

Chapter 2 presents the extension with fixpoints we added to separation logic. It includes

the syntax and semantics of the programs we analyse; the syntax, semantics and some

properties of the separation logic with fixpoints; the pre- and post-conditions of programs

in the extended logic for any formula and any command including while-loops and their

proofs.

Chapter 3 presents the abstract language we have designed. It gives some examples, a

precise semantics, and some useful operations on the domain like extension, union, merging

nodes, stabilization, the function ast created for translating the connective ∗. The chapter

gives the translation of formulae of separation logic with fixpoints into elements of the

abstract language and their proofs.

Chapter 4 talks about the implementation of the analysis and in particular the data-

structures adopted.

In Chapter 5, we gives comparison to related work. The chapter focuses on two active

lines of work which have been operating for several years with many people: “smallfoot”,

the work from London, which is the most involved with separation logic, and “TVLA”, a

well established work for analysing storage structure.

We conclude in Chapter 6.

18

Chapter 2

Separation logic with fixpoints

In this chapter 1, we extend the separation logic, presented in the introduction, with fixpoint

connectives to define recursive properties and to express the axiomatic semantics of a while

statement. We present forward and backward analyses (sp (strongest postcondition), wlp

(weakest liberal precondition) expressed for all statements and all formulae.

In Sect. 2.1, we describe the command language we analyze and in Sect. 2.2, we

present our logic BIµν . In Sect. 2.3, we provide a backward analysis with BIµν in terms of

“weakest liberal preconditions”. We express the wlp for the composition, if−then−else

and while commands. In Sect. 2.4, we provide a forward analysis with BIµν in terms of

“strongest postconditions”. In Sect. 2.5, we discuss another possibility for adding fixpoints

to separation logic and other works proposed afterward.

2.1 Commands and basic domains

We consider a simple “while”-language with Lisp-like expressions for accessing and creating

cons cells.

2.1.1 Command syntax

The commands we consider are as follows.

1most of this chapter has been plublished in13 and14

19

C ::= x := E | x := E.i | E.i := E ′ | x := cons(E1, E2) | dispose(E)

| C1; C2 | if E then C1 else C2 | skip | while E do C1

i ::= 1 | 2

E ::= x | n | nil | True | False | E1 op E2

An expression can denote an integer, an atom, or a heap-location. Here x is a variable in

Var, n an integer and op is an operator in (Val×Val) → Val such as + : (Int× Int) → Int,

∨ : (Bool × Bool) → Bool (for Var and Val, see Sect. 2.1.2).

The second and third assignment statements read and update the heap, respectively.

The fourth creates a new cons cell in the heap and places a pointer to it in x.

Notice that in our language we do not handle more than one dereferencings in one

statement (no x.i.j, no x.i := y.j); this restriction is for simplicity and does not limit the

expressivity of the language, requiring merely the addition of intermediate variables.

2.1.2 Semantic domains

Val = Int ∪ Bool ∪ Atoms ∪ Loc

S = Var ⇀ Val

H = Loc ⇀ Val × Val

Here, Loc = {l1, l2, ...} is an infinite set of locations, Var = {x, y, ...} is an infinite set of

variables, Atoms = {nil, a, ...} is a set of atoms, and ⇀ is for partial functions. We call

an element s ∈ S a stack and h ∈ H a heap. We also call the pair (s, h) ∈ S × H a state.

We use dom(h) to denote the domain of definition of a heap h ∈ H , and dom(s) to

denote the domain of a stack s ∈ S. Notice that we allow dom(h) to be infinite.

An expression is interpreted as a heap-independent value: JEKs ∈ Val. For example,

JxKs = s(x), JnKs = n, JtrueKs = true, JE1 + E2Ks = JE1Ks + JE2Ks.

Since domain S allows partial functions, J Ks is also partial. Thus JE1 = E2Ks means

JE1Ks and JE2Ks are defined and equal. From here on, when we write a formula of the form

· · · JEKs · · · , we are also asserting that JEKs is defined.

20

JEKs = v

x := E, s, h ; [s|x → v], h

JEKs = l h(l) = r

x := E.i, s, h ; [s|x → πir], h

JEKs = l h(l) = r JE ′Ks = v′

E.i= E ′, s, h ; s, [h|l → (r|i → v′)]

l ∈ dom(h) JEKs = l

dispose(E), s, h ; s, (h − l)

l ∈ Loc l 6∈ dom(h) JE1Ks = v1, JE2Ks = v2

x := cons(E1, E2), s, h ; [s|x → l], [h|l → 〈v1, v2〉]

C1, s, h ; C ′, s′, h′

C1; C2, s, h ; C ′; C2, s′, h′

C1, s, h ; s′, h′

C1; C2, s, h ; C2, s′, h′ skip, s, h ; s, h

JEKs = True

if E then C1 else C2, s, h ; C1, s, h

JEKs = False

if E then C1 else C2, s, h ; C2, s, h

JEKs = False

while E do C, s, h ; s, h

JEKs = True

while E do C, s, h ; C; while E do C, s, h

Figure 2.1: Operational small-step semantics of the commands

2.1.3 Small-step semantics

The semantics of statements, C, are given small-step semantics defined by the relation ;

on configurations. The configurations include triples C, s, h and terminal configurations s, h

for s ∈ S and h ∈ H . The rules are given in Fig. 2.1.

In the rules, we use r for elements of Val×Val; πir with i ∈ {1, 2} for the first or second

projection; (r|i → v) for the pair like r except that the i’th component is replaced with v;

and [s | x → v] for the stack like s except that it maps x to v, (h − l) for h↾dom(h)\{l}
.

The location l in the cons case is not specified uniquely, so a new location is chosen

non-deterministically.

Let the set of error configurations be: Ω = {C, s, h | ∄K. C, s, h ; K}.

We say that:

• “C, s, h is safe” if and only if ∀K. (C, s, h ;
∗ K ⇒ K 6∈ Ω)

• “C, s, h is stuck” if and only if C, s, h ∈ Ω

For instance, an error state can be reached by an attempt to dereference nil or an

integer. Note also that the semantics allows dangling references, as in stack [x → l] with

21

empty heap [].

The definition of safety is formulated with partial correctness in mind: with loops, C, s, h

could fail to converge to a terminal configuration but not get stuck.

We define the weakest liberal precondition in the operational domain:

Definition 2.1. For ∆ ⊆ S × H , wlpo(∆, C) = {s, h | (C, s, h ;
∗ s′, h′ ⇒ s′, h′ ∈

∆) ∧ C, s, h is safe}

We define the strongest postcondition similarly:

Definition 2.2. spo(∆, C) = {s′, h′ | ∃s, h ∈ ∆. C, s, h ;
∗ s′, h′}

2.2 BIµν

In this section, we present the logic BIµν . It is designed to describe properties of the state.

Typically, for analysis it will be used in Hoare triples of the form {P}C{Q} with P and Q

formulae of the logic and C a command.

We present in Sect. 2.2.1 the syntax of the logic and in Sect. 2.2.2 its formal semantics.

In Sect. 2.2.3, we give the definition of a true triple {P}C{Q}. In Sect. 2.2.4, we discuss

the additions to separation logic (fixpoints and postponed substitution).

2.2.1 Syntax of formulae

P, Q, R ::= E = E ′ Equality | E 7→ E1, E2 Points to

| false Falsity | P ⇒ Q Classical Imp.

| ∃x.P Existential Quant. | emp Empty Heap

| P ∗ Q Spatial Conj. | P→∗ Q Spatial Imp.

| Xv Formula Variable | P [E/x] Postponed Substitution

| νXv.P Greatest Fixpoint | µXv.P Least Fixpoint

We have an infinite set of variables, Varv, used for the variables bound by µ and ν and

disjoint from the set Var. They range over sets of states, the others (x,y,...) are variables

which range over values. For emphasis, uppercase variables subscripted by v are used to

define recursive formulae. We use the term “closed” for the usual notion of closure of

22

variables in Var (closed by ∃ or ∀) and the term “v-closed” for closure of variables in Varv

(v-closed by µ or ν).

Our additions to Reynolds and O’Hearn’s separation logic are the fixed-point operators

µXv. P and νXv. P and the substitution construction P [E/x].

We can define various other connectives as usual, rather than taking them as primitives:
¬P , P ⇒ false

P ∨ Q , (¬P) ⇒ Q

∀x.P , ¬(∃x.¬P)

true , ¬(false)

P ∧ Q , ¬(¬P ∨ ¬Q)

E →֒ a, b , true ∗ (E 7→ a, b)

x = E.i , ∃x1, x2. (E →֒ x1, x2) ∧ (x = xi)

We could have only one fixpoint connective in the syntax, since the usual equivalences,

µXv. P ≡ ¬νXv.¬(P{¬Xv/Xv}) and νXv. P ≡ ¬µXv.¬(P{¬Xv/Xv}), hold (proofs in

Sect. 2.6.7).

The set FV (P) of free variables of a formula is defined as usual. The set Var(P) of

variables of a formula is defined as usual with Var(P [E/x]) = Var(P) ∪Var(E) ∪ {x}. (see

definitions of FV and V ar in Sect. 2.6.1)

2.2.2 Semantics of formulae

The semantics of the logic is given in Fig. 2.2.

We use the following notations in formulating the semantics:

• h♯h′ indicates that the domains of heaps h and h′ are disjoint;

• h · h′ denotes the union of disjoint heaps (i.e., the union of functions with disjoint

domains).

We express the semantics of the formulae in an environment ρ mapping formula variables

to set of states: ρ : Varv ⇀P(S × H). The semantics of a formula in an environment ρ is

the set of states which satisfy it, and is expressed by: J·Kρ : BIµν ⇀P(S × H)

We call JP K the semantics of a formula P in an empty environment JP K = JP K∅. We

also define a forcing relation of the form:

s, h |= P if and only if s, h ∈ JP K

23

JE = E ′Kρ = {s, h | JEKs = JE ′Ks}

JE 7→ E1, E2Kρ = {s, h | dom(h) = {JEKs}

and h(JEKs) = 〈JE1Ks, JE2Ks〉}

JfalseKρ = ∅

JP ⇒ QKρ = ((S × H) \ JP Kρ) ∪ JQKρ

J∃x.P Kρ = {s, h | ∃v ∈ Val.[s|x → v], h ∈ JP Kρ}

JempKρ = {s, h | h = []}

JP ∗ QKρ = {s, h | ∃h0, h1. h0♯h1, h = h0 · h1

s, h0 ∈ JP Kρ and s, h1 ∈ JQKρ}

JP→∗QKρ = {s, h | ∀h′. if h♯h′ and s, h′ ∈ JP Kρ then

s, h · h′ ∈ JQKρ}

JXvKρ = ρ(Xv) , if Xv ∈ dom(ρ)

JµXv . P Kρ = lfp⊆
∅ λX. JP K[ρ|Xv→X]

JνXv . P Kρ = gfp⊆
∅ λX. JP K[ρ|Xv→X]

JP [E/x]Kρ = {s, h | [s | x → JEKs], h ∈ JP Kρ}

Figure 2.2: Semantics of BIµν

and an equivalence:

P ≡ Q if and only if ∀ρ.(JP Kρ = JQKρ) or (JP Kρ and JQKρ both do not exist).

In both cases µ and ν, the X in λX is a fresh variable over sets of elements in S × H

which does not already occur in ρ.

Notice that J·Kρ is only a partial function. In definitions above, lfp⊆
∅ λX. JP K[ρ|Xv→X]

(gfp⊆
∅ λX. JP K[ρ|Xv→X]) is the least fixpoint (greatest fixpoint) of the function λX. JP K[ρ|Xv→X]

on the poset 〈P(S × H),⊆〉, if it exists. Otherwise, JµXv.P Kρ (JνXv.P Kρ) is not defined.

For example, this is the case for µXv . (Xv ⇒ false).

The syntactical criterions for formulae with defined semantics (like parity of negation

under a fixpoint, etc.) are the usual ones knowing that in terms of monotonicity, →∗ acts

like ⇒, ∗ acts like ∧, and [/] does not interfere. The fixpoint theory gives us criteria

(using Tarski’s fixpoint theorem) for the existence of JP Kρ, but no criteria for nonexistence.

Nonetheless, we have these facts:

• if P is E = E or E 7→ E1, E2 or false or emp, then JP Kρ always exists; λX.JP K[ρ|Xv→X]

24

is monotonic and antitonic.

• JXvKρ exists if and only if Xv ∈ dom(ρ); λX.JXvK[ρ|Yv→X] is monotonic and not anti-

tonic.

• If P is Q ⇒ R or Q→∗R, then JP Kρ exists if and only if JQKρ and JRKρ exist;

λX.JP K[ρ|Xv→X] is monotonic if and only if λX.JRK[ρ|Xv→X] is monotonic and

λX.JQK[ρ|Xv→X] is antitonic; λX.JP K[ρ|Xv→X] is antitonic if and only if λX.JRK[ρ|Xv→X]

is antitonic and λX.JQK[ρ|Xv→X] is monotonic.

• JQ ∗ RKρ exists if and only if JQKρ and JRKρ exist; λX.JQ ∗ RK[ρ|Xv→X] is mono-

tonic/antitonic if and only if λX.JRK[ρ|Xv→X] and λX.JQK[ρ|Xv→X] are

monotonic/antitonic.

• If P is ∃x. Q or Q[E/x], then JP Kρ exists if and only if JQKρ exists; λX.JP K[ρ|Xv→X] is

monotonic/antitonic if and only if λX.JQK[ρ|Xv→X] is monotonic/antitonic.

• If µν ∈ {µ, ν} and if λX.JP K[ρ|Xv→X] exists and is monotonic, then JµνXv. P Kρ exists

and λX.JµνXv. P K[ρ|Xv→X] is monotonic and antitonic.

• If µν ∈ {µ, ν} and if λX.JP K[ρ|Xv→X|Yv→Y] is monotonic/antitonic, and

λY.JP K[ρ|Xv→X|Yv→Y] exists and is monotonic, then λX.JµνYv. P K[ρ|Xv→X] is mono-

tonic/antitonic.

2.2.3 Interpretation of Triples

Hoare triples are of the form {P}C{Q}, where P and Q are assertions in BIµν and C is a

command. The interpretation ensures that well-specified commands do not get stuck. (In

this, it differs from the usual interpretation of Hoare triples15.)

Definition 2.3. {P}C{Q} is a true triple if and only if ∀s, h, if s, h |= P and FV (Q) ⊆

dom(s), then

• C, s, h is safe

25

• if C, s, h ;
∗ s′, h′, then s′, h′ |= Q.

This is a partial correctness interpretation; with looping, it does not guarantee termi-

nation. This is the reason for expressing “weakest liberal preconditions” for our backward

analysis and not “weakest preconditions”. However, the safety requirement rules out certain

runtime errors and, as a result, we do not have that {true}C{true} holds for all commands.

For example, {true}x := nil; x.1 := 3{true} is not a true triple.

2.2.4 Fixpoints and postponed substitution

In this section, we discuss our motivations for adding fixpoints and postponed substitution to

separation logic. We show that the postponed substitution connective, [/], is not classical

substitution, { / }, and that the usual variable renaming theorem does not hold for { / }.

We develop the needed concepts in a series of vignettes:

First motivation

Our initial motivation for adding fixpoint operators to separation logic came from the habit

of the separation logic community of informally defining recursive formulae and using them

in proofs of correctness.

Since we have added fixed-point operators to the logic, we can formally and correctly

express, for example, that x is a non-cyclic finite linear list as

nclist(x) = µXv. (x = nil) ∨ ∃x1, x2.(isval(x1) ∧ (x 7→ x1, x2 ∗ Xv[x2/x]))

and that x is non-cyclic finite or infinite list

nclist(x) = νXv. (x = nil) ∨ ∃x1, x2.(isval(x1) ∧ (x 7→ x1, x2 ∗ Xv[x2/x]))

where isval(x) = (x = true) ∨ (x = false) ∨ (∃n.n = x + 1)

In earlier papers16, Reynolds and O’Hearn use the definition,

nclist(x) = (x = nil) ∨ ∃x1, x2.(isval(x1) ∧ (x 7→ x1, x2 ∗ nclist(x2)))

which is not within the syntax of separation logic.

26

Second motivation

The second motivation was the formulations of the wlp ({ ? }C{P}) and sp ({P}C{ ? })

in the case of while commands, which was not possible earlier. This problem is nontrivial:

For separation logic without fixed-points, we might express sp as

sp(P, while E do C) = (lfp
|=
false λX.sp(X ∧ E = true, C) ∨ P) ∧ (E = false)

with lfp
|=
false λX.F (X) defined, if it exists, as a formula P which satisfies:

• P ≡ F (P)

• for any formula Q, (Q ≡ F (Q) implies P |= Q)

where

• Q |= P if and only if JQK ⊆ JP K or JQK and JP K are both not defined;

• P ≡ Q if and only if P |= Q and Q |= P .

This implies that during the computation of the sp, each time a while loop occurs, we must

find a formula in existing separation logic that was provably the fixpoint, so that we could

continue the computation of the sp. In another sense, this “work” could be seen as the

“work” of finding the strongest loop invariant in the application of the usual rule for while

loop.

Our addition of fixpoints (and the related postponed substitution) allows us to express

the sp directly within the logic:

sp(P, while E do C) = (µXv.sp(Xv ∧ E = true, C) ∨ P) ∧ (E = false).

Although the definitions of the wlp and sp for the while loop are simple and elegant,

the “work” of finding loop invariants is not skipped, however it is now postponed for when

we have a specific proof to undertake. In the following chapters, we will present translations

of formulae into an other domain, and we have to find an approximation of the translation

27

of fixpoints which is precise and not too expensive to compute. The advantage here is that

this work of building the translation is done once and for all, then the analysis can be fully

automated while the methodology of a proof system and finding loop invariant implies hand

work.

[/] is not { / }

We use the notation P{E/x} for capture-avoiding syntactical substitution (that is, the usual

substitution of variables). Recall that [/] is a connective of the logic (called postponed

substitution) and is not equivalent to { / }. It might be helpful for the reader to understand

[/] to look at the formula P [E/x] as (Moggi’s12) call-by-value, let x = E in P .

The distinction between [/] and { / } can be viewed in this example, where the

command will be stuck in any state that has no value in its stack for y:

{true}x := y{true} is false

This implies that the classical axiom for assignment, {P{y/x}}x := y{P}, is unsound.

In other versions of separation logic6, {P{y/x}}x := y{P}was sound, since the definition

of a true triple required FV (C, Q) ⊆ dom(s) and not merely FV (Q) ⊆ dom(s), as here, and

also because there was no recursion.

Our definition along with the choice to allow stacks to be partial functions does not

require variables of the program to have a default value in the stack and it checks whether

a variable has been assigned before we try to access its value. But the addition of fixpoints

does not require stacks to be partial functions. (Indeed, if stacks were total functions, then

more laws would hold for [/], but the latter’s definition would remain different from { / }’s.)

Unfolding

As usual, we have µXv.P ≡ P{µXv.P/Xv}

and νXv.P ≡ P{νXv.P/Xv}

See theorems and proofs in Sect. 2.6.4.

28

{/}: No variable renaming

Surprisingly, we have ∃y.P 6≡ ∃z.P{z/y} with z 6∈ Var(P) (when y 6= z). Here are two

counterexamples, which expose the difficulties:

Counterexample 1:

JνXv.y = 3 ∧ ∃y.(Xv ∧ y = 5)K 6≡ JνXv.y = 3 ∧ ∃z.(Xv ∧ z = 5)K

The left-hand side denotes the empty set, while the right-hand side denotes Jy = 3K. Here

are the detailed calculations:

JνXv.y = 3 ∧ ∃y.(Xv ∧ y = 5)K∅
= gfp⊆

∅ λY. Jy = 3 ∧ ∃y.(Xv ∧ y = 5)K[Xv→Y]

= gfp⊆
∅ λY. Jy = 3K[Xv→Y] ∩ J∃y.(Xv ∧ y = 5)K[Xv→Y]

= gfp⊆
∅ λY. {s, h | s(y) = 3} ∩ {s, h | ∃v.[s | y → v], h ∈ JXv ∧ y = 5K[Xv→Y]}

= gfp⊆
∅ λY. {s, h | s(y) = 3} ∩ {s, h | ∃v.[s | y → v], h ∈ Y ∧ [s | y → v](y) = 5}

= gfp⊆
∅ λY. {s, h | s(y) = 3} ∩ {s, h | [s | y → 5], h ∈ Y }

= ∅

JνXv.y = 3 ∧ ∃z.(Xv ∧ z = 5)K∅
= gfp⊆

∅ λY. Jy = 3 ∧ ∃z.(Xv ∧ z = 5)K[Xv→Y]

= gfp⊆
∅ λY. Jy = 3K[Xv→Y] ∩ J∃z.(Xv ∧ z = 5)K[Xv→Y]

= gfp⊆
∅ λY. {s, h | s(y) = 3} ∩ {s, h | ∃v.[s | z → v], h ∈ JXv ∧ z = 5K[Xv→Y]}

= gfp⊆
∅ λY. {s, h | s(y) = 3} ∩ {s, h | ∃v.[s | z → v], h ∈ Y ∧ [s | z → v](z) = 5}

= gfp⊆
∅ λY. {s, h | s(y) = 3} ∩ {s, h | [s | z → 5], h ∈ Y }

= {s, h | s(y) = 3}

Here is some intuition: For the left-hand side, y = 3 says that all the states defined by

the assertion must bind y to 3, and “∃y.Xv ∧ y = 5” says that for all those states defined

by the assertion, we can bind y such that it satisfies y = 5, even as it satisfies y = 3, due to

the recursion, which is impossible, so we have ∅ as the denotation.

For the right-hand side, y = 3 asserts again that y binds to 3, and ∃z.Xv ∧ z = 5 says

that for all states in the assertion’s denotation, we bind 5 to z, which is indeed possible, so

we have Jy = 3K as the denotation of the assertion.

29

Counterexample 1 shows that variable renaming has a special behavior when applied to

a formula which is not v-closed.

Counterexample 2:

J∃y.νXv.y = 3 ∧ ∃y.(Xv ∧ y = 5)K 6≡ J∃z.νXv.z = 3 ∧ ∃y.(Xv ∧ y = 5)K

The left-hand side denotes the empty set, while the right-hand side denotes S × H .

To see this, note that the left-hand side’s semantics is essentially the same as its coun-

terpart in the first counterexample. As for the right-hand side, if we apply the semantics

of the right-hand side of the first counterexample, we see that JνXv.z = 3 ∧ ∃y.(Xv ∧ y =

5)K = Jz = 3K, signifying that all the states are such that we bind 5 to z. So, we have S ×H

as the denotation of the right-hand side.

Counterexample 2 shows that variables occurring free in the bodies of fixed-point for-

mulae are subject to dynamic binding with respect to unrolling the recursive formulae via

postponed substitution.

Full substitution

The previous counterexample 2 leads to the definition of a new substitution:

Definition 2.4. Let {[/]} be a full syntactical variable substitution: P{[z/y]} is P in

which all y are replaced by z wherever they occur, for example:

(∃y.P){[z/y]} , ∃z.(P{[z/y]}), (P [E/x]){[z/y]} , (P{[z/y]})[E{z/y}/x{z/y}]

The variable renaming theorem for BIµν

We define class(z, s, h) as the set of states containing the state, s, h, and all other states

identical to s, h except for z:

Definition 2.5. class(z, s, h) = {s′, h | for all v ∈ V al, [s′ | z → v] = [s | z → v]}

Alternatively, we can say that class(z, s, h) is that set which satisfies:

• s↾dom(s)\{z}
, h ∈ class(z, s, h)

30

• ∀v.[s | z → v], h ∈ class(z, s, h)

Definition 2.6. For z ∈ V ar, X ∈ P(S × H), define

nodep(z, X) , True iff ∀s, h ∈ X.class(z, s, h) ⊆ X

We extend this definition to environments as well:

nodep(z, ρ) , True iff (∀Xv ∈ dom(ρ).nodep(z, ρ(Xv))

Proposition 2.7. If nodep(z, ρ), FVv(P) ⊆ dom(ρ), z 6∈ FV (P) and JP Kρ exists, then

nodep(z, JP Kρ)

The proof is found in Sect. 2.6.2.

The idea is, if P is v-closed and z does not occur free in P , then ∀v. (s, h ∈ JP K iff [s |

z → v], h ∈ JP K). Yet another phrasing goes, if z does not occur free in a v-closed formula,

then the set of states satisfying the formula does not have any particular values for z.

Now, let

• s•y,z ,

[

[s | y → s(z)] if z ∈ dom(s)

s if z 6∈ dom(s)

• ρ•
y,z , [∀Xv ∈ dom(ρ). Xv → {s, h | s•y,z, h ∈ ρ(Xv)}]

Proposition 2.8. If nodep(z, ρ) and z 6∈ V ar(P), then JP{[z/y]}Kρ•y,z
= {s, h | s•y,z, h ∈

JP Kρ}

Theorem 2.9. If P is v-closed, z 6∈ V ar(P) and y 6∈ FV (P), then P ≡ P{[z/y]}. In

particular, ∃y.P ≡ ∃z.(P{[z/y]}).

You can see proofs and details in Sect. 2.6.3.

Equivalences on [/]

For proofs see Sect. 2.6.8.

We define is(E) , E = E, which is just a formula ensuring that E has a value in the

current state. If we had chosen that stacks were only total functions, is(E) would always

be equivalent to true and there would be more simplifications. We have these facts:

31

• If P does not contain any v-variable or fixpoint or postponed substitution, then

P [E/x] ≡ P{E/x} ∧ is(E).

• If P is v-closed and if x1 6∈ Var(E) and x1 6= x2, then:

(∃x1.P)[E/x2] ≡ ∃x1.(P [E/x2]).

• (∃x.P)[E/x] ≡ (∃x.P) ∧ is(E).

• (A ∨ C)[E/x] ≡ (A[E/x]) ∨ (C[E/x]).

• If y 6∈ Var(P), then

(µXv.P)[y/x] ≡ (µXv.P{[y/x]}) ∧ is(y)

(νXv.P)[y/x] ≡ (νXv.P{[y/x]}) ∧ is(y).

Concerning the last item, one would want a similar equivalence for E instead of y, but this

is not possible since (P [E ′/x]){[E/x]} is not defined because P [E ′/E] is not defined. (The

last argument must be a variable.) This explains why [/] must be a connective.

To understand the last equivalence, we must return to the programming point of view,

seeing fixpoints as while loops and [/] as assignments, so that the precondition for x :=

w; while x = y do x := x + 1 is the same as the one for while w = y do w := w + 1. (In

Sect. 2.3, we will learn that this will be (νXv.(x 6= y) ∨ ((x = y) ∧ Xv[x + 1/x]))[w/x] ≡

is(w) ∧ (νXv.(w 6= y) ∨ ((w = y) ∧ Xv[w + 1/w])).)

Example of unfolding

Let nclist42(x) , µXv.(x = nil) ∨ ∃x2.((x 7→ 42, x2) ∗ Xv[x2/x]) with x2 6= x. Let’s

prove that Xv[x2/x] is equivalent to nclist42(x2).

32

nclist42(x) , µXv.(x = nil) ∨ ∃x2.((x 7→ 42, x2) ∗ Xv[x2/x])

(unfolding) = (x = nil) ∨ ∃x2.((x 7→ 42, x2)∗

((µXv.(x = nil) ∨ ∃x2.((x 7→ 42, x2) ∗ Xv[x2/x]))[x2/x]))

(Th. 2.9) = (x = nil) ∨ ∃x2.((x 7→ 42, x2)∗

((µXv.(x = nil) ∨ ∃x3.((x 7→ 42, x3) ∗ Xv[x3/x]))[x2/x]))

(simplify [/] case µ) = (x = nil) ∨ ∃x2.((x 7→ 42, x2)∗

(µXv.(x2 = nil) ∨ ∃x3.((x2 7→ 42, x3) ∗ Xv[x3/x2])))

, (x = nil) ∨ ∃x2.((x 7→ 42, x2) ∗ nclist42(x2))

So we have nclist42(x2) ≡ (nclist42(x))[x2/x], as expected.

Why is BI + µ + ν 6= BIµν?

Or, why do we need to add [/] to the syntax? Informally stated, one can view the fixpoint

as a while loop and [/] as an assignment, then if we have a while loop followed by an

assignment, we cannot include the assignment within the loop. So, if an analysis postponed

the computation of while loop (fixpoint), then it also has to postpone the computation of

assignment ([/]).

The need for [/] is not surprising. In15, de Bakker proved that for his simple logic with

fixpoints, there was no sp for the while loop statements.

Indeed, for P without any µ, ν, Xv in it, we have P [E/x] ≡ P{E/x}∧is(E). But for BIµν

without the connective [/], there is no formula in the logic equivalent to P [E/x], which

means that [/] has to be in the logic syntax. For example, (∃y.P)[E/x] 6≡ ∃y.(P [E/x])

when y 6= x but y ∈ Var(E) but the renaming theorem: ∃y.P ≡ ∃z.P{z/y} with z 6∈ Var(P)

does not hold, so the attempt to find an equivalent formula for (∃y.P)[E/x] will fail.

2.3 Backward analysis

We now define the weakest liberal precondition (wlp) semantics of the while-loop language

with pointers; see Fig. 2.3. Most of the clauses are from Ishtiaq and O’Hearn10, but our

33

definition for while E do C is new and crucial. We add to wlp a parameter V ∈ P(V ar),

such that when choosing fresh variables, they are not in V .

If we can establish {P}C{true}, then we will know that execution of C is safe in any

state satisfying P . So for our backward analysis, in Fig. 2.3 we express wlp such that

Theorem 2.10. Jwlp(P, C)K = wlpo(JP K, C).

Corollary 2.11. {wlp(P, C)}C{P} is true.

Proof. To prove that our definition indeed defines wlp, we formally relate it to the inverse

state-transition function wlpo: The definition of a true triple implies that:

{wlp(P, C)}C{P} true
if and only if

(

Jwlp(P, C)K
∩{s, h | FV (P) ⊆ dom(s)}

)

⊆ wlpo(JP K, C)

BIµν

J·K

��

'& %$! "#BIµν
wlp

oo

J·K

��
op ⊆ op

wlpo

oo

To prove that our analysis is correct, we express wlpo for each command, and prove by

induction on the syntax of C that for each C and P , we have Jwlp(P, C)K ⊆ wlpo(JP K, C). To

prove that those preconditions are the weakest we establish that Jwlp(P, C)K = wlpo(JP K, C).

For details, see Sect. 2.6.10.

Example: wlp(true, while i > 0 do (x := x · 2; i := i − 1)) , νXv.((i ≤ 0 ∧ true) ∨ (i >

0 ∧ ∃x1, x2. (Xv[i − 1/i][x2/x]) ∧ (x 7→ x1, x2))), which simplifies to νXv.i ≤ 0 ∨ (i >

0 ∧ ∃x1, x2. Xv[i − 1/i][x2/x] ∧ x 7→ x1, x2).

2.4 Forward analysis

In the previous section, we defined wlp for C and P such that {wlp(P, C)}C{P} is true.

Unfortunately, the strongest postcondition semantics sp(P, C) is not always defined — we

can find C and P such that there exists no Q that makes {P}C{Q} true. This is due to the

fact that a true triple requires C to be executable from all states satisfying P and also such

34

wlp(P, C) = wlp∅(P, C)

wlpV (P, x := E) = P [E/x]

wlpV (P, x := E.i) = ∃x1∃x2.(P [xi/x] ∧ (E →֒ x1, x2))

with xi 6∈ V ∪ FV (E, P)

wlpV (P, E.1 := E ′) = (E ′ = E ′) ∧ ∃x1∃x2.(E 7→ x1, x2) ∗ ((E 7→ E ′, x2)→∗P)

with xi 6∈ V ∪ FV (E, E ′, P)

wlpV (P, E.2 := E ′) = (E ′ = E ′) ∧ ∃x1∃x2.(E 7→ x1, x2) ∗ ((E 7→ x1, E
′)→∗P)

with xi 6∈ V ∪ FV (E, E ′, P)

wlpV (P, x := cons(E1, E2)) = (E1 = E1) ∧ (E2 = E2) ∧ ∀x′.(x′ 7→ E1, E2)→∗P [x′/x]

with x′ 6∈ V ∪ FV (E1, E2, P)

wlpV (P, dispose(E)) = P ∗ (∃a∃b.(E 7→ a, b))

with a, b 6∈ V ∪ FV (E)

wlpV (P, C1; C2) = wlpV (wlpV (P, C2), C1)

wlpV (P, if E then C1 else C2) = (E = true ∧ wlpV (P, C1))

∨(E = false ∧ wlpV (P, C2))

wlpV (P, skip) = P

wlpV (P, while E do C1) = νXv.((E = true ∧ wlpV ∪V ar(E,P)(Xv, C1))

∨(E = false ∧ P))

with Xv not in P

Figure 2.3: Weakest liberal preconditions

35

that FV (Q) ⊆ dom(s) which is obviously not the case for some C and P . (For example,

{true}x := nil; y := x.1{?} has no solution, since all states satisfy P but the command can

never be executed — nil.1 is not defined).

We therefore split the analysis into two steps. The first step checks whether C is exe-

cutable from all states satisfying P or not. The second step gives sp(P, C) that makes the

triple {P}C{sp(P, C)} true if C is executable from all states satisfying P .

Step 1 : wlp(true, C):

(∀s, h ∈ JP K. C, s, h is safe) if and only if (P |= wlp(true, C))

The first step expresses the wlp(true, C) formulae, which are the formulae given in Fig. 2.3,

instantiated for P = true.

Step 2: sp(P, C): This is given in Fig. 2.4.

In other words, our formula sp(P, C) does not characterise all the states reached after

an execution of C from a state satisfying P but only, if there is a state resulting of the

execution of C from a state satisfying P , then this state satisfies sp(P, C).

This gives us

Theorem 2.12. spo(JP K, C) = Jsp(P, C)K.

Corollary 2.13. {P ∧ wlp(true, C)}C{sp(P ∧ wlp(true, C), C)} is always true.

In case P |= wlp(true, C) this is equivalent to {P}C{sp(P, C)} is true.

Corollary 2.14. If P 6|= wlp(true, C), then C cannot be executable from all states satis-

fying P . But for those states from which C is executable, the final states satisfy sp(P ∧

wlp(true, C), C).

Our sp(P, C) makes the triple {P}C{sp(P, C)} always true in the usual definition of

Hoare triples (which is {P}C{Q} true iff spo(JP K, C) ⊆ JQK).

36

Proof. To prove that our definition indeed defines sp, we formally relate it to the inverse

state-transition function spo. The definition of a true triple implies that

{P}C{Q} if P |= wlp(true, C) ∧ spo(JP K, C) ⊆ JQK

(We could also have written

{P}C{Q}

if and only if

(JP K ∩ {s, h | FV (P) ⊆ dom(s)}) ⊆ Jwlp(true, C)K
∧ (spo(JP K, C) ∩ {s, h | FV (P) ⊆ dom(s)}) ⊆ JQK

)

To prove that our analysis is correct, we expressed spo for each command, and proved

by induction on the syntax of C that for each C, and P , we have

If P |= wlp(true, C)

then spo(JP K, C) ⊆ Jsp(P, C)K

76 5401 23BIµν
sp //

J·K

��

BIµν

J·K

��
op

spo // ⊆ op
But since spo is defined such that it only collects the final states of successful computa-

tions, we must only prove that for each C and P : spo(JP K, C) ⊆ Jsp(P, C)K.

Finally, to prove that those postconditions are the strongest we have established that

spo(JP K, C) = Jsp(P, C)K. For details see Sect. 2.6.9.

Example: sp(true, i := 0; x := nil; while i 6= 5 do x := cons(i, x); i := i + 1) , i =

5 ∧ µXv.((∃x′.(∃i′.true[i′/i] ∧ i = 0)[x′/x] ∧ x = nil) ∨ ∃i′.(∃x′.(Xv ∧ i 6= 5)[x′/x] ∗ (x 7→

i, x′))[i′/i]∧i = i′+1), which is after simplifications, i = 5∧µXv.((i = 0∧x = nil)∨∃x′.i′.i =

i′ + 1 ∧ i′ 6= 5 ∧ (Xv[x
′/x] ∗ (x 7→ i′, x′)))

2.5 Variations of BIµν

Our version of BIµν is not unique. One variant would preserve the usual renaming theorem

but at the price of additional complexity in defining fixed-point formulae: the v-variables

37

sp(P, C) = sp∅(P, C)

spV (P, x := E) = ∃x′. P [x′/x] ∧ x = E{x′/x}

with x′ 6∈ V ∪ FV (E, P)

spV (P, x := E.i) = ∃x′. P [x′/x] ∧ x = (E{x′/x}).i

with x′ 6∈ V ∪ FV (E, P)

spV (P, E.1 := E ′) = ∃x1∃x2.(E 7→ E ′, x2) ∗ ((E 7→ x1, x2)→∗P)

with xi 6∈ V ∪ FV (E, E ′, P)

spV (P, E.2 := E ′) = ∃x1∃x2.(E 7→ x1, E
′) ∗ ((E 7→ x1, x2)→∗P)

with xi 6∈ V ∪ FV (E, E ′, P)

spV (P, x := cons(E1, E2)) = ∃x′.(P [x′/x] ∗ (x 7→ E1{x
′/x}, E2{x

′/x}))

with x′ 6∈ V ∪ FV (E1, E2, P)

spV (P, dispose(E)) = ∃x1, x2. ¬((E 7→ x1, x2)→∗¬P)

with x1, x2 6∈ V ∪ FV (E, P)

spV (P, C1; C2) = spV (spV (P, C1), C2)

spV (P, if E then C1 else C2) = spV (P ∧ E = true, C1)

∨spV (P ∧ E = false, C2)

spV (P, skip) = P

spV (P, while E do C1) = (µXv.spV ∪V ar(E,P)(Xv ∧ E = true, C1) ∨ P)

∧ (E = false)

with Xv not in P

Figure 2.4: Strongest postconditions

38

become functions whose parameters are the free variables of the formula. Instead of having

postponed substitution, one would have an application connective. The syntax reads

nonCircularList(x) =

µXv(x). (x = nil) ∨ ∃x1, x2.(isval(x1) ∧ (x 7→ x1, x2 ∗ Xv(x2)))

When considering our example to the renaming theorem, one states

∃y.νXv(y).y = 3 ∧ ∃y.(Xv(y) ∧ y = 5)

which becomes equivalent to

∃z.νXv(z).z = 3 ∧ ∃y.(Xv(y) ∧ y = 5)

Those formulae are not precisely stated; let us try to formalize. The changes are that ρ :

Varv ⇀ (P(V ar)×P(S×H)) and that J·Kρ : BIµνΛ ⇀ (P(S×H)⊎(P(V ar)×P(S×H))).

The semantics for fixpoints and postponed substitution would be:

JµXv(x1, ..., xn) . P Kρ = lfp⊆
∅ λX. JP K[ρ|Xv→((x1,...,xn),X)]

JνXv(x1, ..., xn) . P Kρ = gfp⊆
∅ λX. JP K[ρ|Xv→((x1,...,xn),X)]

JP (E1, ..., En)Kρ =

{

s, h |
∃x1, ..., xn, X. JP Kρ = ((x1, ..., xn), X)

∧[s | x1 → JE1Ks | ... | xn → JEnKs], h ∈ X

}

But this implies that to write µXv(x1, ..., xn). P , we must consider the free variables in P .

(Maybe this would help the users of the logic!)

Another important point is that JνXv.XvK = S ×H , while JνXv(x).Xv(x)K = {s, h | x ∈

dom(s)}. That is, if one allows partial functions for stacks (as we do), the meaning changes.

To update our definition, wlp(P, x := E) = P [E/x], we require a function connective,

and we write wlp(P, x := E) = (Λx.P)(E). (we use Λ instead of λ to avoid confusion between

a real function and the new function connective.) And instead of writing µXv(x1, ..., xn).P ,

we would write µ(Λ(x1, ..., xn).Xv).P . The non-circular linear list example reads as follows:

nonCircularList(x) =

µXv. (x = nil) ∨ ∃x1, x2.(isval(x1) ∧ (x 7→ x1, x2 ∗ (Λx.Xv)(x2)))

39

This implies a new semantics: First, we define a new recursive type, res = P(S × H) ⊎

(V ar × res). Next, we define

apply : (Exp × (V ar × res)) → res

apply(E, (x, S)) = {s, h | [s | x → JEKs], h ∈ S} if S ∈ P(S × H)

apply(E, (x, (y, S))) = (y, apply(E, (x, S)))

J.Kρ : BIµνΛ ⇀ res

...

JΛx.P Kρ = ((x), JP Kρ)

JµXv . P Kρ = lfp⊆
∅ λX. JP K[ρ|Xv→X]

JνXv . P Kρ = gfp⊆
∅ λX. JP K[ρ|Xv→X]

JP (E)Kρ = apply(E, JP Kρ) if ∃x, X. JP Kρ = (x, X)

With this semantics, in wlp or sp, the only change is that wherever P [E/x] appears, it

should be replaced by (Λx.P)E.

As for our counterexample of the renaming theorem,

∃y.νXv.y = 3 ∧ ∃y.(((Λy.Xv)y) ∧ y = 5)

becomes equivalent to

∃z.νXv.z = 3 ∧ ∃y.(((Λz.Xv)y) ∧ y = 5)

But again, this is not the usual renaming theorem.

What we propose now is a mix of the last two semantics, where the renaming theorem

will not always hold, but if one wants it to hold, then one must verify, wherever there is a

fixpoint, that the fixpoint should be written in the format, µXv(FV (P)).P . The user must

be aware that (Λx.P)(x) is not always equivalent to P (because (Λx.P)(x) implies that x

can be evaluated in the actual context (i.e. x ∈ dom(s))).

Now ρ : V arv ⇀ res, and the example becomes

∃y.νXv(y).y = 3 ∧ ∃y.(Xv(y) ∧ y = 5)

which is equivalent to

∃z.νXv(z).z = 3 ∧ ∃y.(Xv(y) ∧ y = 5)

40

The semantics goes as follows; omitted clauses are the same as those in Section 2.2.2.

J.Kρ : BIµνΛ ⇀ res

...

JΛx.P Kρ = ((x), JP Kρ)

JµXv . P Kρ = lfp⊆
∅ λX. JP K[ρ|Xv→X]

JµXv(x1, ..., xn) . P Kρ = lfp⊆
∅ λX. JP K[ρ|Xv→(x1,(...,(xn,X)))]

JνXv . P Kρ = gfp⊆
∅ λX. JP K[ρ|Xv→X]

JνXv(x1, ..., xn) . P Kρ = gfp⊆
∅ λX. JP K[ρ|Xv→(x1,(...,(xn,X)))]

JP (E)Kρ = apply(E, JP Kρ) if ∃x, X. JP Kρ = (x, X)

(We gave the semantics for µXv.P and νXv.P separately but they are the nullary case

of the other considering that (x1, (..., (x0, X))) = X).

This semantics preserves our wlp and sp formulae (switching P [E/x] with (Λx.P)(E))

and allows the user to have functions for v-variable and a restricted renaming theorem.

Later, some people added recursion to separation logic in other ways like the grammars

of Yang and al in17 and in Biering and al’s work18 they present a higher-order separation

logic where the logic allows quantifiers over sets of states.

2.6 Appendix

2.6.1 Definitions

We recall the definitions of V ar (Def. 2.15), FV (Def. 2.16), FVv (Def. 2.17), v-closed

(Def. 2.18), {[/]} (Def. 2.19):

41

Definition 2.15.

V ar(x) = {x}

V ar(42) = ∅

V ar(nil) = ∅

V ar(True) = ∅

V ar(False) = ∅

V ar(E1opE2) = V ar(E1) ∪ V ar(E2)

...

V ar(E1 = E2) = V ar(E1) ∪ V ar(E2)

V ar(E 7→ E1, E2) = V ar(E) ∪ V ar(E1) ∪ V ar(E2)

V ar(false) = ∅

V ar(P ⇒ Q) = V ar(P) ∪ V ar(Q)

V ar(∃x.P) = V ar(P) ∪ {x}

V ar(emp) = ∅

V ar(P ∗ Q) = V ar(P) ∪ V ar(Q)

V ar(P→∗Q) = V ar(P) ∪ V ar(Q)

V ar(Xv) = ∅

V ar(µXv.P) = V ar(P)

V ar(νXv.P) = V ar(P)

V ar(P [E/x]) = V ar(P) ∪ V ar(E) ∪ {x}

Definition 2.16.

FV (E1 = E2) = V ar(E1) ∪ V ar(E2)

FV (E 7→ E1, E2) = V ar(E) ∪ V ar(E1) ∪ V ar(E2)

FV (false) = ∅

FV (P ⇒ Q) = FV (P) ∪ FV (Q)

FV (∃x.P) = FV (P) \ {x}

FV (emp) = ∅

FV (P ∗ Q) = FV (P) ∪ FV (Q)

FV (P→∗Q) = FV (P) ∪ FV (Q)

FV (Xv) = ∅

FV (µXv.P) = FV (P)

FV (νXv.P) = FV (P)

FV (P [E/x]) = FV (P) ∪ FV (E) ∪ {x}

42

Definition 2.17.
FVv(E1 = E2) = ∅

FVv(E 7→ E1, E2) = ∅

FVv(false) = ∅

FVv(P ⇒ Q) = FVv(P) ∪ FVv(Q)

FVv(∃x.P) = FVv(P)

FVv(emp) = ∅

FVv(P ∗ Q) = FVv(P) ∪ FVv(Q)

FVv(P→∗Q) = FVv(P) ∪ FVv(Q)

FVv(Xv) = {Xv}

FVv(µXv.P) = FVv(P) \ {Xv}

FVv(νXv.P) = FVv(P) \ {Xv}

FVv(P [E/x]) = FVv(P)

Definition 2.18. P is v-closed iff FVv(P) = ∅.

Definition 2.19.

x{z/y} = x if y 6= x

y{z/y} = z

42{z/y} = 42

nil{z/y} = nil

True{z/y} = True

False{z/y} = False

(E1opE2){z/y} = E1{z/y}opE2{z/y}

...

(E1 = E2){[z/y]} = E1{z/y} = E2{z/y}

(E 7→ E1, E2){[z/y]} = E{z/y} 7→ E1{z/y}, E2{z/y}

(false){[z/y]} = false

(P ⇒ Q){[z/y]} = (P{[z/y]}) ⇒ (Q{[z/y]})

(∃x.P){[z/y]} = ∃(x{z/y}).(P{[z/y]})

(emp){[z/y]} = emp

(P ∗ Q){[z/y]} = (P{[z/y]}) ∗ (Q{[z/y]})

(P→∗Q){[z/y]} = (P{[z/y]})→∗(Q{[z/y]})

(Xv){[z/y]} = Xv

(µXv.P){[z/y]} = µXv.(P{[z/y]})

(νXv.P){[z/y]} = νXv.(P{[z/y]})

(P [E/x]){[z/y]} = (P{[z/y]})[E{z/y}/x{z/y}]

43

2.6.2 Stack Extension Theorem

Definition 2.20.

classe(z, s, h) = {s′, h | [s′ | z → 42] = [s | z → 42]}

May be it’s more clear to say that

s↾dom(s)\{z}
, h ∈ classe(z, s, h)

∀v.[s | z → v], h ∈ classe(z, s, h).

This is the classe(z, s, h) is the set of states containing s, h and all states similar to s, h

for everything but for z.

Definition 2.6. For z ∈ V ar, X ∈ P(S × H),

nodep(z, X) , True iff ∀s, h ∈ X.classe(z, s, h) ⊆ X

We extend this definition to environments:

nodep(z, ρ) , True iff (∀Xv ∈ dom(ρ).nodep(z, ρ(Xv))

Notice that we have ∀z.nodep(z, ∅)

Theorem 2.7. If

- nodep(z, ρ)
- FVv(P) ⊆ dom(ρ)
- z 6∈ FV (P)
- JP Kρ exists

then nodep(z, JP Kρ) .

Corollary 2.21. If
- z 6∈ FV (P)
- JP K exists

then nodep(z, JP K) .

The idea of the theorem would be, if P is v-closed, z does not occur free in P , then

∀v. (s, h ∈ JP K iff [s | z → v], h ∈ JP K).

We could say it as, if z does not occur free in a v-closed formula, then set of states

satisfying the formula does not have any particular values for z.

Cor. 2.21. Direct from Th. 2.7.

44

Th. 2.7. THE PROOF IS ONLY MADE IF ALL THE lfp and gpf are for MONOTONIC

FUNCTIONS. But this is the case for the wlp and sp formulae and for the example in the

paper.

First notice that if z 6∈ V ar(E).[[E]]s = JEK[s|z→v].
JxKs = s(x) = JxK[s|z→v]

J42Ks = 42 = J42K[s|z→v]

JTrueKs = true = JxK[s|z→v]

JE1opE2Ks = JE1KsopJE2Ks = JE1K[s|z→v]opJE2K[s|z→v] = JxK[s|z→v]

We proceed by induction on P . We do not write down when we use induction to have

the conditions for z 6∈ FV (...).

• s, h ∈ JE1 = E2K
iff [[E1]]s = [[E2]]s

iff JE1K[s|z→v] = JE2K[s|z→v])}

iff [s | z → v], h ∈ JE1 = E2K

• s, h ∈ JE 7→ E1, E2K
iff dom(h) = {[[E]]s}

and h([[E]]s) = 〈[[E1]]s, [[E2]]s〉

iff dom(h) = {JEK[s|z→v]}

and h(JEK[s|z→v]) = 〈JE1K[s|z→v], JE2K[s|z→v]〉

iff [s | z → v], h ∈ JE 7→ E1, E2K

• s, h ∈ JfalseK
iff s, h ∈ ∅

iff [s | z → v], h ∈ ∅

iff [s | z → v], h ∈ JfalseK

• s, h ∈ JP ⇒ QKρ

iff s, h ∈ (⊤ \ JP Kρ) ∪ JQKρ

iff [s | z → v], h ∈ (⊤ \ {s, h | JP Kρ) ∪ JQKρ (ind.)

iff [s | z → v], h ∈ JP ⇒ QKρ

• s, h ∈ J∃x.P Kρ when x 6= z

45

iff ∃v′.[s | x 7→ v′], h ∈ JP Kρ

iff ∃v′.[s | x 7→ v′ | z 7→ v], h ∈ JP Kρ (ind.)

iff ∃v′.[s | z 7→ v | x 7→ v′], h ∈ JP Kρ

iff [s | z → v], h ∈ J∃x.P Kρ

• s, h ∈ J∃z.P Kρ

iff ∃v′.[s | z 7→ v′], h ∈ JP Kρ

iff ∃v′.[s | z 7→ v | z 7→ v′], h ∈ JP Kρ

iff [s | z → v], h ∈ J∃z.P Kρ

• s, h ∈ JempK
iff h = []

iff [s | z → v], h ∈ JempK

• s, h ∈ JP ∗ QKρ

iff ∃h0, h1.h0♯h1, h = h0 · h1

s, h0 ∈ JP Kρ and s, h1JQKρ

iff ∃h0, h1.h0♯h1, h = h0 · h1

[s | z → v], h0 ∈ JP Kρ and [s | z → v], h1JQKρ (ind.)

iff [s | z → v], h ∈ JP ∗ QKρ

• s, h ∈ JP→∗QKρ

iff ∀h′., h1.h
′♯h. if s, h ∈ JP Kρ

then s, h · h′ ∈ JQKρ

iff ∀h′., h1.h
′♯h. if [s | z → v], h ∈ JP Kρ

then [s | z → v], h · h′ ∈ JQKρ (ind.)

iff [s | z → v], h ∈ JP→∗QKρ

• s, h ∈ JXvKρ

iff s, h ∈ ρ(Xv)

iff [s | z 7→ v], h ∈ ρ(Xv) (hyp.)

iff [s | z 7→ v], h ∈ JXvKρ

• s, h ∈ JP [E/x]Kρ

iff [s | x → JEKs], h ∈ JP Kρ

iff [s | x → JEKs | z 7→ v], h ∈ JP Kρ (ind.)

iff [s | z 7→ v | x → JEKs], h ∈ JP Kρ (hyp. z 6= x)

iff [s | z 7→ v | x → JEK[s|z 7→v]], h ∈ JP Kρ (hyp. z 6∈ V ar(E))

iff [s | z 7→ v], h ∈ JP [E/x]Kρ

46

• s, h ∈ JµXv.P Kρ

iff s, h ∈ lfp⊆
∅ λX. JP K[ρ|Xv→X]

iff [s | z 7→ v], h ∈ lfp⊆
∅ λX. JP K[ρ|Xv→X] (proof below)

iff [s | z 7→ v], h ∈ JµXv.P Kρ

Let A , lfp⊆
∅ λX. JP K[ρ|Xv→X], we want to prove nodep(z, A), we proceed by contra-

diction. Let B , {s, h ∈ A | [s | z 7→ v], h 6∈ A} ∪ {[s | z 7→ v], h ∈ A | s, h 6∈ A},

Let C , A \ B, by construction is the biggest set such that nodep(z, C) and C ⊆ A

since nodep(z, ρ) we then have nodep(z, [ρ | Xv → C]), then by induction we have

nodep(z, JP K[ρ|Xv→C]).

Let F , λX. JP K[ρ|Xv→X], we have nodep(z, F (C)).

.....................

If F is monotonic, then since C ⊆ A we have F (C) ⊆ F (A) and so F (C) ⊆ A, since

by construction, C is the biggest set X such that X ⊆ A and nodep(z, X), we have

F (C) ⊆ C, then since A is the lfp⊆
∅ F , by Tarsky A = ⊓{X | F (X) ⊆ X}, so we have

A ⊆ C and so A = C and then nodep(z, A) as expected.

• s, h ∈ JνXv.P Kρ

iff s, h ∈ gfp⊆
∅ λX. JP K[ρ|Xv→X]

iff [s | z 7→ v], h ∈ gfp⊆
∅ λX. JP K[ρ|Xv→X] (proof below)

iff [s | z 7→ v], h ∈ JνXv.P Kρ

Let A , gfp⊆
∅ λX. JP K[ρ|Xv→X], we want to prove nodep(z, A), we proceed by contra-

diction. Let C , {s, h | ∃s′, h ∈ A.[s′ | z 7→ 42] = [s | z 7→ 42]}, by construction C is

the smallest set such that nodep(z, C) and A ⊆ C

since nodep(z, ρ) we then have nodep(z, [ρ | Xv → C]), then by induction we have

nodep(z, JP K[ρ|Xv→C]).

Let F , λX. JP K[ρ|Xv→X], we have nodep(z, F (C)).

.....................

If F is monotonic, then since A ⊆ C we have F (A) ⊆ F (C) and so A ⊆ F (C), since

by construction, C is the smallest set X such that X ⊆ A and nodep(z, X), we have

47

C ⊆ F (C), then since A is the gfp⊆
∅ F , by Tarsky A = ⊔{X | X ⊆ F (X)}, so we have

C ⊆ A and so A = C and then nodep(z, A) as expected.

2.6.3 Variable Renaming Theorem for BIµν

Theorem 2.9. If
- P is v-closed
- z 6∈ V ar(P)
- y 6∈ FV (P)

then P ≡ P{[z/y]} .

Lemma 2.22. JE{E ′/x}Ks = JEK[s|x→JE′Ks] if JE ′Ks exists

Proof. Lemma 2.22

• Jx{E ′/x}Ks = JE ′Ks = JxK[s|x→JE′Ks]

• Jy{E ′/x}Ks = JyKs = JyK[s|x→JE′Ks]

• JTrue{E ′/x}Ks = JTrueKs = true = JTrueK[s|x→JE′Ks]

• JFalse{E ′/x}Ks = JFalseKs = false = JFalseK[s|x→JE′Ks]

• J42{E ′/x}Ks = J42Ks = 42 = J42K[s|x→JE′Ks]

• J(E1 op E2){E
′/x}Ks = JE1{E

′/x} op E2{E
′/x}Ks = JE1{E

′/x}Ks op JE2{E
′/x}Ks =

JE1K[s|x→JE′Ks] op JE2K[s|x→JE′Ks] = JE1 op E2K[s|x→JE′Ks]

Lemma 2.23. JE{z/y}Ks = JEK[s|y→s(z)] if z ∈ dom(s)

Proof. Lemma 2.23 By Lemma 2.22.

Lemma 2.24. JE{E ′/x}Ks = JEKs if JE ′Ks doesn’t exists but JE{E ′/x}Ks does

Proof. Lemma 2.24 Jx{E ′/x}Ks = JE ′Ks

So x 6∈ V ar(E) and we directly have E{E ′/x} = E

48

Lemma 2.25. JE{z/y}Ks = JEKs if z 6∈∈ dom(s)

Proof. Lemma 2.25 By Lemma 2.24.

Let s• ,

[

[s | y → s(z)] if z ∈ dom(s)

s if z 6∈ dom(s)

Let ρ• be [∀Xv ∈ dom(ρ). Xv → {s, h | s•, h ∈ ρ(Xv)}]

Lemma 2.26. JE{z/y}Ks = JEKs•

Proof. Lemma 2.26 By Lemma 2.23 and 2.25.

Remember that in case P is E = E ′, E 7→ E1, E2, false and emp we have ∀ρ.JP Kρ = JP K

since they are v-closed, see Lemma 2.27.

Remember P ≡ Q iff ∀ρ. either (JP Kρ and JQKρ do not exist) either JP Kρ = JQKρ.

Th. 2.9. By Th. 2.8, JP{[z/y]}Kρ• = {s, h | s•, h ∈ JP Kρ} in case nodep(z, ρ) and z 6∈

V ar(P), then JP{[z/y]}K = {s, h | s•, h ∈ JP K} if z 6∈ V ar(P).

Which is if z 6∈ dom(s) then s, h ∈ JP{[z/y]}Kiffs, h ∈ JP K and if z ∈ dom(s) we have

s, h ∈ JP{[z/y]}Kiff[s | y → s(z)], h ∈ JP K.

Then since y 6∈ FV (P) with the stack extension theorem 2.21 we have nodep(y, P) and so

s, h ∈ so [s | y → s(z)], h ∈ JP Kiffs, h ∈ JP K.

We then have JP{[z/y]}K = JP K which is what we wanted since P is v-closed (see Lemma

2.27).

Theorem 2.8. If
- nodep(z, ρ)
- z 6∈ V ar(P)

then JP{[z/y]}Kρ• = {s, h | s•, h ∈ JP Kρ}

Th. 2.8. THE PROOF IS ONLY MADE IF ALL THE lfp and gpf are for MONOTONIC

FUNCTIONS. But this is the case for the wlp and sp formulae and for the example in the

paper.

We will prove by structural induction on P :

(recall that for E1 = E2, E 7→ E1, E2, false, emp ∀ρ.JP Kρ = JP K)

49

• J(E1 = E2){[z/y]}K
= J(E1{z/y} = E2{z/y}K
= {s, h | JE1{z/y}Ks = JE2{z/y}Ks}

= {s, h | JE1Ks• = JE2Ks•}

= {s, h | s•, h ∈ JE1 = E2K}

• J(E 7→ E1, E2){[z/y]}K
= JE{z/y} 7→ E1{z/y}, E2{z/y}K
= {s, h | dom(h) = {JE{z/y}Ks} and h(JE{z/y}Ks) = 〈JE1{z/y}Ks, JE2{z/y}Ks〉

= {s, h | dom(h) = {JEKs•} and h(JEKs•) = 〈JE1Ks• , JE2Ks•〉}

= {s, h | s•, h ∈ JE 7→ E1, E2K}

• Jfalse{[z/y]}K
= JfalseK
= ∅

= {s, h | s•, h ∈ JfalseK

• If JP ⇒ QKρ exists then

J(P ⇒ Q){[z/y]}Kρ•

= JP{[z/y]} ⇒ Q{[z/y]}Kρ•

= (⊤ \ JP{[z/y]}Kρ•) ∪ JQ{[z/y]}Kρ•

= (⊤ \ {s, h | s•, h ∈ JP Kρ}) ∪ {s, h | s• ∈ JQKρ} (ind.hyp.)

= {s, h | s•, h ∈ (⊤ \ JP Kρ) ∪ JQKρ}

= {s, h | s•, h ∈ JP ⇒ QKρ}

• J(∃x. P){[z/y]}Kρ• when x 6= y

= J∃x. (P{[z/y]})Kρ•

= {s, h | ∃v.[s | x → v], h ∈ JP{[z/y]}Kρ•}

= {s, h | ∃v.[s | x → v], h ∈ {s, h | s•, h ∈ JP Kρ}} (ind.)

= {s, h | ∃v.[s | x → v]•, h ∈ JP Kρ}

= {s, h | ∃v.[s• | x → v], h ∈ JP Kρ} (since x 6= y, z)

= {s, h | s•, h ∈ J∃x.P Kρ}

• J(∃y. P){[z/y]}Kρ•

50

= J∃z. (P{[z/y]})Kρ•

= {s, h | ∃v.[s | z → v], h ∈ JP{[z/y]}Kρ•}

= {s, h | ∃v.[s | z → v], h ∈ {s, h | s•, h ∈ JP Kρ}} (ind.)

= {s, h | ∃v.[s | z → v]•, h ∈ JP Kρ}

= {s, h | ∃v.[s | z → v | y → v], h ∈ JP Kρ}

= {s, h | ∃v.[s | y → v | z → v], h ∈ JP Kρ} (since z 6= y)

= {s, h | ∃v.[s | y → v], h ∈ JP Kρ} (from stack extension theorem)

= {s, h | ∃v.[s• | y → v], h ∈ JP Kρ}

= {s, h | s•, h ∈ J∃y.P Kρ}

• Jemp{[z/y]}K
= JempK
= {s, h | h = []}

= {s, h | s•, h ∈ JempK}

• J(P ∗ Q){[z/y]}Kρ•

= J(P{[z/y]} ∗ Q{[z/y]})Kρ•

= {s, h | ∃h0, h1. h0♯h1, h0.h1 = h, s, h0 ∈ JP{[z/y]}Kρ• and s, h1 ∈ JQ{[z/y]}Kρ•}

= {s, h | ∃h0, h1. h0♯h1, h0.h1 = h, s•, h0 ∈ JP Kρ and s•, h1 ∈ JQKρ} (ind. hyp.)

= {s, h | s•, h ∈ JP ∗ QKρ}

• J(P→∗Q){[z/y]}Kρ•

= JP{[z/y]}→∗Q{[z/y]}Kρ•

= {s, h | ∀h′. if h′♯h and s, h′ ∈ JP{[z/y]}Kρ• then s, h.h′ ∈ JQ{[z/y]}Kρ•}

= {s, h | ∀h′. if h′♯h and s•, h′ ∈ JP Kρ then s•, h.h′ ∈ JQKρ} (ind. hyp.)

= {s, h | s•, h ∈ JP→∗QKρ}

• JXv{[z/y]}Kρ•

= JXvKρ•

= ρ•(Xv)

= {s, h | s•, h ∈ ρ(Xv)}

= {s, h | s•, h ∈ JXvKρ}

• JP [E/x]{[z/y]}Kρ• if x 6= y

51

= J(P{[z/y]})[E{z/y}/x]Kρ•

= {s, h | [s | x → JE{[z/y]}Ks], h ∈ JP{[z/y]}Kρ•}

= {s, h | [s | x → JEKs•], h ∈ JP{[z/y]}Kρ•}

= {s, h | [s | x → JEKs•], h ∈ {s, h | s•, h ∈ JP Kρ}} (ind.)

= {s, h | ([s | x → JEKs•])•, h ∈ JP Kρ}

= {s, h | [s• | x → JEKs•], h ∈ JP Kρ} (since x 6= y, z)

= {s, h | s•, h ∈ JP [E/x]Kρ}

• JP [E/y]{[z/y]}Kρ•

= J(P{[z/y]})[E{z/y}/z]Kρ•

= {s, h | [s | z → JE{[z/y]}Ks], h ∈ JP{[z/y]}Kρ•}

= {s, h | [s | z → JEKs•], h ∈ JP{[z/y]}Kρ•}

= {s, h | [s | z → JEKs•], h ∈ {s, h | s•, h ∈ JP Kρ}} (ind.)

= {s, h | ([s | z → JEKs•])•, h ∈ JP Kρ}

= {s, h | [s | z → JEKs• | y → JEKs•], h ∈ JP Kρ}

= {s, h | [s | y → JEKs•], h ∈ JP Kρ} (from stack extension th.)

= {s, h | [s• | y → JEKs•], h ∈ JP Kρ}

= {s, h | s•, h ∈ JP [E/y]Kρ}

• If JµX.P Kρ exists:

J(µX.P){[z/y]}Kρ•

= JµX.P{[z/y]}Kρ•

= lfp⊆
∅ λX.JP{[z/y]}K[ρ•|Xv→X]

see proof below

= {s, h | s•, h ∈ lfp⊆
∅ λX.JP K[ρ|Xv→X]}

= {s, h | s•, h ∈ JµX.P Kρ}

Let

F , λX.JP{[z/y]}K[ρ•|Xv→X]

A , lfp⊆
∅ F

G , λX.JP K[ρ|Xv→X]

B , lfp⊆
∅ G

C , {s, h | s•, h ∈ B}

We want then A = C.

We know that B exists.

Notice that ([ρ | Xv → B])• = [ρ• | Xv → C].

52

First we prove that A ⊆ C, we prove it by proving that C = F (C).

Since B = JµX.P K[ρ|Xv→X], by the stack extension theorem, we have nodep(z, B) so

nodep(z, [ρ | Xv → B]) and we can use the induction.

By definition, B = G(B), so B = JP K[ρ|Xv→B]

and then C = {s, h | s•, h ∈ JP K[ρ|Xv→B]}

by induction we then have C = JP{z/y}K([ρ|Xv→B])• , which is C = JP{z/y}K[ρ•|Xv→C],

we then have C = F (C) and so A exists and A ⊆ C.

Now we want to prove that C ⊆ A.

Let D be the biggest set such that nodep(z, D) and {s, h | s•, h ∈ D} ⊆ A. By the

stack extension theorem, nodep(z, JP K[ρ|Xv→D]) and we can use the induction.

Since we said we are working with monotonic functions, we have F ({s, h | s•, h ∈

D}) ⊆ F (A)

since A is a fix point we have then F ({s, h | s•, h ∈ D}) ⊆ A

which is JP{[z/y]}K[ρ•|Xv→{s,h|s•,h∈D}] ⊆ A

by induction we have then {s, h | s•, h ∈ JP K[ρ|Xv→D]} ⊆ A

which is {s, h | s•, h ∈ G(D)} ⊆ A

Then by construction of D as the biggest set we have G(D) ⊆ D

and then D is a postfixpoint of G and then B ⊆ D and then {s, h | s•, h ∈ B} ⊆

{s, h | s•, h ∈ D} which is C ⊆ A.

• If JνX.P Kρ exists:

J(νX.P){[z/y]}Kρ•

= JνX.P{[z/y]}Kρ•

= gfp⊆
∅ λX.JP{[z/y]}K[ρ•|Xv→X]

see proof below

= {s, h | s•, h ∈ gfp⊆
∅ λX.JP K[ρ|Xv→X]}

= {s, h | s•, h ∈ JνX.P Kρ}

Let

53

F , λX.JP{[z/y]}K[ρ•|Xv→X]

A , gfp⊆
∅ F

G , λX.JP K[ρ|Xv→X]

B , gfp⊆
∅ G

C , {s, h | s•, h ∈ B}

We want then A = C.

We know that B exists.

Notice that ([ρ | XvB])• = [ρ• | Xv → C].

First we prove that A ⊇ C, we prove it by proving that C = F (C).

Since B = JνX.P K[ρ|Xv→X], by the stack extension theorem, we have nodep(z, B) so

nodep(z, [ρ | Xv → B]) and we can use the induction.

By definition, B = G(B), so B = JP K[ρ|Xv→B]

and then C = {s, h | s•, h ∈ JP K[ρ|Xv→B]}

by induction we then have C = JP{z/y}K([ρ|Xv→B])• , which is C = JP{z/y}K[ρ•|Xv→C],

we then have C = F (C) and so A exists and A ⊇ C.

Now we want to prove that C ⊇ A.

Let D be the smallest set such that nodep(z, D) and {s, h | s•, h ∈ D} ⊇ A. By the

stack extension theorem, nodep(z, JP K[ρ|Xv→D]) and we can use the induction.

Since we said we are working with monotonic functions, we have F ({s, h | s•, h ∈

D}) ⊇ F (A)

since A is a fix point we have then F ({s, h | s•, h ∈ D}) ⊇ A

which is JP{[z/y]}K[ρ•|Xv→{s,h|s•,h∈D}] ⊇ A

by induction we have then {s, h | s•, h ∈ JP K[ρ|Xv→D]} ⊇ A

which is {s, h | s•, h ∈ G(D)} ⊇ A

Then by construction of D as the smallest set we have G(D) ⊇ D

and then D is a prefixpoint of G and then B ⊇ D and then {s, h | s•, h ∈ B} ⊇ {s, h |

54

s•, h ∈ D} which is C ⊇ A.

Lemma 2.27. If P is v-closed formula: ∀ρ.JP Kρ = JP K.

Lemma 2.27. The simple case are direct from the definition of J·Kρ, the others come by

induction.

2.6.4 Unfolding theorems

Theorem 2.28. If
- µXv. P is v-closed
- JµXv. P K exists

then µXv. P ≡ P{(µXv. P)/Xv} .

Th. 2.28.

JµXv.P Kρ

= lfp⊆
∅ λX. JP K[ρ|Xv→X] def

= JP K[ρ|Xv→(JµXv .P Kρ)] (since it’s a fix point)

= JP (µXv.P)/XvKρ (from the substitution theorem for BIµν general Th. 2.32)

Theorem 2.29. If
- νXv. P is v-closed
- JνXv. P K exists

then νXv. P ≡ P{(νXv. P)/Xv} .

Th. 2.29.

JνXv.P Kρ

= gfp⊆
∅ λX. JP K[ρ|Xv→X] def

= JP K[ρ|Xv→(JνXv .P Kρ)] (since it’s a fix point)

= JP (νXv.P)/XvKρ (from the substitution theorem for BIµν general Th. 2.32)

2.6.5 Substitution theorems for BIµν

Theorem 2.30.
If JY K and JP Kρ[Xv→JY K] exist

JP Kρ[Xv→JY K] = JP{Y/Xv}Kρ

Theorem 2.30. By induction on the formula P .

55

• Case P as the form E = E ′, E 7→ E1, e2, false, emp

P{Y/Xv} = P and ∀ρ.JP Kρ = JP K so

JP K[ρ|Xv 7→JY K]

= JP K
= JP{Y/Xv}K
= JP{Y/Xv}Kρ

• JP ⇒ QK[ρ|Xv 7→JY K]

= (⊤ \ JP K[ρ|Xv 7→JY K]) ∪ JQK[ρ|Xv 7→JY K]

= (⊤ \ JP{Y/Xv}Kρ) ∪ JQ{Y/Xv}Kρ (ind. hyp.)

= JP{Y/Xv} ⇒ Q{Y/Xv}Kρ

= J(P ⇒ Q){Y/Xv}Kρ

• J∃x.P K[ρ|Xv 7→JY K]

= {s, h | ∃v ∈ V al.[s | x 7→ v], h ∈ JP K[ρ|Xv 7→JY K]}

= {s, h | ∃v ∈ V al.[s | x 7→ v], h ∈ JP{Y/Xv}Kρ} (ind.hyp)

= J∃x.(P{Y/Xv})Kρ

= J(∃x.P){Y/Xv}Kρ

• JP ∗ QK[ρ|Xv 7→JY K]

= {s, h | ∃h0, h1 h0♯h1, h = h0.h1

s, h0 ∈ JP K[ρ|Xv 7→JY K] and s, h1 ∈ JQK[ρ|Xv 7→JY K]}

= {s, h | ∃h0, h1 h0♯h1, h = h0.h1

s, h0 ∈ JP{Y/Xv}Kρ and s, h1 ∈ JQ{Y/Xv}Kρ} (ind. hyp.)

= JP{Y/Xv} ∗ Q{Y/Xv}Kρ

= J(P ∗ Q){Y/Xv}Kρ

• JP→∗QK[ρ|Xv 7→JY K]

= {s, h | ∀h′. if h′♯h and s, h′ ∈ JP K[ρ|Xv 7→JY K] then

s, h.h′ ∈ JQK[ρ|Xv 7→JY K]}

= {s, h | ∀h′. if h′♯h and s, h′ ∈ JP{Y/Xv}Kρ then

s, h.h′ ∈ JQ{Y/Xv}Kρ} (ind. hyp.)

= JP{Y/Xv}→∗Q{Y/Xv}Kρ

= J(P→∗Q){Y/Xv}Kρ

• JXvK[ρ|Xv 7→JY K]

56

= JY K
= JY Kρ

= JXv{Y/Xv}Kρ

• JZvK[ρ|Xv 7→JY K] with Zv 6= Xv

= JZvKρ

= JZv{Y/Xv}Kρ

• JµXv.P K[ρ|Xv 7→JY K]

= lfp⊆
∅ λZ.JP K[[ρ|Xv 7→JY K]|Xv 7→Z]

= lfp⊆
∅ λZ.JP K[ρ|Xv 7→Z]

= lfp⊆
∅ λX.JP K[ρ|Xv 7→X]

= JµXv.P Kρ

= J(µXv.P){Y/Xv}Kρ

• JµZv.P K[ρ|Xv 7→JY K] with X 6= Z

= lfp⊆
∅ λZ.JP K[[ρ|Xv 7→JY K]|Zv 7→Z]

= lfp⊆
∅ λZ.JP K[[ρ|Zv 7→Z]|Xv 7→JY K]

= lfp⊆
∅ λZ.JP{Y/Xv}K[ρ|Zv 7→Z] (ind. hyp.)

= JµZv.(P{Y/Xv})Kρ

= J(µZv.P){Y/Xv}Kρ

• JνXv.P K[ρ|Xv 7→JY K]

= gfp⊆
∅ λZ.JP K[[ρ|Xv 7→JY K]|Xv 7→Z]

= gfp⊆
∅ λZ.JP K[ρ|Xv 7→Z]

= gfp⊆
∅ λX.JP K[ρ|Xv 7→X]

= JνXv.P Kρ

= J(νXv.P){Y/Xv}Kρ

• JνZ.P K[ρ|Xv 7→JY K] with X 6= Z

= gfp⊆
∅ λZ.JP K[[ρ|Xv 7→JY K]|Zv 7→Z]

= gfp⊆
∅ λZ.JP K[[ρ|Zv 7→Z]|Xv 7→JY K]

= gfp⊆
∅ λZ.JP{Y/Xv}K[ρ|Zv 7→Z] (ind. hyp.)

= JνZ.(P{Y/Xv})Kρ

= J(νZ.P){Y/Xv}Kρ

• JP [E ′/x]K[ρ|Xv 7→JY K]

57

= {s, h | [s | x 7→ [[E ′]]s], h ∈ JP K[ρ|Xv 7→JY K]}

= {s, h | [s | x 7→ [[E ′]]s], h ∈ JP{Y/Xv}Kρ} (ind. hyp.)

= JP{Y/Xv}[E
′/x]Kρ

= J(P [E ′/x]){Y/Xv}Kρ

Lemma 2.31. If JY K exists

sp(P, C){Y/Xv} = sp(P{Y/Xv}, C)

Lemma 2.31. Proof by induction on C.

• Case x := E

(sp(P, C){Y/Xv})

= (∃x′.P [x′/x] ∧ x = E[x′/x]){Y/Xv}

= (∃x′.(P{Y/Xv})[x
′/x] ∧ x = E[x′/x])

= sp(P{Y/Xv}, C)

• Case x := E.i

(sp(P, C){Y/Xv})

= (∃x′.P [x′/x] ∧ x = (E[x′/x].i)){Y/Xv}

= (∃x′.(P{Y/Xv})[x
′/x] ∧ x = (E[x′/x].i))

= sp(P{Y/Xv}, C)

• Case E.1 := E ′

(sp(P, C){Y/Xv})

= (∃x1, x2.(E 7→ E ′, x2) ∗ ((E 7→ x1, x2)→∗P){Y/Xv}

= (∃x1, x2.(E 7→ E ′, x2) ∗ ((E 7→ x1, x2)→∗(P{Y/Xv}))

= sp(P{Y/Xv}, C)

• Case E.2 := E ′

(sp(P, C){Y/Xv})

= (∃x1, x2.(E 7→ E ′, x2) ∗ ((E 7→ x1, x2)→∗P){Y/Xv}

= (∃x1, x2.(E 7→ x1, E
′) ∗ ((E 7→ x1, x2)→∗(P{Y/Xv}))

= sp(P{Y/Xv}, C)

• Case x := cons(E1, E2)

58

(sp(P, C){Y/Xv})

= ∃x′.(P [x′/x] ∗ (x 7→ E1[x
′/x], E2[x

′/x])){Y/Xv}

= ∃x′.((P{Y/Xv})[x
′/x] ∗ (x 7→ E1[x

′/x], E2[x
′/x]))

= sp(P{Y/Xv}, C)

• Case dispose(E)

(sp(P, C){Y/Xv})

= ∃x1, x2. ((E 7→ x1, x2)→∗P){Y/Xv}

= ∃x1, x2. ((E 7→ x1, x2)→∗(P{Y/Xv}))

= sp(P{Y/Xv}, C)

• Case C1; C2

(sp(P, C){Y/Xv})

= sp(sp(P, C1), C2){Y/Xv}

= sp(sp(P, C1){Y/Xv}, C2) (ind.hyp)

= sp(sp(P{Y/Xv}, C1), C2) (ind.hyp)

= sp(P{Y/Xv}, C)

• Case if E then C1 else C2

(sp(P, C){Y/Xv})

= (sp(P ∧ E = true, C1) ∨ sp(P ∧ E = false, C2)){Y/Xv}

= sp(P ∧ E = true, C1){Y/Xv} ∨ sp(P ∧ E = false, C2){Y/Xv}

= sp(P{Y/Xv} ∧ E = true, C1) ∨ sp(P{Y/Xv} ∧ E = false, C2) (ind. hyp.)

= sp(P{Y/Xv}, C)

• Case skip

(sp(P, C){Y/Xv})

= P{Y/Xv}

= sp(P{Y/Xv}, C)

• Case while E do C1

Case Xv not free in P

(sp(P, C){Y/Xv})

= ((µXv.sp(Xv ∧ E = true, C1) ∨ P) ∧ (E = false)){Y/Xv}

= ((µXv.sp(Xv ∧ E = true, C1) ∨ P) ∧ (E = false))

= ((µXv.sp(Xv ∧ E = true, C1) ∨ P{Y/Xv}) ∧ (E = false))

= sp(P{Y/Xv}, C)

Case Xv free in P

59

(sp(P, C){Y/Xv})

= ((µZv.sp(Zv ∧ E = true, C1) ∨ P) ∧ (E = false)){Y/Xv}

= ((µZv.sp(Zv ∧ E = true, C1) ∨ P{Y/Xv}) ∧ (E = false))

= ((µWv.sp(Wv ∧ E = true, C1) ∨ P{Y/Xv}) ∧ (E = false))

= sp(P{Y/Xv}, C)

We have the egality between the case Zv and Wv since JY K exists so there is no free

formula variables in Y , so neither Zv or Wv can become bounded in some Y placed in

P .

2.6.6 Substitution theorems for BIµν general

Theorem 2.32.
If JY Kρ and (JP K[ρ|Xv→JY Kρ] or JP{Y/Xv}Kρ) exist then

JP K[ρ|Xv→JY Kρ] = JP{Y/Xv}Kρ

Theorem 2.32. By induction on the formula P .

• Case P as the form E = E ′, E 7→ E1, e2, false, emp

P{Y/Xv} = P and ∀ρ.JP Kρ = JP K so

JP K[ρ|Xv 7→JY Kρ]

= JP K
= JP{Y/Xv}K
= JP{Y/Xv}Kρ

• JP ⇒ QK[ρ|Xv 7→JY Kρ]

= (⊤ \ JP K[ρ|Xv 7→JY Kρ]) ∪ JQK[ρ|Xv 7→JY Kρ]

= (⊤ \ JP{Y/Xv}Kρ) ∪ JQ{Y/Xv}Kρ (ind. hyp.)

= JP{Y/Xv} ⇒ Q{Y/Xv}Kρ

= J(P ⇒ Q){Y/Xv}Kρ

• J∃x.P K[ρ|Xv 7→JY Kρ]

= {s, h | ∃v ∈ V al.[s | x 7→ v], h ∈ JP K[ρ|Xv 7→JY Kρ]}

= {s, h | ∃v ∈ V al.[s | x 7→ v], h ∈ JP{Y/Xv}Kρ} (ind.hyp)

= J∃x.(P{Y/Xv})Kρ

= J(∃x.P){Y/Xv}Kρ

60

• JP ∗ QK[ρ|Xv 7→JY Kρ]

= {s, h | ∃h0, h1 h0♯h1, h = h0.h1

s, h0 ∈ JP K[ρ|Xv 7→JY Kρ] and s, h1 ∈ JQK[ρ|Xv 7→JY Kρ]}

= {s, h | ∃h0, h1 h0♯h1, h = h0.h1

s, h0 ∈ JP{Y/Xv}Kρ and s, h1 ∈ JQ{Y/Xv}Kρ} (ind. hyp.)

= JP{Y/Xv} ∗ Q{Y/Xv}Kρ

= J(P ∗ Q){Y/Xv}Kρ

• JP→∗QK[ρ|Xv 7→JY Kρ]

= {s, h | ∀h′. if h′♯h and s, h′ ∈ JP K[ρ|Xv 7→JY Kρ] then

s, h.h′ ∈ JQK[ρ|Xv 7→JY Kρ]}

= {s, h | ∀h′. if h′♯h and s, h′ ∈ JP{Y/Xv}Kρ then

s, h.h′ ∈ JQ{Y/Xv}Kρ} (ind. hyp.)

= JP{Y/Xv}→∗Q{Y/Xv}Kρ

= J(P→∗Q){Y/Xv}Kρ

• JXvK[ρ|Xv 7→JY Kρ]

= JY Kρ

= JXv{Y/Xv}Kρ

• JZvK[ρ|Xv 7→JY Kρ] with Zv 6= Xv

= JZvKρ

= JZv{Y/Xv}Kρ

• JµXv.P K[ρ|Xv 7→JY Kρ]

= lfp⊆
∅ λZ.JP K[[ρ|Xv 7→JY Kρ]|Xv 7→Z]

= lfp⊆
∅ λZ.JP K[ρ|Xv 7→Z]

= lfp⊆
∅ λX.JP K[ρ|Xv 7→X]

= JµXv.P Kρ

= J(µXv.P){Y/Xv}Kρ

• JµZv.P K[ρ|Xv 7→JY Kρ] with Xv 6= Zv

= lfp⊆
∅ λZ.JP K[[ρ|Xv 7→JY Kρ]|Zv 7→Z]

= lfp⊆
∅ λZ.JP K[[ρ|Zv 7→Z]|Xv 7→JY Kρ]

= lfp⊆
∅ λZ.JP{Y/Xv}K[ρ|Zv 7→Z] (ind. hyp.)

= JµZv.(P{Y/Xv})Kρ

= J(µZv.P){Y/Xv}Kρ

61

• JνXv.P K[ρ|Xv 7→JY Kρ]

= gfp⊆
∅ λZ.JP K[[ρ|Xv 7→JY Kρ]|Xv 7→Z]

= gfp⊆
∅ λZ.JP K[ρ|Xv 7→Z]

= gfp⊆
∅ λX.JP K[ρ|Xv 7→X]

= JνXv.P Kρ

= J(νXv.P){Y/Xv}Kρ

• JνZ.P K[ρ|Xv 7→JY Kρ] with X 6= Z

= gfp⊆
∅ λZ.JP K[[ρ|Xv 7→JY Kρ]|Zv 7→Z]

= gfp⊆
∅ λZ.JP K[[ρ|Zv 7→Z]|Xv 7→JY Kρ]

= gfp⊆
∅ λZ.JP{Y/Xv}K[ρ|Zv 7→Z] (ind. hyp.)

= JνZ.(P{Y/Xv})Kρ

= J(νZ.P){Y/Xv}Kρ

• JP [E ′/x]K[ρ|Xv 7→JY Kρ]

= {s, h | [s | x 7→ [[E ′]]s], h ∈ JP K[ρ|Xv 7→JY Kρ]}

= {s, h | [s | x 7→ [[E ′]]s], h ∈ JP{Y/Xv}Kρ} (ind. hyp.)

= JP{Y/Xv}[E
′/x]Kρ

= J(P [E ′/x]){Y/Xv}Kρ

Lemma 2.33. If JY Kρ exists

sp(P, C){Y/Xv} = sp(P{Y/Xv}, C)

Lemma 2.33. Proof by induction on C.

• Case x := E

(sp(P, C){Y/Xv})

= (∃x′.P [x′/x] ∧ x = E[x′/x]){Y/Xv}

= (∃x′.(P{Y/Xv})[x
′/x] ∧ x = E[x′/x])

= sp(P{Y/Xv}, C)

• Case x := E.i

(sp(P, C){Y/Xv})

= (∃x′.P [x′/x] ∧ x = (E[x′/x].i)){Y/Xv}

= (∃x′.(P{Y/Xv})[x
′/x] ∧ x = (E[x′/x].i))

= sp(P{Y/Xv}, C)

62

• Case E.1 := E ′

(sp(P, C){Y/Xv})

= (∃x1, x2.(E 7→ E ′, x2) ∗ ((E 7→ x1, x2)→∗P){Y/Xv}

= (∃x1, x2.(E 7→ E ′, x2) ∗ ((E 7→ x1, x2)→∗(P{Y/Xv}))

= sp(P{Y/Xv}, C)

• Case E.2 := E ′

(sp(P, C){Y/Xv})

= (∃x1, x2.(E 7→ E ′, x2) ∗ ((E 7→ x1, x2)→∗P){Y/Xv}

= (∃x1, x2.(E 7→ x1, E
′) ∗ ((E 7→ x1, x2)→∗(P{Y/Xv}))

= sp(P{Y/Xv}, C)

• Case x := cons(E1, E2)

(sp(P, C){Y/Xv})

= ∃x′.(P [x′/x] ∗ (x 7→ E1[x
′/x], E2[x

′/x])){Y/Xv}

= ∃x′.((P{Y/Xv})[x
′/x] ∗ (x 7→ E1[x

′/x], E2[x
′/x]))

= sp(P{Y/Xv}, C)

• Case dispose(E)

(sp(P, C){Y/Xv})

= ∃x1, x2. ((E 7→ x1, x2)→∗P){Y/Xv}

= ∃x1, x2. ((E 7→ x1, x2)→∗(P{Y/Xv}))

= sp(P{Y/Xv}, C)

• Case C1; C2

(sp(P, C){Y/Xv})

= sp(sp(P, C1), C2){Y/Xv}

= sp(sp(P, C1){Y/Xv}, C2) (ind.hyp)

= sp(sp(P{Y/Xv}, C1), C2) (ind.hyp)

= sp(P{Y/Xv}, C)

• Case if E then C1 else C2

(sp(P, C){Y/Xv})

= (sp(P ∧ E = true, C1) ∨ sp(P ∧ E = false, C2)){Y/Xv}

= sp(P ∧ E = true, C1){Y/Xv} ∨ sp(P ∧ E = false, C2){Y/Xv}

= sp(P{Y/Xv} ∧ E = true, C1) ∨ sp(P{Y/Xv} ∧ E = false, C2) (ind. hyp.)

= sp(P{Y/Xv}, C)

• Case skip

63

(sp(P, C){Y/Xv})

= P{Y/Xv}

= sp(P{Y/Xv}, C)

• Case while E do C1

Case Xv not free in P

(sp(P, C){Y/Xv})

= ((µXv.sp(Xv ∧ E = true, C1) ∨ P) ∧ (E = false)){Y/Xv}

= ((µXv.sp(Xv ∧ E = true, C1) ∨ P) ∧ (E = false))

= ((µXv.sp(Xv ∧ E = true, C1) ∨ P{Y/Xv}) ∧ (E = false))

= sp(P{Y/Xv}, C)

Case Xv free in P

(sp(P, C){Y/Xv})

= ((µZv.sp(Zv ∧ E = true, C1) ∨ P) ∧ (E = false)){Y/Xv}

= ((µZv.sp(Zv ∧ E = true, C1) ∨ P{Y/Xv}) ∧ (E = false))

= ((µWv.sp(Wv ∧ E = true, C1) ∨ P{Y/Xv}) ∧ (E = false))

= sp(P{Y/Xv}, C)

We have the egality between the case Zv and Wv since JY Kρ exists so there is no free

formula variables in Y , so neither Zv or Wv can become bounded in some Y placed in

P .

2.6.7 µ and ν coincide

Theorem 2.34.
µXv. P ≡ ¬νXv.¬(P{¬Xv})
νXv. P ≡ ¬µXv.¬(P{¬Xv})

Theorem 2.34. First we recall the definition of equivalence between formulae P ≡ Q iff

∀ρ.(JP Kρ = JQKρ) ∨ (JP Kρ and JQKρ) both do not exist.

In this proof, we write ⊤ for S × H , we sometime write Cc for ⊤ \ C.

Let B = JνXv.P Kρ and A = JµXv.¬(P{¬Xv/Xv})Kρ, we want to prove that

(B exists ⇒ A exists and Bc = A) , and (A exists ⇒ B exists and Ac = B).

If B exists, then

• B = gfp⊆
∅ λX. JP K[ρ|Xv→X], so

64

• B is the biggest such that B = JP K[ρ|Xv→B], so

• Bc is the smallest such that ⊤ \ Bc = JP K[ρ|Xv→⊤\Bc], so

• Bc is the smallest such that Bc = ⊤ \ JP K[ρ|Xv→⊤\Bc], so

• Bc = lfp⊆
∅ λX. ⊤ \ JP K[ρ|Xv→⊤\X], then from Th. 2.32

• Bc = lfp⊆
∅ λX. ⊤ \ JP{¬Xv/Xv}K[ρ|Xv→X], which is

• Bc = lfp⊆
∅ λX. J¬P{¬Xv/Xv}K[ρ|Xv→X], so

• A exists and Bc = A

If A exists, then

• A = lfp⊆
∅ λX. J¬P{¬Xv/Xv}K[ρ|Xv→X], so

• A = lfp⊆
∅ λX. ⊤ \ JP{¬Xv/Xv}K[ρ|Xv→X], then from Th. 2.32

• A = lfp⊆
∅ λX. ⊤ \ JP K[ρ|Xv→⊤\X], which is

• A is the smallest such that A = ⊤ \ JP K[ρ|Xv→⊤\A], so

• A is the smallest such that ⊤ \ A = JP K[ρ|Xv→⊤\A], so

• Ac is the biggest such that Ac = JP K[ρ|Xv→Ac], so

• Ac = gfp⊆
∅ λX. JP K[ρ|Xv→X], so

• B exists and Ac = B

For the case µXv.P ≡ ¬ν.¬(P{¬Xv/Xv}), we proceed the same way.

2.6.8 Simplifications on [/]

Theorem 2.35. If
P is v-closed
z 6∈ V ar(P)

then P [z/y] ≡ P{[z/y]} ∧ is(z)

Th. 2.35. From the generalized variable renaming theorem Th. 2.8, JP{[z/y]}K = {s, h |

s•, h ∈ JP K},

so JP{[z/y]} ∧ is(z)K = {s, h | [s | y → s(z)], h ∈ JP K},

which is JP [z/y]K.

Some more simplifications:

Remember that we have in Lemma 2.22 JE{E ′/x}Ks = JEK[s|x→[[E′]]s] if [[E ′]]s exists.

65

• (E1 = E2)[E
′/x] ≡ (E1{E

′/x} = E2{E
′/x}) ∧ is(E ′) :

J(E1{E
′/x} = E2{E

′/x}) ∧ is(E ′)K
= {s, h | JE1{E

′/x}Ks = JE2{E
′/x}Ks and[[E ′]]s exists}

= {s, h | JE1K[s|x→[[E′]]s] = JE2K[s|x→[[E′]]s]}

= {s, h | JE1K[s|x→[[E′]]s] = JE2K[s|x→[[E′]]s]}

= {s, h | [s | x → [[E ′]]s], h ∈ JE1 = E2K}
= J(E1 = E2)[E

′/x]K

• (E 7→ E1, E2)[E
′/x] ≡ (E{E ′/x} 7→ E1{E

′/x}, E2{E
′/x}) ∧ is(E ′) :

J(E{E ′/x} 7→ E1{E
′/x}, E2{E

′/x}) ∧ is(E ′)K
= {s, h | dom(h) = {JE{E ′/x}Ks} and h(JE{E ′/x}Ks) = 〈JE1{E

′/x}Ks, JE2{E
′/x}Ks〉

and [[E ′]]s exists}

= {s, h | dom(h) = {JEK[s|x 7→[[E′]]s]}

and h(JEK[s|x 7→[[E′]]s]) = 〈JE1K[s|x 7→JE′Ks], JE2K[s|x 7→JE′Ks]〉}

= {s, h | [s | x 7→ [[E ′]]s], h ∈ JE 7→ E1, E2K}
= J(E 7→ E1, E2)[E

′/x]K

• false[E ′/x] ≡ false :

Jfalse[E ′/x]K
= {s, h | [s | x → [[E ′]]s], h ∈ JfalseK}
= ∅

= JfalseK

• (P ⇒ Q)[E ′/x] ≡ P [E ′/x] ⇒ Q[E ′/x] :

J(P → Q)[E ′/x]Kρ

= {s, h | [s | x → [[E ′]]s], h ∈ JP ⇒ QKρ}

= {s, h | [s | x → [[E ′]]s], h ∈ ((⊤ \ JP Kρ) ∪ JQKρ)}

= ((⊤ \ {s, h | [s | x → [[E ′]]s], h ∈ JP Kρ}) ∪ {s, h | [s | x → [[E ′]]s], h ∈ JQKρ})

= ((⊤ \ JP [E ′/x]Kρ) ∪ JQ[E ′/x]Kρ)

= JP [E ′/x] ⇒ Q[E ′/x]Kρ

66

• (∃x.P)[E/x] ≡ (∃x.P) ∧ is(E) :

J(∃x.P)[E/x]Kρ

= {s, h | [s | x → [[E]]s], h ∈ J∃x.P Kρ}

= {s, h | ∃v.[s | x → [[E]]s | x → v], h ∈ JP Kρ}

= {s, h | ∃v.[s | x → v], h ∈ JP Kρ and [[E]]s exists}

= J(∃x.P) ∧ is(E)Kρ

• If
y 6∈ V ar(E)
x 6= y

then (∃y.P)[E/x] ≡ ∃y.(P [E/x]) :

First, notice that if y 6∈ V ar(E), then [[E]]s = JEK[s|y→v].

J(∃y.P)[E/x]Kρ

= {s, h | [s | x → [[E]]s], h ∈ J∃x.P Kρ}

= {s, h | ∃v.[s | x → [[E]]s | y → v], h ∈ JP Kρ}

= {s, h | ∃v.[s | y → v | x → [[E]]s], h ∈ JP Kρ}

= {s, h | ∃v.[s | y → v | x → JEK[s|y→v]], h ∈ JP Kρ}

= {s, h | ∃v.[s | y → v], h ∈ JP [E/x]Kρ}

= J∃y.(P [E/x])Kρ

• emp[E ′/x] ≡ emp ∧ is(E ′) :

= Jemp ∧ is(E ′)K
= {s, h | h = [] and [[E ′]]s exists}

= {s, h | [s | x 7→ [[E ′]]s], h ∈ JempK}
= Jemp[E ′/x]K

• (P ∗ Q)[E ′/x] ≡ P [E ′/x] ∗ Q[E ′/x] :

= JP [E ′/x] ∗ Q[E ′/x]Kρ

= {s, h | ∃h0, h1. h0♯h1, h0.h1 = h, s, h0 ∈ JP [E ′/x]Kρ and s, h1 ∈ JQ[E ′/x]Kρ}

= {s, h | ∃h0, h1. h0♯h1, h0.h1 = h, [s | x 7→ [[E ′]]s], h0 ∈ JP Kρ

and [s | x 7→ [[E ′]]s], h1 ∈ JQKρ}

= {s, h | [s | x 7→ [[E ′]]s], h ∈ JP ∗ QKρ}

= J(P ∗ Q)[E ′/x]Kρ

67

• (P→∗Q)[E ′/x] ≡ P [E ′/x]→∗Q[E ′/x] :

= JP [E ′/x]→∗Q[E ′/x]Kρ

= {s, h | ∀h′. if h′♯h and s, h′ ∈ JP [E ′/x]Kρ then s, h.h′ ∈ JQ[E ′/x]Kρ}

= {s, h | ∀h′. if h′♯h and [s | x 7→ [[E ′]]s], h′ ∈ JP Kρ then

[s | x 7→ [[E ′]]s], h.h′ ∈ JQKρ}

= {s, h | [s | x 7→ [[E ′]]s], h ∈ JP→∗QKρ}

= J(P→∗Q)[E ′/x]Kρ

2.6.9 sp’s proofs

Case x := E

spo(γ(P), x := E) = {s′, h′ | ∃s, h. s, h |= P ∧ h′ = h ∧ s′ = [s | x → [[E]]s]}

= {s′, h′ | ∃s.s, h′ |= P ∧ s′ = [s | x → [[E]]s]}

γ(sp(P, x := E)) = {s′, h′ | s′, h′ |= ∃x′. P [x′/x] ∧ x = E{x′/x}}

= {s′, h′ | ∃v.[s′ | x′ → v], h′ |= P [x′/x]

∧ [s′ | x′ → v](x) = JE{x′/x}K[s′ | x′ → v]}

= {s′, h′ | ∃v.[s | x′ → v | x → v], h′ |= P

∧ s′(x) = JEK[s′ | x′ → v | x → v]}

= {s′, h′ | ∃v.[s′ | x′ → v | x → v], h′ |= P ∧ s′(x) = JEK[s′ | x → v]}

= {s′, h′ | ∃v.[s′ | v | x → v], h′ |= P ∧ s′(x) = JEK[s′ | x → v]}

The last equality is because x′ 6∈ V ar(P).

We can prove the inclusion by taking v = s(x) if x ∈ dom(s) and any value otherwise.

We could also prove the inclusion in the other way by taking s = [s′ | x → v].

So we have spo(γ(P), x := E) = γ(sp(P, x := E)).

68

Case x := E.i

spo(γ(P), x := E.i) = {s′, h′ | ∃s, h.s, h |= P ∧ h′ = h ∧ [[E]]s ∈ Loc

∧ (∃v. v = πi(h([[E]]s)) ∧ s′ = [s | x → v])}

= {s′, h′ | ∃s.s, h′ |= P ∧ (∃v. v = πi(h
′([[E]]s)) ∧ s′ = [s | x → v])}

= {s′, h′ | ∃s.s, h′ |= P ∧ s′ = [s | x → πi(h
′([[E]]s))])}

γ(sp(P, x := E.i)) = {s′, h′ | s′, h′ |= ∃x′. P [x′/x] ∧ x = (E{x′/x}).i}

= {s′, h′ | ∃v.[s′ | x′ → v], h′ |= P [x′/x]

∧ [s′ | x′ → v](x) = πi(h(JE{x′/x}K[s′ | x′ → v]))}

= {s′, h′ | ∃v.[s | x′ → v | x → v], h′ |= P

∧ s′(x) = πi(h(JEK[s′ | x′ → v | x → v]))}

= {s′, h′ | ∃v.[s′ | x′ → v | x → v], h′ |= P

∧ s′(x) = πi(h(JEK[s′ | x → v]))}

= {s′, h′ | ∃v.[s′ | x → v], h′ |= P ∧ s′(x) = πi(h(JEK[s′ | x → v]))}

The last equality is because x′ 6∈ V ar(P).

We can prove the inclusion by taking v = s(x) if x ∈ dom(s) and any value otherwise.

We could also prove the inclusion in the other way by taking s = [s′ | x → v].

So we have spo(γ(P), x := E.i) = γ(sp(P, x := E.i)).

69

Case E1.i := E2

spo(γ(P), E1.1 := E2) = {s′, h′ | ∃h. s′, h ∈ γ(P) ∧ ∃v1, v2.h(JE1Ks′) = 〈v1, v2〉

∧h′ = [h | JE1Ks′ → 〈JE2Ks′ , v2〉]}

γ(sp(P,E1 := E2.i)) = {s′, h′ | s′, h′ ∈ γ(∃x1, x2. (E 7→ E2, x2) ∗ ((E1 7→ x1, x2)→∗P))}

= {s′, h′ | ∃v1, v2. ∃h′
0, h

′
1.h

′
0♯h

′
1.

∧ h′ = h′
0 · h

′
1

∧ [s | xi 7→ vi], h
′
0 ∈ γ(E1 7→ E2, x2)

∧ [s | xi 7→ vi], h
′
1 ∈ γ((E1 7→ x1, x2)→∗P)}

= {s′, h′ | ∃v1, v2. ∃h′
0, h

′
1.h

′
0♯h

′
1.

∧ h′ = h′
0 · h

′
1

∧JE1Ks′ ∈ Loc

∧h′
0 = [JE1Ks′ 7→ 〈JE2Ks′ , v2〉] (using xi 6∈ V ar(E2))

∧∀h0.If h0♯h
′
1 and h0 = [JE1Ks′ 7→ 〈v1, v2〉]

then s′, h0 · h
′
1 ∈ γ(P)

= {s′, h′ | ∃v1, v2. ∃h′
0, h

′
1.h

′
0♯h

′
1.

∧ h′ = h′
0 · h

′
1

∧JE1Ks′ ∈ Loc

∧h′
0 = [JE1Ks′ 7→ 〈JE2Ks′ , v2〉] (using xi 6∈ V ar(E2))

∧If JE1Ks′ 6∈ dom(h′
1)

then s′, [JE1Ks′ 7→ 〈v1, v2〉] · h
′
1 ∈ γ(P)

= {s′, h′ | ∃v1, v2. ∃h′
0, h

′
1.h

′
0♯h

′
1.

∧ h′ = h′
0 · h

′
1

∧JE1Ks′ ∈ Loc

∧h′
0 = [JE1Ks′ 7→ 〈JE2Ks′ , v2〉] (using xi 6∈ V ar(E2))

∧s′, [JE1Ks′ 7→ 〈v1, v2〉] · h
′
1 ∈ γ(P)

We can prove the inclusion by taking h′
1 = h |dom(h)\JE1Ks′ . We could also prove the inclusion

in the other way by taking h = [JE1Ks′ 7→ 〈v1, v2〉] · h
′
1.

So we have spo(γ(P), E1 := E2.i) = γ(sp(P, E1 := E2.i)).

Case x := cons(E1, E2)

Not typed yet.

Case dispose(E)

Not typed yet.

70

Case C1; C2

We prove that spo(γ(P), C1; C2) = γ(sp(P, C1; C2)) by induction on the size of the command.

spo(γ(P), C1; C2) = spo(spo(γ(P), C1), C2) definition

= spo(γ(sp(P, C1)), C2) induction hypothesis

= γ(sp((sp(P, C1)), C2)) induction hypothesis

= γ(sp(P, C1; C2)) definition

Case if E then C1 else C2

C = if E then C1 else C2

spo(γ(P), C) = {s′, h′ | ∃s, h. s, h |= P ∧ (([[E]]s = True ∧ s′, h′ ∈ spo({s, h}, C1))

∨([[E]]s = False ∧ s′, h′ ∈ spo({s, h}, C2)))}

= {s′, h′ | ∃s, h. ((s, h |= P ∧E = true ∧ s′, h′ ∈ spo({s, h}, C1))

∨(s, h |= P ∧E = false ∧ s′, h′ ∈ spo({s, h}, C2)))}

= spo(γ(P ∧ E = true), C1)∪ spo(γ(P ∧ E = false), C2)

γ(sp(P,C)) = {s′, h′ | s′, h′ |= (sp(P ∧ E = true, C1)

∨sp(P ∧ E = false, C2))}

= {s′, h′ | s′, h′ |= sp(P ∧ E = true, C1)}

∪{s′, h′ | xs′, h′ |= sp(P ∧ E = false, C2)}

= γ(sp(P ∧ E = true, C1))∪ γ(sp(P ∧ E = false, C2))

We prove by induction in the size of the command.

Case skip

spo(γ(P), skip) = γ(P)

γ(sp(P, skip)) = γ(P)

So we have spo(γ(P), skip) = γ(sp(P, skip)).

71

Case while E do C1

We define Fo = λX. γ(P) ∪ spo(X ∩ γ(E = true), C1)

and F = λX. Γ[Xv 7→X](sp(Xv ∧ E = true, C1) ∨ P).

Lemma 2.36. ∀n ≥ 0.F n
o (∅) = F n(∅)

Lemma 2.36. We prove by recurrence that the F n
o (∅) = F n(∅) and that ∃Y. F n(∅) = γ(Y):

• Case n=0:

F 0
o (∅) = γ(P) ∪ ∅

= γ(P ∨ false)

F 0(∅) = Γ[Xv 7→∅](sp(Xv ∧ E = true, C1) ∨ P)

= Γ[Xv 7→γ(false)](sp(Xv ∧ E = true, C1) ∨ P)

= γ(sp(false ∧ E = true, C1) ∨ P) (by Th. 2.30)

= γ(false ∨ P)

• Case n+1.: F n+1
o (∅) = Fo(F

n
o (∅))

= Fo(F
n(∅))

= γ(P) ∪ spo(F
n(∅) ∩ γ(E = true), C1)

by induction hyp ∃Y. F n(∅) = γ(Y)

so = γ(P) ∪ spo(γ(Y) ∩ γ(E = true), C1)

= γ(P) ∪ spo(γ(Y ∨ E = true), C1)

= γ(P) ∪ γ(sp(Y ∨ E = true, C1)), by the global ind. hyp

= γ(sp(Y ∧ E = true, C1) ∨ P)

= Γ[Xv 7→γ(Y)](sp(Xv ∧ E = true, C1) ∨ P), by Th. 2.30+ lemma 2.31+ Xv not free in

P

= Γ[Xv 7→F n](sp(Xv ∧ E = true, C1) ∨ P)

= F n+1(∅)

Lemma 2.37. F is upper-continuous.

72

Lemma 2.37. The proof come directly from lemma 2.41 and theorem 2.42

spo(γ(P), w E d C1) =

lfp⊆

∅ λX.

s′, h′ | ∃s, h. s, h ∈ X∧

(([[E]]s = True ∧ s′, h′ ∈ spo({s, h}, C1))

∨(s′, h′ ∈ γ(P)))

∩{s′, h′ | [[E]]s′ = false}

=

(

lfp⊆
∅ λX.

{

s′, h′ | ∃s, h. s, h ∈ X∧

([[E]]s = True ∧ s′, h′ ∈ spo({s, h}, C1))

}

∪ γ(P)

)

∩γ(E = false)

= (lfp⊆
∅ λX. γ(P) ∪ spo(X ∩ γ(E = true), C1))

∩ γ(E = false)

= (lfp⊆
∅ Fo)

∩ γ(E = false)

(Fo u.c. + Tarski) =
⋃

n≥0
Fn

o (∅)

∩ γ(E = false)

(Lem. 2.36) =
⋃

n≥0
Fn(∅)

∩ γ(E = false)

γ(sp(P,w E d C1)) = γ(µXv. (P ∨ sp(Xv ∧ E = true, C1))

∧(E = false))

= γ(µXv. (P ∨ sp(Xv ∧ E = true, C1)))

∩ γ(E = false)

= Γ(µXv. (P ∨ sp(Xv ∧ E = true, C1)))

∩ γ(E = false)

= (lfp⊆
∅ λX. Γ[Xv 7→X](sp(Xv ∧ E = true, C1) ∨ P))

∩ γ(E = false)

= (lfp⊆
∅ F)

∩ γ(E = false)

(Lem. 2.37+Tarski) =
⋃

n≥0
Fn(∅)

∩ γ(E = false)

So we have that

spo(γ(P), while E do C1) = γ(sp(P, while E do C1)).

73

2.6.10 wlp’s proofs

Most cases were already proven in other papers and are not much of interest. They are

written on paper and we could type some cases if needed.

2.6.11 Upper-continuous results

Definition 2.38. λX.JP Kρ ∈ P (S × H) 7−→ P (S × H) is upper-continuous iff

For any ⊆-increasing chain xi, i ∈ Z:

JP Kρ[Xi/X] exists and:

JP Kρ[
S

i∈Z

Xi/X] =
⋃

i∈Z

JP Kρ[Xi/X]

Lemma 2.39. If λX.JP Kρ is upper-continuous then λX.JP [x′/x]Kρ is upper-continuous.

Lemma 2.39. By definition JP [x′/x]Kρ = {s, h | s[x 7→ s(x′)], h ∈ JP Kρ}. The lemma follows

directly:
(λX.JP [x′/x]Kρ)(

⋃

i∈Z

Xi)

= JP [x′/x]Kρ[
S

i∈Z

Xi/X]

= {s, h | s[x 7→ s(x′)], h ∈ JP Kρ[
S

i∈Z

Xi/X]}

= {s, h | s[x 7→ s(x′)], h ∈
⋃

i∈Z

JP Kρ[Xi/X]} (by hyp.)

=
⋃

i∈Z

{s, h | s[x 7→ s(x′)], h ∈ JP Kρ[Xi/X]}

=
⋃

i∈Z

JP [x′/x]Kρ[Xi/X]

=
⋃

i∈Z

(λX.JP [x′/x]Kρ)(Xi)

Lemma 2.40. If λX.F is upper-continuous and λX.G does not depend on X then λX.F ∩G

is upper-continuous.

Lemma 2.40.

(λX.F ∩ G)(
⋃

i∈Z

Xi)

= F (
⋃

i∈Z

Xi) ∩ G(
⋃

i∈Z

Xi)

= (
⋃

i∈Z

(F (Xi))) ∩ G(
⋃

i∈Z

Xi) (hyp. 1)

= (
⋃

i∈Z

(F (Xi))) ∩ G(Xi) (hyp. 2)

= (
⋃

i∈Z

(F (Xi) ∩ G(Xi)) (G(Xi) does not depend on i)

= (
⋃

i∈Z

(λX.F ∩ G)(Xi)

74

Lemma 2.41. λX.JXv ∧ E = trueK[ρ|Xv 7→X] is upper-continuous.

Lemma 2.41.
λX.JXv ∧ E = trueK[ρ|Xv 7→X]

= λX.X ∩ JE = trueK
since Xv cannot occure in E = true.

The result then follows by Lemma 2.40.

Theorem 2.42.
∀P, C If λX.JP Kρ is upper-continuous, then λX.Jsp(P, C)Kρ is
upper-continuous.

Theorem 2.42. Proof by induction on the command C. Since we are working with func-

tion from sets to sets the union is always defined. Notice that we use by hypothesis

JP Kρ[
S

i∈Z

Xi/X] =
⋃

i∈Z

JP Kρ[Xi/X] and want to prove that Jsp(P, C)Kρ[
S

i∈Z

Xi/X] =
⋃

i∈Z

Jsp(P, C)Kρ[Xi/X].

• Case C is x := E then

λX.Jsp(P, C)Kρ(
⋃

i∈Z

Xi)

= J∃x′. P [x′/x] ∧ x = E[x′/x]Kρ[
S

i∈Z

Xi/X]

= {s, h | ∃v ∈ V al.[s | x 7→ v], h ∈ JP [x′/x] ∧ x = E[x′/x]Kρ[
S

i∈Z

Xi/X]}

= {s, h | ∃v ∈ V al.

[s | x 7→ v], h ∈ JP [x′/x]Kρ[
S

i∈Z

Xi/X] and

[s | x 7→ v], h ∈ Jx = E[x′/x]K}
= {s, h | ∃v ∈ V al.

[s | x 7→ v], h ∈
⋃

i∈Z

JP [x′/x]Kρ[Xi/X] and

[s | x 7→ v], h ∈ Jx = E[x′/x]K)} (lem. 2.39+ hyp.)

= {s, h | ∃v ∈ V al.[s | x 7→ v], h ∈
⋃

i∈Z

JP [x′/x] ∧ x = E[x′/x]Kρ[Xi/X]}

=
⋃

i∈Z

{s, h | ∃v ∈ V al.[s | x 7→ v], h ∈ JP [x′/x] ∧ x = E[x′/x]Kρ[Xi/X]}

=
⋃

i∈Z

J∃x′. P [x′/x] ∧ x = E[x′/x]Kρ[Xi/X]

=
⋃

i∈Z

(λX.Jsp(P, C)Kρ(Xi))

• Case C is x := E.i then

75

λX.Jsp(P, C)Kρ(
⋃

i∈Z

Xi)

= J∃x′. P [x′/x] ∧ x = (E[x′/x]).iKρ[
S

i∈Z

Xi/X]

= J∃x′. P [x′/x] ∧ (∃x1, x2.(E[x′/x] →֒ x1, x2) ∧ x = xi)Kρ[
S

i∈Z

Xi/X]

= {s, h | ∃v ∈ V al.

[s | x 7→ v], h ∈ JP [x′/x] ∧ (∃x1, x2.(E[x′/x] →֒ x1, x2) ∧ x = xi)Kρ[
S

i∈Z

Xi/X]}

= {s, h | ∃v ∈ V al.

[s | x 7→ v], h ∈ JP [x′/x]Kρ[
S

i∈Z

Xi/X] and

[s | x 7→ v], h ∈ J∃x1, x2.(E[x′/x] →֒ x1, x2) ∧ x = xiK)}
= {s, h | ∃v ∈ V al.

[s | x 7→ v], h ∈
⋃

i∈Z

JP [x′/x]Kρ[Xi/X] and

[s | x 7→ v], h ∈ J∃x1, x2.(E[x′/x] →֒ x1, x2) ∧ x = xiK)} (lem. 2.39 + hyp.)

= {s, h | ∃v ∈ V al.

[s | x 7→ v], h ∈
⋃

i∈Z

JP [x′/x] ∧ (∃x1, x2.(E[x′/x] →֒ x1, x2) ∧ x = xi)Kρ[Xi/X]}

=
⋃

i∈Z

{s, h | ∃v ∈ V al.

[s | x 7→ v], h ∈ JP [x′/x] ∧ (∃x1, x2.(E[x′/x] →֒ x1, x2) ∧ x = xi)Kρ[Xi/X]}

=
⋃

i∈Z

J∃x′. P [x′/x] ∧ (∃x1, x2.(E[x′/x] →֒ x1, x2) ∧ x = xi)Kρ[Xi/X]

=
⋃

i∈Z

(λX.Jsp(P, C)Kρ(Xi))

• Case C is E.1 := E ′ then

76

λX.Jsp(P, C)Kρ(
⋃

i∈Z

Xi)

= J∃x1∃x2.(E 7→ E ′, x2) ∗ ((E 7→ x1, x2)→∗P)Kρ[
S

i∈Z

Xi/X]

= {s, h | ∃v1, v2 ∈ V al.[s | xi 7→ vi], h ∈ JE 7→ E ′, x2Kρ[
S

i∈Z

Xi/X] ∗ ((E 7→ x1, x2)→∗P))}

= {s, h | ∃v1, v2 ∈ V al.∃h0, h1 h0♯h1, h = h0.h1 and

[s | xi 7→ vi], h0 ∈ JE 7→ E ′, x2Kρ[
S

i∈Z

Xi/X] and

[s | xi 7→ vi], h1 ∈ J(E 7→ x1, x2)→∗P Kρ[
S

i∈Z

Xi/X]}

= {s, h | ∃v1, v2 ∈ V al.∃h0, h1. h0♯h1, h = h0.h1 and

[s | xi 7→ vi], h0 ∈ JE 7→ E ′, x2K and

∀h′
0.

if h1♯h
′
0 and [s | xi 7→ vi], h

′
0 ∈ JE 7→ x1, x2K

then[s | xi 7→ vi], h
′
0.h1 ∈ JP Kρ[

S

i∈Z

Xi/X]
}

= {s, h | ∃v1, v2 ∈ V al.∃h0, h1. h0♯h1, h = h0.h1 and

[s | xi 7→ vi], h0 ∈ JE 7→ E ′, x2K and

∀h′
0.

if h1♯h
′
0 and [s | xi 7→ vi], h

′
0 ∈ JE 7→ x1, x2K

then[s | xi 7→ vi], h
′
0.h1 ∈

⋃

i∈Z

JP Kρ[Xi/X]
}

here we have a ∀h′
o but for the if branch to be satifyied there is only one h′

0 that could

work: [[[E]]s 7→ v1, v2] so we can delete it and we also know that this is disjoint from

h1 from the previous conditions.

= {s, h | ∃v1, v2 ∈ V al.∃h0, h1. h0♯h1, h = h0.h1 and

[s | xi 7→ vi], h0 ∈ JE 7→ E ′, x2K and

if [[E]]s exists

then[s | xi 7→ vi], [[[E]]s 7→ v1, v2].h1 ∈
⋃

i∈Z

JP Kρ[Xi/X]
}

=
⋃

i∈Z

{s, h | ∃v1, v2 ∈ V al.∃h0, h1. h0♯h1, h = h0.h1 and

[s | xi 7→ vi], h0 ∈ JE 7→ E ′, x2K and

if [[E]]s exists

then[s | xi 7→ vi], [[[E]]s 7→ v1, v2].h1 ∈ JP Kρ[Xi/X]

}

=
⋃

i∈Z

{s, h | ∃v1, v2 ∈ V al.∃h0, h1. h0♯h1, h = h0.h1 and

[s | xi 7→ vi], h0 ∈ JE 7→ E ′, x2K and

∀h′
0.

if h1♯h
′
0 and [s | xi 7→ vi], h

′
0 ∈ JE 7→ x1, x2K

then[s | xi 7→ vi], h
′
0.h1 ∈ JP Kρ[Xi/X]

}

=
⋃

i∈Z

J∃x1∃x2.(E 7→ E ′, x2) ∗ ((E 7→ x1, x2)→∗P)Kρ[Xi/X]

=
⋃

i∈Z

(λX.Jsp(P, C)Kρ(Xi))

77

• Case C is E.2 := E ′ then

almost the same as the previous one...

• Case C is x := cons(E1, E2) then

λX.Jsp(P, C)Kρ(
⋃

i∈Z

Xi)

= J∃x′.(P [x′/x] ∗ (x 7→ E1[x
′/x], E2[x

′/x]))Kρ[
S

i∈Z

Xi/X]

= {s, h | ∃v′
x ∈ V al.[s | x′ 7→ v′

x], h ∈ J(P [x′/x] ∗ (x 7→ E1[x
′/x], E2[x

′/x]))Kρ[
S

i∈Z

Xi/X]}

= {s, h | ∃v′
x ∈ V al.∃h0, h1. h0♯h1, h = h0.h1 and

[s | x′ 7→ v′
x], h ∈ JP [x′/x]Kρ[

S

i∈Z

Xi/X] and

Jx 7→ E1[x
′/x], E2[x

′/x]K}
= {s, h | ∃v′

x ∈ V al.∃h0, h1. h0♯h1, h = h0.h1 and

[s | x′ 7→ v′
x], h ∈

⋃

i∈Z

JP [x′/x]Kρ[Xi/X] and

Jx 7→ E1[x
′/x], E2[x

′/x]K} (lem. 2.39+hyp.)

=
⋃

i∈Z

{s, h | ∃v′
x ∈ V al.∃h0, h1. h0♯h1, h = h0.h1 and

[s | x′ 7→ v′
x], h ∈ JP [x′/x]Kρ[Xi/X] and

Jx 7→ E1[x
′/x], E2[x

′/x]K}
=

⋃

i∈Z

J∃x′.(P [x′/x] ∗ (x 7→ E1[x
′/x], E2[x

′/x]))Kρ[Xi/X]

=
⋃

i∈Z

(λX.Jsp(P, C)Kρ(Xi))

• Case C is dispose(E) then

78

λX.Jsp(P, C)Kρ(
⋃

i∈Z

Xi)

= J∃x1, x2. ((E 7→ x1, x2)→∗P)Kρ[
S

i∈Z

Xi/X]

= {s, h | ∃v1, v2.[s | xi 7→ vi], h ∈ J(E 7→ x1, x2)→∗P Kρ[
S

i∈Z

Xi/X]}

= {s, h | ∃v1, v2.∀h′.
if h♯h′, and [s | xi 7→ vi], h

′ ∈ JE 7→ x1, x2Kρ[
S

i∈Z

Xi/X]

then [s | xi 7→ vi], h.h′ ∈ JP Kρ[
S

i∈Z

Xi/X]
}

= {s, h | ∃v1, v2.∀h′.
if h♯h′, and [s | xi 7→ vi], h

′ ∈ JE 7→ x1, x2K
then [s | xi 7→ vi], h.h′ ∈

⋃

i∈Z

JP Kρ[Xi/X]
} (hyp.)

= {s, h | ∃v1, v2.
if [[E]]s exists and [[E]]s 6∈ dom(h)

then [s | xi 7→ vi], h.[[[E]]s 7→ v1, v2] ∈
⋃

i∈Z

JP Kρ[Xi/X]
}

(same operation as in the case of E.i := E ′)

=
⋃

i∈Z

{s, h | ∃v1, v2.
if [[E]]s exists and [[E]]s 6∈ dom(h)

then [s | xi 7→ vi], h.[[[E]]s 7→ v1, v2] ∈ JP Kρ[Xi/X]

}

=
⋃

i∈Z

J∃x1, x2. ((E 7→ x1, x2)→∗P)Kρ[Xi/X]

=
⋃

i∈Z

(λX.Jsp(P, C)Kρ(Xi))

• Case C is C1; C2 then:

sp(P, C) = sp(sp(P, C1), C2)

λX.Jsp(P, C1)Kρ is upper-continuous by induction hypothesis on C1 for P and λsp(P, C)

is upper-continuous by induction hypothesis on C2 for sp(P, C1).

• Case C is if E then C1 else C2 then

λX.Jsp(P, C)Kρ(
⋃

i∈Z

Xi)

= Jsp(P ∧ E = true, C1) ∨ sp(P ∧ E = false, C2)Kρ[
S

i∈Z

Xi/X]

= Jsp(P ∧ E = true, C1)Kρ[
S

i∈Z

Xi/X] ∪ Jsp(P ∧ E = false, C2)Kρ[
S

i∈Z

Xi/X]

= (
⋃

i∈Z

Jsp(P ∧ E = true, C1)Kρ[Xi/X]) ∪ (
⋃

i∈Z

Jsp(P ∧ E = false, C2)Kρ[Xi/X])

(by ind. hyp)

=
⋃

i∈Z

((Jsp(P ∧ E = true, C1)Kρ[Xi/X]) ∪ (Jsp(P ∧ E = false, C2)Kρ[Xi/X]))

=
⋃

i∈Z

(Jsp(P ∧ E = true, C1) ∨ sp(P ∧ E = false, C2)Kρ[Xi/X])

=
⋃

i∈Z

(Jsp(P, C)Kρ[Xi/X])

79

• Case C is skip then

sp(P, C) = P so λX.Jsp(P, C)Kρ is upper-continuous by hypothesis.

• Case C is while E do C1 then

λX.Jsp(P, C)Kρ(
⋃

i∈Z

Xi)

= J(µYv.sp(Yv ∧ E = true, C1) ∨ P) ∧ (E = false)Kρ[
S

i∈Z

Xi/X]

(def. of sp. Y 6∈ ρ[
⋃

i∈Z

Xi/X] + Yv 6∈ P)

= (J(µYv.sp(Yv ∧ E = true, C1) ∨ P)Kρ[
S

i∈Z

Xi/X]) ∩ JE = falseK
(since Yv not in E)

= lfp⊆
∅ λY. Jsp(Yv ∧ E = true, C1) ∨ P K[ρ[

S

i∈Z

Xi/X]|Yv 7→Y]

∩JE = falseK
(def of µ)

= lfp⊆
∅ (λY.

Jsp(Yv ∧ E = true, C1)K[ρ[
S

i∈Z

Xi/X]|Yv 7→Y]

∪JP K[ρ[
S

i∈Z

Xi/X]|Yv 7→Y]
)

∩JE = falseK

= lfp⊆
∅ (λY.

Jsp(Yv ∧ E = true, C1)K[ρ[
S

i∈Z

Xi/X]|Yv 7→Y]

∪JP Kρ[
S

i∈Z

Xi/X]
)

∩JE = falseK
(since Yv 6∈ P)

let G = λX.(λY. Jsp(Yv ∧ E = true, C1)K[ρ|Yv 7→Y] ∪ JP Kρ)

we have G(
⋃

i∈Z

Xi) = (λY. Jsp(Yv ∧ E = true, C1)K[ρ|Yv 7→Y][
S

i∈Z

Xi/X] ∪ JP Kρ[
S

i∈Z

Xi/X])

and by chose of Y we can rewrite it as:

G(
⋃

i∈Z

Xi) = (λY. Jsp(Yv ∧ E = true, C1)K[ρ[
S

i∈Z

Xi/X]|Yv 7→Y] ∪ JP Kρ[
S

i∈Z

Xi/X])

and G(Xi) = (λY. Jsp(Yv ∧ E = true, C1)K[ρ[Xi/X]|Yv 7→Y] ∪ JP Kρ[Xi/X])

we can rewrite the former formula as:

80

= (lfp⊆
∅ (G(

⋃

i∈Z

Xi))) ∩ JE = falseK
= (

⋃

n∈Z

(G(
⋃

i∈Z

Xi))
n(∅)) ∩ JE = falseK

(G(
⋃

i∈Z

Xi) u-c on Y + Tarski)

= (
⋃

n∈Z

(
⋃

i∈Z

G(Xi))
n(∅)) ∩ JE = falseK

(G u-c on X)

= (
⋃

i∈Z

⋃

n∈Z

((G(Xi))
n(∅)) ∩ JE = falseK

=
⋃

i∈Z

(lfp⊆
∅ G(Xi)) ∩ JE = falseK

(G(Xi) u-c on Y + Tarski)

=
⋃

i∈Z

(lfp⊆
∅ λY. Jsp(Yv ∧ E = true, C1) ∨ P K[ρ[Xi/X]|Yv 7→Y]) ∩ JE = falseK

=
⋃

i∈Z

(JµYv.sp(Yv ∧ E = true, C1) ∨ P Kρ[Xi/X]) ∩ JE = falseK
def of µ)

=
⋃

i∈Z

(J(µYv.sp(Yv ∧ E = true, C1) ∨ P) ∧ (E = false)Kρ[Xi/X])

=
⋃

i∈Z

(Jsp(P, C)Kρ[Xi/X])

Complement:

– G is upper-continuous on X:

recall G = λX.(λY. Jsp(Yv ∧ E = true, C1)K[ρ|Yv 7→Y] ∪ JP Kρ)

by hypothesis: λX.JP Kρ is upper-continuous,

by chose of Y not in ρ we have that Jsp(Yv ∧ E = true, C1)K[ρ|Yv 7→Y] does not

depend on X so λX.Jsp(Yv ∧ E = true, C1)K[ρ|Yv 7→Y] is upper-continuous on X

and so G is upper-continuous on X.

– G(
⋃

i∈Z

Xi) upper-continuous on Y :

recall: G(
⋃

i∈Z

Xi) = (λY. Jsp(Yv ∧ E = true, C1)K[ρ[
S

i∈Z

Xi/X]|Yv 7→Y] ∪ JP Kρ[
S

i∈Z

Xi/X])

by Lemma 2.41 we have that λY.JYv ∧ E = trueK[ρ[
S

i∈Z

Xi/X]|Yv 7→Y] is upper-

continuous

and by ind. hyp. we have that this current theorem holds for any subprogram so it

hold for C1 and so λY.Jsp(Yv∧E = true, C1)K[ρ[
S

i∈Z

Xi/X]|Yv 7→Y] is upper-continuous

by chose of Y JP Kρ[
S

i∈Z

Xi/X] does not depend on Y

81

so (λY. Jsp(Yv∧E = true, C1)K[ρ[
S

i∈Z

Xi/X]|Yv 7→Y]∪JP Kρ[
S

i∈Z

Xi/X]) is upper-continuous

– G(Xi) upper-continuous on Y : Same proof as for G(
⋃

i∈Z

Xi)

2.6.12 Simplification theorems

Definition 2.43. λX.JP Kρ ∈ P (S × H) 7−→ P (S × H) is upper-continuous iff

For any ⊆-increasing chain xi, i ∈ Z:

JP Kρ[Xi/X] exists and:

JP Kρ[
S

i∈Z

Xi/X] =
⋃

i∈Z

JP Kρ[Xi/X]

Theorem 2.44.

If λX.JP K[Xv 7→X] is upper-continuous and Xv is the only
V variable which can be free in P

s, h |= µXv . P iff ∃n. s, h |= F n
P (false)

with F 0
P (Q) = Q, F n+1

P (Q) = P{F n
P (Q)/Xv}

Theorem 2.44. If λX.JP K[Xv 7→X] is upper-continuous and Xv is the only variable which can

be v-free in P then JµXv.P K exists and JµXv.P K = lfp⊆
∅ λX.JP K[Xv 7→X]

by Tarski constructive theorem: JµXv.P K =
⋃

n∈Z

(λX.JP K[Xv 7→X])
n(∅)

so s, h |= µXv.P iff ∃n.s, h ∈ (λX.JP K[Xv 7→X])
n(∅)

We still need to prove that (λX.JP K[Xv 7→X])
n(∅) = JF n

P (false)K.

We prove it by recurrence on n:

• Case n = 0:

(λX.JP K[Xv 7→X])
0(∅)

= ∅

= JfalseK
= JF 0

P (false)K

• Case n + 1

82

(λX.JP Kn+1
[Xv 7→X])(∅)

= (λX.JP K[Xv 7→X])((λX.JP K[Xv 7→X])
n∅)

= (λX.JP K[Xv 7→X])(JF n
P (false)K) (ind. hyp)

= JP K[Xv 7→JF n
P

(false)K]

= JP{F n
P (false)/Xv}K (by Th. 2.30)

= JF n+1
P (false)K

(To use Theorem 2.30 we needed that JF n
P (false)K exists but we have it by recursion since

JfalseK exists and since λX.JP K[Xv 7→X] is upper-continuous we have ∀Xi.JP K[Xv 7→Xi] exist.)

83

Chapter 3

An abstract language for separation
logic

3.1 Introduction

In Chapter 2, we extended separation logic with fixpoints, letting us express finitely separation-

logic characterizations of wlp and sp for while-loop programs14.

Those pre- and post-conditions allowed us to characterise a program, but not really to

check errors since there is no theorem prover (not just because of fixpoints, but mostly

because of quantifiers). Moreover, they created formulae that are not easy to read for a

human, which can be expected since they do not make approximations. But still, separation

logic seemed really suitable for a human to characterise a memory state, or sets of states.

Thus, we decided to write a language, which primarily would be used as an intermediate

language for translating separation logic into some other analysis domain, shape and alias

ones (among other things, the language contain the usual notion of “summary nodes”). The

language could also be used for doing directly some analysis.

Lying at the heart of the abstract language is its semantic domain of denotations. The

principal caracteristic and the main point that guided the design is that the domain is a

tuple, and we have semantics that is an intersection of each component and in particular

the graph’s semantics which is an intersection of each arrow.

In this chapter, we introduce the abstract language, giving the latter in both linear

84

(Sect. 3.3) and graphical forms. Our graphical representation resembles the graph formats

found in pointer analysis and shape analysis4,5, which are also concerned with describing

properties of aliasing and heap data structures, respectively.

To keep our abstract separation-logic language as general as possible, we parameterize it

on a numerical abstract domain, which can be instantiated with existing numerical domains,

including relational ones. Within our language, we treat numerical information in the same

way as memory information. We provide a semantics of our language directly in term of

sets of memory (Sect. 3.4).

As part of our language, we present some functions on the language in Sect. 3.5, among

with stabilization and union operators, whose precision and cost can be tuned to the specific

needs of the context where the language is used. We present the translations from separation

logic to the language as examples in Sect. 3.2 and more formally in Sect. 3.6.

The achievements of the chapter are:

i we define an abstract language for separation logic that is amenable to static analyis;

ii we define operations on the language;

iii we give a rigorous semantics and use it to prove soundness of the operations on the

language;

iiii we provide translation function for the fixpoints separation logic formulae

The domain uses a set of auxiliary variables to encode aliasing and allows to write a cheap

translation of the ∧ connective which does not require to check for aliasing. This formal

semantics given to auxiliary variables allows to prove operations which would usually be

pushed as implementation’s correctness problem.

In the chapter, for a function f , we will use the notation [f | x → V] for the function

that maps x to V and is equal to f for any element in the domain of f different from x.

85

We write when the element of the tuple is not pertinent for the example.
formula or set states represented abstract representation

(1) (x = nil)
(

x // ONMLHIJKNilt , , , , , ,
)

(2)

¬(x = x)

{s, h | x 6∈ dom(s)}

see some explainations below

(

x // WVUTPQRSOodt , , , , , ,
)

(3) (x = nil ∨ x = true)

x //

((RRRRRRR
ONMLHIJKNilt

WVUTPQRSTruet

, , , , , ,

(4) (x = y)

 x // α //GFED@ABC⊤
y

66nnnnnn

, , , , , ,

(5) (x = y ∧ x = nil)

 x // α // ONMLHIJKNilt
y

66nnnnnn

, , , , , ,

(6) (∃x. x = y ∧ x = nil) ≡ (y = nil)

 α // ONMLHIJKNilt
y

66nnnnnn

, , , , , ,

(7) (x < y + 3)

x // α // _^]\XYZ[Numt

y // β // _^]\XYZ[Numt
, , , , , , d

d ∈ D encodes that α < β + 3
We have that ¬(x = x) 6≡ false because the model of the formulae uses partial functions for

representing the stack. The semantics of false is ∅, while the semantics of ¬(x = x) is all the

states where x is not in the domain of the stack, and there exist many of them.

Figure 3.1: Introduction examples

3.2 Examples: Introduction to the language, transla-

tions of formulae

In all our examples, we use x, y, ... ∈ Var for program variables, and we use α, β, ... ∈ TVar

for auxiliary variables that denote values of our abstract language. We use v, v1, v2, ... for

variables in Var ∪ TVar.

The language we define is a set of tuples. The formal definitions of AR, PV D+, CLeq

are given later in Fig. 3.3.

86

formula or set states represented abstract representation

(8)
“x is a location not allocated”

{s, h | s(x) ∈ Loc ∧ s(x) 6∈ dom(h)}

(

x // onmlhijkDangling Loc , , , , , ,
)

(9)
emp

{s, h | dom(h) = ∅}
(, , ∅, , , ,)

(10)
(x 7→ true, nil)

{s, h|[s(x) → 〈True, nil〉] = h}

x // α // • 1 ///o/o/o

2)))i)i)i)i
WVUTPQRSTruet

ONMLHIJKNilt
, {α}, {α}, , , ,

(11)
(x →֒ true, nil)

{s, h|[s(x) → 〈True, nil〉] ⊆ h}

x // α // • 1 ///o/o/o

2)))i)i)i)i
WVUTPQRSTruet

ONMLHIJKNilt
, {α}, full, , , ,

(12)

approx. of (x = true ∧ y = false)

x = true

∨

x = false

∧

y = false

∨

y = true

x // α //

))TTTTTTT
WVUTPQRSTruet

y

77oooooo WVUTPQRSFalset

(13)

there is an finite acyclic list of True
starting from x

µXv.

(

(x = nil) ∨ ∃x2.

x →֒ (true, x2) ∗ Xv [x2/x]

)

x // α

))SSSSSS
// '&%$!"#• 1 ///o/o/o/o

∗2tt i)k+m-o/q1s3 GFED@ABCTruet
GFED@ABCNilt

, , , {α}, , ,

(14)

(

x = nil

∧y = true

)

∨

(

x = true

∧y = nil

)

α1 //xx

{†eq}

&&p
n

k
i f d a _] Z X U

S
Q

N

OO
{†eq}

���
�

�
GFED@ABCNilt GFED@ABCNilt α3oo

OO
{†eq}

���
�

�

x

66llllll

((RRRRRR y

hhRRRRRR

vvllllll

α2 //ff

{†eq}

88N
Q

S
U

X Z] _ a d f i
k

n
p

GFED@ABCTruet GFED@ABCTruet α4oo

(15)

x and y point to the same acyclic

list of True but x comes first

details below

x // α //

&&NNNNNNN
'&%$!"#• 1 ///o/o/o/o

∗2tt i)k+m-o/q1s3 GFED@ABCTruet

y

99ssssss
{⊂eq}

OO�
� GFED@ABCNilt

(16) ((x 7→ true, nil) ∗ (y 7→ true, nil)) x // α //
OO
{♯eq}���

�
'&%$!"#• 1 ///o/o/o

2 ..
#c

&f
(h *j ,l

GFED@ABCTruetGFED@ABCNilt
y // β // '&%$!"#• 1 ///o/o/o

2
..

#c
%e

(h *j ,l

GFED@ABCTruetGFED@ABCNilt

Details for example (15)

(x 6= y) ∧

(

µYv.

(

(y = nil) ∨ ∃y2.

y →֒ (true, y2) ∗ Yv[y2/y]

)

∗ µXv.

(

(x = y) ∨ ∃x2.

x →֒ (true, x2) ∗ Xv[x2/x]

))

Figure 3.2: Introduction examples

87

Let (ad, hu, ho, sn, sn∞, t, d) be an element of our language, which we name AR:

• ad : VAR
total
→ PV D+ is a function that maps variables (and auxiliary variables) to

abstract denotations (represented as graphs)

• hu ⊆ TVar is a set of auxiliary variables which represent an underapproximation of

the locations in the heap

• ho ⊆ TVar or ho = full is a set of auxiliary variables which represent an overapprox-

imation of the locations in the heap; it can also take the value full. We note this as

ho ∈ (P(TVar) ⊎ full) having ⊎ for disjoint union

• sn ⊆ TVar is a set of auxiliary variables which can represent a finite set of concrete

values

• sn∞ ⊆ TVar is a set of auxiliary variables which can represent an infinite set of

concrete values

• t : (TVar × TVar)
total
→ CLeq is a table which compares the values represented of two

auxiliary variables.

• d : D contains all the numerical information, D being a numerical domain. If x is a

numerical, then in AD it is made to point to some auxiliary which itself will point to

{Numt}, and if there is more information about this numerical value, we will register

it for that auxiliary variable in d.

In Fig. 3.1 and 3.2, we present examples of formulae or sets of memory states and their

translations. The complete description of separation logic and its semantics are given in the

previous chapter, Ch. 2.

Concrete domain Let Loc be an infinite set of heap locations, let V al , Z⊎Bool⊎{nil}⊎

Loc be the set of storable values, let S , Var ⇀ V al (⇀ stands for partial function) be

the set of temporary-variable stacks, and let H , Loc ⇀ (V al × V al) be the set of heaps

(partial functions that map locations to cons cells).

88

We define M , S × H . The standard model for the logic, which is also the domain for

the concretisation of our abstract language is P(M). Given some s, h ∈ M , the denotation

of a variable x, is s(x); when s(x) ∈ Loc, its dereferencing is h(s(x)). Since separation logic

is oriented towards properties of heap structures, such two-step dereferencing dominates

one’s reasoning about variables, and we make it a key feature of our abstract language.

Simple abstract values One might use separation logic to assert that the value of a

variable in the stack is nil, thus we have an abstract value Nilt (see Ex. 1). As well, we

translate true by Truet, false by Falset. A variable can be out of the domain of the stack

which corresponds to the abstract value Oodt (see Ex. 2).

The abstract language can assign to variables a set of abstract values, which can arise

from a disjunction (see Ex. 3).

Auxiliary variables We use an infinite set of auxiliary variables TVar to encode aliasing

(see Ex. 4). The use of TVar permits a cheap translation of conjunction, that is, to translate

P ∧ Q we first translate P then we refine the result while translating Q (see Ex. 4 and 5)

and it also permits a cheap translation of quantifiers (see Ex. 5 and 6).

Auxiliary variables can be used as wanted, for example, x // ONMLHIJKNilt can also be

represented by x // α // ONMLHIJKNilt . But for efficiency reasons, the abstract language has

some constraints, for example, we forbid x // α // ?>=<89:;∅ , which must be represented as

x // ?>=<89:;∅ .

Numerical information To allow translation of numerical values and numerical relations,

we parameterize our language on a numerical domain, D. The graph will contain only the

abstract value Numt, and all the numerical information are encoded in the element of the

numerical domain. For example, in Ex. 7, d could be a “difference bound matrix”19, and

we would have d(α, β) = i with any i ≥ 2.

Heap In the logic, one can say that a variable is a dangling pointer, thus we have another

abstract value, Dangling Loc, to represent this information (see Ex. 8). To model pointers

and the heap, the second and third component of our tuples are (i) hu, a set of auxiliary

89

variables that underapproximate the set of locations allocated in the heap, and (ii) ho, a

similar overapproximation (ho could also take the value, full , to give no information).

They are used, for example, to translate the formula emp which says that the heap is empty

(see Ex. 9). In separation logic, one writes assertions that state the exact contents of the

heap. For example, the formula, (x 7→ true, nil), not only says that x points to a cell

whose car-value is True and cdr-value is nil but also says that the cons-cell pointed to

by x is the only cell in the heap (see Ex. 10). In the translation, • represents a heap

location, and 1 ///o/o/o / 2 ///o/o/o represents its car/cdr. The formula (x →֒ true, nil) is like

(x 7→ true, nil) except that it allows additional cells in the heap domain, thus ho takes the

value full (see Ex. 11).

Summary nodes Notice that we embed shape-graphs, • and ///o/o/o being their nodes

and edges. To avoid infinite graphs (or to bound the computation time), our graphs have

summary nodes, which are nodes that represent multiple concrete values. By default, all

variables represent only one value. The fourth (sn) and fifth (sn∞) components are sets

of auxiliary variables which are allowed to represent sets of values (possibly an infinite

set for sn∞). Graphically, finite summary nodes will be doubly circled/squared and infinite

summary nodes will be triply circled/squared. The main difference from usual shape-graphs

is that we allow summary nodes for values which are not locations (see Ex. 12). We also

use summary nodes to represent a list of any size (see Ex. 13). In the formula, µ is

a least-fixpoint connective and [] is a postponed substitution connective which is used

for the recursion14. Informally, the formula can be written as nclisttrue(x) , (x =

nil) ∨ ∃x2. x →֒ (true, x2) ∗ nclisttrue(x2).

To allow infinite lists, we would replace µ by ν in the above formula, and in our language,

'&%$!"#• would be replaced by ?>=<89:;/.-,()*+•
Tables It is obvious that representing a union of graphs by a graph with unions (as we do,

see Ex. 3) implies some approximations. It can be interesting to do this approximation

but we also want the language to allow additional precision if needed. In Sect. 3.5.2, we

90

give an explanation of how to do a precise union. The sixth component of the tuple is a

2-dimensional table for auxiliary variables which is graphically representated by annoted

arrows, //___ . The annotations are sets of properties on the concrete values represented

by the auxiliary variables. Details are given in Sec. 3.3. An arrow labeled with {†eq} means

that one “exclusive or” the other variables pointed represent no value (see Ex. 14 where if

α1 has a value, then α2 and α3 do not, and when α4 has a value, then α2 and α3 do not). An

arrow labeled with {⊂eq} means that the values represented by one variable are included in

the ones represented by the other (see Ex. 15).

Separation information There are two ways to encode separation information. The first

way is to use //___ , in particular {♯eq} //___ says that two variables has no values in common

in their concretisations (see Ex. 16). The second way is to use ∗1 ///o/o/o / ∗2 ///o/o/o instead of

1 ///o/o/o / 2 ///o/o/o . In Ex. 13, this insures that the list is not cyclic: α can represent several

locations and they can point to one another through their cdr-values but ∗2 says that no

path through those locations is cyclic.

In an automatic translation of formulae, the use of {♯eq} //___ would appear when we trans-

late P ∗ Q. We would translate P and Q separately with disjoint sets of fresh auxiliary

variables. Then, we will join the two abstract values in some sort of union which will re-

spect the separation information. The two sets of allocated locations reprented by the two

translations should be disjointed. So, for exemple for the variables in huP and huQ, the

ones definitely representing allocated locations, they should have arrows {♯eq} //___ which in-

sure that they represent disjoints sets. The use of ∗1 ///o/o/o / ∗2 ///o/o/o would only appear while

translating fixpoints and building summary nodes.

3.2.1 Full example: tree

We present here a full example where we have the graphical and non graphical representation

of the domain.

We define adi ∈ AD such that ∀x ∈ V ar. adi(x) = ⊤, and ∀α ∈ TVar. adi(α) =�.

91

ti ∈ TB such that ∀α1, α2 ∈ TVar. t(α1, α2) = {‡eq},

and finaly ari = (adi, ∅, full,TVar,TVar, ti,⊤
D)

To say that x points to a tree, we could use the formula

µXv. (x = nil) ∨ ∃x1, x2.(x →֒ x1, x2 ∗ Xv[x1/x] ∗ Xv[x2/x])

or we can in our domain define it as

[

adi|x → {α}|α →

{

Nilt,

Loc({∗1, ∗2}, α1, α2)

}

|α1 → {α}|α2 → {α}

]

,

∅, full, {α, α1, α2}, ∅,

ti

∣

∣

∣

∣

∣

∣

∣

(α,), (, α), (α1,), (, α1), (α2,), (, α2) → {‡eq, †eq}

|(α, α1), (α, α2), (α2, α), (α1, α) → ⊤eq

|(α1, α2), (α2, α1) → {‡eq, ♯eq}

,⊤D

which can be graphicaly represented as

x = // α = //

=

��

GFED@ABCNilt

'&%$!"#•
∗1ww ∗2 ''

α1

=

AA

{‡eq , ♯eq}

22 α2

=

]]

ll

3.3 Definition of the language, AR

We now formalize the graphs from the previous section as denotations in our abstract

separation-logic language.

Let Var and TVar be two disjoint infinite sets of variables (typically Var will be the

set of program/formula variables and TVar will be auxiliary variables). We define VAR ,

Var⊎TVar, the set of all variables. The formal definition of the syntax of the language are

presented in Fig. 3.3.

V D1 is an abstract language for all values except locations. V D is V D1 plus abstract

values for locations in the heap. For Loc(A, vd1, vd2), A expresses some separation infor-

mation, vd1 is the abstract car-value and vd2 is the abstract cdr-value. PV D+ is either a

powerset of values in V D or the undefined value, denoted �.

92

V D1 ::= Numt | Truet | Falset | Oodt | Nilt | Dangling Loc | TVar

V D ::= V D1 | Loc(P({∗1, ∗2}) × V D1 × V D1)

PV D+ ::= (P(V D) ⊎ �,⊔,⊓)

where ⊎ is a disjoing union and ⊔ and ⊓ are functions defined below

AD ::= VAR
total
→ PV D+

CLeq ::= P({‡eq, †eq, =eq,⊂eq,⊃eq, ♯eq,©©eq})

TB ::= (TVar × TVar)
total
→ CLeq

AR ::= AD ×P(TVar) × (P(TVar) ⊎ full) × P(TVar) ×P(TVar) × TB

×(D, J·KD : D → P(TVar
total
→ P(Z)))

For the language PV D+ we define � ⊔S , S, S⊔ �, S,

� ⊓S , S, S⊓ �, S, ∀S1, S2 6=� . S1 ⊔ S2 , S1 ∪ S2, S1 ⊓ S2 , S1 ∩ S2.

For the language P(TVar) ⊎ full we define full ∪ S , full, S ∪ full , full,

full ∩ S , S, S ∩ full , S, full \ S , full, ∀α.α 6∈ full.

Figure 3.3: Syntax of the language

AD corresponds to the graphs used in the examples in Section 3.2.

TB associates pairs (α, β) of auxiliary variables to relationships defined by CLeq:

• ‡eq means both α and β represent an empty set of values

• †eq means exactly one of α and β represents an empty set of values

• =eq means both α and β represent the same nonempty set of values

• ⊂eq means the nonempty set of values represented by α is strictly included in the set

represented by β

• ⊃eq means the nonempty set of values represented by β is strictly included in the set

represented by α

• ♯eq means α and β represent two nonempty disjoint sets of values

• ©©eq means that the three sets of values represented by α, by β and by both are

nonempty

93

Constraints on D: ∃⊤D,∇D,⊔D,⊓D, top : (TVar ×D) → D,
copy : (TVar × TVar ×D) → D, merge : (TVar× TVar ×D) → D such that
• ∀d ∈ D.α1, α2 ∈ TVar.

Jmerge(α1, α2, d)KD = {g′ | ∃g ∈ JdKD. g′ = [g | α2 → g(α1) ∪ g(α2) | α1 → Z]}

• J⊤DKD = (TVar
total
→ Z)

• ∀d ∈ D.∀α ∈ TVar. Jtop(α, d)KD = {g′ | ∃g ∈ JdKD. g′ = [g | α → Z]}

• ∀d ∈ D.∀α1, α2 ∈ TVar.Jcopy(α1, α2, d)KD. = {g′ | ∃g ∈ JdKD. g′ = [g | α2 → g(α1)]}

• ∀d1, d2 ∈ D. ∀g1 ∈ Jd1KD. ∀g2 ∈ Jd2KD. ∃g12 ∈ Jd1 ⊔
D d2KD. ∀α.g1(α) ∪ g2(α) ⊆ g12(α)

• ∀d1, d2 ∈ D. ∀g1 ∈ Jd1KD. ∀g2 ∈ Jd2KD. ∃g12 ∈ Jd1 ⊓
D d2KD. ∀α.g1(α) ∩ g2(α) ⊆ g12(α)

• ∀w ∈ N
total
→ D. ∃i ∈ N.∀i′ ≥ i. ∇D(w ↾

[0,i]
total
→ D

) = ∇D(w ↾
[0,i′]

total
→ D

)

• ∀w ∈ N
total
→ D. ∀i ∈ N. ∀g1 ∈ Jw(i)KD.∃g2 ∈ J∇D

(

w ↾
[0,i]

total
→ D

)

KD.

∀α. g1(α) ⊆ g2(α)
Constraints on the language : ∀(ad, hu, ho, sn, sn∞, t, d) ∈ AR.
• ∀x ∈ Var.ad(x) 6=�

• ∀α ∈ TVar.ad(α) 6= ∅

• ∀v ∈ VAR.α ∈ TVar.α ∈ ad(v) ⇒ ad(α) 6=�

• ∀v ∈ VAR.α ∈ TVar.vd1 ∈ V D1. Loc(A, α, vd1) ∈ ad(v) ⇒ ad(α) 6=�

• ∀v ∈ VAR.α ∈ TVar.vd1 ∈ V D1. Loc(A, vd1, α) ∈ ad(v) ⇒ ad(α) 6=�

• ∀α ∈ hu. ad(α) 6=�

• ∀α ∈ ho. ad(α) 6=�

• ho = full ∨ hu ⊆ ho

• ∀α ∈ TVar.ad(α) =�⇒ ∀α′ ∈ TVar.{‡eq, †eq} ∩ t(α, α′) 6= ∅ ∧ {‡eq, †eq} ∩ t(α′, α) 6= ∅

Figure 3.4: Constraints on the language

94

Notice that if α and β are not summary nodes (so there concretisation is ∅ or a singleton),

then ⊂eq, ⊃eq, ♯eq and ©©eq all have the same meaning : α and β both have a concrete value

and their concrete values are different; we could write this as merely 6=eq. For this reason,

implementation could also work with only a sublatice of P({‡eq, †eq, =eq,⊂eq,⊃eq, ♯eq,©©eq}).

Comments

• We use total functions for AD and TB because it is more convenient for the proofs.

So their domains are Var and (Var×Var) but the user can define some functions dom

for domains so that they satisfy these constraints:

∀ad ∈ AD. dom(ad) , {x ∈ Var|ad(v) 6= ⊤} ∪ {α ∈ TVar|ad(α) 6=�}.

∀t ∈ TB. dom(t) , {α ∈ TVar. t(α, α) 6= {‡eq, =eq} ∨ ∃α′ ∈ TVar \ {α}. t(α, α′) 6⊆

P({‡eq, †eq}) ∨ t(α′, α) 6⊆ P({‡eq, †eq})}

∀f ∈ F.dom(f) , {α|f(α) 6= ∅}

• By choice in our semantics, variables in sn∞ \ sn are not summary nodes.

We have constraints on the language that are presented in Fig. 3.4.

• The first set of constrains are constraints on the numerical domain D. It says that the

domain should have a value ⊤D which would say that all the auxiliary variables can

take any value. It should have a function merge such that it could take two auxiliary

variables and an element of the domain and it would allow the first variable to take

any value while the second would take its previous value or a value that the first one

could previously take. It should have a function top which would allow one variable

to take any value. A function copy which would allow one variable to take the same

value as another. It should have ⊔D/⊓D to overapproximate the union/intersection of

two elements. It should have a function ∇D which taking a sequence of values and

returning a sequence of values which eventually converges and such that every element

is an overapproximation of the corresponding element in the argument’s sequence.

95

• The second set of constraints limit the number of elements of the domain whose

semantics correspond to an emptyset. Most of them say that if the concrete values

that an auxiliary variable can take is an emptyset, then no variable should be allowed

to point to that auxiliary variable.

• In our presentation of the language, we expressed only the constraints on the numeri-

cal domain which are needed to define the functions presented. There are some other

constraints, for example, the domain should provide an element which overapproxi-

mates the projection of an element, for example, (x = 3) or (x < y + 3). It should

also allow to overapproximate a precondition for an assignment (for example, if d is in

the numerical domain, we want d′, which should be an overapproximation such that

d corresponds to d′ where we have assigned x + 1 to x).

3.4 Semantics of the language

The abstractions of separation-logic formulae can be efficiently implemented because we for-

malize them as a disjunction of eight simple semantic-interpretation functions, represented

as J·Ki. This makes a denotation into a tuple of orthogonal elements.

First, we recall the concrete domains:

V al , Z ⊎ Bool ⊎ nil ⊎ Loc V al′ , V al ∪ {ood}

S , Var ⇀ V al S ′ , Var
total
→ V al′

H , Var ⇀ (V al × V al) F , TVar
total
→ P(V al′)

R , Loc ⇀ P(Loc)

M , S × H MFR , P(S ′ × H × F × R)

For simplicity, we work with total functions, so we extend V al with the “out of domain”

value ood to define V al′. S ′ are total stacks, that is we have a bijection between a normal

stack and a total stack. We define ¯ : S ′ → S by s̄′ , s′ ↾dom(s′)∩{x|s′(x)6=ood}, and ¯ : S → S ′

by s̄ , [x ∈ dom(s) → s(x) | x 6∈ dom(s) → ood].

The domain F , should be seen as a stack for auxiliary variables. So the abstract language

96

embeds information about the normal variables which is represented in the concrete domain

with the stacks in S ′ , Var
total
→ V al′, the abstract language embeds information about

auxiliary variable which is represented in the concrete domain with values in F , TVar
total
→

P(V al′). We have TVar
total
→ P(V al′) instead of TVar

total
→ V al′ because we want to have

summary nodes which will represent several concrete values.

To lighten the notation, we define a union of stacks in S ′ and stacks for auxiliary variables

in F : ·+· : (S ′ × F) → (V AR
total
→ P(V al′)) such that if x ∈ Var then s+f(x) , {s(x)} and

if α ∈ TVar then s+f(α) , f(α).

For (s, h, f, r) ∈ MFR, the s corresponds to a (total) stack, h is the heap, f is a stack

for the variables in TVar, where a variable can map to a set of values (cf. a summary

node), and r maps locations to their reachable set of locations, thus encoding separation

information.

We define J·K, the semantics of elements of our language, in terms of P(M):
J·K ∈ AR → P(M)

JarK , {s̄, h | s, h, f, r ∈ JarK′
}

It uses an intermediate semantics, J·K′
: AR → MFR, which is an intersection of the

semantics of every component of the tuple, ar. (The need for J·K′
— instead of having

directly J·K as a conjunction — is explained in Sect. 3.8.14):

We would like to apologize for using superscripts to differenciate the different semantics

depending on their domains (J·K1, J·K2, ...). The numbers themselves have no special meaning

and the ordering is just historical.
J·K′

∈ AR → MFR

J(ad, hu, ho, sn, sn∞, t, d)K′
, JadK4 ∩ JhuK1 ∩ JhoK1′ ∩ JsnK2 ∩ Jsn∞K2′

∩JtK3 ∩ JdK7 ∩ sem∗
The semantics of the graph ad is also a conjunction for all assignments:

J·K4 ∈ AD → MFR

JadK4 ,
⋂

v∈V AR

Jv, ad(v)K5

An assignment to a set is a disjunction of assignments:

97

J·K5 ∈ (V AR × PV D+) → MFR

Jv,⊤K5 , MFR

Jv, �K5 , {s, h, f, r | s+f(v) = ∅}

Jv, SK5 , {s, h, f, r | s+f(v) ⊆
⋃

vd∈S

Jvd, (h, f, r)K8}, if S 6∈ {⊤, �}

The rule for ⊤ gives no information, for � it is used for “fresh” variables. Thus they

should represent an empty set of concrete values. For S, the rule says that if a variable

points to a set of abstract values, then its concrete values should be included in the union

of all the concrete values represented by each abstract value.

We use an auxiliary function, J·K8, which gives the sets of concrete values in V al′ that

correspond to an abstract value in V D for a particular element of H × F × R:

J·K8 ∈ (V D × (H × F × R)) → P(V al′)

JNilt, K8 , {nil} JTruet, K8 , {True}

JFalset, K8 , {False} JOodt, K8 , {ood}

JNumt, K8 , Z JDangling Loc, (h, ,)K8 , Loc \ dom(h)

Jv, (, f,)K8 , f(v) when v ∈ TVar
The semantics of ∗1 and ∗2 are defined by these two definitions:
JLoc(A, vd1, vd2), (h, f, r)K8

,

l ∈ dom(h)

∣

∣

∣

∣

∣

∣

∣

∣

∣

• Π1(h(l)) ∈ Jvd1, (h, f, r)K8

• Π2(h(l)) ∈ Jvd2, (h, f, r)K8

• ∗1 ∈ A ∧ Π1(h(l)) ∈ Loc ⇒ Π1(h(l)) ∈ r(l)

• ∗2 ∈ A ∧ Π2(h(l)) ∈ Loc ⇒ Π2(h(l)) ∈ r(l)

sem∗ ∈ MFR

sem∗ ,

{

s, h, f, r

∣

∣

∣

∣

∣

∀l ∈ dom(r).

[

• l 6∈ r(l)

• ∀l′ ∈ r(l) ∩ dom(r).r(l′) ⊆ r(l)

}

sem∗ says that the concrete function r should be a reachability function, so all the

reachable from a reachable are reachable. And first, that there are no cycles, so no one

should be reachable from itself.

The semantics of the lower bound of heap’s domain is given by J·K1:
J·K1 ∈ P(TVar) → MFR

JhuK1 ,
⋂

α∈hu

{s, h, f, r | f(α) ∩ dom(h) 6= ∅}

and the semantics of the upper bound of a heap’s domain is given by J·K1′ :

98

J·K1′

∈ (P(TVar) ⊎ full) → MFR

JfullK1′ , MFR

JhoK1′ , {s, h, f, r | dom(h) ⊆
⋃

α∈ho

f(α)}

The semantics of summary nodes are given by J·K2 and J·K2′

J·K2 ∈ P(TVar) → MFR

JsnK2 , {s, h, f, r | ∀α ∈ TVar \ sn.|f(α)| ≤ 1}

J·K2′

∈ P(TVar) → MFR

Jsn∞K2′ , {s, h, f, r | ∀α ∈ TVar \ sn∞. f(α) is finite}
The semantics of the table is a conjunction of all semantics of its assignments:

J·K3 ∈ TB → MFR

JtK3 ,
⋂

(α1,α2)∈TVar×TVar

{

s, h, f, r
∣

∣ Jt(α1, α2), f(α1), f(α2)K6′
}

An assignment of the table is a disjunction of assignments:
J·K6′

∈ (CLeq × P(V al′) × P(V al′)) → Bool

JS, A, BK6′ ,
∨

l∈S

J l, A, BK6

The table encodes aliasing, non-aliasing information, and mutual exclusion. (For exam-

ple, †eq insures that two variables cannot live at the same time, and ♯eq insures that two

variables are not aliased.)

J·K6 ∈ (⊤eq × P(V al′) × P(V al′)) → Bool

J‡eq, A, BK6 , A ∪ B = ∅ J†eq, A, BK6 , A = ∅ xor B = ∅

J=eq, A, BK6 , A = B ∧ A 6= ∅ J⊂eq, A, BK6 , A ⊂ B ∧ A 6= ∅

J⊃eq, A, BK6 , A ⊃ B ∧ B 6= ∅ J♯eq, A, BK6 , A ∩ B = ∅ ∧ A 6= ∅ ∧ B 6= ∅

J©©eq, A, BK6 , A ∩ B 6= ∅ ∧ A \ B 6= ∅ ∧ B \ A 6= ∅

The semantics of the numerical part is given by J·K7:
J·K7 ∈ D → MFR

JdK7 ,
⋃

g∈JdKD

⋂

α∈TVar

{s, h, f, r | f(α) ∩ Z ⊆ g(α)}

3.5 Operations on the language

We now present five key operations and describe how they are computed within the abstract

language. All the operations have been proved sound. We first present an extension function

to add an auxiliary variable to a graph, which is used to tune the precision of the union

function presented second. Then we present a merging function which is used to merge two

99

nodes to reduce the size of the graph, which is used for the stabilization function presented

just after. Then we present a function, ast, which is used to translate the connective ∗.

Below, P is a formula in the separation logic with fixpoints defined in Chapter 2, and

T (P) ∈ AR is the translation of the formula.

For all the transformations T of elements of the language, we provide theorems of this

form: ∀s, h, f, r ∈ MFR.∃g. s, h, f, r ∈ JarK′
⇒ s, h, g(f), r ∈ JT (ar)K′

. The “g” being

there because we wish to allow changes for auxiliary variables (like for the function, merge),

so the values taken by the auxiliary variables do not have to be characterised by f in both

sides of the implication, but can be transformed by a function g on the right side of the

implication.

To explain, we want to translate formulae in separation logic with fixpoints into the

language AR. We want JP K ⊆ JT (P)K. For efficiency on the computation of conjunction, we

will define another translation, T ′ : AR×BIµν → AR, from an element of the language and

a formula to an element of the language, so that we have T ′(ar, P1∧P2) = T ′(T ′(ar, P1), P2).

We do the proofs by induction on the syntax of the formula. We do the proofs at the

level of J·K′
and need to keep the properties at this level and not J·K because Jar1K ⊆ Jar2K 6⇒

Jar1K′
⊆ Jar2K′

. Then at the end we define T (P) = T ′(ari, P). Since we have ∀s, h, f, r ∈

MFR. ∃g. s, h, f, r ∈ ari ∧ s̄, h ∈ JP K ⇒ s, h, g(f), r ∈ JT (P)K′
and JariK′

= MFR, we get

JP K ⊆ JT (P)K.

Recall that J·K is the semantic on the state domain S × H like for formulae, in this

semantics, the auxiliary variables can be renamed by alpha-renaming. J·K′
is on S ′×H×F×R

and the auxiliary variables can not be renamed.

3.5.1 Extension

Description

We present two extension functions, which add a “fresh variable” (a variable whose value is

�) as an intermediary between a variable and its assignment. Both functions have the same

100

properties. The first one is cheaper but the second one contributes better to the precision

of the union than the first.

The first version of extension, named extend(v, α,), (which is cheaper but induce less

precision) will replace

v1 // v // ONMLHIJKNilt by v1 // v // α // ONMLHIJKNilt
v2

66mmmmmm v2

66mmmmmm

but the second version, also named1 extend(v, α,), will replace it by

v1
''

v // α // ONMLHIJKNilt
v2

77

Properties

Both functions will satisfy the property

Proposition 3.1. ∀v ∈ V AR.α ∈ TVar.[ar | α →�] ∈ AR.(s, h, f, r) ∈ MFR.

s, h, f, r ∈ J[ar | α →�]K′
⇔ s, h, [f | α → s+f(v)] ∈ Jextend(v, α, [ar | α →�])K′

Corollary 3.2. ∀v ∈ V AR.α ∈ TVar.ar ∈ AR. JarK = Jextend(v, α, ar)K

The proof for the cheap extension function is available in Sect. 3.8.2 and the proof for

the more precise extension is in Sect. 3.8.3.

Definitions

The cheap extension is defined as follows:

1we use the same name since they satisfy the same proposition and the choice of one or the other will
be left as an implementation heuristic

101

extend: V AR → TVar → AR → AR

extend (v, α, ([ad | α →�], hu, ho, sn, sn∞, t, d)) ,

[ad | v → {α}, α → ad(v)]

hu,

ho \ {α},

if v ∈ sn then sn ∪ {α} else sn \ {α},

if v ∈ sn∞ then sn∞ ∪ {α} else sn∞ \ {α},

if v ∈ TVar

then

t

| (α, α′) → t(v, α′)

| (α′, α) → t(α′, v)

else

t

| (α, α′) → if ad(α′) =� then {‡eq, †eq} else CLeq

| (α′, α) → if ad(α′) =� then {‡eq, †eq} else CLeq

| (α, α) → {‡eq, =eq}

,

if v ∈ Var then top(α, d) else copy(v, α, d)

The function needs that α already points to �. It makes v point to α in the graph and α

points to what v was previously pointing to. For the rest of the components, it just updates

them knowing that α is equal to v.

The better extension is defined as follows:

102

extend: V AR → TVar → AR → AR

extend (v, α, ([ad | α →�], hu, ho, sn, sn∞, t)) ,

replace(v, α) ◦ [ad | v → {α}, α → ad(v)]

if v ∈ hu then hu \ {v} ∪ {α} else hu,

if v ∈ ho then ho \ {v} ∪ {α} else ho \ {α},

if v ∈ sn then sn ∪ {α} else sn \ {α},

if v ∈ sn∞ then sn∞ ∪ {α} else sn∞ \ {α},

if v ∈ TVar

then

t

| (α, α′) → t(v, α′)

| (α′, α) → t(α′, v)

else

t

| (α, α′) → if ad(α′) =� then {‡eq, †eq} else CLeq

| (α′, α) → if ad(α′) =� then {‡eq, †eq} else CLeq

| (α, α) → {‡eq, =eq}

,

if v ∈ Var then top(α, d) else top(v, copy(v, α, d))

This more precise version first does the same thing as other one and then replaces in the

graph the arrows pointing to v by arrows pointing to α.

For the proofs, we defined the extension in the concrete domain as
extend : V AR → TVar → S′ → F → F

extend(v, α, s, f) , [f | α → s+f(v)]

3.5.2 Union

The basic union is almost a simple union of all nodes and edges except that if a variable in

Var has no outgoing edges (that is, the variable is assigned to ⊤), the union graph does not

have an edge from this variable.

103

Definition

union : (AR × AR) → AR

basic union

ad1,

hu1,

ho1,

sn1,

sn∞
1 ,

t1,

d1

,

ad2,

hu2,

ho2,

sn2,

sn∞
2 ,

t2,

d2

,

ad1⊔̇ ad2,

hu1 ∩ hu2,

ho1 ∪ ho2,

sn1 ∪ sn2,

sn∞
1 ∪ sn∞

2 ,

t1∪̇ t2,

d1 ⊔
D d2

⊔̇/∪̇ being the pointwise applications of ⊔/∪, respectively

Properties

Proposition 3.3. ∀ar1, ar2 ∈ AR. Jar1K
′
∪ Jar2K

′
⊆ Jbasic union(ar1, ar2)K

′

Corollary 3.4. ∀ar1, ar2 ∈ AR. Jar1K ∪ Jar2K ⊆ Jbasic union(ar1, ar2)K

Proofs are found in Sect. 3.8.4 (but there, basic union is just called union).

More precise union

The basic union defined above is not precise. For example, it translates (x = y ∧ y =

nil) ∨ (y = true) into

basic union

x // α // ONMLHIJKNilt
y

66nnnnnn
,

y // WVUTPQRSTruet

x //GFED@ABC⊤

 =

y //

))RRRRRRR α // ONMLHIJKNilt

WVUTPQRSTruet

x //GFED@ABC⊤

which is merely (y = nil) ∨ (y = true).

So we will combine the basic union function with extend. For the same example, we

obtain

104

union

x // α // ONMLHIJKNilt
y

66nnnnnn
,

y // WVUTPQRSTruet

x //GFED@ABC⊤

= basic union

x // α // ONMLHIJKNilt
y

66nnnnnn
,

y // WVUTPQRSTruet

x // β //GFED@ABC⊤

=

x //

&&LLLLLLLLL β //
OO
{†eq}

���
�

GFED@ABC⊤

α // ONMLHIJKNilt

y //

88rrrrrrrrrr WVUTPQRSTruet

This is exactly (x = nil ∧ y = nil) ∨ (y = true)

In a non graphical presentation, this example is written

105

union

[ari|x → {α}|y → {α}|α → {Nilt}],

∅,TVar, ∅, ∅,

ti

∣

∣

∣

∣

∣

∣

∣

α β

α {=eq} {†eq}

β {†eq} {‡eq}

,⊤D

,

[ari|y → {Truet}],

∅,TVar, ∅, ∅,

ti

∣

∣

∣

∣

∣

∣

∣

α β

α {‡eq} {‡eq}

β {‡eq} {‡eq}

,⊤D

= basic union

[ari|x → {α}|y → {α}|α → {Nilt}],

∅,TVar, ∅, ∅,

ti

∣

∣

∣

∣

∣

∣

∣

α β

α {=eq} {†eq}

β {†eq} {‡eq}

,⊤D

,

[ari|y → {Truet}|x → {β}|β → ⊤],

∅,TVar, ∅, ∅,

ti

∣

∣

∣

∣

∣

∣

∣

α β

α {‡eq} {†eq}

β {†eq} {‡eq, =eq}

,⊤D

=

[ari|x → {α, β}|y → {α, Truet}|α → {Nilt}|β → ⊤],

∅,TVar, ∅, ∅,

ti

∣

∣

∣

∣

∣

∣

∣

α β

α {‡eq, =eq} {†eq}

β {†eq} {‡eq, =eq}

,⊤D

So one can tune the precision of the union by combining it with extend, but it is more

expensive. Using it everywhere would be comparable to renaming all variables before union.

We suggest applying extend only when we must union ⊤ with S 6= ⊤ such that ∃α ∈

TVar. α ∈ S.

We do not suggest to first do several extends, then do the basic union the extend could

be done on the fly we would just have to be careful while applying extend that the fresh

variables are fresh for both arguments of the union.

106

3.5.3 Merging nodes

Description

We define polymorphic functions for merging two nodes. The first node’s information gets

included in the second one and the first node is removed. This function will be used to

reduce the number of auxiliary variables which are used and will create summary nodes. In

particular, we will use this function for stabilization which is crucial for translating fixpoints.

For example, after merging α1 into α2 in x //

''OOOOOO α1 // ONMLHIJKNilt

α2 // WVUTPQRSTruet

we get x
''OOOOOO

ONMLHIJKNilt

α2 //

55kkkkkkk WVUTPQRSTruet

.

Definition

The merge operation is defined as follows:

merge:TVar → TVar → AR → AR

merge (α1, α2, (ad, hu, ho, sn, sn∞, t, d)) ,

replace(α1, α2) ◦ [ad | α2 → ad(α1) ⊔ ad(α2) | α1 →�],

if {α1, α2} 6⊆ hu then hu \ {α1, α2} else hu \ {α1},

if {α1, α2} ∩ ho = ∅ then ho else ho \ {α1} ∪ {α2},

sn \ {α1} ∪ {α2},

if {α1, α2} ∩ sn∞ = ∅ then sn∞ else sn∞ \ {α1} ∪ {α2},

t

| (α2, v) → UReq(t(α1, v), t(α2, v))

| (v, α2) → ULeq(t(v, α1), t(v, α2))

| (α2, α2) → {‡eq, =eq}

| (, α1) → {‡eq, †eq}

| (α1,) → {‡eq, †eq}

| (α1, α1) → {‡eq}

,

merge(α1, α2, d)

107

merge : ((
⋃

n∈Z

[0, n]
total
→ (TVar × TVar)) × AR) → AR

merge([0 → (α1, α2)], ar) , merge(α1, α2, ar)

merge([w|(n + 1) → (α1, α2)] ↾[0,n+1], ar) , merge(w ↾[0,n],merge(α1, α2, ar))

merge : TVar → TVar → F → F

merge(α1, α2, f) , [f | α1 → ∅ | α2 → f(α1) ∪ f(α2)]

merge : ((
⋃

n∈Z

[0, n]
total
→ (TVar × TVar)) × F) → F

merge([0 → (α1, α2)], f) , merge(α1, α2, f)

merge([w|(n + 1) → (α1, α2)] ↾[0,n+1], ar) , merge(w ↾[0,n],merge(α1, α2, f))

We define UReq and ULeq in Subsection 3.5.3.

Properties

Proposition 3.5. ∀α1, α2 ∈ TVar.∀ar ∈ AR. (s, h, f, r ∈ JarK′
⇒ s, h,merge(α1, α2, f), r ∈

Jmerge(α1, α2, ar)K′
)

Corollary 3.6. ∀w ∈ (
⋃

n∈Z

[0, n]
total
→ (TVar × TVar)). ∀ar ∈ AR. (s, h, f, r ∈ JarK′

⇒

s, h,merge(w, f), r ∈ Jmerge(w, ar)K′
)

Corollary 3.7. ∀α1, α2 ∈ TVar.ar ∈ AR. JarK ⊆ Jmerge(α1, α2, ar)K

The used variables are defined by

used: AR → P(TVar)

used((ad, hu, ho, sn, sn∞, t, d)) ,

{α ∈ TVar | ad(α) 6=�}

∪ {α ∈ TVar | ∃v ∈ V AR.α ∈ ad(v)}

∪ {α ∈ TVar | ∃v ∈ V AR.vd ∈ V D1. Loc(A, α, vd) ∈ ad(v)}

∪ {α ∈ TVar | ∃v ∈ V AR.vd ∈ V D1. Loc(A, vd, α) ∈ ad(v)}

∪ hu ∪ {α | α ∈ ho} ∪ sn ∪ sn∞

∪ {α | t(α, α) 6= {‡eq}}

∪ {α | ∃α′.t(α, α′) 6= {‡eq, †eq}}

∪ {α | ∃α′.t(α′, α) 6= {‡eq, †eq}}

∪ {α | top(α, d) 6= d}

108

Proposition 3.8. ∀α1, α2 ∈ TVar.∀ar ∈ AR. used(merge(α1, α2, ar)) = used (ar) \ {α1}

Corollary 3.9. ∀w ∈ (
⋃

n∈N

[0, n]
total
→ (TVar × TVar)). ∀ar ∈ AR. used(merge(w, ar)) =

used (ar) \ fst(range(w))

Proposition 3.10. ∀A ∈ P(TVar).∀d′ ∈ D. A is finite ⇒ {(ad, hu, ho, sn, sn∞, t, d) ∈

AR | d = d′ ∧ used(AR) ⊆ A} is finite

Proofs are found in Sect. 3.8.5.

Functions on CLeq

Here, we define two functions UReq and ULeq which are used to update the tabular compo-

nent while merging two nodes.

They are defined such that, if we have 3 sets of values A, B and C

• If we know that C and A are in the relationship l1 ∈ ⊤eq and C and B are in the

relationship l2 ∈ ⊤eq then C and A∪B will be in one of the relationship in ureq(l1, l2).

• If we know that A and C are in the relationship l1 ∈ ⊤eq and B and C are in the

relationship l2 ∈ ⊤eq then A∪B and C will be in one of the relationship in uleq(l1, l2).

We define UReq as follows

109

UReq: (CLeq × CLeq) → CLeq

UReq(S
1
eq, S

2
eq) ,

⋃

l1,l2∈S1
eq×S2

eq

ureq(l1, l2)

ureq: (⊤eq × ⊤eq) → CLeq ⊎ ∅

ureq(l1, l2) ,
H

H
H

H
H

H
l1

l2 ‡eq †eq =eq ⊃eq ⊂eq ♯eq ©©eq

‡eq {‡eq} {†eq} ∅ ∅ ∅ ∅ ∅

†eq {†eq} {†eq} {=eq} {⊃eq} {⊂eq} {♯eq} {©©eq}

=eq ∅ {=eq} {=eq} {=eq} {⊂eq} {⊂eq} {⊂eq}

⊃eq ∅ {⊃eq} {=eq} {⊃eq, =eq} {⊂eq} {©©eq} {⊂eq,©©eq}

⊂eq ∅ {⊂eq} {⊂eq} {⊂eq} {⊂eq} {⊂eq} {⊂eq}

♯eq ∅ {♯eq} {⊂eq} {©©eq} {⊂eq} {♯eq} {©©eq}

©©eq ∅ {©©eq} {⊂eq} {⊂eq,©©eq} {⊂eq} {©©eq} {⊂eq,©©eq}

We have (proof in Sect. 3.8.6)

Proposition 3.11. ∀S1
eq, S

2
eq ∈ CLeq. ∀S, S1, S2 ∈ P(V al′). JS1

eq, S, S1K6′ ∧ JS2
eq, S, S2K6′ ⇒

JUReq(S
1
eq, S

2
eq), S, S1 ∪ S2K6′

We define ULeq as follows
ULeq: (CLeq × CLeq) → CLeq

ULeq(S
1
eq, S

2
eq) ,

⋃

l1,l2∈S1
eq×S2

eq

uleq(l1, l2)

uleq: (⊤eq × ⊤eq) → CLeq ⊎ ∅

uleq(l1, l2) ,
H

H
H

H
H

H
l1

l2 ‡eq †eq =eq ⊂eq ⊃eq ♯eq ©©eq

‡eq {‡eq} {†eq} ∅ ∅ ∅ ∅ ∅

†eq {†eq} {†eq} {=eq} {⊂eq} {⊃eq} {♯eq} {©©eq}

=eq ∅ {=eq} {=eq} {=eq} {⊃eq} {⊃eq} {⊃eq}

⊂eq ∅ {⊂eq} {=eq} {⊂eq, =eq} {⊃eq} {©©eq} {⊃eq,©©eq}

⊃eq ∅ {⊃eq} {⊃eq} {⊃eq} {⊃eq} {⊃eq} {⊃eq}

♯eq ∅ {♯eq} {⊃eq} {©©eq} {⊃eq} {♯eq} {©©eq}

©©eq ∅ {©©eq} {⊃eq} {⊃eq,©©eq} {⊃eq} {©©eq} {⊃eq,©©eq}

110

We have (proof in Sect. 3.8.6)

Proposition 3.12. ∀S1
eq, S

2
eq ∈ CLeq. ∀S, S1, S2 ∈ P(V al′). JS1

eq, S
1, SK6′ ∧ JS2

eq, S
2, SK6′ ⇒

JULeq(S
1
eq, S

2
eq), S

1 ∪ S2, SK6′

3.5.4 Stabilization

Description

This stabilization function does not insure convergence to a single value but that the stabi-

lization will take a finite number of values.

The stabilization operator combines the stabilization on the numerical domain and a

strategy to bound the number of used variables. First, the stabilization operator use the

function merge to merge nodes to keep the number of auxiliary varibles used bounded, then

the only possibility for divergence is from the numerical domain, so it applies the numerical

stabilization for the numerical component.

Typically, a numerical widening is a numerical stabilization, so when computing a least-

fixpoint, we will apply the stabilization , with the numerical widening as numerical stabi-

lization, to a chain which we already know is increasing thus we will insure convergence and

overapproximation.

A numerical narrowing is not in general a numerical stabilization because we define

stabilization to be an overapproximation of the current element of the chain, while the

narrowing is an overapproximation of the intersection of all the previous elements, but in

case of a decreasing chain, the numerical narrowing behaves like a numerical stabilization.

So when computing a greatest-fixpoint, we will apply the stabilization with the numerical

narrowing as numerical stabilization, to a chain which we already know is decreasing thus

we will insure convergence and overapproximation.

111

Definition

Remember that we have as a condition that the numerical domain D should have function

∇D : (
⋃

n∈N

[0, n]
total
→ D) → D, such that

1 ∀w ∈ N
total
→ D. ∃i ∈ N.∀i′ ≥ i. ∇D(w ↾

[0,i′]
total
→ D

) = ∇D(w ↾
[0,i]

total
→ D

)

2 ∀w ∈ N
total
→ D. ∀i ∈ N. ∀g1 ∈ Jw(i)KD.∃g2 ∈ J∇D

(

w ↾
[0,i]

total
→ D

)

KD.

∀α ∈ TVar. g1(α) ⊆ g2(α)

The conditions 1 is for convergence and the condition 2 is for overapproximation.

To compare we can recall the usual condition of a numerical widening ∇♯:

Definition 3.13. ∇♯ is a widening iff

1 ∀w ∈ N
total
→ D. ∃i ∈ N.∀i′ ≥ i. Yi = Yi′ with Y0 , w(0) and Yi+1 , Yi ∇

♯ w(i + 1)

2 ∀d1, d2 ∈ D. ∀g1 ∈ Jd1KD. ∀g2 ∈ Jd2KD. ∀g3 ∈ Jd1∇
♯d2KD. ∀α ∈ TVar.

g1(α), g2(α) ⊆ g3(α)

It is very simple to see that if we take ∇D(w ↾
[0,i]

total
→ D

) , Yi then ∇D satify the conditions.

In the case of narrowing

Definition 3.14. △♯ is a narrowing iff

1 ∀w ∈ N
total
→ D. ∃i ∈ N.∀i′ ≥ i. Yi = Yi′ with Y0 , w(0) and Yi+1 , Yi ∇

♯ w(i + 1)

2 ∀d1, d2 ∈ D. ∀g1 ∈ Jd1KD. ∀g2 ∈ Jd2KD. ∀g3 ∈ Jd1∇
♯d2KD. ∀α ∈ TVar.

g1(α) ∩ g2(α) ⊆ g3(α) ⊆ g1(α)

Here, if we take ∇D(w ↾
[0,i]

total
→ D

) , Yi then ∇D satisfies the condition 1 of convergence,

but it satisfies the condition 2 of overapproximation only when the chain w is decreasing.

We define give d : AR → D, (ad, hu, ho, sn, sn∞, t, d) 7→ d and give d : (N
total
→ AR) →

(N
total
→ D), w 7→ (i 7→ give d(w(i))) which are projection functions

set d : (AR ×D) → AR, ((ad, hu, ho, sn, sn∞, t, d), d′) 7→ (ad, hu, ho, sn, sn∞, t, d′) which is

a function to update the numerical information of an element in AR.

We can extend ∇D to be applied with elements of AR:

∇D
AR : (

⋃

n∈N

[0, n]
total
→ AR) → AR

112

such that

∀w ∈ N
total
→ AR. ∀i ∈ N.∇D

AR(w ↾
[0,i]

total
→ D

) = set d(w(i),∇D(give d(w ↾
[0,i]

total
→ D

)))

We can easily see that we have:

1 ∀w ∈ N
total
→ AR. ∃i ∈ N.∀i′ ≥ i. give d(∇D

AR(w ↾
[0,i′]

total
→ D

)) = give d(∇D
AR(w ↾

[0,i]
total
→ D

))

2 ∀w ∈ N
total
→ AR. ∀i ∈ N. ∀g1 ∈ Jgive d(w(i))KD.∃g2 ∈ Jgive d(∇D

AR

(

w ↾
[0,i]

total
→ AR

)

)KD.

∀α ∈ TVar. g1(α) ⊆ g2(α)

Suppose that we have a strategy for merging:

∇merge : (
⋃

n∈N

[0, n]
total
→ AR) → (

⋃

n∈N

[0, n]
total
→ (TVar × TVar))

such that:

∀w ∈ N
total
→ AR. ∃A ∈ P(TVar). (A is finite) ∧ ∃i ∈ N.∀i′ ≥ i.

(used(merge(∇merge(w ↾
[0,i′]

total
→ AR

), w(i′))) ⊆ A)
(3.1)

This stategy could for example consist on merging variables which have been used while

analysing the same program point or the same part of a formula (typically the variable built

for translating ∃).

Definition 3.15. ∇AR : (
⋃

n∈N

[0, n]
total
→ AR) → AR) such that

∀w ∈ N
total
→ AR. ∀i ∈ N.

∇AR(w ↾
[0,i]

total
→ AR

) , ∇D
AR

([

w ↾
[0,i]

total
→ AR

| i → merge(∇merge(w ↾
[0,i]

total
→ AR

), w(i))
]) (3.2)

The definition is first merge the variable that have to be merged, then use the numerical

stabilization .

Properties

Proposition 3.16.
∀w ∈ N

total
→ AR. ∃A ∈ P(AR). (A is finite) ∧ ∃i ∈ N.∀i′ ≥ i.

∇AR(w ↾
[0,i′]

total
→ AR

) ∈ A

This proposition says that values taken by the stabilization is a finite set (A).

113

Proposition 3.17. ∀w ∈ N
total
→ AR. ∀i ∈ N. ∀s, h, f, r.∃g. s, h, f, r ∈ Jw(i)K′

⇒ s, h, g(f), r ∈

J∇AR(w ↾
[0,i]

total
→ AR

)K′

This proposition says that it is an overapproximation.

The proofs are found in Sect. 3.8.7.

3.5.5 ast

Here we present a function ast : (AR × AR) → (AR ⊎ Ω) which we user for translation of

the connective ∗. (Ω is an error result, we could have avoid this add by replacing it by any

element of AR whose semantics is ∅ but it makes the analysis clearer if we add it.)

We present ast’s definition via an informal 3 step algorithm.

We want ast to have the property :

Proposition 3.18. ∀ar0, ar1, s, h, f0, f1, r0, r1

∃h0, h1. h0♯h1 ∧ h = h0 · h1∧

s, h0, f0, r0 ∈ Jar0K
′
∧

s, h1, f1, r1 ∈ Jar1K
′
∧

used(ar0) ∩ used(ar1) = ∅

⇒ s, h, f0∪̇f1, r0∪̇r1 ∈ Jast(ar0, ar1)K
′

Recall that J·K′
: AR → MFR is defined in Sect. 3.4.

To help us prove the Proposition 3.18, we impose the three following restrictions:.

Restriction 1 First, we extend the usual definition of ∈ on sets such that ∀α ∈ TV ar. α 6∈

⊤.

Next, we limit ast to be applied to elements of the domains

V D1 ::= Numt | Truet | Falset | Oodt | Nilt | TV ar

V D ::= V D1 | Loct | Dangling Loc | Loc(P({∗1, ∗2}) × V D1 × V D1)

where we use the definition, JLoct, (h, ,)K8 , dom(h), Loct is introduced here to mean

Loc(,⊤,⊤).

This simplifies the proofs for technical reasons. The idea is that with those restrictions

(which we could get from the previous definition by using some extra auxiliary variables),

114

the car or cdr of a Loc are either a variable, so we have some constrains on them, or they

are an abstract value which does not represent locations and it makes things simpler for

doing the ast.

We change the semantics of sem∗ to read as follows:

sem∗ ,

s, h, f, r

∣

∣

∣

∣

∣

∣

∣

∀l ∈ dom(r).

• dom(r) ∪ codom(r) ⊆ dom(h)

• l 6∈ r(l)

• ∀l′ ∈ r(l) ∩ dom(r).r(l′) ⊆ r(l)

Restriction 2 We suppose that for all non-auxiliary variables that appear in the shape

graph that either (i) they are pointing to ⊤ on both sides, or (ii) they are pointing to a

singleton of an auxiliary variable on both sides. (If not, we insure this using the function

extend, being careful to use disjoint fresh variables on both sides.)

Restriction 3 Prop. 3.18, you can notice the restriction, used(ar0) ∩ used(ar1) = ∅. The

restriction is there because we restrict the application of ast to the cases where the auxiliary

graphs are disjoint. This condition is satisfied when doing the translation of formulae, and

if the function ast is needed for another use, this restriction could be satisfied by variable

renaming. This restriction lets us do the first step of the algorithm:

For simplicity of presentation, we assume we apply the function ast on two arguments

ar0 = (ad0, hu0, ho0, sn0, sn
∞
0 , t0, d0) and ar1 = (ad1, hu1, ho1, sn1, sn

∞
1 , t1, d1) and that its

result is ar01 = (ad01, hu01, ho01, sn01, sn
∞
01, t01, d01).

The first step is to compute the result part for the other components than the graphs,

and the two next steps are only dealing with the graph part.

AST ALGORITHM, STEP 1: Action on the non-graph components:

Definition 3.19. • sn01 , sn0 ∪ sn1

• sn∞
01 , sn∞

0 ∪ sn∞
1

• hu01 , hu0 ∪hu1 (here, we need not check if hu0 ∩hu1 = ∅ because we know this holds

by the restriction on used variables)

115

• ho01 , ho0 ∪ ho1

• ∀α, β. t0(α, α) = t0(β, β) = {‡eq} ⇒ t01(α, β) , t1(α, β)

• ∀α, β. t1(α, α) = t1(β, β) = {‡eq} ∧ (t0(α, α) 6= {‡eq} ∨ t0(β, β) 6= {‡eq}) ⇒ t01(α, β) ,

t0(α, β)

• ∀α, β. t0(α, α) 6= {‡eq}∧ t1(α, α) 6= {‡eq} ⇒ this case is impossible because by auxiliary

variable constraints, we have ∀α.t0(α, α) = {‡eq} ∨ t1(α, α) = {‡eq}

The properties and proofs are found at Sect. 3.8.9

AST ALGORITHM, STEP 2: Joining the two graphs of auxiliary variables :

GF ED@A
EDBC

GF@A
x // G0

y // only aux. var.

∗

GF ED@A
EDBC

GF@A
x // G1

z // only aux. var.

=

(

x //

y //
∗ x //

z //

) GF ED@A
EDBC

GF@A
G0 ∪ G1

only aux. var.

AST ALGORITHM, STEP 3: For all variables x ∈ V ar, such that x points to {α} in

one graph and {β} in the other graph

• make x point to {α} in the result (this is an arbitrary choice, we could have taken

{β} instead)

• apply the procedure do 2 var for α, β

Procedure do 2 var

1. If one of the variables points to ∅ or �, then it is already an error value and we return

Ω. This comes directly because if we have an non-auxiliary variable, it always has

a value, (because if it is not in the stack, it is assigned to {Oodt}), and if it is an

auxiliary variable, it comes because we have reached it through a path starting from

a non-auxiliary variable.

116

2. ElseIf on one graph, a variable points to a non-singleton set, then use the procedure

mk sets of graphs to make it a singleton set and then go the the following case:

Procedure mk sets of graphs

(a) Case non-summary node:

v //
))SSSSSS 76540123A76540123B

= v //76540123A
⋃

v
**TTTTTT 76540123B

This is correct because, if v in not a summary node, |s+f(v)| ≤ 1, thus,
Jv, ar(v)K5 ∧ P

,

{

s, h, f, r | s+f(v) ⊆
⋃

vd∈ar(v)

Jvd, (h, f, r)K8

}

∧ P

=
⋃

vd∈ar(v)

({s, h, f, r | s+f(v) ⊆ Jvd, (h, f, r)K8} ∧ P)

,
⋃

vd∈ar(v)

(Jv, {vd}K5 ∧ P)

(b) Case of summary nodes: Obviously, we cannot do the same as for non sum-

mary nodes because

(

x // α //

((RRRRRR
76540123A76540123B

)

6=
(

x // α //76540123A
)

∪

(

x // α
))SSSSSS 76540123B

)

but we can do

(

x // α //

((RRRRRR
76540123A76540123B

)

⊆

α //
))RRRRRR
76540123A76540123B

x // 76540123A

 ∪

α //
))RRRRRR
76540123A76540123B

x // 76540123B

Because
s(x) ∈ f(α) ⊆ (A ∪ B) ⇒

(s(x) ∈ A ∧ f(α) ⊆ (A ∪ B)) ∨ (s(x) ∈ B ∧ f(α) ⊆ (A ∪ B))

(c) Case of summary nodes in locations: This case, in fact, never occurs for the

function ast, but since we will use almost the same algorithm for the intersection

operation, where this case might occur, we add it here:

x // • 1 ///o/o/o/o

2
)))i)i)i α //

))TTTTTTT 76540123AGFED@ABCNilt 76540123B
⊆

α //
))RRRRRR
76540123A76540123B

x // • 1 ///o/o/o/o

2
***j*j*j*j

76540123AGFED@ABCNilt

∪

α //
))RRRRRR
76540123A76540123B

x // • 1 ///o/o/o/o

2
***j*j*j*j

76540123BGFED@ABCNilt

117

because
Π1(h(s(x))) ∈ f(α) ⊆ (A ∪ B) ⇒
(

(Π1(h(s(x))) ∈ A ∧ f(α) ⊆ (A ∪ B))

∨ (Π1(h(s(x))) ∈ B ∧ f(α) ⊆ (A ∪ B))

)

We have extended the union on AD to AD ⊎ Ω such that ∀ad ∈ AD. Ω ∪ ar , ar ,

ar ∪ Ω and Ω ∪ Ω , Ω.

3. ElseIf both sides point to a singleton without variables or ⊤, then apply the function

basic ast (presented in the followin Sect. 3.5.5) on the two values. If it returns Ω,

then return Ω, else

• if the two variables are the same, then the temporary result will make this variable

point to the result (α //76540123A ∗ α // 76540123B) = α //
�� ��
�� ��basic ast(A, B)

(This case also does not appear for the case of ast.)

• otherwise, the temporary result will make the two variables points to a fresh one

which will points to the result

(α //76540123A ∗ β // 76540123B) = α // δ //
�� ��
�� ��basic ast(A, B)

β

77nnnnnn

4. ElseIf on one side, we point to a non-summary-node variable for which we never called

the procedure mk sets of graphs, then we call it for that pointed variable instead.

This lead to the schema:
(α1 // α2 //76540123A)∗(β // 76540123B)

= α1 // α2 (α2 //76540123A ∗ β // 76540123B)

= α1 // α2 // δ //
�� ��
�� ��basic ast(A, B)

β

66mmmmmm

5. ElseIf on one side, we point to a non-summary-node variable for which we already

called the procedure mk sets of graphs, then we change this arrow for an arrow

pointing to ⊤ and call recursively the procedure for the same variables but with the

updated graph.

118

This leads to the schema:
(α // α0 // ... // αn

__
)∗(β // 76540123B)

= (α // α0 // ... // αn //76540123⊤)∗(β // 76540123B)

= (α // α0 // ... // αn // δ //
�� ��
�� ��basic ast(⊤, B)

β

66mmmmmm

)

because f(α0) ⊆ ... ⊆ f(αn) ⊆ f(α0) is f(α0) = ... = f(αn). It is safe since we work

with overapproximations and we can always assign a variable to ⊤ inducing some more

approximation. Here we do not lose information because the variable α is reached from

a non-auxiliary variable, thus |f(α0)| = 1 and we already have |f(αn)| ≤ 1.

6. ElseIf on one side, we point to a summary-node variable then we use the Case 2b of

the procedure mk sets of graphs and call recursively the current procedure.

Formally, we prove that the “jumping of variables” is correct by using the functions

reach and reach2 presented in the following Subsection 3.5.5.

Comments: The algorithm just presented is a sketch of the real algorithm:

• In reality, we work not only with the current version of the graph of auxiliary variables,

but we also need to keep the two old graphs (ad0 and ad1) and for each variable

x ∈ V ar, we consult the old values, and at the end, update the result of applying the

function basic ast, intersect the result with what is the current value, using a function

basic equal presented later.

• We see later that basic ast(⊤, {Dangling Loc}) , {Dangling Loc, Loct}, which means

that if we know that a variable maps to a dangling location on one side and can be

any value at all on the other side, then we only know that it is a location. So, when

we do the union of the two auxiliary graphs, we must add Loct to all sets containing

Dangling Loc. This leads to imprecision if we work only with the new auxiliary graph,

so we return to the old graphs to get information needed to maintain better precision.

119

basic ast

Description In the following table, we present the function basic ast, which corresponds

to ast at the level of PV D+.

For simple elements (A or B), ast behaves as an intersection. For Dangling, if a location

is dangling in two disjoint heaps, it is still dangling in the union of those heaps. If we have

a location dangling in one heap and allocated in the other, then it is allocated in the union

of them. One might worry that the allocated location in the union does not have the same

properties in the union than it has in only a part of it. This problem does not occur because

in Loc(, s1, s2) we forbid s1 and s2 to be Loc or dangling, so it is either a simple type

(whose semantics is not affected by the union of heaps) or an auxiliary variable (which is

not affected, since we have the restriction on disjoint sets of used auxiliary variables). Lastly,

we cannot have an allocated location in two disjoint heaps, so basic ast must return Ω for

any combination of allocated locations.

Definition: basic ast : (PV D+ × PV D+) ⇀ (PV D+ ⊎ Ω)

We define the partial function basic ast as in the following table:

Definition 3.20. We write Dgt for Dangling Loc.

Let A, B ∈ {Nilt, T ruet, Falset, Oodt, Numt} with A 6= B,

basic ast {A} {Dgt} {Loct} {Dgt, Loct} {Loc(...)} ⊤

{A} {A} Ω Ω Ω Ω {A}

{B} Ω Ω Ω Ω Ω {B}

{Dgt} Ω {Dgt} {Loct} {Dgt, Loct} {Loc(...)} {Dgt, Loct}

{Loct} Ω {Loct} Ω {Loct} Ω {Loct}

{Dgt, Loct} Ω {Dgt, Loct} {Loct} {Dgt, Loct} {Loc(...)} {Dgt, Loct}

{Loc(...)} Ω {Loc(...)} Ω {Loc(...)} Ω {Loc(...)}

⊤ {A} {Dgt, Loct} {Loct} {Dgt, Loct} {Loc(...)} ⊤

and we have basic ast(Ω,) = basic ast(, Ω) = basic ast(∅,) = basic ast(, ∅) = Ω.

120

Properties

Proposition 3.21.

⋃

vd∈vd0

Jvd, (s, h0, f0, r0)K8 ∩
⋃

vd∈vd1

Jvd, (s, h1, f1, r1)K8 ⊆
⋃

vd∈basic ast(vd0,vd1)

Jvd, (s, h, f, r)K8

if we define
⋃

vd∈Ω

Jvd, (s, h, f, r)K8 , ∅ and
⋃

vd∈⊤

Jvd, (s, h, f, r)K8 , MFR

Lemma 3.22. • JNilt, (s0, h0, f0, r0)K8 = JNilt, (s, h, f, r)K8

• JTruet, (s0, h0, f0, r0)K8 = JTruet, (s, h, f, r)K8

• JFalset, (s0, h0, f0, r0)K8 = JFalset, (s, h, f, r)K8

• JOodt, (s0, h0, f0, r0)K8 = JOodt, (s, h, f, r)K8

• JNumt, (s0, h0, f0, r0)K8 = JNumt, (s, h, f, r)K8

• JDgt, (s0, h0, f0, r0)K8 = Loc \ dom(h0) ⊇ Loc \ dom(h) = JDgt, (s, h, f, r)K8

• Jα, (s0, h0, f0, r0)K8 = f0(α) ⊆ f(α) = Jα, (s, h, f, r)K8

The proofs are found in Sect. 3.8.8.

Reaching functions

Definition 3.23. For a graph G ∈ P(TV ar × PDV +), α ∈ TV ar, we define recursively

reach(G, α) , reachrec(G, {α}, α), with

conditions reachrec(G, V, α)

α 6∈ dom(G) (α,⊤)

(α, {vd}) ∈ G, vd 6∈ TV ar (α, {vd})

(α, {β}) ∈ G, β ∈ V, (β, {β ′}) ∈ G (β, (β ′, α))

(α, {β}) ∈ G, β 6∈ V ∪ sn01, β ∈ TV ar reachrec(G, V ∪ {β}, β)

(α, {β}) ∈ G, β ∈ sn01 (α, {β})

121

This definition, from a graph G and an auxiliary variable α, gives either the last edge

reaches a summary node; or in the case of a cycle, it gives the two edges before and after

the point where we “enter” the cycle; or else, it give the last edge ending to a leaf.

Proposition 3.24. ∀G ∈ P(TV ar×PV D+). ∀s, h, f, r. (∀(α, S) ∈ G. s, h, f, r ∈ Jα, SK5) ⇒

∀α ∈ TV ar. ∀(α′, S) = reach(α).

f(α) ⊆ f(α′) ∧

(α′, S) ∈ G ∨

∃β1, β2.

S = (β1, β2)∧

(α′, {β1}) ∈ G∧

(β2, {α
′}) ∈ G∧

f(α′) = f(β1) = f(β2)

∧(α 6∈ sn01 ⇒ α′ 6∈ sn01)

Definition 3.25. For a graph g ∈ (V ar × PDV +) and a graph G ∈ P(TV ar × PDV +),

x ∈ V ar, we define the partial function reach2(g, G, x) such that

• ∀vd. (x, vd) 6∈ g then reach2(g, G, x) , (x,⊤)

• if (x, vd) ∈ g and ∀α. α 6∈ vd then reach2(g, G, x) , (x, vd)

• if (x, vd) ∈ g and ∃α ∈ vd ∩ sn01 then reach2(g, G, x) , (x, vd)

• if (x, {α}) ∈ g and α 6∈ sn01 then reach2(α, G) , reach(α, G)

Proposition 3.26. ∀g ∈ P(V ar × PV D+). G ∈ P(TV ar × PV D+). ∀s, h, f, r. (∀(v, S) ∈

g ⊎ G. s, h, f, r ∈ Jv, SK5) ⇒ ∀(v, S) ∈ reach2(g, G, x).

s(x) = s+f(v) ∧

S = ⊤∨ (v, S) ∈ g ⊎ G ∨

∃β1, β2.

S = (β1, β2)∧

(v, {β1}) ∈ G∧

(β2, {v}) ∈ G∧

s(x) = f(δ1) = f(δ2)

The proof are at Sect. 3.8.11.

3.5.6 Intersection

The algorithm for the intersection procedure is similar to the graph part of the ast procedure

presented in the previous subsection, except that instead of using the function basic ast,

122

it uses the function basic equal, defined below. (Recall that the semantics of ∗ is like the

semantics of ∧ plus some extra constraints about heap domains.)

Also, the intersection procedure does not require that the two elements to intersect have

disjoint sets of used auxiliary variables. This restriction was used for technical simplicity

in the soundness proof but also because otherwise to catch the ast information on auxiliary

variables not reachable from non-auxiliary variables would have been very costly. Here, we

do not have those constraints on the heap domain and we can just do a big intersection

of all the information (the semantics of the graphs being already a big intersection on the

semantics of each arrow within the graph). The procedure do 2 var, used in the definition

of ast and reused here, will be in fact a procedure, “work on two arrows”, that will be used

at the beginning of the arrows starting from the same variable; we will also keep a set, eq,

of equalities that need to be treated. We will also have rules that make things more efficient

than for the definition of ast: if we have in both sides the same variable pointing to the

same value, then we directly have that this variable points to that value.

Proposition 3.27. ∀ar0, ar1, s, h, f, r. ∃g.

(

s, h, f, r ∈ Jar0K
′
∧

s, h, f, r ∈ Jar1K
′

)

⇒ s, h, g(f), r ∈ Jinter(ar0, ar1)K
′

We need f to be the same for ar0 and ar1 because we do not restrict the auxiliary

variables used. But if we need a theorem on inter for different f , Prop. 3.27 implies

Corollary 3.28. ∀ar0, ar1, s, h, f0, f1, r0, r1. ∃g.

s, h, f0, r0 ∈ Jar0K′
∧

s, h, f1, r1 ∈ Jar1K
′
∧

used(ar0) ∩ use(ar1) = ∅∧

dom(f0) ∩ dom(f1) = ∅

⇒ s, h, g(f0∪̇f1), r0∪̇r1 ∈ Jinter(ar0, ar1)K
′

Intersection for the non-graph components

1. Jar⊤⊓ar2K
′
, Jar2K

′
= Jar⊤K′

∩ Jar2K
′

123

2. Jar1⊓ar⊤K′
, Jar1K

′
= Jar1K

′
∩ Jar⊤K′

3.

Jhu1⊓hu2K1

, Jhu1 ∪ hu2K1

=
⋂

α∈hu1∪hu2

{s, h, f, r | f(α) ∩ dom(h) 6= ∅}

=
⋂

α∈hu1

{s, h, f, r | f(α) ∩ dom(h) 6= ∅} ∩
⋂

α∈hu2

{s, h, f, r | f(α) ∩ dom(h) 6= ∅}

= Jhu1K1 ∩ Jhu2K1

4.

Jho1⊓fullK1′

, Jho1K1′

= Jho1K1′ ∩ JfullK1′

5.

Jfull⊓ho2K1′

, Jho2K1′

= JfullK1′ ∩ Jho2K1′

6.

Jho1⊓ho2K1′

, Jho2K1′

= {s, h, f, r | dom(h) ⊆
⋃

α∈ho2

f(α)}

⊇ {s, h, f, r | dom(h) ⊆ (
⋃

α∈ho1

f(α)) ∩ (
⋃

α∈ho2

f(α))}

= {s, h, f, r | dom(h) ⊆
⋃

α∈ho1

f(α)} ∩ {s, h, f, r | dom(h) ⊆
⋃

α∈ho2

f(α)}

= Jho1K1′ ∩ Jho2K1′

Notice that this approximation is a choice; we could choose also ho1⊓ho2 , ho1.

7.

Jsn1⊓sn2K2

, Jsn1 ∩ sn2K2

= {s, h, f, r | ∀α ∈ TV ar \ (sn1 ∩ sn2).|f(α)| ≤ 1}

= {s, h, f, r | ∀α ∈ TV ar \ sn1.|f(α)| ≤ 1}

∩ {s, h, f, r | ∀α ∈ TV ar \ sn2.|f(α)| ≤ 1}

= Jsn1K2 ∩ Jsn2K2

8.

Jsn∞
1 ⊓sn∞

2 K2′

, Jsn∞
1 ∩ sn∞

2 K2′

= {s, h, f, r | ∀α ∈ TV ar \ (sn∞
1 ∩ sn∞

2). f(α) is finite}

= {s, h, f, r | ∀α ∈ TV ar \ sn∞
1 . f(α) is finite}

∩ {s, h, f, r | ∀α ∈ TV ar \ sn∞
2 . f(α) is finite}

= Jsn∞
1 K2′ ∩ Jsn∞

2 K2′

124

9.

Jt1⊓t2K3

, Jt1⊓̇t2K3

=
⋂

(α1,α2)∈TV ar×TV ar

{

s, h, f, r
∣

∣ Jt1(α1, α2) ∩ t2(α1, α2), f(α1), f(α2)K6′
}

⊇
⋂

(α1,α2)∈TV ar×TV ar

{

s, h, f, r

∣

∣

∣

∣

∣

Jt1(α1, α2), f(α1), f(α2)K6′

∧Jt2(α1, α2), f(α1), f(α2)K6′

}

=
⋂

(α1,α2)∈TV ar×TV ar

(

{

s, h, f, r
∣

∣ Jt1(α1, α2), f(α1), f(α2)K6′
}

⋂
{

s, h, f, r
∣

∣ Jt2(α1, α2), f(α1), f(α2)K6′
}

)

=
⋂

(α1,α2)∈TV ar×TV ar

{

s, h, f, r
∣

∣ Jt1(α1, α2), f(α1), f(α2)K6′
}

∩
⋂

(α1,α2)∈TV ar×TV ar

{

s, h, f, r
∣

∣ Jt2(α1, α2), f(α1), f(α2)K6′
}

= Jt1K3 ∩ Jt2K3

Definition of basic equal : (PV D+ × PV D+ × P(PV D+ × PV D+)) ⇀ ((PV D+ ×
P(TV ar × TV ar)) ⊎ Ω)

We define the partial function basic equal as in the following table:

Definition 3.29. We write Dgt for Dangling Loc;

let A, B ∈ {Nilt, T ruet, Falset, Oodt, Numt} with A 6= B.

basic equal {A} {Dgt} {Loct} {Dgt, Loct} {Loc(A1, l
1
1, l

2
1)}

{A} {A} Ω Ω Ω Ω

{B} Ω Ω Ω Ω Ω

{Dgt} Ω {Dgt} Ω {Dgt} Ω

{Loct} Ω Ω {Loct} {Loct} {Loc(A1, l
1
1, l

2
1)}

{Dgt, Loct} Ω {Dgt} {Loct} {Dgt, Loct} {Loc(A1, l
1
1, l

2
1)}

{Loc(A2, l
1
2, l

2
2)} Ω Ω {Loc(A2, l

1
2, l

2
2)} {Loc(A2, l

1
2, l

2
2)} Case loc loc

In the table, we did not give the second term of the result (the eq part) because it is the same

125

as the third component of the input entry, except for Case loc loc which definition is

basic equal({Loc(A1, l
1
1, l

2
1)}, {Loc(A2, l

1
2, l

2
2)}, eq) ,

({Loc(A1, l
1
1, l

2
1)}, eq) if (A1, l

1
1, l

2
1) = (A2, l

1
2, l

2
2)

(Loc(A1 ∪ A2, l
1
12, l

2
12), eq

′) or Ω else
where l112, l

2
12 and eq′ are computed by

• eq′ = eq

• if l11 = l12 then let l112 = l11
elseif l11 ∈ TV ar then l112 = l11 and eq′ = eq′ ∪ {(l11, l

1
2)}

elseif l12 ∈ TV ar then l112 = l12 and eq′ = eq′ ∪ {(l11, l
1
2)}

else Ω

• if l21 = l22 then let l212 = l21
elseif l21 ∈ TV ar then l212 = l21 and eq′ = eq′ ∪ {(l21, l

2
2)}

elseif l22 ∈ TV ar then l212 = l22 and eq′ = eq′ ∪ {(l21, l
2
2)}

else Ω

We also have

• basic equal(Ω,) = basic equal(, Ω) = basic equal(∅,) = basic equal(, ∅) = Ω

• basic equal(⊤, S) = basic equal(S,⊤) = S

• (as shown in the table) basic equal(S, S) = S

Proposition 3.30. We define
⋃

vd∈Ω

Jvd, (s, h, f, r)K8 , ∅ and
⋃

vd∈⊤

Jvd, (s, h, f, r)K8 , MFR

If

• ∀(vd0, vd1) ∈ eq. vd0 ∈ TV ar ⇒ f(vd0) ∈ Jvd1, (s, h, f, r)K8

• ∀(vd0, vd1) ∈ eq. vd1 ∈ TV ar ⇒ f(vd1) ∈ Jvd0, (s, h, f, r)K8

• if vd0 or vd1 = {Loc(A, l1, l2)} then l1, l2 6∈ sn

• basic equal(vd0, vd1, eq) = (vd01, eq
′)

then

•
⋃

vd∈vd0

Jvd, (s, h, f, r)K8 ∩
⋃

vd∈vd1

Jvd, (s, h, f, r)K8 ⊆
⋃

vd∈vd01

Jvd, (s, h, f, r)K8

126

• ∀(vd0, vd1) ∈ eq′. vd0 ∈ TV ar ⇒ f(vd0) ∈ Jvd1, (s, h, f, r)K8

• ∀(vd0, vd1) ∈ eq′. vd1 ∈ TV ar ⇒ f(vd1) ∈ Jvd0, (s, h, f, r)K8

For the proof, see Sect. 3.8.10.

When we use this function, the Case loc loc of intersection of two Loc(..) increases the

number of equalities to treat (in the argument eq), but since we will update the values, the

number of Loc(...) to be treated will decrease and the procedure terminate.

3.6 Translation of formulae

In this section, we present the translation of the connectives of the logic. They are theoretical

translations and do not necessarily correspond exactly to what is implemented because we

can improve the precision of the translation by splitting subcases while it makes the proofs

more complicated.

3.6.1 Properties of the translation

Let T ′ ∈ BIµν → AR be the translation function from formulae of the logic to elements of

our language, and T ∈ (AR×BIµν) → AR be an auxiliary translation function which takes

an element of the language and refines it with the translation of a formula.

We define T ′(P) , T (ar⊤, P) where ar⊤ is the top element of our language.

We prove that, ∀P ∈ BIµν .JP K ⊆ JT ′(P)K which is ∀P ∈ BIµν .JP K ⊆ JT (ar⊤, P)K

To prove this as a consequence, we proved :

Theorem 3.31.
∀P ∈ BIµν .∀ar ∈ AR.∀(s, h, f, r) ∈ MFR.∃g : F → F.

s, h, f, r ∈ JarK′
∧ s̄, h ∈ JP K ⇒ s, h, g(f), r ∈ JT (ar, P)K′

The function g is here to allow us to do auxiliary variable renaming, to allow use of

function extension, or to build summary nodes.

This directly implies that (because ∀s, h, f, r. s, h, f, r ∈ Jar⊤K′
)

∀P ∈ BIµν .∀ar ∈ AR.∀(s, h, f, r) ∈ MFR.∃g : F → F.

s̄, h ∈ JP K ⇒ s, h, g(f), r ∈ JT (ar⊤, P)K′

which itself implies that (because ∀s, h, f, r, ar. s, h, f, r ∈ JarK′
⇒ s̄, h ∈ JarK)

127

∀P ∈ BIµν .∀ar ∈ AR.∀s̄, h ∈ S × H. s̄, h ∈ JP K ⇒ s̄, h ∈ JT (ar⊤, P)K

which is what we want.

Translation of ast

Definition 3.32. T (ar, F ∗ G) , inter(ar, ast(T (ar⊤, F), T (ar⊤, G)))

Th. 3.31 for Def. 3.32. We want to prove that: ∀s, h, f, r. ∃g.

∃h0, h1. h0♯h1., h = h0 · h1.

s, h, f, r ∈ JarK′
∧

s̄, h0 ∈ JP K∧
s̄, h1 ∈ JQK

⇒ s, h, g(f), r ∈ JT (ar, P ∗ Q)K′

By recursion we have :

∀s, h0, f, r. ∃g0.s̄, h0 ∈ JP K ⇒ s, h0, g0(f), r ∈ JT (ar⊤, P)K′

and

∀s, h1, f, r. ∃g1.s̄, h1 ∈ JQK ⇒ s, h1, g1(f), r ∈ JT (ar⊤, Q)K′

which gives us

∀s, h, f, r. ∃g0, g1.

s, h, f, r ∈ JarK′
∧

s̄, h0 ∈ JP K∧
s̄, h1 ∈ JQK

⇒

s, h, f, r ∈ JarK′
∧

s, h0, g0(f), r ∈ JT (ar⊤, P)K′
∧

s, h1, g1(f), r ∈ JT (ar⊤, Q)K′

with Prop. 3.18 on the function ast we have

∀s, h, f, r. ∃g0, g1.

s, h, f, r ∈ JarK′
∧

s̄, h0 ∈ JP K∧
s̄, h1 ∈ JQK

⇒

(

s, h, f, r ∈ JarK′
∧

s, h, g0(f)∪̇g1(f), r0∪̇r1 ∈ Jast(T (ar⊤, P), T (ar⊤, Q))

)

Assuming that we translated P and Q such that they have no common auxiliary vari-

ables with ar and between them. From Prop. 3.27 on the function inter we have

∀s, h, f, r. ∃g.

∃h0, h1. h0♯h1., h = h0 · h1.

s, h, f, r ∈ JarK′
∧

s̄, h0 ∈ JP K∧
s̄, h1 ∈ JQK

⇒ s, h, g(f), r ∈ Jinter(ar, ast(T (ar⊤, P), T (ar⊤, Q)))K′

having g(f) = f ∪̇g0(f)∪̇g1(f)

128

Translation of →∗

We cannot write a general precise translation of →∗ because

JP→∗QK = {s, h | ∀h′. if h♯h′ and s, h′ ∈ JP K then s, h · h′ ∈ JQK}

so if P ≡ false, then P→∗Q ≡ true

So, since we do overapproximation, we cannot insure that the formula P is not false,

then the safe translation of P→∗Q is ar⊤.

In fact, we in some cases translate into a sure false or a sure true.

Translation of [/]

Definition 3.33. When x 6∈ V ar(E) : T (ar, P [E/x]) = T (ar, ∃x. x = E ∧ P)

Th. 3.31 for Def. 3.33. When x 6∈ V ar(E)
JP [E/x]K = {s, h | [s | x → JEKs], h ∈ JP K}

= {s, h | [s | x → JEKs], h ∈ Jx = E ∧ P K}
= {s′, h | ∃s.s′ − x = s − x ∧ s, h ∈ Jx = E ∧ P K}
= {[s | x → v], h | s, h ∈ Jy = x ∧ P K} ∪ {s − x, h | s, h ∈ Jx = E ∧ P K}}
= J∃x. x = E ∧ P K

Definition 3.34. T (ar, P [x/x]) = T (ar, x = x ∧ P)

Th. 3.31 for Def. 3.34.

JP [x/x]K = {s, h | [s | x → s(x)], h ∈ JP K}
= {s, h | [s | x → s(x)], h ∈ Jx = x ∧ P K}
= Jx = x ∧ P K

As presented in Sect. 2, we can use some equivalences:

• If P does not contain any v-variable or fixpoint or postponed substitution, then

P [E/x] ≡ P{E/x} ∧ is(E).

• If P is v-closed and if x1 6∈ Var(E) and x1 6= x2, then:

(∃x1.P)[E/x2] ≡ ∃x1.(P [E/x2]).

• (∃x.P)[E/x] ≡ (∃x.P) ∧ is(E).

129

• (A ∨ C)[E/x] ≡ (A[E/x]) ∨ (C[E/x]).

• If y 6∈ Var(P), then

(µXv.P)[y/x] ≡ (µXv.P{[y/x]}) ∧ is(y)

(νXv.P)[y/x] ≡ (νXv.P{[y/x]}) ∧ is(y).

For other cases, we cannot directly define the translation, the precision will depend on

the precision of the numerical domain and in particular, on the precision of the reverse

function. For example, we cannot give a translation of P [x + 1/x] for arbitrary P if the

previous cases cannot be applied: we translate P , and we see that x has to be a number

in the translation, but the precision depends on the capability of the numerical domain to

reverse the operation x + 1.

3.6.2 Translation of ∧

Definition 3.35. T (ar, P1 ∧ P2) = T (T (ar, P1), P2)

Th. 3.31 for Def. 3.35. By induction we have, ∀s, h, f, r. ∃g.

s, h, f, r ∈ JarK′

∧ s̄, h ∈ JP1K ⇒ s, h, g(f), r ∈ JT (ar, P1)K
′

s, h, g(f), r ∈ JT (ar, P1)K
′

∧ s̄, h ∈ JP2K ⇒ s, h, g(g(f)), r ∈ JT (T (ar, P1), P2)K
′

using those two results, we get that

s, h, f, r ∈ JarK′

∧ s̄, h ∈ JP1K ∧ s, h ∈ JP2K ⇒ s, h, g(g(f)), r ∈ JT (T (ar, P1), P2)K
′

which is as expected: ∀s, h, f, r .∃g′. (g′ = g ◦ g)

s, h, f, r ∈ JarK′

∧ s̄, h ∈ JP1 ∧ P2K ⇒ s, h, g′(f), r ∈ JT (T (ar, P1), P2)K
′

130

3.6.3 Translation of ∨

Definition 3.36. T (ar, P1 ∨ P2) = union(T (ar, P1), T (ar, P2))

Th. 3.31 for Def. 3.36. By recurrence we have ∀s, h, f, r.∃g.,

s, h, f, r ∈ JarK′

∧ s̄, h ∈ JP1K ⇒ s, h, g(f), r ∈ JT (ar, P1)K
′

and

s, h, f, r ∈ JarK′

∧ s̄, h ∈ JP2K ⇒ s, h, g(f), r ∈ JT (ar, P2)K
′

so we get
s, h, f, r ∈ JarK′

∧ (s̄, h ∈ JP1K ∨ s̄, h ∈ JP2K) ⇒
(s, h, g(f), r ∈ JT (ar, P1)K

′
∨ s, h, g(f), r ∈ JT (ar, P2)K

′
)

which is

s, h, f, r ∈ JarK′

∧ s̄, h ∈ JP1 ∨ P2K ⇒ s, h, g(f), r ∈ (JT (ar, P1)K
′

∪ JT (ar, P2)K
′

)

and by Prop. 3.3

s, h, f, r ∈ JarK′

∧ s̄, h ∈ JP1 ∨ P2K ⇒ s, h, g(f), r ∈ (Junion(T (ar, P1), T (ar, P2))K
′

)

3.6.4 Translation of ∃

Definition 3.37. T (ar, ∃x. P) = class(x, T (class(x, ar), x = x ∧ P))

Define

(* class(x, D) is removing all information about x ∈ V ar in D *)

131

class : V ar → AR → AR

class (x, (ad, hu, ho, sn, sn∞, t, d)) , ([ad | x → ⊤], hu, ho, sn, sn∞, t, d)

when ad(x) 6= ∅

class (x, ([ad | x → ∅], hu, ho, sn, sn∞, t, d)) , ([ad | x → ∅], hu, ho, sn, sn∞, t, d)

class : (V ar × MFR) → P(MFR)

class(x, (s, h, f, r)) , {s′, h, f, r | [s′ | x → ood] = [s | x → ood]}

class : (V ar × P(MFR) → P(MFR)

class(x, S) ,
⋃

mfr∈S

class(x, mfr)

noclass : P(MFR) → P(V ar)

noclass(S) , {x ∈ V ar | class(x, S) 6⊆ S}

.

The proof of the translation is in Sect. 3.8.13. The properties and proofs about the

function class are in Sect. 3.8.12.

3.6.5 Translation of E1 = E2

Most of the cases for translating equality have been presented in Sect. 3.1. The translation

will use the intersection function, so for example, to translate x = y, we will first check if x

or y points the singletons of an auxiliary variable or insure it using the extension function

(this is always the case in our implementation), then make them both point to one of the

auxiliary variable and apply the intersection version of procedure do 2 var for those two

auxiliary variables.

3.6.6 Translation of x 7→ E1, E2

The situation is similar as for equality, like x = Loc(E1, E2). We use auxiliary variables for

translating the information about E1 and E2.

132

3.6.7 Translation of µ and ν

ν case: Since we have νXv. P ≡ P{νXv. P/Xv}, by the unfolding theorem Th. 2.29, and

we do an overapproximation, we can safely translate νXv.P by translating T (ar⊤, P) with

ar⊤ as first approximation for the translation of Xv and then increase the precision of the

translation by translating it again T (ar⊤, P) with the current result as translation for Xv.

We will stop the proceedure using a narrowing operator, which is the stabilization operator

using the numerical narrowing as numerical stabilization. Then, we translate a last time

T (ar, P) with the last result for translating Xv.

In fact, we will have two translations in the implementation domain two ar⊤ one is

what we intend as the ⊤ in AR knowing that we might have done some approximation.

The second corresponds to the translation of a formula we know being true. The semantics

are the same, except that in one case we indicate that we did not do approximation. Their

difference will be seen while translating ¬: if we have ¬P with the translation of P being the

normal ar⊤, ¬ar⊤ translates also to this ar⊤, because we overapproximate and we cannot

know whether the real result is not ⊥. If we have the second meaning true, the translation

of the negation will be a value of AR meaning the formula is false.

So, if we know that the formula νXv. P has a semantics which correspond to the infinite

intersection (example, for formulae coming from our functions wlp or sp), then we start with

the ar⊤ meaning true, and when encounting ¬Xv, it will give us the value meaning false.

But if we don’t know we have that semantics, we will keep safe by starting the translation

with the normal ar⊤, which makes the translation of νXv. (¬Xv) terminates to ar⊤.

µ case: It is similar to the ν case, except that if we know that the formula corresponds to a

big union, we start with the value of AR that represents the false formula, and we use the

stabilization operator with the numerical widening as numerical stabilization. Otherwise, if

we don’t know, we can always be safe and imprecise by translating µ as a ν.

133

3.7 Conclusion

In this chapter, we presented a new intermediate language for separation logic whose deno-

tations resemble shape graphs. The improvement is that numerics and locations are treated

the same way, thus we can have numerical summary nodes. This language is designed for the

abstraction of separation logic with fixpoints. To keep the language as general as possible,

it is parameterized by a numerical abstract domain which can be instantiated as needed by

existing ones including relational ones.

The originality in the design is a semantics stated in terms of sets of memory which is the

usual concrete model for separation logic as well. This is suitable for proving the correctness

of functions on the language. In particular, the semantics of a graph is the disjunction of

the semantics of its edges. Elements of our language being tuples, the semantics is the

disjunction of each elements of the tuple, thus one can drop some elements of the tuples,

losing precision but not correctness.

We provide an stabilization (for widening and narrowing) and a union (along with their

correctness proofs) where precision/cost can be tuned to the specific needs of the context

where the language is used.

We have designed and proved the translation of the formulae into the language.

The language was designed with the goal of building a translation toward/from existing

shape-graphs, so we believe that the language along with its semantics will prove useful

for both separation-logic and also heap-shape analysis. Please note that a lonely outgoing

edge can be seen as a “must” arrow (valued 1 in a three-valued logic), and several outgoing

edges from a variable can be seen as a “may” arrow (valued 1/2, but it is a bit more precise

because we know that one of the arrow must exist), and an edge to ∅ can be seen as a “must

not” arrow (valued 0).

134

3.8 Appendix

3.8.1 Replace

We define polymorphic functions :

(* replace(v1, v2, D) is replacing v1 by v2 in D *)

replace : V AR → V AR → V AR → V AR

replace(v1, , v3) , v3 when v3 6= v1

replace(v1, v2, v1) , v2

replace : V AR → V AR → V D → V D

replace(, , Nilt) , Nilt

replace(, , T ruet) , Truet

replace(, , Falset) , Falset

replace(, , Oodt) , Oodt

replace(, , Numt) , Numt

replace(, , Dangling Loc) , Dangling Loc

replace(v1, v2, v3) , replace(v1, v2, v3)

replace(v1, v2, Loc(A, vd1, vd2)) , Loc(A, replace(v1, v2, vd1), replace(v1, v2, vd2))

replace : V AR → V AR → PV D+ → PV D+

replace(v1, v2, �) , �

replace(v1, v2,⊤) , ⊤

replace(v1, v2, S) ,
⋃

vd∈S

{replace(v1, v2, vd)} when S 6= ⊤, �

3.8.2 Cheap extension proofs

Corollary 3.2. ∀v ∈ V AR.α ∈ TVar.ar ∈ AR. JarK = Jextend(v, α, ar)K

Cor. 3.2. s, h ∈ JarK ⇔ (by def.)∃f, r. s̄, h, f, r ∈ JarK′
⇔ (by Prop. 3.1)∃f, r.s̄, h, [f | α →

s+f(v)], r ∈ Jextend(v, α, ar)K′
⇔ s, h ∈ Jextend(v, α, ar)K 2

Proposition 3.1. ∀v ∈ V AR.α ∈ TVar.[ar | α →�] ∈ AR.(s, h, f, r) ∈ MFR.

s, h, f, r ∈ J[ar | α →�]K′
⇔ s, h, [f | α → s+f(v)], r ∈ Jextend(v, α, [ar | α →�])K′

135

Prop. 3.1. • It’s direct to show that the constains on the domain remains.

•

s, h, f, r ∈ J([ad | α →�], hu, ho, sn, sn∞, t)K′

⇔ s, h, f, r ∈ J[ad | α →�]K4 ∩ JhuK1 ∩ JhoK1′ ∩ JsnK2 ∩ Jsn∞K2′ ∩ JtK3 ∩ sem∗

⇔ s, h, [f | α → s+f(v)], r ∈ J[ad | v → {α} | α → ad(v)]K4 ∩ JhuK1 ∩ Jho \ {α}K1′

∩Jif v ∈ sn then sn ∪ {α} else sn \ {α}K2

∩Jif v ∈ sn∞ then sn∞ ∪ {α} else sn∞ \ {α}K2′

∩J[t | (α, α′) → t(v, α′) | (α′, α) → t(α′, α)]K3 ∩ sem∗

⇔ s, h, [f | α → s+f(v)], r ∈ Jextend(v, α, ([ad | α →�], hu, ho, sn, sn∞, t))

•

s, h, [f | α → s+f(v)], r ∈ J[ad | v → {α} | α → ad(v)]K4

⇔ s, h, [f | α → s+f(v)], r ∈
⋂

v′∈V AR\{v,α}

Jv′, ad(v′)K5 ∩ Jv, {α}K5 ∩ Jα, ad(v)K5

⇔

• s, h, [f | α → s+f(v)], r ∈
⋂

v′∈V AR\{v,α}

Jv′, ad(v′)K5

• s+[f | α → s+f(v)](v) ⊆ [f | α → s+f(v)](α)

• s, h, [f | α → s+f(v)], r ∈ Jα, ad(v)K5

⇔

[

• s, h, [f | α → s+f(v)], r ∈
⋂

v′∈V AR\{v,α}

Jv′, ad(v′)K5

• s, h, [f | α → s+f(v)], r ∈ Jα, ad(v)K5

by Prop. 3.38 and 3.39

and ad(α) =�⇒ contrains, we get:

⇔

• s, h, [f | α → ∅], r ∈
⋂

v′∈V AR\{v,α}

Jv′, ad(v′)K5

• f(α) = ∅

• s, h, [f | α → ∅], r ∈ Jv, ad(v)K5

⇔

• s, h, f, r ∈
⋂

v′∈V AR\{v,α}

Jv′, ad(v′)K5

• f(α) = ∅

• s, h, f, r ∈ Jv, ad(v)K5

⇔ s, h, f, r ∈
⋂

v′∈V AR\{v,α}

Jv′, ad(v′)K5 ∩ Jα, �K5 ∩ Jv, ad(v)K5

⇔ s, h, f, r ∈ J[ad | α →�]K4

• α 6∈ hu by the constraints on the domain

s, h, f, r ∈ JhuK1

⇔ ∀α′ ∈ hu.f(α′) ∩ dom(h) 6= ∅

⇔ ∀α′ ∈ hu.[f | α → s+f(v)](α′) ∩ dom(h) 6= ∅

⇔ s, h, [f | α → s+f(v)], r ∈ JhuK1

• α 6∈ hu by the constraints on the domain, when v ∈ hu

136

s, h, f, r ∈ JhuK1

⇔ ∀α′ ∈ hu.f(α′) ∩ dom(h) 6= ∅

⇔ (∀α′ ∈ hu \ {v}.f(α′) ∩ dom(h) 6= ∅) ∧ (f(v) ∩ dom(h) 6= ∅)

⇔ ∀α′ ∈ hu \ {v} ∪ {α}.[f | α → f(v)](α′) ∩ dom(h) 6= ∅

⇔ s, h, [f | α → s+f(v)], r ∈ Jhu \ {v} ∪ {α}K1

•

s, h, f, r ∈ JfullK1′

⇔ True

⇔ s, h, [f | α → s+f(v)], r ∈ Jfull \ {α}K1′

• we know f(α) = ∅, v ∈ ho

s, h, f, r ∈ JhoK1′

⇔ dom(h) ⊆
⋃

α′∈ho

f(α′)

⇔ dom(h) ⊆
⋃

α′∈ho\{v}

f(α′) ∪ f(v)

⇔ dom(h) ⊆
⋃

α′∈ho\{v}

[f | α → f(v)](α′) ∪ [f | α → f(v)](α)

⇔ dom(h) ⊆
⋃

α′∈ho\{v}∪{α}

[f | α → f(v)](α′)

⇔ s, h, [f | α → s+f(v)], r ∈ Jho \ {v} ∪ {α}K1′

⇔ dom(h) ⊆
⋃

α′∈ho

f(α′)

⇔ dom(h) ⊆
⋃

α′∈ho\{α}

f(α′) since f(α) = ∅

⇔ dom(h) ⊆
⋃

α′∈ho\{α}

f(α′) ∪ f(v) since v ∈ ho

⇔ dom(h) ⊆
⋃

α′∈ho\{α}

[f | α → f(v)](α′) ∪ [f | α → f(v)](α)

⇔ s, h, [f | α → s+f(v)], r ∈ JhoK1′

⇔ dom(h) ⊆
⋃

α′∈ho\{α}

f(α′)

⇔ dom(h) ⊆
⋃

α′∈ho\{α}

[f | α → f(v)](α′)

⇔ s, h, [f | α → s+f(v)], r ∈ Jho \ {α}K1′

⇔ s, h, [f | α → s+f(v)], r ∈ Jho ∪ {α}K1′

• we know that f(α) = ∅, when v 6∈ ho

s, h, f, r ∈ JhoK1′

⇔ dom(h) ⊆
⋃

α′∈ho

f(α′)

⇔ dom(h) ⊆
⋃

α′∈ho\{α}

f(α′) since f(α) = ∅

⇔ dom(h) ⊆
⋃

α′∈ho\{α}

[f | α → s+(v)](α′)

⇔ s, h, [f | α → s+f(v)], r ∈ Jho \ {α}K1′

137

• we know f(α) = ∅, when v ∈ sn

s, h, f, r ∈ JsnK2

⇔ ∀α′ ∈ TVar \ sn.|f(α′)| ≤ 1

⇔ ∀α′ ∈ TVar \ (sn ∪ {α}).|f(α′)| ≤ 1

⇔ ∀α′ ∈ TVar \ (sn ∪ {α}).|[f | α → s+f(v)](α′)| ≤ 1

⇔ s, h, [f | α → s+f(v)], rJsn ∪ {α}K2

• we know f(α) = ∅, when v 6∈ sn

s, h, f, r ∈ JsnK2

⇔ ∀α′ ∈ TVar \ sn.|f(α′)| ≤ 1

⇔ ∀α′ ∈ TVar \ (sn \ {v}).|f(α′)| ≤ 1

⇔ (∀α′ ∈ TVar \ sn.|f(α′)| ≤ 1) ∧ (|f(v)| ≤ 1)

⇔ (∀α′ ∈ TVar \ (sn ∪ {α}).|f(α′)| ≤ 1) ∧ (|f(v)| ≤ 1)

⇔ (∀α′ ∈ TVar \ (sn ∪ {α}).|[f | α → s+f(v)](α′)| ≤ 1)

∧(|[f | α → s+f(v)](α)| ≤ 1)

⇔ ∀α′ ∈ TVar \ (sn \ {α}).|[f | α → s+f(v)](α′)| ≤ 1

⇔ s, h, [f | α → s+f(v)], rJsn \ {α}K2

• we know f(α) = ∅, when v ∈ sn∞

s, h, f, r ∈ Jsn∞K2′

⇔ ∀α′ ∈ TVar \ sn∞.f(α′) is finite

⇔ ∀α′ ∈ TVar \ (sn∞ ∪ {α}).f(α′) is finite

⇔ ∀α′ ∈ TVar \ (sn∞ ∪ {α}).[f | α → s+f(v)](α′) is finite

⇔ s, h, [f | α → s+f(v)], rJsn∞ ∪ {α}K2′

• we know f(α) = ∅, when v 6∈ sn∞

s, h, f, r ∈ Jsn∞K2′

⇔ ∀α′ ∈ TVar \ sn∞.f(α′) is finite

⇔ ∀α′ ∈ TVar \ (sn∞ \ {v}).f(α′) is finite

⇔ (∀α′ ∈ TVar \ sn∞.f(α′) is finite) ∧ (f(v) is finite)

⇔ (∀α′ ∈ TVar \ (sn∞ ∪ {α}).f(α′) is finite) ∧ (f(v) is finite)

⇔ (∀α′ ∈ TVar \ (sn∞ ∪ {α}).[f | α → s+f(v)](α′) is finite)

∧([f | α → s+f(v)](α) is finite)

⇔ ∀α′ ∈ TVar \ (sn∞ \ {α}).[f | α → s+f(v)](α′) is finite

⇔ s, h, [f | α → s+f(v)], rJsn∞ \ {α}K2′

• when v ∈ TVar

138

s, h, f, r ∈ JtK3

⇔ ∀α1, α2 ∈ TVar.Jt(α1, α2), f(α1), f(α2)K6′

⇔ ∀α1, α2 ∈ TVar.∃l ∈ t(α1, α2).Jl, f(α1), f(α2)K6′

⇔

• ∀α1, α2 ∈ TVar \ {α}.∃l ∈ t(α1, α2).Jl, f(α1), f(α2)K6′

• ∀α′ ∈ TVar \ {α}.∃l ∈ t(α, α′).Jl, f(α), f(α′)K6′

• ∀α′ ∈ TVar \ {α}.∃l ∈ t(α′, α).Jl, f(α′), f(α)K6′

⇔

• ∀α1, α2 ∈ TVar \ {α}.∃l ∈ t(α1, α2).Jl, f(α1), f(α2)K6′

• ∀α′ ∈ TVar \ {α}.∃l ∈ t(α, α′).Jl, f(α), f(α′)K6′

• ∀α′ ∈ TVar \ {α}.∃l ∈ t(α′, α).Jl, f(α′), f(α)K6′

⇔

• ∀α1, α2 ∈ TVar \ {α}.∃l ∈ t(α1, α2).Jl, f(α1), f(α2)K6′

• ∀α′ ∈ TVar \ {α}.∃l ∈ t(α, α′).Jl, f(α), f(α′)K6′

• ∀α′ ∈ TVar \ {α}.∃l ∈ t(α′, α).Jl, f(α′), f(α)K6′

⇔

• ∀α1, α2 ∈ TVar \ {α}.∃l ∈ t(α1, α2).Jl, f(α1), f(α2)K6′

• ∀α′ ∈ TVar \ {α}.∃l ∈ t(α, α′).Jl, f(α), f(α′)K6′

• ∀α′ ∈ TVar \ {α}.∃l ∈ t(α′, α).Jl, f(α′), f(α)K6′

⇔

• ∀α1, α2 ∈ TVar \ {α}.∃l ∈ t(α1, α2).Jl, f(α1), f(α2)K6′

• ∀α′ ∈ TVar \ {α}.∃l ∈ t(α, α′).Jl, ∅, f(α′)K6′

• ∀α′ ∈ TVar \ {α}.∃l ∈ t(α′, α).Jl, f(α′), ∅K6′

⇔

when v = α

• ∀α1, α2 ∈ TVar \ {α}.∃l ∈ t(α1, α2).Jl, f(α1), f(α2)K6′

• ∀α′ ∈ TVar \ {α}.∃l ∈ t(α, α′).Jl, ∅, f(α′)K6′

• ∀α′ ∈ TVar \ {α}.∃l ∈ t(α′, α).Jl, f(α′), ∅K6′

when v 6= α

• ∀α1, α2 ∈ TVar \ {α}.∃l ∈ t(α1, α2).Jl, f(α1), f(α2)K6′

• ∀α′ ∈ TVar \ {α}.∃l ∈ t(α, α′).Jl, ∅, f(α′)K6′

• ∀α′ ∈ TVar \ {α}.∃l ∈ t(α′, α).Jl, f(α′), ∅K6′

by domain contrains, we get:

⇔

when v = α

• ∀α1, α2 ∈ TVar \ {α}.∃l ∈ t(α1, α2).Jl, f(α1), f(α2)K6′

• ∀α′ ∈ TVar \ {α}.∃l ∈ t(α, α′).Jl, ∅, f(α′)K6′

• ∀α′ ∈ TVar \ {α}.∃l ∈ t(α′, α).Jl, f(α′), ∅K6′

when v 6= α
[

• ∀α1, α2 ∈ TVar \ {α}.∃l ∈ t(α1, α2).Jl, f(α1), f(α2)K6′

⇔

• ∀α1, α2 ∈ TVar \ {α}.∃l ∈ t(α1, α2).Jl, f(α1), f(α2)K6′

• ∀α′ ∈ TVar \ {α}.∃l ∈ t(v, α′).Jl, f(v), f(α′)K6′

• ∀α′ ∈ TVar \ {α}.∃l ∈ t(α′, v).Jl, f(α′), f(v)K6′

⇔

• ∀α1, α2 ∈ TVar \ {α}.∃l ∈ [t | (α, α′) → t(v, α′) | (α′, α) → t(α′, v)](α1, α2).

Jl, [f | α → s+f(v)](α1), [f | α → s+f(v)](α2)K6′

• ∀α′ ∈ TVar \ {α}.∃l ∈ [t | (α, α′) → t(v, α′) | (α′, α) → t(α′, v)](α, α′).

Jl, [f | α → s+f(v)](α), [f | α → s+f(v)](α′)K6′

• ∀α′ ∈ TVar \ {α}.∃l ∈ [t | (α, α′) → t(v, α′) | (α′, α) → t(α′, v)](α′, α).

Jl, [f | α → s+f(v)](α′), [f | α → s+f(v)](α)K6′

⇔ ∀α1, α2 ∈ TVar.∃l ∈ [t | (α, α′) → t(v, α′) | (α′, α) → t(α′, v)](α1, α2).

Jl, [f | α → s+f(v)](α1), [f | α → s+f(v)](α2)K6′

⇔ s, h, [f | α → s+f(v)], r ∈ J[t | (α, α′) → t(v, α′) | (α′, α) → t(α′, v)]K3

139

• when v 6∈ TVar, by domain constraints we have ∀α′.{‡eq, †eq}∩t(α, α′) 6= ∅∧{‡eq, †eq}∩

t(α′, α) 6= ∅

140

s, h, f, r ∈ JtK3

⇔ ∀α1, α2 ∈ TVar.Jt(α1, α2), f(α1), f(α2)K6′

⇔ ∀α1, α2 ∈ TVar.∃l ∈ t(α1, α2).Jl, f(α1), f(α2)K6′

⇔

• ∀α1, α2 ∈ TVar \ {α}.∃l ∈ t(α1, α2).Jl, f(α1), f(α2)K6′

• ∀α′ ∈ TVar \ {α}.∃l ∈ t(α, α′).Jl, f(α), f(α′)K6′

• ∀α′ ∈ TVar \ {α}.∃l ∈ t(α′, α).Jl, f(α′), f(α)K6′

⇔

• ∀α1, α2 ∈ TVar \ {α}.∃l ∈ t(α1, α2).Jl, f(α1), f(α2)K6′

• ∀α′ ∈ TVar \ {α}.∃l ∈ t(α, α′).Jl, f(α), f(α′)K6′

• ∀α′ ∈ TVar \ {α}.∃l ∈ t(α′, α).Jl, f(α′), f(α)K6′

⇔

• ∀α1, α2 ∈ TVar \ {α}.∃l ∈ t(α1, α2).Jl, f(α1), f(α2)K6′

• ∀α′ ∈ TVar \ {α}.∃l ∈ t(α, α′).Jl, f(α), f(α′)K6′

• ∀α′ ∈ TVar \ {α}.∃l ∈ t(α′, α).Jl, f(α′), f(α)K6′

⇔

• ∀α1, α2 ∈ TVar \ {α}.∃l ∈ t(α1, α2).Jl, f(α1), f(α2)K6′

• ∀α′ ∈ TVar \ {α}.∃l ∈ t(α, α′).Jl, f(α), f(α′)K6′

• ∀α′ ∈ TVar \ {α}.∃l ∈ t(α′, α).Jl, f(α′), f(α)K6′

⇔

• ∀α1, α2 ∈ TVar \ {α}.∃l ∈ t(α1, α2).Jl, f(α1), f(α2)K6′

• ∀α′ ∈ TVar \ {α}.∃l ∈ t(α, α′).Jl, ∅, f(α′)K6′

• ∀α′ ∈ TVar \ {α}.∃l ∈ t(α′, α).Jl, f(α′), ∅K6′

⇔ ∀α1, α2 ∈ TVar \ {α}.∃l ∈ t(α1, α2).Jl, f(α1), f(α2)K6′

⇔

• ∀α1, α2 ∈ TVar \ {α}.∃l ∈ t(α1, α2).Jl, f(α1), f(α2)K6′

• ∃l ∈ {‡eq, =eq}.Jl, s(v), s(v)K6′

• ∃l ∈ {‡eq, †eq}.Jl, f(v), ∅K6′

• ∃l ∈ {‡eq, †eq}.Jl, ∅, s(v)K6′

• ∀α′ ∈ TVar.∃l ∈ CLeq.Jl, f(α′), s(v)K6′

⇔

• ∀α1, α2 ∈ TVar \ {α}.

∃l ∈ t(α1, α2).Jl, [f | α → s+f(v)](α1), [f | α → s+f(v)](α2)K6′

• ∃l ∈ {‡eq, =eq}.Jl, [f | α → s+f(v)](α), [f | α → s+f(v)](α)K6′

• ∀α′ ∈ TVar \ {α}.ad(α′) =�⇒ ∃l ∈ {‡eq, †eq}.

Jl, [f | α → s+f(v)](α), [f | α → s+f(v)](α′)K6′

• ∃l ∈ {‡eq, †eq}.Jl, [f | α → s+f(v)](α′), [f | α → s+f(v)](α)K6′

• ∀α′ ∈ TVar \ {α}.ad(α′) 6=�⇒ ∃l ∈ CLeq.

Jl, [f | α → s+f(v)](α′), [f | α → s+f(v)](α)K6′

⇔ s, h, [f | α → s+f(v)], r ∈

u
wwwv

t

| (α, α′) → (ad(α′) =�?{‡eq, †eq} : CLeq)

| (α′, α) → (ad(α′) =�?{‡eq, †eq} : CLeq)

| (α, α) → {‡eq, =eq}

}
���~

3

141

• we know that f(α) = ∅, when v ∈ V ar

s, h, f, r ∈ JdK7

⇔ ∃g ∈ JdKD. ∀α′ ∈ TVar. f(α′) ∩ Z ⊆ g(α′)

⇔ ∃g ∈ JdKD.

[

• ∀α′ 6= α. f(α′) ∩ Z ⊆ g(α′)

• f(α) ∩ Z ⊆ g(α)

⇔ ∃g ∈ JdKD. ∀α′ 6= α. [f | α → s(v)](α′) ∩ Z ⊆ g(α′)

⇔ ∃g ∈ JdKD.

[

• ∀α′ 6= α. [f | α → s(v)](α′) ∩ Z ⊆ g(α′)

• s(v) ∩ Z ⊆ Z

⇔ ∃g′ ∈ Jtop(α, d)KD.

[

• ∀α′ 6= α. [f | α → s(v)](α′) ∩ Z ⊆ g′(α′)

• s(v) ∩ Z ⊆ g′(α)

⇔ ∃g′ ∈ Jtop(α, d)KD. ∀α′ ∈ TVar. [f | α → s(v)](α′) ∩ Z ⊆ g′(α′)

⇔ s, h, [f | α → s(v)], r ∈ Jtop(α, d)Kd

• we know that f(α) = ∅, when v ∈ TVar

s, h, f, r ∈ JdK7

⇔ ∃g ∈ JdKD. ∀α′ ∈ TVar. f(α′) ∩ Z ⊆ g(α′)

⇔ ∃g ∈ JdKD.

[

• ∀α′ 6= α. f(α′) ∩ Z ⊆ g(α′)

• f(α) ∩ Z ⊆ g(α)

⇔ ∃g ∈ JdKD. ∀α′ 6= α. [f | α → f(v)](α′) ∩ Z ⊆ g(α′)

⇔ ∃g ∈ JdKD.

[

• ∀α′ 6= α. [f | α → f(v)](α′) ∩ Z ⊆ g(α′)

• f(v) ∩ Z ⊆ g(v)

⇔ ∃g′ ∈ Jcopy(v, α, d)KD.

[

• ∀α′ 6= α. [f | α → f(v)](α′) ∩ Z ⊆ g′(α′)

• f(v) ∩ Z ⊆ g′(α)

⇔ ∃g′ ∈ Jcopy(v, α, d)KD. ∀α′ ∈ TVar. [f | α → f(v)](α′) ∩ Z ⊆ g′(α′)

⇔ s, h, [f | α → f(v)], r ∈ Jcopy(v, α, d)Kd

2

Proposition 3.38. ∀α ∈ TVar.v′ ∈ V AR \ {α}.pvd ∈ PV D+.S ∈ P(V al′).(s, h, f, r) ∈

MFR when ∀vd ∈ S.α“ 6∈′′ vd

s, h, [f | α → ∅], r ∈ Jv′, pvdK5 ⇔ s, h, [f | α → S], r ∈ Jv′, pvdK5

Prop. 3.38. •

s, h, [f | α → S], r ∈ Jv′,⊤K5

⇔ s, h, [f | α → S], r ∈ MFR

⇔ True

142

•

s, h, [f | α → ∅], r ∈ Jv′, �K5

⇔ (s+[f | α → ∅](v′) = ∅)

⇔ (s+f(v′) = ∅)

⇔ (s+[f | α → S](v′) = ∅)

⇔ s, h, [f | α → S], r ∈ Jv′, �K5

• when pvd 6= ⊤, �
s, h, [f | α → ∅], r ∈ Jv′, pvdK5

⇔ s+[f | α → ∅](v′) ⊆
⋃

vd∈pvd

Jvd, (h, [f | α → ∅], r)K8

⇔ s+f(v′) ⊆
⋃

vd∈pvd

Jvd, (h, [f | α → ∅], r)K8

⇔ (Prop. 3.40) s+f(v′) ⊆
⋃

vd∈pvd

Jvd, (h, [f | α → S], r)K8

⇔ s+[f | α → S](v′) ⊆
⋃

vd∈pvd

Jvd, (h, [f | α → S], r)K8

⇔ s, h, [f | α → S], r ∈ Jv′, pvdK5

2

Proposition 3.39. ∀α ∈ TVar.v ∈ V AR.S ∈ PV D+.(s, h, f, r) ∈ MFR when ∀vd ∈

S.α“ 6∈′′ vd

s, h, [f | α → ∅], r ∈ Jv, SK5 ⇔ s, h, [f | α → s+(v)], r ∈ Jα, SK5

Prop. 3.39. •

s, h, [f | α → s+f(v)], r ∈ Jα,⊤K5

⇔ s, h, [f | α → s+f(v)], r ∈ MFR

⇔ True

•

s, h, [f | α → ∅], r ∈ Jv, �K5

⇔ (s+[f | α → ∅](v) = ∅)

⇔ (s+f(v) = ∅)

⇔ (s+[f | α → s+f(v)](α) = ∅)

⇔ s, h, [f | α → s+f(v)], r ∈ Jα, �K5

• when S 6= ⊤, �
s, h, [f | α → ∅], r ∈ Jv, SK5

⇔ s+[f | α → ∅](v) ⊆
⋃

vd∈S

.Jvd, (h, [f | α → ∅], r)K8

⇔ s+f(v) ⊆
⋃

vd∈S

Jvd, (h, [f | α → ∅], r)K8

⇔ (by Prop. 3.40) s+f(v) ⊆
⋃

vd∈S

Jvd, (h, [f | α → s+f(v)], r)K8

⇔ s+[f | α → s+f(v)](α) ⊆
⋃

vd∈S

Jvd, (h, [f | α → s+f(v)], r)K8

⇔ s, h, [f | α → s+f(v)], r ∈ Jα, SK5

143

2

Proposition 3.40. ∀α ∈ TVar.l ∈ V al′, vd ∈ V D, (h, f, r) ∈ (H × F × R).S ∈ P(V al′)

when α“ 6∈′′ vd

Jvd, (h, [f | α → ∅], r)K8 ⇔ Jvd, (h, [f | α → S], r)K8

Prop. 3.40. We proceed by cases on vd

• JNilt, (h, [f | α → ∅], r)K8 = {nil}

= JNilt, (h, [f | α → S], r)K8

• JTruet, (h, [f | α → ∅], r)K8 = {True} = JTruet, (h, [f | α → S], r)K8

• JFalset, (h, [f | α → ∅], r)K8 = {False} = JFalset, (h, [f | α → S], r)K8

• JOodt, (h, [f | α → ∅], r)K8 = {ood} = JOodt, (h, [f | α → S], r)K8

• JNumt, (h, [f | α → ∅], r)K8 = Z = JNumt, (h, [f | α → S], r)K8

• JDangling Loc, (h, [f | α → ∅], r)K8 = Loc \ dom(h) = JDangling Loc, (h, [f | α →

S], r)K8

• when α′ 6= α

Jα′, (h, [f | α → ∅], r)K8 = [f | α → ∅](α′) = f(α′) = [f | α → S](α′) == Jα′, (h, [f |

α → S], r)K8

•

JLoc(A, vd1, vd2), (h, [f | α → ∅], r)K8

=

l ∈ dom(h)

∣

∣

∣

∣

∣

∣

∣

∣

∣

• Π1(h(l)) ∈ Jvd1, (h, [f | α → ∅], r)K8

• Π2(h(l)) ∈ Jvd2, (h, [f | α → ∅], r)K8

• ∗1 ∈ A ∧ Π1(h(l)) ∈ Loc ⇒ Π1(h(l)) ∈ r(l)

• ∗2 ∈ A ∧ Π2(h(l)) ∈ Loc ⇒ Π2(h(l)) ∈ r(l)

by previous cases, we get:

=

l ∈ dom(h)

∣

∣

∣

∣

∣

∣

∣

∣

∣

• Π1(h(l)) ∈ Jvd1, (h, [f | α → S], r)K8

• Π2(h(l)) ∈ Jvd2, (h, [f | α → S], r)K8

• ∗1 ∈ A ∧ Π1(h(l)) ∈ Loc ⇒ Π1(h(l)) ∈ r(l)

• ∗2 ∈ A ∧ Π2(h(l)) ∈ Loc ⇒ Π2(h(l)) ∈ r(l)

= JLoc(A, vd1, vd2), (h, [f | α → S], r)K8

144

2

3.8.3 Extension proofs

Corollary 3.2. ∀v ∈ V AR.α ∈ TVar.ar ∈ AR. JarK = Jextend(v, α, ar)K

Cor. 3.2. s, h ∈ JarK ⇔ (by def.)∃f, r. s̄, h, f, r ∈ JarK′
⇔ (by Prop. 3.1)∃f, r.s̄, h, [f | α →

s+f(v)], r ∈ Jextend(v, α, ar)K′
⇔ s, h ∈ Jextend(v, α, ar)K 2

Proposition 3.1. ∀v ∈ V AR.α ∈ TVar.[ar | α →�] ∈ AR.(s, h, f, r) ∈ MFR.

s, h, f, r ∈ J[ar | α →�]K′
⇔ s, h, [f | α → s+f(v)] ∈ Jextend(v, α, [ar | α →�])K′

Prop. 3.1. • It’s direct to show that the constains on the domain remains.

•

s, h, f, r ∈ J([ad | α →�], hu, ho, sn, sn∞, t)K′

⇔ s, h, f, r ∈ J[ad | α →�]K4 ∩ JhuK1 ∩ JhoK1′ ∩ JsnK2 ∩ Jsn∞K2′ ∩ JtK3 ∩ sem∗

⇔ s, h, [f | α → s+f(v)], r ∈ J[ad | v → {α} | α → ad(v)]K4 ∩ JhuK1 ∩ Jho \ {α}K1′

∩Jif v ∈ sn then sn ∪ {α} else sn \ {α}K2

∩Jif v ∈ sn∞ then sn∞ ∪ {α} else sn∞ \ {α}K2′

∩J[t | (α, α′) → t(v, α′) | (α′, α) → t(α′, α)]K3 ∩ sem∗

⇔ s, h, [f | α → s+f(v)], r ∈ Jextend(v, α, ([ad | α →�], hu, ho, sn, sn∞, t))

145

•

s, h, [f | α → s+f(v)], r ∈ Jreplace(v, α) ◦ [ad | v → {α} | α → ad(v)]K4

⇔ s, h, [f | α → s+f(v)], r ∈
⋂

v′∈V AR\{v,α}

Jv′, replace(v, α, ad(v′))K5 ∩ Jv, {α}K5

∩Jα, replace(v, α, ad(v))K5

⇔

• s, h, [f | α → s+f(v)], r ∈
⋂

v′∈V AR\{v,α}

Jv′, replace(v, α, ad(v′))K5

• s+[f | α → s+f(v)](v) ⊆ [f | α → s+f(v)](α)

• s, h, [f | α → s+f(v)], r ∈ Jα, replace(v, α, ad(v))K5

⇔

[

• s, h, [f | α → s+f(v)], r ∈
⋂

v′∈V AR\{v,α}

Jv′, replace(v, α, ad(v′))K5

• s, h, [f | α → s+f(v)], r ∈ Jα, replace(v, α, ad(v))K5

by Prop. 3.41 and 3.42

and ad(α) =�⇒ contrains, we get:

⇔

• s, h, [f | α → ∅], r ∈
⋂

v′∈V AR\{v,α}

Jv′, ad(v′)K5

• f(α) = ∅

• s, h, [f | α → ∅], r ∈ Jv, ad(v)K5

⇔

• s, h, f, r ∈
⋂

v′∈V AR\{v,α}

Jv′, ad(v′)K5

• f(α) = ∅

• s, h, f, r ∈ Jv, ad(v)K5

⇔ s, h, f, r ∈
⋂

v′∈V AR\{v,α}

Jv′, ad(v′)K5 ∩ Jα, �K5 ∩ Jv, ad(v)K5

⇔ s, h, f, r ∈ J[ad | α →�]K4

• α 6∈ hu by the constraints on the domain

s, h, f, r ∈ JhuK1

⇔ ∀α′ ∈ hu.f(α′) ∩ dom(h) 6= ∅

⇔ ∀α′ ∈ hu.[f | α → s+f(v)](α′) ∩ dom(h) 6= ∅

⇔ s, h, [f | α → s+f(v)], r ∈ JhuK1

• α 6∈ hu by the constraints on the domain, when v ∈ hu

s, h, f, r ∈ JhuK1

⇔ ∀α′ ∈ hu.f(α′) ∩ dom(h) 6= ∅

⇔ (∀α′ ∈ hu \ {v}.f(α′) ∩ dom(h) 6= ∅) ∧ (f(v) ∩ dom(h) 6= ∅)

⇔ ∀α′ ∈ hu \ {v} ∪ {α}.[f | α → f(v)](α′) ∩ dom(h) 6= ∅

⇔ s, h, [f | α → s+f(v)], r ∈ Jhu \ {v} ∪ {α}K1

•

s, h, f, r ∈ JfullK1′

⇔ True

⇔ s, h, [f | α → s+f(v)], r ∈ Jfull \ {α}K1′

146

•

s, h, f, r ∈ JfullK1′

⇔ True

⇔ s, h, [f | α → s+f(v)], r ∈ Jfull \ {v} ∪ {α}K1′

• we know f(α) = ∅, v ∈ ho

s, h, f, r ∈ JhoK1′

⇔ dom(h) ⊆
⋃

α′∈ho

f(α′)

⇔ dom(h) ⊆
⋃

α′∈ho\{v}

f(α′) ∪ f(v)

⇔ dom(h) ⊆
⋃

α′∈ho\{v}

[f | α → f(v)](α′) ∪ [f | α → f(v)](α)

⇔ dom(h) ⊆
⋃

α′∈ho\{v}∪{α}

[f | α → f(v)](α′)

⇔ s, h, [f | α → s+f(v)], r ∈ Jho \ {v} ∪ {α}K1′

⇔ dom(h) ⊆
⋃

α′∈ho

f(α′)

⇔ dom(h) ⊆
⋃

α′∈ho\{α}

f(α′) since f(α) = ∅

⇔ dom(h) ⊆
⋃

α′∈ho\{α}

f(α′) ∪ f(v) since v ∈ ho

⇔ dom(h) ⊆
⋃

α′∈ho\{α}

[f | α → f(v)](α′) ∪ [f | α → f(v)](α)

⇔ s, h, [f | α → s+f(v)], r ∈ JhoK1′

⇔ dom(h) ⊆
⋃

α′∈ho\{α}

f(α′)

⇔ dom(h) ⊆
⋃

α′∈ho\{α}

[f | α → f(v)](α′)

⇔ s, h, [f | α → s+f(v)], r ∈ Jho \ {α}K1′

⇔ s, h, [f | α → s+f(v)], r ∈ Jho ∪ {α}K1′

• we know that f(α) = ∅, when v 6∈ ho

s, h, f, r ∈ JhoK1′

⇔ dom(h) ⊆
⋃

α′∈ho

f(α′)

⇔ dom(h) ⊆
⋃

α′∈ho\{α}

f(α′) since f(α) = ∅

⇔ dom(h) ⊆
⋃

α′∈ho\{α}

[f | α → s+(v)](α′)

⇔ s, h, [f | α → s+f(v)], r ∈ Jho \ {α}K1′

• we know f(α) = ∅, when v ∈ sn

147

s, h, f, r ∈ JsnK2

⇔ ∀α′ ∈ TVar \ sn.|f(α′)| ≤ 1

⇔ ∀α′ ∈ TVar \ (sn ∪ {α}).|f(α′)| ≤ 1

⇔ ∀α′ ∈ TVar \ (sn ∪ {α}).|[f | α → s+f(v)](α′)| ≤ 1

⇔ s, h, [f | α → s+f(v)], rJsn ∪ {α}K2

• we know f(α) = ∅, when v 6∈ sn

s, h, f, r ∈ JsnK2

⇔ ∀α′ ∈ TVar \ sn.|f(α′)| ≤ 1

⇔ ∀α′ ∈ TVar \ (sn \ {v}).|f(α′)| ≤ 1

⇔ (∀α′ ∈ TVar \ sn.|f(α′)| ≤ 1) ∧ (|f(v)| ≤ 1)

⇔ (∀α′ ∈ TVar \ (sn ∪ {α}).|f(α′)| ≤ 1) ∧ (|f(v)| ≤ 1)

⇔ (∀α′ ∈ TVar \ (sn ∪ {α}).|[f | α → s+f(v)](α′)| ≤ 1)

∧(|[f | α → s+f(v)](α)| ≤ 1)

⇔ ∀α′ ∈ TVar \ (sn \ {α}).|[f | α → s+f(v)](α′)| ≤ 1

⇔ s, h, [f | α → s+f(v)], rJsn \ {α}K2

• we know f(α) = ∅, when v ∈ sn∞

s, h, f, r ∈ Jsn∞K2′

⇔ ∀α′ ∈ TVar \ sn∞.f(α′) is finite

⇔ ∀α′ ∈ TVar \ (sn∞ ∪ {α}).f(α′) is finite

⇔ ∀α′ ∈ TVar \ (sn∞ ∪ {α}).[f | α → s+f(v)](α′) is finite

⇔ s, h, [f | α → s+f(v)], rJsn∞ ∪ {α}K2′

• we know f(α) = ∅, when v 6∈ sn∞

s, h, f, r ∈ Jsn∞K2′

⇔ ∀α′ ∈ TVar \ sn∞.f(α′) is finite

⇔ ∀α′ ∈ TVar \ (sn∞ \ {v}).f(α′) is finite

⇔ (∀α′ ∈ TVar \ sn∞.f(α′) is finite) ∧ (f(v) is finite)

⇔ (∀α′ ∈ TVar \ (sn∞ ∪ {α}).f(α′) is finite) ∧ (f(v) is finite)

⇔ (∀α′ ∈ TVar \ (sn∞ ∪ {α}).[f | α → s+f(v)](α′) is finite)

∧([f | α → s+f(v)](α) is finite)

⇔ ∀α′ ∈ TVar \ (sn∞ \ {α}).[f | α → s+f(v)](α′) is finite

⇔ s, h, [f | α → s+f(v)], rJsn∞ \ {α}K2′

• when v ∈ TVar

148

s, h, f, r ∈ JtK3

⇔ ∀α1, α2 ∈ TVar.Jt(α1, α2), f(α1), f(α2)K6′

⇔ ∀α1, α2 ∈ TVar.∃l ∈ t(α1, α2).Jl, f(α1), f(α2)K6′

⇔

• ∀α1, α2 ∈ TVar \ {α}.∃l ∈ t(α1, α2).Jl, f(α1), f(α2)K6′

• ∀α′ ∈ TVar \ {α}.∃l ∈ t(α, α′).Jl, f(α), f(α′)K6′

• ∀α′ ∈ TVar \ {α}.∃l ∈ t(α′, α).Jl, f(α′), f(α)K6′

⇔

• ∀α1, α2 ∈ TVar \ {α}.∃l ∈ t(α1, α2).Jl, f(α1), f(α2)K6′

• ∀α′ ∈ TVar \ {α}.∃l ∈ t(α, α′).Jl, f(α), f(α′)K6′

• ∀α′ ∈ TVar \ {α}.∃l ∈ t(α′, α).Jl, f(α′), f(α)K6′

⇔

• ∀α1, α2 ∈ TVar \ {α}.∃l ∈ t(α1, α2).Jl, f(α1), f(α2)K6′

• ∀α′ ∈ TVar \ {α}.∃l ∈ t(α, α′).Jl, f(α), f(α′)K6′

• ∀α′ ∈ TVar \ {α}.∃l ∈ t(α′, α).Jl, f(α′), f(α)K6′

⇔

• ∀α1, α2 ∈ TVar \ {α}.∃l ∈ t(α1, α2).Jl, f(α1), f(α2)K6′

• ∀α′ ∈ TVar \ {α}.∃l ∈ t(α, α′).Jl, f(α), f(α′)K6′

• ∀α′ ∈ TVar \ {α}.∃l ∈ t(α′, α).Jl, f(α′), f(α)K6′

⇔

• ∀α1, α2 ∈ TVar \ {α}.∃l ∈ t(α1, α2).Jl, f(α1), f(α2)K6′

• ∀α′ ∈ TVar \ {α}.∃l ∈ t(α, α′).Jl, ∅, f(α′)K6′

• ∀α′ ∈ TVar \ {α}.∃l ∈ t(α′, α).Jl, f(α′), ∅K6′

⇔

when v = α

• ∀α1, α2 ∈ TVar \ {α}.∃l ∈ t(α1, α2).Jl, f(α1), f(α2)K6′

• ∀α′ ∈ TVar \ {α}.∃l ∈ t(α, α′).Jl, ∅, f(α′)K6′

• ∀α′ ∈ TVar \ {α}.∃l ∈ t(α′, α).Jl, f(α′), ∅K6′

when v 6= α

• ∀α1, α2 ∈ TVar \ {α}.∃l ∈ t(α1, α2).Jl, f(α1), f(α2)K6′

• ∀α′ ∈ TVar \ {α}.∃l ∈ t(α, α′).Jl, ∅, f(α′)K6′

• ∀α′ ∈ TVar \ {α}.∃l ∈ t(α′, α).Jl, f(α′), ∅K6′

by domain contrains, we get:

⇔

when v = α

• ∀α1, α2 ∈ TVar \ {α}.∃l ∈ t(α1, α2).Jl, f(α1), f(α2)K6′

• ∀α′ ∈ TVar \ {α}.∃l ∈ t(α, α′).Jl, ∅, f(α′)K6′

• ∀α′ ∈ TVar \ {α}.∃l ∈ t(α′, α).Jl, f(α′), ∅K6′

when v 6= α
[

• ∀α1, α2 ∈ TVar \ {α}.∃l ∈ t(α1, α2).Jl, f(α1), f(α2)K6′

⇔

• ∀α1, α2 ∈ TVar \ {α}.∃l ∈ t(α1, α2).Jl, f(α1), f(α2)K6′

• ∀α′ ∈ TVar \ {α}.∃l ∈ t(v, α′).Jl, f(v), f(α′)K6′

• ∀α′ ∈ TVar \ {α}.∃l ∈ t(α′, v).Jl, f(α′), f(v)K6′

⇔

• ∀α1, α2 ∈ TVar \ {α}.∃l ∈ [t | (α, α′) → t(v, α′) | (α′, α) → t(α′, v)](α1, α2).

Jl, [f | α → s+f(v)](α1), [f | α → s+f(v)](α2)K6′

• ∀α′ ∈ TVar \ {α}.∃l ∈ [t | (α, α′) → t(v, α′) | (α′, α) → t(α′, v)](α, α′).

Jl, [f | α → s+f(v)](α), [f | α → s+f(v)](α′)K6′

• ∀α′ ∈ TVar \ {α}.∃l ∈ [t | (α, α′) → t(v, α′) | (α′, α) → t(α′, v)](α′, α).

Jl, [f | α → s+f(v)](α′), [f | α → s+f(v)](α)K6′

⇔ ∀α1, α2 ∈ TVar.∃l ∈ [t | (α, α′) → t(v, α′) | (α′, α) → t(α′, v)](α1, α2).

Jl, [f | α → s+f(v)](α1), [f | α → s+f(v)](α2)K6′

⇔ s, h, [f | α → s+f(v)], r ∈ J[t | (α, α′) → t(v, α′) | (α′, α) → t(α′, v)]K3

149

• when v 6∈ TVar, by domain constraints we have ∀α′.{‡eq, †eq}∩t(α, α′) 6= ∅∧{‡eq, †eq}∩

t(α′, α) 6= ∅

150

s, h, f, r ∈ JtK3

⇔ ∀α1, α2 ∈ TVar.Jt(α1, α2), f(α1), f(α2)K6′

⇔ ∀α1, α2 ∈ TVar.∃l ∈ t(α1, α2).Jl, f(α1), f(α2)K6′

⇔

• ∀α1, α2 ∈ TVar \ {α}.∃l ∈ t(α1, α2).Jl, f(α1), f(α2)K6′

• ∀α′ ∈ TVar \ {α}.∃l ∈ t(α, α′).Jl, f(α), f(α′)K6′

• ∀α′ ∈ TVar \ {α}.∃l ∈ t(α′, α).Jl, f(α′), f(α)K6′

⇔

• ∀α1, α2 ∈ TVar \ {α}.∃l ∈ t(α1, α2).Jl, f(α1), f(α2)K6′

• ∀α′ ∈ TVar \ {α}.∃l ∈ t(α, α′).Jl, f(α), f(α′)K6′

• ∀α′ ∈ TVar \ {α}.∃l ∈ t(α′, α).Jl, f(α′), f(α)K6′

⇔

• ∀α1, α2 ∈ TVar \ {α}.∃l ∈ t(α1, α2).Jl, f(α1), f(α2)K6′

• ∀α′ ∈ TVar \ {α}.∃l ∈ t(α, α′).Jl, f(α), f(α′)K6′

• ∀α′ ∈ TVar \ {α}.∃l ∈ t(α′, α).Jl, f(α′), f(α)K6′

⇔

• ∀α1, α2 ∈ TVar \ {α}.∃l ∈ t(α1, α2).Jl, f(α1), f(α2)K6′

• ∀α′ ∈ TVar \ {α}.∃l ∈ t(α, α′).Jl, f(α), f(α′)K6′

• ∀α′ ∈ TVar \ {α}.∃l ∈ t(α′, α).Jl, f(α′), f(α)K6′

⇔

• ∀α1, α2 ∈ TVar \ {α}.∃l ∈ t(α1, α2).Jl, f(α1), f(α2)K6′

• ∀α′ ∈ TVar \ {α}.∃l ∈ t(α, α′).Jl, ∅, f(α′)K6′

• ∀α′ ∈ TVar \ {α}.∃l ∈ t(α′, α).Jl, f(α′), ∅K6′

⇔ ∀α1, α2 ∈ TVar \ {α}.∃l ∈ t(α1, α2).Jl, f(α1), f(α2)K6′

⇔

• ∀α1, α2 ∈ TVar \ {α}.∃l ∈ t(α1, α2).Jl, f(α1), f(α2)K6′

• ∃l ∈ {‡eq, =eq}.Jl, s(v), s(v)K6′

• ∃l ∈ {‡eq, †eq}.Jl, f(v), ∅K6′

• ∃l ∈ {‡eq, †eq}.Jl, ∅, s(v)K6′

• ∀α′ ∈ TVar.∃l ∈ CLeq.Jl, f(α′), s(v)K6′

⇔

• ∀α1, α2 ∈ TVar \ {α}.

∃l ∈ t(α1, α2).Jl, [f | α → s+f(v)](α1), [f | α → s+f(v)](α2)K6′

• ∃l ∈ {‡eq, =eq}.Jl, [f | α → s+f(v)](α), [f | α → s+f(v)](α)K6′

• ∀α′ ∈ TVar \ {α}.ad(α′) =�⇒ ∃l ∈ {‡eq, †eq}.

Jl, [f | α → s+f(v)](α), [f | α → s+f(v)](α′)K6′

• ∃l ∈ {‡eq, †eq}.Jl, [f | α → s+f(v)](α′), [f | α → s+f(v)](α)K6′

• ∀α′ ∈ TVar \ {α}.ad(α′) 6=�⇒ ∃l ∈ CLeq.

Jl, [f | α → s+f(v)](α′), [f | α → s+f(v)](α)K6′

⇔ s, h, [f | α → s+f(v)], r ∈

u
wwwv

t

| (α, α′) → (ad(α′) =�?{‡eq, †eq} : CLeq)

| (α′, α) → (ad(α′) =�?{‡eq, †eq} : CLeq)

| (α, α) → {‡eq, =eq}

}
���~

3

151

• we know that f(α) = ∅, when v ∈ V ar

s, h, f, r ∈ JdK7

⇔ ∃g ∈ JdKD. ∀α′ ∈ TVar. f(α′) ∩ Z ⊆ g(α′)

⇔ ∃g ∈ JdKD.

[

• ∀α′ 6= α. f(α′) ∩ Z ⊆ g(α′)

• f(α) ∩ Z ⊆ g(α)

⇔ ∃g ∈ JdKD. ∀α′ 6= α. [f | α → s(v)](α′) ∩ Z ⊆ g(α′)

⇔ ∃g ∈ JdKD.

[

• ∀α′ 6= α. [f | α → s(v)](α′) ∩ Z ⊆ g(α′)

• s(v) ∩ Z ⊆ Z

⇔ ∃g′ ∈ Jtop(α, d)KD.

[

• ∀α′ 6= α. [f | α → s(v)](α′) ∩ Z ⊆ g′(α′)

• s(v) ∩ Z ⊆ g′(α)

⇔ ∃g′ ∈ Jtop(α, d)KD. ∀α′ ∈ TVar. [f | α → s(v)](α′) ∩ Z ⊆ g′(α′)

⇔ s, h, [f | α → s(v)], r ∈ Jtop(α, d)Kd

• we know that f(α) = ∅, when v ∈ TVar

s, h, f, r ∈ JdK7

⇔ ∃g ∈ JdKD. ∀α′ ∈ TVar. f(α′) ∩ Z ⊆ g(α′)

⇔ ∃g ∈ JdKD.

[

• ∀α′ 6= α. f(α′) ∩ Z ⊆ g(α′)

• f(α) ∩ Z ⊆ g(α)

⇔ ∃g ∈ JdKD. ∀α′ 6= α. [f | α → f(v)](α′) ∩ Z ⊆ g(α′)

⇔ ∃g ∈ JdKD.

[

• ∀α′ 6= α. [f | α → f(v)](α′) ∩ Z ⊆ g(α′)

• f(v) ∩ Z ⊆ g(v)

⇔ ∃g′ ∈ Jtop(v, copy(v, α, d))KD.

[

• ∀α′ 6= α. [f | α → f(v)](α′) ∩ Z ⊆ g′(α′)

• f(v) ∩ Z ⊆ g′(α)

⇔ ∃g′ ∈ Jtop(v, copy(v, α, d))KD. ∀α′ ∈ TVar. [f | α → f(v)](α′) ∩ Z ⊆ g′(α′)

⇔ s, h, [f | α → f(v)], r ∈ Jtop(v, copy(v, α, d))Kd

2

Proposition 3.41. ∀α ∈ TVar.v′ ∈ V AR \ {α}.S ∈ PV D+.(s, h, f, r) ∈ MFR when

∀vd ∈ s+f(v).α“ 6∈′′ vd

s, h, [f | α → ∅], r ∈ Jv′, SK5 ⇔ s, h, [f | α → s+f(v)], r ∈ Jv′, replace(v, α, S)K5

Prop. 3.41. •

s, h, [f | α → s+f(v)], r ∈ Jv′, replace(v, α,⊤)K5

⇔ s, h, [f | α → s+f(v)], r ∈ Jv′,⊤K5

⇔ s, h, [f | α → s+f(v)], r ∈ MFR

⇔ True

152

•

s, h, [f | α → ∅], r ∈ Jv′, �K5

⇔ (s+[f | α → ∅](v′) = ∅)

⇔ (s+f(v′) = ∅)

⇔ (s+[f | α → s+f(v)](v′) = ∅)

⇔ s, h, [f | α → s+f(v)], r ∈ Jv′, �K5

⇔ s, h, [f | α → s+f(v)], r ∈ Jv′, replace(v, α, �)K5

• when S 6= ⊤, �
s, h, [f | α → ∅], r ∈ Jv′, SK5

⇔ s+[f | α → ∅](v′) ⊆
⋃

vd∈S

Jvd, (h, [f | α → ∅], r)K8

⇔ s+f(v′) ⊆
⋃

vd∈S

Jvd, (h, [f | α → ∅], r)K8

⇔

by Prop. 3.43
s+f(v′) ⊆

⋃

vd∈S

Jreplace(v, α, vd), (h, [f | α → s+f(v)], r)K8

⇔ s+[f | α → s+f(v)](v′) ⊆
⋃

vd∈S

Jreplace(v, α, vd), (h, [f | α → s+f(v)], r)K8

⇔ s+[f | α → s+f(v)](v′) ⊆
⋃

vd∈replace(v,α,S)

Jvd, (h, [f | α → s+f(v)], r)K8

⇔ s, h, [f | α → s+f(v)], r ∈ Jv′, replace(v, α, S)K5

2

Proposition 3.42. ∀α ∈ TVar.S ∈ PV D+.v ∈ V AR.(s, h, f, r) ∈ MFR when ∀vd ∈

s+f(v).α“ 6∈′′ vd

s, h, [f | α → ∅], r ∈ Jv, SK5 ⇔ s, h, [f | α → s+(v)], r ∈ Jα, replace(v, α, S)K5

Prop. 3.42. •

s, h, [f | α → s+f(v)], r ∈ Jα, replace(v, α,⊤)K5

⇔ s, h, [f | α → s+f(v)], r ∈ Jα,⊤K5

⇔ s, h, [f | α → s+f(v)], r ∈ MFR

⇔ True

•

s, h, [f | α → ∅], r ∈ Jv, �K5

⇔ (s+[f | α → ∅](v) = ∅)

⇔ (s+f(v) = ∅)

⇔ (s+[f | α → s+f(v)](α) = ∅)

⇔ s, h, [f | α → s+f(v)], r ∈ Jα, �K5

⇔ s, h, [f | α → s+f(v)], r ∈ Jα, replace(v, α, �)K5

• when s+f(v) 6= ⊤, �

153

s, h, [f | α → ∅], r ∈ Jv, SK5

⇔ s+[f | α → ∅](v) ⊆
⋃

vd∈S

Jvd, (h, [f | α → ∅], r)K8

⇔ s+f(v) ⊆
⋃

vd∈S

Jvd, (h, [f | α → ∅], r)K8

⇔

by Prop. 3.43
s+f(v) ⊆

⋃

vd∈S

Jreplace(v, α, vd), (h, [f | α → s+f(v)], r)K8

⇔ s+[f | α → s+f(v)](α) ⊆
⋃

vd∈S

replace(v, α, vd), (h, [f | α → s+f(v)], r)K8

⇔ s+[f | α → s+f(v)](α) ⊆
⋃

vd∈replace(v,α,S)

vd, (h, [f | α → s+f(v)], r)K8

⇔ s, h, [f | α → s+f(v)], r ∈ Jα, replace(v, α, S)K5

2

Proposition 3.43. ∀α ∈ TVar.l ∈ V al′, vd ∈ V D, (h, f, r) ∈ (H × F × R). when α“ 6∈′′ vd

Jvd, (h, [f | α → ∅], r)K8 = Jreplace(v, α, vd), (h, [f | α → s+f(v)], r)K8

Prop. 3.43. We proceed by cases on vd

• JNilt, (h, [f | α → ∅], r)K8 = {nil} = JNilt, (h, [f | α → s+f(v)], r)K8

= Jreplace(v, α, Nilt), (h, [f | α → s+f(v)], r)K8

• JTrue, (h, [f | α → ∅], r)K8 = {True} = JTruet, (h, [f | α → s+f(v)], r)K8

= Jreplace(v, α, T ruet), (h, [f | α → s+f(v)], r)K8

• JFalset, (h, [f | α → ∅], r)K8 = {False} = JFalset, (h, [f | α → s+f(v)], r)K8

= Jreplace(v, α, Falset), (h, [f | α → s+f(v)], r)K8

• JOodt, (h, [f | α → ∅], r)K8 = {ood} = JOodt, (h, [f | α → s+f(v)], r)K8

= Jreplace(v, α, Oodt), (h, [f | α → s+f(v)], r)K8

• when JNumt, (h, [f | α → ∅], r)K8 = Z = JNumt, (h, [f | α → s+f(v)], r)K8 =

Jreplace(v, α, Numt), (h, [f | α → s+f(v)], r)K8

• JDangling Loc, (h, [f | α → ∅], r)K8 = Loc \ dom(h) = JDangling Loc, (h, [f | α →

s+f(v)], r)K8 = Jreplace(v, α, Dangling Loc), (h, [f | α → s+f(v)], r)K8

154

• when α′ 6= α, v

Jα′, (h, [f | α → ∅], r)K8 = [f | α → ∅](α′) = f(α′) = [f | α → s+f(v)](α′) =

Jα′, (h, [f | α → s+f(v)], r)K8 = Jreplace(v, α, α′), (h, [f | α → s+f(v)], r)K8

• Jv, (h, [f | α → ∅], r)K8 = [f | α → ∅](v) = f(v) = [f | α → s+f(v)](α) = Jα, (h, [f |

α → s+f(v)], r)K8 = Jreplace(v, α, v), (h, [f | α → s+f(v)], r)K8

•

JLoc(A, vd1, vd2), (h, [f | α → ∅], r)K8

=

l ∈ dom(h)

∣

∣

∣

∣

∣

∣

∣

∣

∣

• Π1(h(l)) ∈ Jvd1, (h, [f | α → ∅], r)K8

• Π2(h(l)) ∈ Jvd2, (h, [f | α → ∅], r)K8

• ∗1 ∈ A ∧ Π1(h(l)) ∈ Loc ⇒ Π1(h(l)) ∈ r(l)

• ∗2 ∈ A ∧ Π2(h(l)) ∈ Loc ⇒ Π2(h(l)) ∈ r(l)

by previous cases, we get:

=

l ∈ dom(h)

∣

∣

∣

∣

∣

∣

∣

∣

∣

• Π1(h(l)) ∈ Jreplace(v, α, vd1), (h, [f | α → s+f(v)], r)K8

• Π2(h(l)) ∈ Jreplace(v, α, vd2), (h, [f | α → s+f(v)], r)K8

• ∗1 ∈ A ∧ Π1(h(l)) ∈ Loc ⇒ Π1(h(l)) ∈ r(l)

• ∗2 ∈ A ∧ Π2(h(l)) ∈ Loc ⇒ Π2(h(l)) ∈ r(l)

= Jreplace(v, α, Loc(A, vd1, vd2)), (h, [f | α → s+f(v)], r)K8

2

3.8.4 Union proofs

Corollary 3.4. ∀ar1, ar2 ∈ AR. Jar1K ∪ Jar2K ⊆ Junion(ar1, ar2)K

Cor. 3.4. We only need to prove that: ∀ar1, ar2 ∈ AR. Jar1K ⊆ Junion(ar1, ar2)K since

union is commutive

s, h ∈ Jar1K ⇒ (by def.)∃f, r. s̄, h, f, r ∈ Jar1K
′

⇒ (by Prop. 3.3)∃f, r.s̄, h, f, r ∈ Junion(ar1, ar2)K
′
⇒ s, h ∈ Junion(ar1, ar2)K 2

Proposition 3.3. ∀ar1, ar2 ∈ AR. Jar1K
′
∪ Jar2K

′
⊆ Junion(ar1, ar2)K

′

Prop. 3.3. • It’s direct to show that the constains on the domain remains.

155

•

J(ad1, hu1, ho1, sn1, sn
∞
1 , t1, d1)K

′

= Jad1K4 ∩ Jhu1K1 ∩ Jho1K1′ ∩ Jsn1K2 ∩ Jsn∞
1 K2′ ∩ Jt1K3Jd1K7 ∩ sem∗

⊆ Jad1⊔̇ad2K4 ∩ Jhu1 ∩ hu2K1 ∩ Jho1 ∪ ho2K1′ ∩ Jsn1 ∪ sn2K2 ∩ Jsn∞
1 ∪ sn∞

2 K2′

∩Jt1∪̇t2K3 ∩ Jd1 ⊔ d2K7 ∩ sem∗

= Junion((ad1, hu1, ho1, sn1, sn
∞
1 , t1, d1), (ad2, hu2, ho2, sn2, sn

∞
2 , t2, d2))

•

Jad1K4

=
⋂

v∈V AR

Jv, ad1(v)K5

⊆
⋂

v∈V AR

Jv, ad1(v) ⊔ ad2(v)K5 by Prop. 3.44

= Jad1⊔̇ad2K4

•

Jhu1K1

=
⋂

α∈hu1

{s, h, f, r | f(α) ∩ dom(h) 6= ∅}

⊆
⋂

α∈hu1∩h2

{s, h, f, r | f(α) ∩ dom(h) 6= ∅}

= Jhu1 ∩ hu2K1

•

JfullK1′

= MFR

= Jfull ∪ ho2K1′

•

Jho1K1′

= {s, h, f, r | dom(h) ⊆
⋃

α∈ho1

f(α)}

⊆ {s, h, f, r | dom(h) ⊆
⋃

α∈ho1∪ho2

f(α)}

= Jho1 ∪ ho2K1′

•

Jsn1K2

= {s, h, f, r | ∀α ∈ TV ar \ sn1.|f(α)| ≤ 1}

⊆ {s, h, f, r | ∀α ∈ TV ar \ (sn1 ∪ sn2).|f(α)| ≤ 1}

= Jsn1 ∪ sn2K2

•

Jsn∞
1 K2′

= {s, h, f, r | ∀α ∈ TV ar \ sn∞
1 . f(α) is finite}

⊆ {s, h, f, r | ∀α ∈ TV ar \ (sn∞
1 ∪ sn∞

2). f(α) is finite}

= Jsn∞
1 ∪ sn∞

2 K2′

156

•

Jt1K3

=
⋂

(α1,α2)∈TV ar×TV ar

{

s, h, f, r | Jt1(α1, α2), f(α1), f(α2)K6′
}

=
⋂

(α1,α2)∈TV ar×TV ar

{

s, h, f, r |
∨

l∈t1(α1,α2)

Jl, f(α1), f(α2)K6

}

⊆
⋂

(α1,α2)∈TV ar×TV ar

{

s, h, f, r |
∨

l∈t1(α1,α2)∪t2(α1,α2)

Jl, f(α1), f(α2)K6

}

=
⋂

(α1,α2)∈TV ar×TV ar

{

s, h, f, r | Jt1(α1, α2) ∪ t2(α1, α2), f(α1), f(α2)K6′
}

= Jt1∪̇t2K3

•

Jd1K7

=
⋃

g∈Jd1KD

⋂

α∈TV ar

{s, h, f, r | f(α) ∩ Z ⊆ g(α)}

⊆
⋃

g∈Jd1⊔Dd2KD

⋂

α∈TV ar

{s, h, f, r | f(α) ∩ Z ⊆ g(α)}

= Jd1 ⊔
D d2K7

2

Proposition 3.44. ∀v ∈ V AR. S1, S2 ∈ PV D+.

Jv, S1K5 ⊆ Jv, S1 ⊔ S2K5

Prop. 3.44. • Jv,⊤K5 = Jv,⊤⊔ S2K5

• Jv, S1K5 ⊆ MFR = Jv,⊤K5 = Jv, S1 ⊔ ⊤K5

• Jv, S1K5 = Jv, S1⊔ �K5

• when S2 6= ⊤, �
Jv, �K5

= {s, h, f, r | s+f(v) = ∅}

⊆ {s, h, f, r | ∀l ∈ s+f(v). ...}

= Jv, S2K5

= Jv, � ⊔S2K5

• when S1, S2 6= ⊤, �
Jv, S1K5

= {s, h, f, r | ∀l ∈ s+f(v). ∃vd ∈ S1.....}

⊆ {s, h, f, r | ∀l ∈ s+f(v). ∃vd ∈ S1 ∪ S2.....}

= Jv, S1 ∪ S2K5

= Jv, S1 ⊔ S2K5

157

2

3.8.5 Merging proofs

Corollary 3.7. ∀α1, α2 ∈ TV ar.ar ∈ AR. JarK ⊆ Jmerge(α1, α2, ar)K

Cor. 3.7. s, h ∈ JarK ⇒ (by def.)∃f, r. s̄, h, f, r ∈ JarK′

⇒ (by Prop. 3.5)∃f, r.s̄, h,merge(α1, α2, f), r ∈ Jmerge(α1, α2, ar)K′

⇒ s, h ∈ Jmerge(α1, α2, ar)K 2

Corollary 3.6. ∀w ∈ (
⋃

n∈Z

[0, n]
total
→ (TV ar × TV ar)). ∀ar ∈ AR. (s, h, f, r ∈ JarK′

⇒

s, h,merge(w, f), r ∈ Jmerge(w, ar)K′
)

Cor. 3.6. Direct by recurrence from Prop. 3.5. 2

Proposition 3.8. ∀α1, α2 ∈ TV ar.∀ar ∈ AR. used(merge(α1, α2, ar)) = used (ar) \ {α1}

Prop. 3.8. Direct. 2

Corollary 3.9. ∀w ∈ (
⋃

n∈Z

[0, n]
total
→ (TV ar × TV ar)). ∀ar ∈ AR. used(merge(w, ar)) =

used (ar) \ fst(range(w))

Cor. 3.9. Direct. 2

Proposition 3.5. ∀α1, α2 ∈ TV ar.∀ar ∈ AR. (s, h, f, r ∈ JarK′
⇒ s, h,merge(α1, α2, f), r ∈

Jmerge(α1, α2, ar)K′
)

Prop. 3.5. • It’s direct to show that the constains on the domain remains.

158

•

J(ad, hu, ho, sn, sn∞, t, d)K′

= JadK4 ∩ JhuK1 ∩ JhoK1′ ∩ JsnK2 ∩ Jsn∞K2′ ∩ JtK3 ∩ JdK7 ∩ sem∗

⊆

{s, h, f, r | s, h,merge(α1, α2, f), r ∈ Jmerge(α1, α2, ad)K4}

∩ {s, h, f, r | s, h,merge(α1, α2, f), r ∈ Jmerge(α1, α2, hu)K1}

∩ {s, h, f, r | s, h,merge(α1, α2, f), r ∈ Jmerge(α1, α2, h0)K1′}

∩ {s, h, f, r | s, h,merge(α1, α2, f), r ∈ Jmerge(α1, α2, sn)K2}

∩ {s, h, f, r | s, h,merge(α1, α2, f), r ∈ Jmerge(α1, α2, sn
∞)K2′}

∩ {s, h, f, r | s, h,merge(α1, α2, f), r ∈ Jmerge(α1, α2, t)K3}

∩ {s, h, f, r | s, h,merge(α1, α2, f), r ∈ Jmerge(α1, α2, d)K7}

∩ {s, h, f, r | s, h,merge(α1, α2, f), r ∈ sem∗}

= {s, h, f, r | s, h,merge(α1, α2, f), r ∈ Jmerge(α1, α2, (ad, hu, ho, sn, sn∞, t, d))K′}

•

JadK4

=
⋂

v∈V AR

Jv, ad(v)K5

⊆
⋂

v∈V AR

{s, h, f, r | s, h,merge(α1, α2, f), r ∈ Jv,merge(α1, α2, ad)(v)K5}

by Prop. 3.45,3.46

= {s, h, f, r | s, h,merge(α1, α2, f), r ∈ Jmerge(α1, α2, ad)K4}

159

•

JhuK1

=
⋂

α∈hu

{s, h, f, r | f(α) ∩ dom(h) 6= ∅}

=
⋂

α∈hu

{s, h, f, r | f(α) ∩ dom(h) 6= ∅ ∧ {α1, α2} 6⊆ hu}

∪
⋂

α∈hu

{s, h, f, r | f(α) ∩ dom(h) 6= ∅ ∧ {α1, α2} ⊆ hu}

=
⋂

α∈hu

{s, h, f, r | f(α) ∩ dom(h) 6= ∅ ∧ {α1, α2} 6⊆ hu}

∪

⋂

α∈hu\{α1,α2}

{s, h, f, r | f(α) ∩ dom(h) 6= ∅ ∧ {α1, α2} ⊆ hu}

∩ {s, h, f, r | f(α1) ∩ dom(h) 6= ∅ ∧ {α1, α2} ⊆ hu}

∩ {s, h, f, r | f(α2) ∩ dom(h) 6= ∅ ∧ {α1, α2} ⊆ hu}

⊆
⋂

α∈hu\{α1,α2}

{s, h, f, r | f(α) ∩ dom(h) 6= ∅ ∧ {α1, α2} 6⊆ hu}

∪

(
⋂

α∈hu\{α1,α2}

{s, h, f, r | merge(α1, α2, f)(α) ∩ dom(h) 6= ∅ ∧ {α1, α2} ⊆ hu}

∩ {s, h, f, r | (f(α1) ∪ f(α2)) ∩ dom(h) 6= ∅ ∧ {α1, α2} ⊆ hu}

)

=
⋂

α∈hu\{α1,α2}

{s, h, f, r | merge(α1, α2, f)(α) ∩ dom(h) 6= ∅ ∧ {α1, α2} 6⊆ hu}

∪
⋂

α∈hu\{α1}

{s, h, f, r | merge(α1, α2, f)(α) ∩ dom(h) 6= ∅ ∧ {α1, α2} ⊆ hu}

= {s, h, f, r | s, h,merge(α1, α2, f), r ∈

u
wv

if {α1, α2} 6⊆ hu

then hu \ {α1, α2}

else hu \ {α1}

}
�~

1

}

•

JfullK1′

= MFR

= {s, h, f, r | s, h,merge(α1, α2, f), r ∈ JfullK1′}

= {s, h, f, r | s, h,merge(α1, α2, f), r ∈ Jmerge(α1, α2, full)K1′}

• case {α1, α2} ∩ ho = ∅
JhoK1′

= {s, h, f, r | dom(h) ⊆
⋃

α∈ho

f(α)}

⊆ {s, h, f, r | dom(h) ⊆
⋃

α∈ho

merge(α1, α2, f)(α)}

= {s, h, f, r | s, h,merge(α1, α2, f), r ∈ JhoK1′}

= {s, h, f, r | s, h,merge(α1, α2, f), r ∈ Jmerge(α1, α2, ho)K1′}

• case {α1, α2} ∩ ho 6= ∅

160

JhoK1′

= {s, h, f, r | dom(h) ⊆
⋃

α∈ho

f(α)}

⊆ {s, h, f, r | dom(h) ⊆
⋃

α∈ho\{α1}∪{α2}

merge(α1, α2, f)(α)}

= {s, h, f, r | s, h,merge(α1, α2, f), r ∈ Jho \ {α1} ∪ {α2}K1′}

= {s, h, f, r | s, h,merge(α1, α2, f), r ∈ Jmerge(α1, α2, ho)K1′}

•

JsnK2

= {s, h, f, r | ∀α ∈ TV ar \ sn.|f(α)| ≤ 1}

⊆ {s, h, f, r | ∀α ∈ TV ar \ (sn \ {α1} ∪ {α2}).|merge(α1, α2, f)(α)| ≤ 1}

= {s, h, f, r | s, h,merge(α1, α2, f), r ∈ Jsn \ {α1} ∪ {α2}K2}

• when {α1, α2} ∩ sn∞ = ∅
Jsn∞K2′

= {s, h, f, r | ∀α ∈ TV ar \ sn∞. f(α) is finite}

⊆ {s, h, f, r | ∀α ∈ TV ar \ sn∞. merge(α1, α2, f)(α) is finite}

= {s, h, f, r | s, h,merge(α1, α2, f), r ∈ Jsn∞K2′}

• when {α1, α2} ∩ sn∞ 6= ∅
Jsn∞K2′

= {s, h, f, r | ∀α ∈ TV ar \ sn∞. f(α) is finite}

⊆ {s, h, f, r | ∀α ∈ TV ar \ (sn∞ ∪ {α2}). f(α) is finite}

= {s, h, f, r | ∀α ∈ TV ar \ (sn∞ \ {α1} ∪ {α2}). merge(α1, α2, f)(α) is finite}

= {s, h, f, r | s, h,merge(α1, α2, f), r ∈ Jsn∞ \ {α1} ∪ {α2}K2′}

161

•

JtK3

=
⋂

(α1,α2)∈TV ar×TV ar

{

s, h, f, r | Jt(α1, α2), f(α1), f(α2)K6′
}

=
⋂

(α1,α2),α1,α2 6∈{α1,α2}

{

s, h, f, r | Jt(α1, α2), f(α1), f(α2)K6′
}

⋂

α6=α1,α2

{

s, h, f, r | Jt(α, α2), f(α), f(α2)K6′
}

⋂

α6=α1,α2

{

s, h, f, r | Jt(α2, α), f(α2), f(α)K6′
}

∩{s, h, f, r | Jt(α2, α2), f(α2), f(α2)K6′}
⋂

α6=α1

{

s, h, f, r | Jt(α, α1), f(α), f(α1)K6′
}

⋂

α6=α1

{

s, h, f, r | Jt(α1, α), f(α1), f(α)K6′
}

∩{s, h, f, r | Jt(α1, α1), f(α1), f(α1)K6′}

⊆
⋂

(α1,α2),α1,α2 6∈{α1,α2}

{

s, h, f, r | Jt(α1, α2), f(α1), f(α2)K6′
}

⋂

α6=α1,α2

{

s, h, f, r | JUReq(t(α, α1), t(α, α2)), f(α), f(α1) ∪ f(α2)K6′
}

⋂

α6=α1,α2

{

s, h, f, r | JULeq(t(α1, α), t(α2, α)), f(α1) ∪ f(α2), f(α)K6′
}

by Prop. 3.11 and 3.12

=
⋂

(α1,α2),α1,α2 6∈{α1,α2}

{

s, h, f, r | Jt(α1, α2), f(α1), f(α2)K6′
}

⋂

α6=α1,α2

{

s, h, f, r | JUReq(t(α, α1), t(α, α2)), f(α), f(α1) ∪ f(α2)K6′
}

⋂

α6=α1,α2

{

s, h, f, r | JULeq(t(α1, α), t(α2, α)), f(α1) ∪ f(α2), f(α)K6′
}

∩
{

s, h, f, r | J{‡eq, =eq}, f(α1) ∪ f(α2), f(α1) ∪ f(α2)K6′
}

⋂

α6=α1

{

s, h, f, r | J{‡eq, †eq}, f(α), ∅K6′
}

⋂

α6=α1

{

s, h, f, r | J{‡eq, †eq}, ∅, f(α), K6′
}

∩
{

s, h, f, r | J{‡eq}, ∅, ∅K6′
}

=
⋂

(α1,α2),α1,α2 6∈{α1,α2}

{

s, h, f, r | Jt(α1, α2),merge(α1, α2, f)(α1),merge(α1, α2, f)(α2)K6′
}

⋂

α6=α1,α2

{

s, h, f, r | JUReq(t(α, α1), t(α, α2)),merge(α1, α2, f)(α),merge(α1, α2, f)(α2)K6′
}

⋂

α6=α1,α2

{

s, h, f, r | JULeq(t(α1, α), t(α2, α)),merge(α1, α2, f)(α2),merge(α1, α2, f)(α)K6′
}

∩
{

s, h, f, r | J{‡eq, =eq},merge(α1, α2, f)(α2),merge(α1, α2, f)(α2)K6′
}

⋂

α6=α1

{

s, h, f, r | J{‡eq, †eq},merge(α1, α2, f)(α),merge(α1, α2, f)(α1)K6′
}

⋂

α6=α1

{

s, h, f, r | J{‡eq, †eq},merge(α1, α2, f)(α1),merge(α1, α2, f)(α)K6′
}

∩
{

s, h, f, r | J{‡eq},merge(α1, α2, f)(α1),merge(α1, α2, f)(α1)K6′
}

=

s, h, f, r

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

s, h,merge(α1, α2, f), r ∈

u
wwwwwwv

t

| (α2, α) → UReq(t(α1, α), t(α2, α))

| (α, α2) → ULeq(t(α, α1), t(α, α2))

| (, α1) → {‡eq, †eq}

| (α1,) → {‡eq, †eq}

| (α1, α1) → {‡eq}

}
������~

3

162

•

s, h, f, r ∈ JdK7

⇔ ∃g ∈ JdKD. ∀α. f(α) ∩ Z ⊆ g(α)

⇔ ∃g ∈ JdKD.

• ∀α 6= α1, α2. f(α) ∩ Z ⊆ g(α)

• f(α1) ∩ Z ⊆ g(α1)

• f(α2) ∩ Z ⊆ g(α2)

⇒ ∃g′ ∈ Jmerge(α1, α2, d)KD.

[

• ∀α 6= α1, α2. f(α) ∩ Z ⊆ g′(α)

• (f(α1) ∪ f(α2)) ∩ Z ⊆ g′(α2)

⇔ ∃g′ ∈ Jmerge(α1, α2, d)KD.

• ∀α 6= α1, α2. f(α) ∩ Z ⊆ g′(α)

• ∅ ∩ Z ⊆ g′(α1)

• (f(α1) ∪ f(α2)) ∩ Z ⊆ g′(α2)
⇔ ∃g′ ∈ Jmerge(α1, α2, d)KD. ∀α. merge(α1, α2, f)(α) ∩ Z ⊆ g′(α)

⇔ s, h,merge(α1, α2, f), r ∈ Jmerge(α1, α2, d)K7

2

Proposition 3.45. ∀α1, α2 ∈ TV ar.∀v ∈ V AR \ {α1, α2}. S ∈ PV D+.

s, h, f, r ∈ Jv, SK5 ⇒ s, h,merge(α1, α2, f), r ∈ Jv, replace(α1, α2, S)K5

Prop. 3.45. •

Jv,⊤K5

= MFR

= {s, h, f, r | s, h,merge(α1, α2, f)}, r ∈ MFR}

= {s, h, f, r | s, h,merge(α1, α2, f)}, r ∈ Jv,⊤K5}

= {s, h, f, r | s, h,merge(α1, α2, f)}, r ∈ Jv, replace(α1, α2,⊤)K5}

•

Jv, �K5

= {s, h, f, r | s+f(v) = ∅}

= {s, h, f, r | s+merge(α1, α2, f)(v) = ∅}

= {s, h, f, r | s, h,merge(α1, α2, f)}, r ∈ Jv, �K5}

= {s, h, f, r | s, h,merge(α1, α2, f)}, r ∈ Jv, replace(α1, α2, �)K5}

• when S 6= ⊤, �
Jv, SK5

=

{

s, h, f, r | s+f(v) ⊆
⋃

vd∈S

.Jvd, (h, f, r)K8

}

⊆ {s, h, f, r | s+f(v) ⊆
⋃

vd∈S

Jreplace(α1, α2, vd), (h,merge(α1, α2, f), r)K8}by Prop. 3.47

=

{

s, h, f, r

∣

∣

∣

∣

∣

s+merge(α1, α2, f)(v) ⊆
⋃

vd∈replace(α1,α2,S)

Jvd, (h,merge(α1, α2, f), r)K8

}

= {s, h, f, r | s, h,merge(α1, α2, f)}, r ∈ Jv, replace(α1, α2, S)K5}
2

163

Proposition 3.46. ∀α1, α2 ∈ TV ar. S1, S2 ∈ PV D+.

s, h, f, r ∈ Jα1, S1K5 ∩ Jα2, S2K5 ⇒ s, h,merge(α1, α2, f), r ∈ Jα1, replace(α1, α2, �)K5 ∩

Jα2, replace(α1, α2, S1 ⊔ S2)K5

Prop. 3.46. • when S1 = S2 =�

Jα1, S1K5 ∩ Jα2, S2K5

= Jα1, �K5 ∩ Jα2, �K5

= {s, h, f, r | s+f(α1) = ∅ ∧ s+f(α2) = ∅}

= {s, h, f, r | f(α1) = ∅ ∧ f(α2) = ∅}

= {s, h, f, r | f(α2) ∪ f(α1) = ∅}

= {s, h, f, r | s+merge(α1, α2, f)(α1) = ∅ ∧ s+merge(α1, α2, f)(α2) = ∅}

= {s, h, f, r | s+merge(α1, α2, f)(α1) = ∅ ∧ s+merge(α1, α2, f)(α2) = ∅}

= {s, h, f, r | s, h,merge(α1, α2, f)}, r ∈ Jα1, �K5 ∩ Jα2, �K5}

= {s, h, f, r | s, h,merge(α1, α2, f)}, r ∈

(

Jα1, replace(α1, α2, �)K5

∩Jα2, replace(α1, α2, S1 ⊔ S2)K5

)

}

• when S1 = ⊤ and S2 =�

Jα1, S1K5 ∩ Jα2, S2K5

= Jα1,⊤K5 ∩ Jα2, �K5

= {s, f, h, r | s+f(α2) = ∅}

= {s, f, h, r | f(α2) = ∅}

⊆ MFR

= {s, f, h, r | merge(α1, α2, f)(α1) = ∅}

= {s, h, f, r | s, h,merge(α1, α2, f)}, r ∈ Jα1, �K5 ∩ Jα2,⊤K5}

= {s, h, f, r | s, h,merge(α1, α2, f)}, r ∈

(

Jα1, replace(α1, α2, �)K5

∩Jα2, replace(α1, α2, S1 ⊔ S2)K5

)

}

• when S1 6= ⊤, � and S2 =�

164

Jα1, S1K5 ∩ Jα2, S2K5

= Jα1, S1K5 ∩ Jα2, �K5

= {s, h, f, r | s+f(α2) = ∅ ∧ s+f(α1) ⊆
⋃

vd∈S1

Jvd, (h, f, r)K8}

= {s, h, f, r | f(α2) = ∅ ∧ f(α1) ⊆
⋃

vd∈S1

Jvd, (h, f, r)K8}

by Prop. 3.47 we get:

⊆

{

s, h,merge(α1, α2, f), r |

f(α2) ∪ f(α1) ⊆
⋃

vd∈S1

Jreplace(α1, α2, vd), (h,merge(α1, α2, f), r)K8

}

=

s, h,merge(α1, α2, f), r |

s+merge(α1, α2, f)(α1) = ∅

∧s+merge(α1, α2, f)(α2) ⊆
⋃

vd∈replace(α1,α2,S1)

Jvd, (h,merge(α1, α2, f), r)K8

= {s, h, f, r | s, h,merge(α1, α2, f)}, r ∈ Jα1, �K5 ∩ Jα2, replace(α1, α2, S1)K5}

= {s, h, f, r | s, h,merge(α1, α2, f)}, r ∈

(

Jα1, replace(α1, α2, �)K5

∩Jα2, replace(α1, α2, S1 ⊔ S2)K5

)

}

• when S2 = ⊤
Jα1, S1K5 ∩ Jα2, S2K5

Jα1, S1K5 ∩ Jα2,⊤K5

Jα1, S1K5

⊆ MFR

= {s, h, f, r | merge(α1, α2, f)(α1) = ∅}

= {s, h, f, r | s, h,merge(α1, α2, f), r ∈ Jα1, �K5}

= {s, h, f, r | s, h,merge(α1, α2, f), r ∈ Jα1, �K5 ∩ Jα2,⊤K5}

= {s, h, f, r | s, h,merge(α1, α2, f), r ∈

(

Jα1, replace(α1, α2, �)K5

∩Jα2, replace(α1, α2, S1 ⊔ S2)K5

)

}

• when S1 =� and S2 6= ⊤, �

165

Jα1, S1K5 ∩ Jα2, S2K5

Jα1, �K5 ∩ Jα2, S2K5

=

{

s, h, f, r

∣

∣

∣

∣

∣

s+f(α1) = ∅∧

s+f(α2) ⊆
⋃

vd∈S2

Jvd, (h, f, r)K8

}

=

{

s, h, f, r

∣

∣

∣

∣

∣

f(α1) = ∅∧

f(α1) ∪ f(α2) ⊆
⋃

vd∈S2

Jvd, (h, f, r)K8

}

by Prop. 3.47, we get:

⊆
{

s, h, f, r
∣

∣

∣

f(α1) ∪ f(α2) ⊆
⋃

vd∈S2

Jreplace(α1, α2, vd), (h,merge(α1, α2, f), r)K8
}

=

s, h, f, r

∣

∣

∣

∣

∣

∣

merge(α1, α2, f)(α1) = ∅∧

s+merge(α1, α2, f)(α2) ⊆
⋃

vd∈replace(α1,α2,S2)

Jvd, (h,merge(α1, α2, f), r)K8

= {s, h, f, r | s, h,merge(α1, α2, f), r ∈ Jα1, �K5 ∩ Jα2, replace(α1, α2, S2)K5}

= {s, h, f, r | s, h,merge(α1, α2, f), r ∈

(

Jα1, replace(α1, α2, �)K5

∩Jα2, replace(α1, α2, S1 ⊔ S2)K5

)

}

• when S1 = ⊤ and S2 6= ⊤, �
Jα1, S1K5 ∩ Jα2, S2K5

⊆ MFR

= {s, h, f, r | merge(α1, α2, f)(α1) = ∅}

= {s, h, f, r | s, h,merge(α1, α2, f), r ∈ Jα1, �K5 ∩ Jα2,⊤K5}

= {s, h, f, r | s, h,merge(α1, α2, f), r ∈

(

Jα1, replace(α1, α2, �)K5

∩Jα2, replace(α1, α2, S1 ⊔ S2)K5

)

}

• when S1, S2 6= ⊤, �
Jα1, S1K5 ∩ Jα2, S2K5

=

s, h, f, r

∣

∣

∣

∣

∣

∣

f(α1) ⊆
⋃

vd∈S1

Jvd, (h, f, r)K8 ∧

f(α2) ⊆
⋃

vd∈S2

Jvd, (h, f, r)K8

⊆
{

s, h, f, r
∣

∣

∣

f(α1) ∪ f(α2) ⊆
⋃

vd∈S1∪S2

Jvd, (h, f, r)K8
}

by Prop. 3.47, we get:

⊆
{

s, h, f, r
∣

∣

∣

f(α1) ∪ f(α2) ⊆
⋃

vd∈S1∪S2

Jreplace(α1, α2, vd), (h,merge(α1, α2, f), r)K8
}

=

s, h, f, r

∣

∣

∣

∣

∣

∣

merge(α1, α2, f)(α1) = ∅∧

s+merge(α1, α2, f)(α2) ⊆
⋃

vd∈replace(α1,α2,S1∪S2)

Jvd, (h,merge(α1, α2, f), r)K8

= {s, h, f, r | s, h,merge(α1, α2, f), r ∈ Jα1, �K5 ∩ Jα2, replace(α1, α2, S1 ∪ S2)K5}

= {s, h, f, r | s, h,merge(α1, α2, f), r ∈

(

Jα1, replace(α1, α2, �)K5

∩Jα2, replace(α1, α2, S1 ⊔ S2)K5

)

}

166

2

Proposition 3.47. ∀α1, α2 ∈ TV ar.vd ∈ V D.(h, f, r) ∈ (H × F × R).

Jvd, (h, f, r)K8 ⊆ Jreplace(α1, α2, vd), (h,merge(α1, α2, f), r)K8

Prop. 3.47. • Jreplace(α1, α2, Nilt), K8 = JNilt, K8

• Jreplace(α1, α2, Numt), K8 = JNumt, , K8

• Jreplace(α1, α2, Dangling Loc), (h, ,)K8 = JDangling Loc, (h, ,)K8

• when v 6∈ {α1, α2}
Jreplace(α1, α2, v), (,merge(α1, α2, f),)K8

= Jv, (,merge(α1, α2, f),)K8

= merge(α1, α2, f)(v)

= f(v)

= Jv, (, f,)K8

•

Jreplace(α1, α2, α2), (,merge(α1, α2, f),)K8

= Jα2, (,merge(α1, α2, f),)K8

= merge(α1, α2, f)(α2)

= f(α1) ∪ f(α2)

⊇ f(α2)

= Jα2, (, f,)K8

•

Jreplace(α1, α2, α1), (,merge(α1, α2, f),)K8

= Jα2, (,merge(α1, α2, f),)K8

= merge(α1, α2, f)(α2)

= f(α1) ∪ f(α2)

⊇ f(α1)

= Jα1, (, f,)K8

167

•

Jreplace(α1, α2, Loc(A, vd1, vd2)), (h,merge(α1, α2, f), r)K8

= JLoc(A, replace(α1, α2, vd1), replace(α1, α2, vd2)), (h,merge(α1, α2, f), r)K8

=

l ∈ dom(h)

∣

∣

∣

∣

∣

∣

∣

∣

∣

• Π1(h(l)) ∈ Jreplace(α1, α2, vd1), (h,merge(α1, α2, f), r)K8

• Π2(h(l)) ∈ Jreplace(α1, α2, vd2), (h,merge(α1, α2, f), r)K8

• ∗1 ∈ A ∧ Π1(h(l)) ∈ Loc ⇒ Π1(h(l)) ∈ r(l)

• ∗2 ∈ A ∧ Π2(h(l)) ∈ Loc ⇒ Π2(h(l)) ∈ r(l)

⊇

l ∈ dom(h)

∣

∣

∣

∣

∣

∣

∣

∣

∣

• Π1(h(l)) ∈ Jvd1, (h, f, r)K8

• Π2(h(l)) ∈ Jvd2, (h, f, r)K8

• ∗1 ∈ A ∧ Π1(h(l)) ∈ Loc ⇒ Π1(h(l)) ∈ r(l)

• ∗2 ∈ A ∧ Π2(h(l)) ∈ Loc ⇒ Π2(h(l)) ∈ r(l)

= JLoc(A, vd1, vd2), (h, f, r)K8

2

Proposition 3.10. ∀A ∈ P(TV ar).∀d′ ∈ D. A is finite ⇒ {(ad, hu, ho, sn, sn∞, t, d) ∈

AR | d = d′ ∧ used(AR) ⊆ A} is finite

Prop. 3.10. This is direct by the cardinals of subdomains of AR.

• |V D1| ≤ 6 + |A|

• |V D| ≤ |V D1| + 4|V D1|2

• |PV D+| ≤ 1 + 2|V D|

• |AD| ≤ |A| × |PV D+|

• |CLeq| ≤ 128

• |TB| ≤ |CLeq| × |A|2

• |AR| ≤ |AD| × 2|A| × (1 + 2|A|) × 2|A| × 2|A| ××|TB| × |D|

So ∀ 2

3.8.6 Functions on CLeq proofs

Proposition 3.11. ∀S1
eq, S

2
eq ∈ CLeq. ∀S, S1, S2 ∈ P(V al′). JS1

eq, S, S1K6′ ∧ JS2
eq, S, S2K6′ ⇒

JUReq(S
1
eq, S

2
eq), S, S1 ∪ S2K6′

168

Prop. 3.11.

JS1
eq, S, S1K6′ ∧ JS2

eq, S, S2K6′

= (
∨

l∈S1
eq

Jl, S, S1K6) ∧ (
∨

l∈S2
eq

Jl, S, S2K6)

=
∨

l1,l2∈S1
eq×S2

eq

Jl1, S, S1K6 ∧ Jl2, S, S2K6

⇒
∨

l1,l2∈S1
eq×S2

eq

∨

l∈ureq(l1,l2)

Jl, S, S1 ∪ S2K6

by construction of ureq

=
∨

l∈
S

l1,l2∈S1
eq×S2

eq

ureq(l1,l2)

Jl, S, S1 ∪ S2K6

=
∨

l∈UReq(S1
eq ,S2

eq)

Jl, S, S1 ∪ S2K6

= JUReq(S
1
eq, S

2
eq), S, S1 ∪ S2K6′

2

Proposition 3.12. ∀S1
eq, S

2
eq ∈ CLeq. ∀S, S1, S2 ∈ P(V al′). JS1

eq, S
1, SK6′ ∧ JS2

eq, S
2, SK6′ ⇒

JULeq(S
1
eq, S

2
eq), S

1 ∪ S2, SK6′

Prop. 3.12. Same as for Prop. 3.12.2

3.8.7 Widening proofs

Proposition 3.16.
∀w ∈ N

total
→ AR. ∃A ∈ P(AR). (A is finite) ∧ ∃i ∈ N.∀i′ ≥ i.

∇AR(w ↾
[0,i′]

total
→ AR

) ∈ A

Prop. 3.16. Let (ad′
i, hu′

i, ho′i, sn
′
i, sn

′∞
i , t′i, d

′
i) = ∇AR(w ↾

[0,i]
total
→ AR

).

Let (admi, humi, homi, snmi, snm∞
i , tmi, dmi) = merge(∇merge(w ↾

[0,i]
total
→ AR

), w(i)).

We have (admi, humi, homi, snmi, snm∞
i , tmi, dmi) = (ad′

i, hu′
i, ho′i, sni, sn

′∞
i , t′i, dmi).

Remember that we have :

∀w ∈ N
total
→ D. ∃i1 ∈ N.∀i′ ≥ i1. ∇

D(w ↾
[0,i′]

total
→ D

) = ∇D(w ↾
[0,i]

total
→ D

)

so

∀w ∈ N
total
→ AR. ∃i1 ∈ N.∀i′ ≥ i1. dm′

i = dmi

and
∀w ∈ N

total
→ AR. ∃A ∈ P(TV ar). (A is finite) ∧ ∃i2 ∈ N.∀i′ ≥ i2.

(used(merge(∇merge(w ↾
[0,i′]

total
→ AR

), w(i′))) ⊆ A)

169

Thus we have (for i = max(i1, i2))

∀w ∈ N
total
→ AR. ∃A ∈ P(TV ar). (A is finite) ∧ ∃i ∈ N.∀i′ ≥ i.

(dm′
i = dmi) ∧ (used(ad′

i, hu′
i, ho′i, sni, sn

′∞
i , t′i, dmi) ⊆ A)

So by Prop. 3.10, we have that

∀w ∈ N
total
→ AR. ∃i ∈ N.{(ad′

i′, hu′
i′, ho′i′, sni′ , sn

′∞
i′ , t′i′, dmi′)|i

′ ≥ i} is finite

2

Proposition 3.17. ∀w ∈ N
total
→ AR. ∀i ∈ N. ∀s, h, f, r.∃g. s, h, f, r ∈ Jw(i)K′

⇒ s, h, g(f), r ∈

J∇AR(w ↾
[0,i]

total
→ AR

)K′

Prop. 3.17. Let (ad, hu, ho, sn, sn∞, t, d) = w(i),

let (ad′, hu′, ho′, sn′, sn′∞, t′, d′) = ∇AR(w ↾
[0,i]

total
→ AR

).

We want ∀s, h, f, r.∃g.

s, h, f, r ∈ Jw(i)K′
⇒ s, h, g(f), r ∈ Jad′K4 ∩ Jhu′K1 ∩ Jho′K1′ ∩ Jsn′K2 ∩ Jsn′∞K2′ ∩ Jt′K3 ∩ Jd′K7 ∩

sem∗

Recall :

∇AR(w ↾
[0,i]

total
→ AR

)

= ∇D
AR

([

w ↾
[0,i]

total
→ AR

| i → merge(∇merge(w ↾
[0,i]

total
→ AR

), w(i))
])

= set d(merge(∇merge(w ↾
[0,i]

total
→ AR

), w(i)),

∇D(give d(
[

w ↾
[0,i]

total
→ AR

| i → merge(∇merge(w ↾
[0,i]

total
→ AR

), w(i))
]

)))

Let (adm, hum, hom, snm, sn∞
m , tm, dm) = merge(∇merge(w ↾

[0,i]
total
→ AR

), w(i)).

We have (adm, hum, hom, snm, sn∞
m , tm, dm) = (ad′, hu′, ho′, sn, sn′∞, t′, dm).

By Cor. 3.6 we have

s, h, f, r ∈ Jw(i)K′

⇒ s, h,merge(∇merge(w ↾
[0,i]

total
→ AR

), f), r ∈ Jmerge(∇merge(w ↾
[0,i]

total
→ AR

), w(i))K′

which is

s, h, f, r ∈ Jw(i)K′
⇒ s, h,merge(∇merge(w ↾

[0,i]
total
→ AR

), f), r ∈ Jad′K4 ∩ Jhu′K1 ∩ Jho′K1′ ∩

Jsn′K2 ∩ Jsn′∞K2′ ∩ Jt′K3 ∩ JdmK7 ∩ sem∗

170

We now prove that JdmK7 ⊆ Jd′K7 :

We have d′ = ∇D(give d(
[

w ↾
[0,i]

total
→ AR

| i → merge(∇merge(w ↾
[0,i]

total
→ AR

), w(i))
]

))

by constrains on ∇D,

∀g1 ∈ Jgive d(merge(∇merge(w ↾
[0,i]

total
→ AR

), w(i)))KD. ∃g2 ∈ Jd′KD. ∀α.g1(α) ⊆ g2(α)

which is

∀g1 ∈ JdmKD. ∃g2 ∈ Jd′KD. ∀α.g1(α) ⊆ g2(α)

We can now prove that JdmK7 ⊆ Jd′K7

s, h, f, r ∈ JdmK7

⇔ ∃g1 ∈ JdmKD. ∀α ∈ TV ar.f(α) ∩ Z ⊆ g1(α)

⇔ ∃g1 ∈ JdmKD.

[

• ∀α ∈ TV ar.f(α) ∩ Z ⊆ g1(α)

• ∃g2 ∈ Jd′KD. g1(α) ⊆ g2(α)

⇔ ∃g1 ∈ JdmKD.

• ∀α ∈ TV ar.f(α) ∩ Z ⊆ g1(α)

• ∃g2 ∈ Jd′KD. g1(α) ⊆ g2(α)

• ∃g2 ∈ Jd′KD. ∀α ∈ TV ar.f(α) ∩ Z ⊆ g2(α)
⇒ ∃g2 ∈ Jd′KD. ∀α ∈ TV ar.f(α) ∩ Z ⊆ g2(α)

⇔ s, h, f, r ∈ Jd′K7

2

3.8.8 Basic ast proofs

Proposition 3.21.

⋃

vd∈vd0

Jvd, (s, h0, f0, r0)K8 ∩
⋃

vd∈vd1

Jvd, (s, h1, f1, r1)K8 ⊆
⋃

vd∈basic ast(vd0,vd1)

Jvd, (s, h, f, r)K8

if we define
⋃

vd∈Ω

Jvd, (s, h, f, r)K8 , ∅ and
⋃

vd∈⊤

Jvd, (s, h, f, r)K8 , MFR

Prop. 3.21. If we write the proof for basic ast(S1, S2) then we will not write the proof for

basic ast(S2, S1), also if we prove basic ast(S, {A}) then we do not prove basic ast(S, {B})

except for S = {A}.

171

• Cases {A} with

– {A}

from the definition of J·K8 we have JA, (s0, h0, f0, r0)K8 = JA, (s1, h1, f1, r1)K8 =

JA, (s, h, f, r)K8 =
⋃

vd∈basic ast({A},{A})

Jvd, (s, h, f, r)K8

– S for other cases not ⊤

from the definition of J·K8 we have JA, (s0, h0, f0, r0)K8∩JB, (s1, h1, f1, r1)K8 = ∅ =
⋃

vd∈Ω

Jvd, (s, h, f, r)K8 =
⋃

vd∈basic ast({A},S)

Jvd, (s, h, f, r)K8

– ⊤

JA, (s0, h0, f0, r0)K8∩
⋃

vd∈⊤

Jvd, (s1, h1, f1, r1)K8 = JA, (s0, h0, f0, r0)K8 = JA, (s, h, f, r)K8 =

basic ast({A},⊤)Jbasic ast({A}, {A}), (s, h, f, r)K8

• {Dgt} with

– {Dgt}

⋃

vd∈{Dgt}

Jvd, (s, h0, f0, r0)K8 ∩
⋃

vd∈{Dgt}

Jvd, (s, h1, f1, r1)K8 = JDgt, (s, h0, f0, r0)K8 ∩

JDgt, (s, h1, f1, r1)K8 = (Loc \ dom(h0)) ∩ (Loc \ dom(h1)) = Loc \ (dom(h0) ∪

dom(h1)) = Loc \ dom(h) = JDgt, (s, h, f, r)K8 =
⋃

vd∈{Dgt}

Jvd, (s, h, f, r)K8 =

⋃

vd∈basic ast({Dgt},{Dgt})

Jvd, (s, h, f, r)K8

– {Loct}

⋃

vd∈{Dgt}

Jvd, (s, h0, f0, r0)K8 ∩
⋃

vd∈{Loct}

Jvd, (s, h1, f1, r1)K8 = JDgt, (s, h0, f0, r0)K8 ∩

JLoct, (s, h1, f1, r1)K8 = (Loc \ dom(h0)) ∩ dom(h1) = dom(h1)since h0♯h1 ⊆

dom(h) = JLoct, (s, h, f, r)K8 =
⋃

vd∈{Loct}

Jvd, (s, h, f, r)K8

=
⋃

vd∈basic ast({Dgt},{Loct})

Jvd, (s, h, f, r)K8

172

– {Dgt, Loct}

⋃

vd∈{Dgt}

Jvd, (s, h0, f0, r0)K8∩
⋃

vd∈{Dgt,Loct}

Jvd, (s, h1, f1, r1)K8 = JDgt, (s, h0, f0, r0)K8∩

(JDgt, (s, h1, f1, r1)K8∪JLoct, (s, h1, f1, r1)K8) = (Loc\dom(h0))∩(Loc\dom(h1)∪

dom(h1)) = (Loc\dom(h0)) ⊆ Loc = (Loc\dom(h)∪dom(h)) = (JDgt, (s, h, f, r)K8∪

JLoct, (s, h, f, r)K8) =
⋃

vd∈{Dgt,Loct}

Jvd, (s, h, f, r)K8

=
⋃

vd∈basic ast({Dgt},{Dgt,Loct})

Jvd, (s, h, f, r)K8

– {Loc(A, vd1, vd2)}

173

⋃

vd∈{Dgt}

Jvd, (s, h0, f0, r0)K8

∩
⋃

vd∈{Loc(A,vd1,vd2)}

Jvd, (s, h1, f1, r1)K8

= JDgt, (s, h0, f0, r0)K8

∩JLoc(A, vd1, vd2), (s, h1, f1, r1)K8

= (Loc \ dom(h0))

∩

l ∈ dom(h1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

• Π1(h1(l)) ∈ Jvd1, (h1, f1, r1)K8

• Π2(h1(l)) ∈ Jvd2, (h1, f1, r1)K8

• ∗1 ∈ A ∧ Π1(h1(l)) ∈ Loc ⇒ Π1(h1(l)) ∈ r1(l)

• ∗2 ∈ A ∧ Π2(h1(l)) ∈ Loc ⇒ Π2(h1(l)) ∈ r1(l)

since h = h0 · h1, we have:

=

l ∈ dom(h1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

• Π1(h(l)) ∈ Jvd1, (h1, f1, r1)K8

• Π2(h(l)) ∈ Jvd2, (h1, f1, r1)K8

• ∗1 ∈ A ∧ Π1(h(l)) ∈ Loc ⇒ Π1(h(l)) ∈ r1(l)

• ∗2 ∈ A ∧ Π2(h(l)) ∈ Loc ⇒ Π2(h(l)) ∈ r1(l)

from Lem. 3.22, we get:

⊆

l ∈ dom(h1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

• Π1(h(l)) ∈ Jvd1, (h, f, r)K8

• Π2(h(l)) ∈ Jvd2, (h, f, r)K8

• ∗1 ∈ A ∧ Π1(h(l)) ∈ Loc ⇒ Π1(h(l)) ∈ r1(l)

• ∗2 ∈ A ∧ Π2(h(l)) ∈ Loc ⇒ Π2(h(l)) ∈ r1(l)

⊆

l ∈ dom(h)

∣

∣

∣

∣

∣

∣

∣

∣

∣

• Π1(h(l)) ∈ Jvd1, (h, f, r)K8

• Π2(h(l)) ∈ Jvd2, (h, f, r)K8

• ∗1 ∈ A ∧ Π1(h(l)) ∈ Loc ⇒ Π1(h(l)) ∈ r(l)

• ∗2 ∈ A ∧ Π2(h(l)) ∈ Loc ⇒ Π2(h(l)) ∈ r(l)

= JLoc(A, vd1, vd2), (s, h, f, r)K8

=
⋃

vd∈{Loc(A,vd1,vd2)}

Jvd, (s, h, f, r)K8

=
⋃

vd∈basic ast({Dgt},{Loc(A,vd1,vd2)})

Jvd, (s, h, f, r)K8

– ⊤

⋃

vd∈{Dgt}

Jvd, (s, h0, f0, r0)K8∩
⋃

vd∈⊤

Jvd, (s, h1, f1, r1)K8 = JDgt, (s, h0, f0, r0)K8 = Loc\

dom(h0) ⊆ Loc = (Loc\dom(h)∪dom(h)) = (JDgt, (s, h, f, r)K8∪JLoct, (s, h, f, r)K8) =
⋃

vd∈{Dgt,Loct}

Jvd, (s, h, f, r)K8 =
⋃

vd∈basic ast({Dgt},⊤)

Jvd, (s, h, f, r)K8

• {Loct} with

174

– {Loct}
⋃

vd∈{Loct}

Jvd, (s, h0, f0, r0)K8 ∩
⋃

vd∈{Loct}

Jvd, (s, h1, f1, r1)K8 = JLoct, (s, h0, f0, r0)K8 ∩

JLoct, (s, h1, f1, r1)K8 = dom(h0) ∩ dom(h1) = ∅ =
⋃

vd∈Ω

Jvd, (s, h, f, r)K8

=
⋃

vd∈basic ast({Loct},{Loct})

Jvd, (s, h, f, r)K8

– {Dgt, Loct}
⋃

vd∈{Loct}

Jvd, (s, h0, f0, r0)K8∩
⋃

vd∈{Dgt,Loct}

Jvd, (s, h1, f1, r1)K8 = JLoct, (s, h0, f0, r0)K8∩

(JDgt, (s, h1, f1, r1)K8∪JLoct, (s, h1, f1, r1)K8) = dom(h0)∩(Loc\dom(h1)∪dom(h1)) =

dom(h0) ⊆ dom(h) = JLoct, (s, h, f, r)K8 =
⋃

vd∈{Loct}

Jvd, (s, h, f, r)K8

=
⋃

vd∈basic ast({Loct},{Dgt,Loct})

Jvd, (s, h, f, r)K8

– {Loc(A1, l
1
1, l

2
1)}

⋃

vd∈{Loct}

Jvd, (s, h0, f0, r0)K8∩
⋃

vd∈{Loc(A1,l11,l21)}

Jvd, (s, h1, f1, r1)K8 = JLoct, (s, h0, f0, r0)K8∩

J{Loc(A1, l
1
1, l

2
1)}, (s, h1, f1, r1)K8 ⊆ dom(h0)∩dom(h1) = ∅ =

⋃

vd∈Ω

Jvd, (s, h, f, r)K8

=
⋃

vd∈basic ast({Loct},{Loc(A1 ,l11,l21)})

Jvd, (s, h, f, r)K8

– ⊤
⋃

vd∈{Loct}

Jvd, (s, h0, f0, r0)K8 ∩
⋃

vd∈⊤

Jvd, (s, h1, f1, r1)K8 = JLoct, (s, h0, f0, r0)K8 =

dom(h0) ⊆ dom(h) = JLoct, (s, h, f, r)K8 =
⋃

vd∈{Loct}

Jvd, (s, h, f, r)K8

=
⋃

vd∈basic ast({Loct},⊤)

Jvd, (s, h, f, r)K8

• {Dgt, Loct} with

– {Dgt, Loct}
⋃

vd∈{Dgt,Loct}

Jvd, (s, h0, f0, r0)K8∩
⋃

vd∈{Dgt,Loct}

Jvd, (s, h1, f1, r1)K8 = (JDgt, (s, h0, f0, r0)K8∪

JLoct, (s, h0, f0, r0)K8) ∩ (JDgt, (s, h1, f1, r1)K8 ∪ JLoct, (s, h1, f1, r1)K8) = (Loc \

dom(h0) ∪ dom(h0)) ∩ (Loc \ dom(h1) ∪ dom(h1)) = Loc = Loc \ dom(h) ∪

175

dom(h) = JDgt, (s, h, f, r)K8∪JLoct, (s, h, f, r)K8 =
⋃

vd∈{Dgt,Loct}

Jvd, (s, h, f, r)K8 =

⋃

vd∈basic ast({Dgt,Loct},{Dgt,Loct})

Jvd, (s, h, f, r)K8

– {Loc(A1, l
1
1, l

2
1)}

⋃

vd∈{Dgt,Loct}

Jvd, (s, h0, f0, r0)K8

∩
⋃

vd∈{Loc(A,vd1,vd2)}

Jvd, (s, h1, f1, r1)K8

= (JDgt, (s, h0, f0, r0)K8 ∪ JLoct, (s, h0, f0, r0)K8)

∩JLoc(A, vd1, vd2), (s, h1, f1, r1)K8

= (Loc \ dom(h0) ∪ dom(h0)

∩

l ∈ dom(h1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

• Π1(h1(l)) ∈ Jvd1, (h1, f1, r1)K8

• Π2(h1(l)) ∈ Jvd2, (h1, f1, r1)K8

• ∗1 ∈ A ∧ Π1(h1(l)) ∈ Loc ⇒ Π1(h1(l)) ∈ r1(l)

• ∗2 ∈ A ∧ Π2(h1(l)) ∈ Loc ⇒ Π2(h1(l)) ∈ r1(l)

since h = h0 · h1, we have:

=

l ∈ dom(h1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

• Π1(h(l)) ∈ Jvd1, (h1, f1, r1)K8

• Π2(h(l)) ∈ Jvd2, (h1, f1, r1)K8

• ∗1 ∈ A ∧ Π1(h(l)) ∈ Loc ⇒ Π1(h(l)) ∈ r1(l)

• ∗2 ∈ A ∧ Π2(h(l)) ∈ Loc ⇒ Π2(h(l)) ∈ r1(l)

from Lem. 3.22, we have:

⊆

l ∈ dom(h1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

• Π1(h(l)) ∈ Jvd1, (h, f, r)K8

• Π2(h(l)) ∈ Jvd2, (h, f, r)K8

• ∗1 ∈ A ∧ Π1(h(l)) ∈ Loc ⇒ Π1(h(l)) ∈ r1(l)

• ∗2 ∈ A ∧ Π2(h(l)) ∈ Loc ⇒ Π2(h(l)) ∈ r1(l)

⊆

l ∈ dom(h)

∣

∣

∣

∣

∣

∣

∣

∣

∣

• Π1(h(l)) ∈ Jvd1, (h, f, r)K8

• Π2(h(l)) ∈ Jvd2, (h, f, r)K8

• ∗1 ∈ A ∧ Π1(h(l)) ∈ Loc ⇒ Π1(h(l)) ∈ r(l)

• ∗2 ∈ A ∧ Π2(h(l)) ∈ Loc ⇒ Π2(h(l)) ∈ r(l)

= JLoc(A, vd1, vd2), (s, h, f, r)K8

=
⋃

vd∈{Loc(A,vd1,vd2)}

Jvd, (s, h, f, r)K8

=
⋃

vd∈basic ast({Dgt,Loct},{Loc(A,vd1,vd2)})

Jvd, (s, h, f, r)K8

– ⊤

176

⋃

vd∈{Dgt,Loct}

Jvd, (s, h0, f0, r0)K8 ∩
⋃

vd∈⊤

Jvd, (s, h1, f1, r1)K8 = JDgt, (s, h0, f0, r0)K8 ∪

JLoct, (s, h0, f0, r0)K8 = Loc \ dom(h0) ∪ dom(h0) = (Loc \ dom(h) ∪ dom(h)) =

(JDgt, (s, h, f, r)K8 ∪ JLoct, (s, h, f, r)K8) =
⋃

vd∈{Dgt,Loct}

Jvd, (s, h, f, r)K8

=
⋃

vd∈basic ast({Dgt,Loct},⊤)

Jvd, (s, h, f, r)K8

• {Loc(A0, l
1
0, l

2
0)} with

– {Loc(A1, l
1
1, l

2
1)}

⋃

vd∈{Loc(A0,l10,l20)}

Jvd, (s, h0, f0, r0)K8 ∩
⋃

vd∈{Loc(A1,l11,l21)}

Jvd, (s, h1, f1, r1)K8

= JLoc(A0, l
1
0, l

2
0) (s, h0, f0, r0)K8 ∩ JLoc(A1, l

1
1, l

2
1), (s, h1, f1, r1)K8 ⊆ dom(h0) ∩

dom(h1) = ∅ =
⋃

vd∈Ω

Jvd, (s, h, f, r)K8

=
⋃

vd∈basic ast({Loc(A0,l10,l20)},{Loc(A1,l11,l21)})

Jvd, (s, h, f, r)K8

– ⊤

177

⋃

vd∈{Loc(A0,l10,l20)}

Jvd, (s, h0, f0, r0)K8 ∩
⋃

vd∈⊤

Jvd, (s, h1, f1, r1)K8

= JLoc(A0, l
1
0, l

2
0) (s, h0, f0, r0)K8

since h = h0 · h1, we have:

=

l ∈ dom(h1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

• Π1(h(l)) ∈ Jl10, (h1, f1, r1)K8

• Π2(h(l)) ∈ Jl20, (h1, f1, r1)K8

• ∗1 ∈ A ∧ Π1(h(l)) ∈ Loc ⇒ Π1(h(l)) ∈ r1(l)

• ∗2 ∈ A ∧ Π2(h(l)) ∈ Loc ⇒ Π2(h(l)) ∈ r1(l)

from Lem. 3.22, we get:

⊆

l ∈ dom(h1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

• Π1(h(l)) ∈ Jl10, (h, f, r)K8

• Π2(h(l)) ∈ Jl20, (h, f, r)K8

• ∗1 ∈ A ∧ Π1(h(l)) ∈ Loc ⇒ Π1(h(l)) ∈ r1(l)

• ∗2 ∈ A ∧ Π2(h(l)) ∈ Loc ⇒ Π2(h(l)) ∈ r1(l)

⊆

l ∈ dom(h)

∣

∣

∣

∣

∣

∣

∣

∣

∣

• Π1(h(l)) ∈ Jl10, (h, f, r)K8

• Π2(h(l)) ∈ Jl20, (h, f, r)K8

• ∗1 ∈ A ∧ Π1(h(l)) ∈ Loc ⇒ Π1(h(l)) ∈ r(l)

• ∗2 ∈ A ∧ Π2(h(l)) ∈ Loc ⇒ Π2(h(l)) ∈ r(l)

= JLoc(A0, l
1
0, l

2
0), (s, h, f, r)K8

=
⋃

vd∈{Loc(A0,l10,l20)}

Jvd, (s, h, f, r)K8

=
⋃

vd∈basic ast({Loc(A0,l10,l20)},⊤)

Jvd, (s, h, f, r)K8

• ⊤ with

– ⊤

⋃

vd∈⊤

Jvd, (s, h0, f0, r0)K8∩
⋃

vd∈⊤

Jvd, (s, h1, f1, r1)K8 = MFR =
⋃

vd∈⊤

Jvd, (s, h, f, r)K8 =
⋃

vd∈basic ast(⊤,⊤)

Jvd, (s, h, f, r)K8

• ∅ or Ω
⋃

vd∈⊤

Jvd, (s, h0, f0, r0)K8∩A =
⋃

vd∈Ω

Jvd, (s, h0, f0, r0)K8∩A = ∅ =
⋃

vd∈Ω

Jvd, (s, h, f, r)K8 =
⋃

vd∈basic ast(∅,)

Jvd, (s, h, f, r)K8 =
⋃

vd∈basic ast(,∅)

Jvd, (s, h, f, r)K8 =
⋃

vd∈basic ast(Ω,)

Jvd, (s, h, f, r)K8

=
⋃

vd∈basic ast(,Ω)

Jvd, (s, h, f, r)K8

2

178

3.8.9 Extra ast proofs

Proposition 3.48. Jsn0K2 ∩ Jsn1K2 ⊆ Jsn01K2 and Jsn∞
0 K2′ ∩ Jsn∞

1 K2′ ⊆ Jsn∞
01K2′

Prop. 3.48. Direct from definition of f0∪̇f1 and J·K2 and J·K2′
2

Proposition 3.49.

If

• s, h0, f0, r0 ∈ Jhu0K1

• s, h1, f1, r1 ∈ Jhu1K1

• h0♯h1

then s, h0 · h1, f0∪̇f1, r0∪̇r1 ∈ Jhu0 ∪ hu1K1

Prop. 3.49.

• s, h0, f0, r0 ∈ Jhu0K1

• s, h1, f1, r1 ∈ Jhu1K1

• h0♯h1

⇔

• ∀α ∈ hu0. f0(α) ∩ dom(h0) 6= ∅

• ∀α ∈ hu1. f1(α) ∩ dom(h1) 6= ∅

• h0♯h1

⇔

• ∀α ∈ hu0. f(α) ∩ dom(h0) 6= ∅

• ∀α ∈ hu1. f(α) ∩ dom(h1) 6= ∅

• h0♯h1

⇒

[

• ∀α ∈ hu0 ∪ hu1. f(α) ∩ (dom(h0) ∪ dom(h1) 6= ∅

• h0♯h1

⇔ s, h0 · h1, f0∪̇f1, r0∪̇r1 ∈ Jhu0 ∪ hu1K1

2

Proposition 3.50.

If

• s, h0, f0, r0 ∈ Jho0K1′

• s, h1, f1, r1 ∈ Jho1K1′

• h0♯h1

then s, h0 · h1, f0∪̇f1, r0∪̇r1 ∈ Jho0 ∪ ho1K1′

179

Prop. 3.50.

• s, h0, f0, r0 ∈ Jho0K1′

• s, h1, f1, r1 ∈ Jho1K1′

• h0♯h1

⇔

• dom(h0) ⊆
⋃

α∈ho0

f0(α)

• dom(h1) ⊆
⋃

α∈ho1

f1(α)

• h0♯h1

⇔

• dom(h0) ⊆
⋃

α∈ho0

f(α)

• dom(h1) ⊆
⋃

α∈ho1

f(α)

• h0♯h1

⇒

[

• dom(h) ⊆
⋃

α∈ho0∪ho1

f(α)

• h0♯h1

⇔ s, h0 · h1, f0∪̇f1, r0∪̇r1 ∈ Jho0 ∪ ho1K1′

2

Proposition 3.51. s, h0, f0, r0 ∈ sem ∗ ∧s, h1, f1, r1 ∈ sem∗ ⇒ s, h, f, r0∪̇r1 ∈ sem∗

Prop. 3.51. We have by hypothesis:

• ∀l0 ∈ dom(r0).

• dom(r0) ∪ codom(r0) ⊆ dom(h0)

• l0 6∈ r0(l0)

• ∀l′0 ∈ r0(l0) ∩ dom(r0).r0(l
′
0) ⊆ r0(l0)

• ∀l1 ∈ dom(r1).

• dom(r1) ∪ codom(r1) ⊆ dom(h1)

• l1 6∈ r1(l1)

• ∀l′1 ∈ r1(l1) ∩ dom(r1).r1(l
′
1) ⊆ r1(l1)

So ∀l ∈ dom(r). (l ∈ dom(h0) ∧ ∀l′ ∈ r(l).ll′ ∈ dom(h0))XOR(l ∈ dom(h1) ∧ ∀l′ ∈ r(l).ll′ ∈

dom(h1)).

We prove what we want only in the case where l ∈ dom(r0).

• since dom(r0) ∪ codom(r0) ⊆ dom(h0) and dom(r1) ∪ codom(r1) ⊆ dom(h1) we have

dom(r) ∪ codom(r) ⊆ dom(h)

• l ∈ dom(h0) thus l 6∈ codom(r1) and by hypothesis l 6∈ r0(l) thus l 6∈ r(l)

• ∀l′ ∈ r0(l) ∩ dom(r0). r0(l
′) ⊆ r0(l) thus ∀l′ ∈ r(l) ∩ dom(r). r(l′) ⊆ r(l)

2

180

3.8.10 Basic equal proofs

Proposition 3.30. If we define
⋃

vd∈Ω

Jvd, (s, h, f, r)K8 , ∅ and
⋃

vd∈⊤

Jvd, (s, h, f, r)K8 , MFR

If

• ∀(vd0, vd1) ∈ eq. vd0 ∈ TV ar ⇒ f(vd0) ∈ Jvd1, (s, h, f, r)K8

• ∀(vd0, vd1) ∈ eq. vd1 ∈ TV ar ⇒ f(vd1) ∈ Jvd0, (s, h, f, r)K8

• if vd0 or vd1 = {Loc(A, l1, l2)} then l1, l2 6∈ sn

• basic equal(vd0, vd1, eq) = (vd01, eq
′)

then

•
⋃

vd∈vd0

Jvd, (s, h, f, r)K8 ∩
⋃

vd∈vd1

Jvd, (s, h, f, r)K8 ⊆
⋃

vd∈vd01

Jvd, (s, h, f, r)K8

• ∀(vd0, vd1) ∈ eq′. vd0 ∈ TV ar ⇒ f(vd0) ∈ Jvd1, (s, h, f, r)K8

• ∀(vd0, vd1) ∈ eq′. vd1 ∈ TV ar ⇒ f(vd1) ∈ Jvd0, (s, h, f, r)K8

Prop. 3.30. If we write the proof for basic equal(vd0, vd1) then we will not write the proof for

basic equal(vd1, vd0), also if we prove basic equal(vd0, {A}) then we do not prove basic ast(vd0, {B})

except for vd0 = {A}.

• First, we prove the case where vd0 = vd1:

then vd01 = vd0 and eq′ = eq and the proposition is obvious.

• Case with Ω
⋃

vd∈Ω

Jvd, (s, h, f, r)K8 ∩
⋃

vd∈vd1

Jvd, (s, h, f, r)K8 = ∅ ∩
⋃

vd∈vd1

Jvd, (s, h, f, r)K8 = ∅

=
⋃

vd∈Ω

Jvd, (s, h, f, r)K8 =
⋃

vd∈basic equal(Ω,vd1)

Jvd, (s, h, f, r)K8

• Case with ⊤
⋃

vd∈⊤

Jvd, (s, h, f, r)K8 ∩
⋃

vd∈vd1

Jvd, (s, h, f, r)K8 = MFR ∩
⋃

vd∈vd1

Jvd, (s, h, f, r)K8

=
⋃

vd∈vd1

Jvd, (s, h, f, r)K8 =
⋃

vd∈basic equal(⊤,vd1)

Jvd, (s, h, f, r)K8

181

• Case with ∅
⋃

vd∈∅

Jvd, (s, h, f, r)K8 ∩
⋃

vd∈vd1

Jvd, (s, h, f, r)K8 = ∅ ∩
⋃

vd∈vd1

Jvd, (s, h, f, r)K8 = ∅

=
⋃

vd∈Ω

Jvd, (s, h, f, r)K8 =
⋃

vd∈basic equal(∅,vd1)

Jvd, (s, h, f, r)K8

• when vd0 6= vd1 and they are not Ω, ∅,⊤

– Cases {A} with S:
⋃

vd∈{A}

Jvd, (s, h, f, r)K8∩
⋃

vd∈S

Jvd, (s, h, f, r)K8 = JA, (s, h, f, r)K8∩
⋃

vd∈S

Jvd, (s, h, f, r)K8 =

∅ =
⋃

vd∈Ω

Jvd, (s, h, f, r)K8 =
⋃

vd∈basic equal({A},S)

Jvd, (s, h, f, r)K8

– Cases {Dgt} with

∗ {Loct}
⋃

vd∈{Dgt}

Jvd, (s, h, f, r)K8 ∩
⋃

vd∈{Loct}

Jvd, (s, h, f, r)K8

= JDgt, (s, h, f, r)K8 ∩ JLoct, (s, h, f, r)K8 = (Loc \ dom(h)) ∩ dom(h) = ∅ =
⋃

vd∈Ω

Jvd, (s, h, f, r)K8 =
⋃

vd∈basic equal({Dgt},{Loct})

Jvd, (s, h, f, r)K8

∗ {Dgt, Loct}
⋃

vd∈{Dgt}

Jvd, (s, h, f, r)K8 ∩
⋃

vd∈{Dgt,Loct}

Jvd, (s, h, f, r)K8 = JDgt, (s, h, f, r)K8 ∩

(JDgt, (s, h, f, r)K8∪JLoct, (s, h, f, r)K8) = (Loc\dom(h))∩((Loc\dom(h))∪

dom(h)) = (Loc \ dom(h)) =
⋃

vd∈{Dgt}

Jvd, (s, h, f, r)K8

=
⋃

vd∈basic equal({Dgt},{Dgt,Loct})

Jvd, (s, h, f, r)K8

∗ {Loc(A1, l
1
1, l

2
1)}

⋃

vd∈{Dgt}

Jvd, (s, h, f, r)K8∩
⋃

vd∈{Loc(A1,l11,l21)}

Jvd, (s, h, f, r)K8 = JDgt, (s, h, f, r)K8∩

JLoc(A1, l
1
1, l

2
1), (s, h, f, r)K8 ⊆ (Loc\dom(h))∩dom(h) = ∅ =

⋃

vd∈Ω

Jvd, (s, h, f, r)K8 =
⋃

vd∈basic equal({Dgt},{Loc(A1,l11,l21)})

Jvd, (s, h, f, r)K8

– Cases {Loct} with

∗ {Dgt, Loct}
⋃

vd∈{Loct}

Jvd, (s, h, f, r)K8 ∩
⋃

vd∈{Dgt,Loct}

Jvd, (s, h, f, r)K8 = JLoct, (s, h, f, r)K8 ∩

182

(JDgt, (s, h, f, r)K8∪JLoct, (s, h, f, r)K8) = dom(h)∩((Loc\dom(h))∪dom(h)) =

dom(h) =
⋃

vd∈{Loct}

Jvd, (s, h, f, r)K8 =
⋃

vd∈basic equal({Loct},{Dgt,Loct})

Jvd, (s, h, f, r)K8

∗ {Loc(A1, l
1
1, l

2
1)}

⋃

vd∈{Loct}

Jvd, (s, h, f, r)K8 ∩
⋃

vd∈{Loc(A1,l11,l21)}

Jvd, (s, h, f, r)K8

= JLoct, (s, h, f, r)K8 ∩ JLoc(A1, l
1
1, l

2
1), (s, h, f, r)K8

= dom(h) ∩ JLoc(A1, l
1
1, l

2
1), (s, h, f, r)K8 = JLoc(A1, l

1
1, l

2
1), (s, h, f, r)K8

=
⋃

vd∈{Loc(A1,l11,l21)}

Jvd, (s, h, f, r)K8

=
⋃

vd∈basic equal({Loct},{Loc(A1,l11,l21)})

Jvd, (s, h, f, r)K8

– Cases {Dgt, Loct} with

∗ {Loc(A1, l
1
1, l

2
1)}

⋃

vd∈{Dgt,Loct}

Jvd, (s, h, f, r)K8∩
⋃

vd∈{Loc(A1,l11,l21)}

Jvd, (s, h, f, r)K8 = (JDgt, (s, h, f, r)K8∪

JLoct, (s, h, f, r)K8)∩JLoc(A1, l
1
1, l

2
1), (s, h, f, r)K8 = Loc∩JLoc(A1, l

1
1, l

2
1), (s, h, f, r)K8 =

JLoc(A1, l
1
1, l

2
1), (s, h, f, r)K8 =

⋃

vd∈{Loc(A1,l11,l21)}

Jvd, (s, h, f, r)K8

=
⋃

vd∈basic equal({Dgt,Loct},{Loc(A1,l11,l21)})

Jvd, (s, h, f, r)K8

– Case [∗] when vd0 6= vd1

183

⋃

vd∈{Loc(A1,l11,l21)}

Jvd, (s, h, f, r)K8 ∩
⋃

vd∈{Loc(A2,l12,l22)}

Jvd, (s, h, f, r)K8

= JLoc(A1, l
1
1, l

2
1), (s, h, f, r)K8 ∩ JLoc(A2, l

1
2, l

2
2), (s, h, f, r)K8

=

l ∈ dom(h)

∣

∣

∣

∣

∣

∣

∣

∣

∣

• Π1(h(l)) ∈ Jl11, (h, f, r)K8

• Π2(h(l)) ∈ Jl21, (h, f, r)K8

• ∗1 ∈ A1 ∧ Π1(h(l)) ∈ Loc ⇒ Π1(h(l)) ∈ r(l)

• ∗2 ∈ A1 ∧ Π2(h(l)) ∈ Loc ⇒ Π2(h(l)) ∈ r(l)

∩

l ∈ dom(h)

∣

∣

∣

∣

∣

∣

∣

∣

∣

• Π1(h(l)) ∈ Jl12, (h, f, r)K8

• Π2(h(l)) ∈ Jl22, (h, f, r)K8

• ∗1 ∈ A2 ∧ Π1(h(l)) ∈ Loc ⇒ Π1(h(l)) ∈ r(l)

• ∗2 ∈ A2 ∧ Π2(h(l)) ∈ Loc ⇒ Π2(h(l)) ∈ r(l)

=

l ∈ dom(h)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

• Π1(h(l)) ∈ Jl11, (h, f, r)K8

• Π1(h(l)) ∈ Jl12, (h, f, r)K8

• Π2(h(l)) ∈ Jl21, (h, f, r)K8

• Π2(h(l)) ∈ Jl22, (h, f, r)K8

• ∗1 ∈ A1 ∧ Π1(h(l)) ∈ Loc ⇒ Π1(h(l)) ∈ r(l)

• ∗2 ∈ A1 ∧ Π2(h(l)) ∈ Loc ⇒ Π2(h(l)) ∈ r(l)

• ∗1 ∈ A2 ∧ Π1(h(l)) ∈ Loc ⇒ Π1(h(l)) ∈ r(l)

• ∗2 ∈ A2 ∧ Π2(h(l)) ∈ Loc ⇒ Π2(h(l)) ∈ r(l)

=

l ∈ dom(h)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

• Π1(h(l)) ∈ Jl11, (h, f, r)K8

• Π1(h(l)) ∈ Jl12, (h, f, r)K8

• Π2(h(l)) ∈ Jl21, (h, f, r)K8

• Π2(h(l)) ∈ Jl22, (h, f, r)K8

• ∗1 ∈ (A1 ∪ A2) ∧ Π1(h(l)) ∈ Loc ⇒ Π1(h(l)) ∈ r(l)

• ∗2 ∈ (A1 ∪ A2) ∧ Π2(h(l)) ∈ Loc ⇒ Π2(h(l)) ∈ r(l)

—————- to cross this line see below ——————————-

⊆

l ∈ dom(h)

∣

∣

∣

∣

∣

∣

∣

∣

∣

• Π1(h(l)) ∈ Jl112, (h, f, r)K8

• Π2(h(l)) ∈ Jl212, (h, f, r)K8

• ∗1 ∈ (A1 ∪ A2) ∧ Π1(h(l)) ∈ Loc ⇒ Π1(h(l)) ∈ r(l)

• ∗2 ∈ (A1 ∪ A2) ∧ Π2(h(l)) ∈ Loc ⇒ Π2(h(l)) ∈ r(l)

=
⋃

vd∈{Loc(A1∪A2,l112,l212)}

Jvd, (s, h, f, r)K8

We prove by cases, as the definition is done, we need to proof the inequality and

the “eq” part.

First, if eq′ = eq, then we have the “eq” part.

184

Then: (we write only the proof for the 1 part, the 2 part being similar)

∗ if l11 = l12 then we have l112 = l11 and we have Π1(h(l)) ∈ Jl11, (h, f, r)K8 ∧

Π1(h(l)) ∈ Jl12, (h, f, r)K8 ⇔ Π1(h(l)) ∈ Jl112, (h, f, r)K8

∗ elsif l11 ∈ TV ar then l112 = l11 and we have Π1(h(l)) ∈ Jl11, (h, f, r)K8 ∧

Π1(h(l)) ∈ Jl12, (h, f, r)K8 ⇒ Π1(h(l)) ∈ Jl11, (h, f, r)K8 ⇔ Π1(h(l)) ∈ Jl112, (h, f, r)K8

since l11 ∈ TV ar \ sn, we have Π1(h(l)) = f(l11) thus f(l11) ∈ Jl12, (h, f, r)K8

and we can update eq′ as defined.

∗ elsif l12 ∈ TV ar then l112 = l12 and we have Π1(h(l)) ∈ Jl11, (h, f, r)K8 ∧

Π1(h(l)) ∈ Jl12, (h, f, r)K8 ⇒ Π1(h(l)) ∈ Jl12, (h, f, r)K8 ⇔ Π1(h(l)) ∈ Jl112, (h, f, r)K8

since l12 ∈ TV ar \ sn, we have Π1(h(l)) = f(l12) thus f(l12) ∈ Jl11, (h, f, r)K8

and we can update eq′ as defined.

∗ else

this is in fact the case where l11 6= l12 and l11, l
1
2 ∈ {Numt, Truet, Falset, Oodt, Nilt}

then Π1(h(l)) ∈ Jl11, (h, f, r)K8 ∧ Π1(h(l)) ∈ Jl12, (h, f, r)K8 ⇔ false

thus the set before the line is equal to ∅ which is equal to
⋃

vd∈Ω

Jvd, (s, h, f, r)K8

thus the result of basic equal is Ω

2

3.8.11 Reach functions proofs

Proposition 3.24. ∀G ∈ P(TV ar×PV D+). ∀s, h, f, r. (∀(α, S) ∈ G. s, h, f, r ∈ Jα, SK5) ⇒

∀α ∈ TV ar. ∀(α′, S) = reach(α).

f(α) ⊆ f(α′) ∧

(α′, S) ∈ G ∨

∃β1, β2.

S = (β1, β2)∧

(α′, {β1}) ∈ G∧

(β2, {α
′}) ∈ G∧

f(α′) = f(β1) = f(β2)

∧(α 6∈ sn01 ⇒ α′ 6∈ sn01)

Prop.3.24. Correctness

The property ∧(α 6∈ sn01 ⇒ α′ 6∈ sn01) is obvious.

185

• if α 6∈ dom(G) then α′ = α and it’s ok

• if (α, {vd}) ∈ dom(G) and vd 6∈ TV ar then α′ = α and it’s ok

• if α ∈ dom(G) then since ∀β ∈ {α}. f(α) ⊆ f(β) ⊆ f(α) ∧ α ∈ {α} ∧ (β = α ∨ ∃β ′ ∈

{α}. (β, {β ′}) ∈ G) we will just prove the proposition for reachrec with hypothesis

if ∀β ∈ V. f(α) ⊆ f(β) ⊆ f(α′) ∧ α′ ∈ V ∧ (β = α′ ∨ ∃β ′ ∈ V. (β, {β ′}) ∈ G) and if

(δ, S ′) = reachrec(G, V, α′). then

f(α) ⊆ f(δ) ∧

(δ, S ′) ∈ G ∨

∃δ1, δ2.

S ′ = (δ1, δ2)∧

(δ, {δ1}) ∈ G∧

(δ2, {δ}) ∈ G∧

f(δ) = f(δ1) = f(δ2)

– if (α′, {β}) ∈ G and β ∈ V and (β, {β ′}) ∈ G,

then δ = β and S ′ = (β ′, α′) and δ1 = β ′ and δ2 = α′

∗ by hypothesis we have f(α) ⊆ f(β) since β ∈ V thus f(α) ⊆ f(δ)

∗ (β, {β ′} ∈ G thus (δ, {δ1}) ∈ G

which also implies that f(δ) ⊆ f(δ1)

∗ (α′, {β}) ∈ G thus (δ2, {δ}) ∈ G

which also implies that f(δ2) ⊆ f(δ)

∗ by hypothesis we have f(β) ⊆ f(α′) since β ∈ V thus f(δ) ⊆ f(δ2) thus we

have f(δ) = f(δ2)

∗ by hypothesis, since β ∈ V , either β = α′ thus β = β ′ and f(δ) = f(δ1),

either β ′ ∈ V thus f(β ′) ⊆ f(α′) which is also f(δ1) ⊆ f(δ2) then we have

f(δ1) = f(δ)

– when (α′, {β}) ∈ G and β 6∈ V ∪ sn01 and β ∈ TV ar

we have f(α′) ⊆ f(β) ⊆ f(β), β ∈ V ∪ {β}, and we had

∀δ ∈ V. (δ = α′) ∨ (∃β ′ ∈ V. (δ, {β ′}) ∈ G)

thus we have to check that for α′ we have ∃β ′ ∈ V ∪ {β}. (α′, {β ′}) ∈ G

186

which is the case for β ′ = β

and then we respect the hypothesis of the recurrence and then we have if ∀δ ∈

V ∪ {β}. f(α) ⊆ f(δ) ⊆ f(β) ∧ β ∈ V ∧ (δ = β ∨ ∃δ′ ∈ V. (δ, {β ′}) ∈ G) and if

(δ, S ′) = reachrec(G, V, β). then

f(α) ⊆ f(δ) ∧

(δ, S ′) ∈ G ∨

∃δ1, δ2.

S ′ = (δ1, δ2)∧

(δ, {δ1}) ∈ G∧

(δ2, {δ}) ∈ G∧

f(δ) = f(δ1) = f(δ2)

thus we have if ∀δ ∈ V. f(α) ⊆ f(δ) ⊆ f(α′) ∧ α′ ∈ V ∧ (δ = α′ ∨ ∃β ′ ∈

V. (δ, {β ′}) ∈ G) and if (δ, S ′) = reachrec(G, V, α′). then

f(α) ⊆ f(δ) ∧

(δ, S ′) ∈ G ∨

∃δ1, δ2.

S ′ = (δ1, δ2)∧

(δ, {δ1}) ∈ G∧

(δ2, {δ}) ∈ G∧

f(δ) = f(δ1) = f(δ2)

– when (α′, S) ∈ G

then δ = α′ and S ′ = S

∗ by hypo. f(α) ⊆ f(α′) thus f(α) ⊆ f(δ)

∗ (α′, S) ∈ G thus (δ, S ′) ∈ G

Termination This comes from the fact that we suppose that G has a finite domain (or we

could only suppose that there are no infinite unlooping path of non-summary variables).

Proposition 3.26. ∀g ∈ P(V ar × PV D+). G ∈ P(TV ar × PV D+). ∀s, h, f, r. (∀(v, S) ∈

g ⊎ G. s, h, f, r ∈ Jv, SK5) ⇒ ∀(v, S) ∈ reach2(g, G, x).

s(x) = s+f(v) ∧

S = ⊤∨ (v, S) ∈ g ⊎ G ∨

∃β1, β2.

S = (β1, β2)∧

(v, {β1}) ∈ G∧

(β2, {v}) ∈ G∧

s(x) = f(δ1) = f(δ2)

Prop.3.26. • when (x, vd) 6∈ g

then v = x and S = ⊤

then s+f(v) = s(x) and it’s ok

187

• when (x, vd) ∈ g and ∀α. α 6∈ vd

then v = x and S = vd

then s+f(v) = s(x) and it’s ok

• when (x, vd) ∈ g and ∃α. α ∈ vd ∩ sn01

then v = x and S = vd

then s+f(v) = s(x) and it’s ok

• when (x, {α}) ∈ g and α 6∈ sn01

then (v, S) = reach(α, G)

we have by (x, {α}) ∈ g that s(x) ∈ f(α), but since we use Prop. 3.24,

we then have f(α) ⊆ f(v), thus s(x) ∈ f(v)

by α 6∈ sn01 and Prop. 3.24 we have v 6∈ sn01 thus |f(v)| ≤ 1 and thus s(x) = f(v)

and the rest comes also from Prop. 3.24.

3.8.12 Class proofs

Proposition 3.52. ∀ar ∈ AR, x ∈ V ar. Jclass(x, ar)K′
⊇ class(x, JarK′

)

Prop. 3.52. When ad(x) = ∅, Jclass(x, ar)K′
= ∅ = class(x, JarK′

).

188

When ad(x) 6= ∅

Jclass(x, (ad, hu, ho, sn, sn∞, t, d))K′

= J([ad|x → ⊤], hu, ho, sn, sn∞, t, d))K′

=

⋂

v 6=x

Jv, ad(v)K5∩

JhuK1 ∩ JhoK1′ ∩ JsnK2 ∩ Jsn∞K2′∩

JtK3 ∩ JdK7 ∩ sem∗

⊇

⋂

v 6=x

Jv, ad(v)K5∩

JhuK1 ∩ JhoK1′ ∩ JsnK2 ∩ Jsn∞K2′∩

JtK3 ∩ JdK7 ∩ sem ∗ ∩

class (x, Jx, ad(x)K5)

= class

x,

⋂

v 6=x

Jv, ad(v)K5 ∩ Jx, ad(x)K5∩

JhuK1 ∩ JhoK1′ ∩ JsnK2 ∩ Jsn∞K2′∩

JtK3 ∩ JdK7 ∩ sem∗

by Prop. 3.57 and 3.58

= class(x, J(ad, hu, ho, sn, sn∞, t, d)K′
)

2

Proposition 3.53. ∀ar ∈ AR.ad ∈ PV D+.∀x ∈ V ar. Jx, adK5 ∩ Jclass(x, ar)K′
= J[ar |

x → ad]K′

Prop. 3.53. Direct from definition. 2

Proposition 3.54. ∀x ∈ V ar, S1, S2 ∈ P(MFR). S1 ⊆ S2 ⇒ class(x, S1) ⊆ class(x, S2)

Prop. 3.54. Direct from definition. 2

Proposition 3.55. ∀x ∈ V ar, S ∈ P(MFR). S ⊆ class(x, S)

Prop. 3.55. Direct from definition. 2

Proposition 3.56. ∀x ∈ V ar, S ∈ P(MFR). x 6∈ noclass(S) ⇒ S = class(x, S)

Prop. 3.56. Direct from definition. 2

Proposition 3.57. ∀x ∈ V ar, S1, S2 ∈ P(MFR). x 6∈ noclass(S1) ⇒ class(x, S1 ∩ S2) =

S1 ∩ class(x, S2)

189

Prop. 3.57.
s, h, f, r ∈ S1 ∩ class(x, S2)

iff ∃s′.

• s, h, f, r ∈ S1

• [s′ | x → ood] = [s | x → ood]

• s′, h, f, r ∈ S2

iff ∃s′.

• s′, h, f, r ∈ S1

• [s′ | x → ood] = [s | x → ood]

• s′, h, f, r ∈ S2

by hyp.

iff s, h, f, r ∈ class(x, S1 ∩ S2)

2

Proposition 3.58. We give noclass for all subsemantics of J·K′

• noclass(sem∗) = ∅

• ∀hu ∈ P(TVar). noclass(JhuK1) = ∅

• ∀ho ∈ P(TVar). noclass(JhoK1′) = ∅

• ∀sn ∈ P(TVar). noclass(JsnK2) = ∅

• ∀sn∞ ∈ P(TVar). noclass(Jsn∞K2′) = ∅

• ∀v ∈ V AR. noclass(Jv,⊤K5) = ∅

• ∀α ∈ TVar. noclass(Jα, �K5) = ∅

• ∀α ∈ TVar, S 6= ⊤, � . noclass(Jα, SK5) = ∅

• ∀x ∈ V ar, S 6= ⊤, � . noclass(Jx, SK5) ⊆ {x}

• ∀t ∈ TB. noclass(JtK3) = ∅

• ∀d ∈ D. noclass(JdK7) = ∅

Prop. 3.58. • case sem∗, direct from definition of sem∗

190

•

noclass(JhuK1)

= {x ∈ V ar | ∃s, h, f, r, i. s, h, f, r ∈ JhuK1 ∧ [s | x → i], h, f, r 6∈ JhuK1}

= {x ∈ V ar | ∃s, h, f, r, i. (∀α ∈ hu.f(α) ∩ dom(h) 6= ∅) ∧ (∃α ∈ hu.f(α) ∩ dom(h) = ∅)}

= ∅

•

noclass(JhoK1′)

= {x ∈ V ar | ∃s, h, f, r, i. s, h, f, r ∈ JhoK1′ ∧ [s | x → i], h, f, r 6∈ JhoK1′}

= {x ∈ V ar | ∃s, h, f, i. dom(h) ⊆
⋃

α∈ho

f(α) ∧ dom(h) 6⊆
⋃

α∈ho

f(α)}

= ∅

• case sn, sn∞, direct from definition of Jsn, sn∞K2

• noclass(Jv,⊤K5) = noclass(MFR) = ∅

• when α ∈ TVar

noclass(Jα, �K5) = noclass({s, h, f, r | s+f(α) = ∅}) = noclass({s, h, f, r | f(α) =

∅}) = ∅

• when x ∈ V ar, does not happen !

noclass(Jx, �K5) = noclass({s, h, f, r | s+f(x) = ∅}) = noclass({s, h, f, r | x 6∈

dom(s)}) = {x}

• when α ∈ TVar, S 6= ⊤, �

noclass(Jα, SK5) = noclass({s, h, f, r | f(α) ⊆
⋃

vd∈S

Jvd, (h, f, r)K8}) = ∅

• when x ∈ V ar, S 6= ⊤, �

noclass(Jα, SK5) = noclass({s, h, f, r | x 6∈ dom(s)∨∃vd ∈ S. s(x) ∈ Jvd, (h, f, r)K8}) ⊆

{x}

•

noclass(JtK3)

= noclass(
⋂

(v1,v2)

{

s, h, f, r | Jt(v1, v2), f(v1), f(v2)K6′
}

)

=

{

x ∈ V ar

∣

∣

∣

∣

∣

∃s, h, f, r, i.
• ∀v1, v2. Jt(v1, v2), f(v1), f(v2)K6′

• ∃v1, v2. ¬Jt(v1, v2), f(v1), f(v2)K6′

}

= ∅

191

• noclass(JdK7) = noclass(
⋃

g∈JdKD

⋂

α∈TVar

{s, h, f, r | f(α) ∩ Z ⊆ g(α)}) = ∅

2

Proposition 3.59. A ⊆ JarK′
⇒ class(x, A) ⊆ Jclass(x, ar)K′

Prop. 3.59. Direct from Prop. 3.52 and 3.54. 2

3.8.13 Exists proofs

Th. 3.31 for Def. 3.37. Recall :
J∃x. P K = {s, h | ∃v. [s | x → v], h ∈ JP K}

= {s, h | ∃v. [s | x → v], h ∈ Jx = x ∧ P K}
= class(x, Jx = x ∧ P K)

We want to prove that ∀s, h, f, r.∃g.

s, h, f, r ∈ JarK′

∧s̄, h ∈ class(x, Jx = x∧P K) ⇒ s, h, g(f), r ∈ Jclass(x, T (class(x, ar), x = x∧P))K′

By recurrence we have ∀s, h, f, r. ∃g.

s, h, f, r ∈ Jclass(x, ar)K′

∧ s̄, h ∈ Jx = x∧P K ⇒ s, h, g(f), r ∈ JT (class(x, ar), x = x∧P)K′

So ∀s, h, f, r. ∃g.

s, h, f, r ∈ Jclass(x, ar)K′
∧ s, h, f, r ∈ {s, h, f, r | s̄, h ∈ Jx = x ∧ P K}

⇒ s, h, f, r ∈ {s, h, f, r | s, h, g(f), r ∈ JT (class(x, ar), x = x ∧ P)K′
}

Which is

Jclass(x, ar)K′

∩{s, h, f, r | s̄, h ∈ Jx = x∧P K} ⊆ {s, h, f, r | s, h, g(f), r ∈ JT (class(x, ar), x = x∧P)K′

}

By Prop. 3.54,

class(x, Jclass(x, ar)K′
∩ {s, h, f, r | s̄, h ∈ Jx = x ∧ P K})

⊆ class(x, {s, h, f, r | s, h, g(f), r ∈ JT (class(x, ar), x = x ∧ P)K′
)}

We have x 6∈ noclass(Jclass(x, ar)K′
), so by Prop. 3.57

Jclass(x, ar)K′
∩ class(x, {s, h, f, r | s̄, h ∈ Jx = x ∧ P K)}

⊆ class(x, {s, h, f, r | s, h, g(f), r ∈ JT (class(x, ar), x = x ∧ P)K})

192

Which is
s, h, f, r ∈ Jclass(x, ar)K′

∧ s̄, h ∈ class(x, Jx = x ∧ P K))
⇒ s, h, g(f), r ∈ class(x, JT (class(x, ar), x = x ∧ P)K′

)

By Prop. 3.52 class(x, JT (class(x, ar), x = x ∧ P)K) ⊆ Jclass(x, T (class(x, ar), x =

x ∧ P))K so
s, h, f, r ∈ Jclass(x, ar)K′

∧ s̄, h ∈ class(x, Jx = x ∧ P K))
⇒ s, h, g(f), r ∈ Jclass(x, T (class(x, ar), x = x ∧ P))K′

By Prop. 3.55:

s, h, f, r ∈ JarK′
∧ s̄, h ∈ class(x, Jx = x ∧ P K))

⇒ s, h, g(f), r ∈ Jclass(x, T (class(x, ar), x = x ∧ P))K′

2

3.8.14 Why using J·K′

?

Because we want our semantic to be a conjunction, and we cannot express J·K as a conjunc-

tion:

Case of F

Imagine we want the semantics of ad = [adi|x → {α}|y → {α}|α → {Numt}]. If the

semantics would not keep f , we would have J[adi|y → {α}|α → {Numt}]K = {s, h | s(y) ∈

Z} then to take into account that x → {α} we do not know which value has be chosen for

α...

Case of R

Imagine we want the semantics of ad = [adi|x → {Loc({∗2}, Numt, α1)}|z → {α1} | y →

{α2}|α1 → {Loc({∗2}, Numt, α2)}|α2 → {Loc(∅, Nilt, Nilt)}]

if we take the semantics of it without the assignment for x, we get {s, h|∃l1, l2. s(z) =

l1 ∧ s(y) = l2 ∧ h(l1) = 〈i, l2〉 ∧ h(l2) = 〈nil, nil〉 ∧ l1 6= l2},

but now, with x → {Loc({∗2}, Numt, α1)}, we know that we must also have s(x) = l∧h(l) =

〈i, l′〉 with l′ 6= l1, but we don’t know that l should be different from l2...

193

In other words...without beeing precise we would say that for α → {Loc({∗2}, Numt, α)},

the {∗2} does not only say that we cannot have h(l) = 〈i, l〉 but also we want ∀n. h(l0) =

〈i, l1〉, ..., h(ln) = 〈i, ln+1〉, l0 6= ln + 1.

And of course, we want the same property for α1 → {Loc({∗2}, Numt, α2)}, α2 → {Loc({∗2}, Numt, α1)

194

Chapter 4

Implementation

In this chapter, we describe a prototype implementation of our static analysis techniques

for separation logic.

4.1 Introduction

The implementation reads a program (C) from a file and reads a formula in separation

logic (P) from a file. From C and P , the implementation can compute the weakest pre-

condition (wlp(P, C)) and the strongest postcondition (sp(P, C)) of the program and the

formula in separation logic. The tool can also compute an overapproximating translation

of a separation logic formula into an element of our abstract language (T (P)). In this case,

the implementation produces an executable program which reads a program from a file,

prints out the safety precondition for this program (wlp(true, C)), the postcondition for

the safety precondition (sp(wlp(true, C), C)), and a translation of this postcondition into

our abstract language(T (sp(wlp(true, C), C))). There is also an executable program which

reads a formula and prints out its translation into our abstract language.

The translation can sometimes find that the formula P was equivalent to true or false,

otherwise it gives an overapproximation of the formula.

For a program C, if the translation of the postcondition for the safety precondition

(T (sp(wlp(true, C), C))) returns false, then we know that for any input entry, the program

fails. If the translation of the safety precondition (T (wlp(true, C))) returns true, then we

195

know that the program never fails (even if we overapproximate, because true is a particular

value of our output). Otherwise, we cannot decide about all errors of the original program,

but we do know some properties of the final states if the program terminates without error.

For example, if in our result we have that x and y reach the same auxiliary variable and

only that then we know that if the program terminates, x and y are aliased. Or, if x reaches

only {Nilt}, then we know that at termination, x = nil.

Organisation of the chapter: In Sect. 4.2, we present the tool’s software architecture

and what are the inputs, the outputs, the executable programs produced. In Sect. 4.3, we

describe the syntax of the inputs and the data structures manipulated. In Sect. 4.4, we

present the main part of the implementation, the translation of formula into the abstract

language. In Sect. 4.5, we discuss the design choices we made for the implementation.

4.2 Software architecture

The implementation uses modules which define types and functions on those types. There

are some options for compiling, but everything can be compiled by the command, make.

4.2.1 Reading from files

First, as shown in Fig. 4.1, we have a compiler in program read.ml that reads a program

in a file (called in the figure prog example.p) using the lexer in the file prog lexer.mll

and the parser in the file prog parser.mly (both the lexer and the parser, are using the file

support.ml which is principally used for defining the type info which records informations

about where in the original file a token is read). In the same way as the compiler for

programs, we have a compiler that reads a formula in a file as shown in Fig. 4.2.

The syntaxes of the input files of programs and formulae and the data structures pro-

duced are presented in Sect. 4.3.

196

data of type

Prog.t

defined in

program.ml

prog_example.p

support.ml/mli

prog_lexer.mll

prog_parser.mly
prog_read.ml

Figure 4.1: Reading a program in a file

form_example.sl

support.ml/mli

form_lexer.mll

form_parser.mly
form_read.ml

data of type

Form.t

defined in

formula.ml

(and expr.ml)

Figure 4.2: Reading a formula in a file

4.2.2 Computing informations

In Fig. 4.3, is a schema of the programs which manipulate data.

data of type

Prog.t

defined in

program.ml

data of type

Form.t

defined in

formula.ml

data of type

Form.t

defined in

formula.ml

data of type

AR.t

defined in

prog2sl.ml

computes the

wlp and sp

sl2ar.ml

computes the

translation of formula
to our abstract language ar.ml

The type AR.t defined in ar.ml

uses subtypes defined in

sn.ml
tb.ml cleq.ml

numerical_domain.ml

ad.ml
heap.ml

and they all use all_domain.ml

Figure 4.3: Computing pre- and post-conditions, computing the abstraction

In the file prog2sl.ml are implemented the functions wlp and sp which both take as in-

197

put a program of data type Prog.t and a formula of data type Form.t and return the pre- or

post-conditions of data type Form.t. The computation of pre- and post-conditions have no

interest by itself since it is straightforward and there is no approximation or implementation

choice of any kind. (We use, for example, fixpoints for the while-loops

wlp(P, while E do C1) = νXv.((E = true ∧ wlp(Xv, C1)) ∨ (E = false ∧ P))

and

sp(P, while E do C1) = (µXv.sp(Xv ∧ E = true, C1) ∨ P) ∧ (E = false)

.)

In the file sl2ar.ml is implemented the function sl2ar which takes a formula of data

type Form.t and returns its overapproximation in the abstract language as a data of type

AR.t. The computation of the abstraction is presented in Sect. 4.4.

4.2.3 Building executables

We have those files used to produce executable programs, as presented in Table 4.1. The

files from the first column (mk foo.ml) are the last files in the dependency chain, they are

the last ones to be compiled and the one producing the executables in the third column

(foo). They print things (like “The program read is :”) and call functions from other files

(like the function prog read from the file prog read.ml), mainly from the files in the second

column. The use of the executable programs from the third column is presented in Fig. 4.4.

4.3 Syntaxes of inputs and data structures

In this section, we define the syntax of the input files which can contain programs and the

data structures produced by the compiler. We present the syntax of input files for formulae

and data structures produced by the compiler. We then present the data structure of the

abstract domain.

198

Files to compile Main files used Executables produced

mk prog read.ml prog read.ml prog read

mk form read.ml form read.ml form read

mk prog2sl.ml prog2sl.ml prog2sl

mk sl2ar.ml sl2ar.ml sl2ar

mk prog2sl2ar.ml prog2sl.ml, sl2ar.ml prog2sl2ar

Table 4.1: Table about the executable files

The type info is just a type defined in the file support.ml that record where in the file

a token was read by the compiler. (We later use it for heuristics in choosing which nodes to

summarise.)

4.3.1 Program syntax

Syntax of the input file of programs

We define as a grammar the syntax of a program P in the input file: (We allow more

diversity in the syntax, for example the keyword can have different capitalizations. We

reject some badly formed expressions like x:= true + 3; or we allow x != 2 for not (x =

2) but this is common and not expressed here for simplicity)

n := any string

E := (E) | nil | n | Z | true | false | E and E | E or E | not E

| E = E | E < E | E + E | E − E | E ∗ E | E/E | −E | E => E | E <= E

P := P | C | P ; C

C := call n (n1, ..., nn) | fun n (n1, ..., nn) P | while E do P done | skip

| if E do P else P fi | dispose E | n := cons(E, E) | n := E

| n := n · 1 | n := n · 2 | n · 1 := E | n · 2 := E

The program reader reads programs with declarations and calls of functions, but we do

not treat them in the current version of the analyser.

Syntax of the data structure for program produced by the compiler

The syntax of the program is defined in the file program.ml as the type t from module Prog

as seen in the following :

199

prog_example.p

form_example.sl form_read

sl2ar

formula

print the

print the
formula

abstract value
and its

prog_read
program

print the

prog2sl

print the

print the

wlp(true,C)

sp(wlp(true,C),C)

formulas

abstract values

T(sp(wlp(true,C),C))

T(wlp(true,C))

prog2sl2ar

Figure 4.4: The executables produces by the analyses

module Prog = module Field =

struct struct

200

type fun_var = string type t = Fst | Snd | Field of string

type t = [...]

AssSS of info * string * Expr.t end

| AssSH of info * string * string * Field.t

| AssHS of info * string * Field.t * Expr.t

| Cons_p of info * string * Expr.t * Expr.t

| Dispose of info * string

| Comp of info * t * t

| IFT of info * Expr.t * t

| IFTE of info * Expr.t * t * t

| Skip of info

| W of info * Expr.t * t

| Fun of info * fun_var * (info * string) list * t

| Call of info * fun_var * (info * string) list

[...]

end

4.3.2 Formula syntax

Syntax of the input file of formula

As for programs, we allow some variations on the syntax which are not presented here:

n := any string

E := (E) | nil | n | Z | true | false | E and E | E or E | not E

| E = E | E < E | E + E | E − E | E ∗ E | E/E | −E | E => E | E <= E

F := (F) | true | false | (n |− > E, E) | (n\− > E, E) | E == E | F <==> F

| F ==> F | F <== F | F ∗ F | F − ∗ F | \\e n · F | \\f n · F | emp

| E\/E | E/\E | not E | Mu n · F | Nu n · F | F [E/n]

We have “\\e” for existantial quantifier and “\\f” for universal quantifier.

201

Syntax of the data structure for formula produced by the compiler

The syntax of the formulae is defined in the file formula.ml as the type t from module

Form as seen in the following :

module Form =

struct

type form_var = string

type t =

| Exists of info * string * t | Forall of info * string * t

| Impl of info * t * t | ImplEq of info * t * t | Not of info * t

| Equ of info * Expr.t * Expr.t

| Wedge of info * t * t | Vee of info * t * t

| Mag of info * t * t | Ast of info * t * t | Emp of info

| Subst of info * t * Expr.t * string | FVar of info * form_var

| Mu of info * form_var * t | Nu of info * form_var * t

| Cons of info * string * Expr.t * Expr.t

| Conshook of info * string * Expr.t * Expr.t

| False of info | True of info

[...]

end

using the type t from module Expr from file expr.ml

module Expr =

struct

type t =

Nil of info | Var of info * string | Int of info * int | Bool of info * bool

| Add of info*t*t | Sub of info*t*t | Mul of info*t*t | Div of info*t*t

| GT of info*t*t | LT of info*t*t | GEq of info*t*t | LEq of info*t*t

202

| Or of info*t*t | And of info*t*t | Imp of info*t*t | Neg of info * t

| Eq of info*t*t

[...]

end

4.3.3 Abstract data syntax

We wrote the domains and subdomains using modules which define types and functions on

the types. Here we only present the types.

To define a module FooSet for sets of elements of type foo, we do :

module PreFooSet = Set.Make

(struct

type t = foo

let compare=compare

end)

module FooSet =

struct

include PreFooSet

[...]

end

For mappings, we build functors. For example, we define the type Environment which

is used to create maps from elements of type Var.t to elements of another type. We

use the module Map2 which already implements mappings. We first define what is a

PrintableDomain for the codomain of the mapping:

module type PrintableDomain =

sig

type t

val print: t -> unit

203

end

Then, we define the functor Environment :

module PreEnv = Map2.Make(

struct

type t=Var.t

let compare=compare

end)

module Environment =

functor (V: PrintableDomain) ->

struct

type t = V.t PreEnv.t

[...]

end

The modules are presented in Table 4.3.3.

The abstract result is of type

AR.t = Top of bool | Bot | V of ar dom

where Top (true) corresponds to the formula true (so Not (Top true)) is Bot), and Top

(false) corresponds to the domain’s overall Top, meaning that we know nothing about the

value. (So Not (Top false)) is Top false.)

ar dom is the domain AR defined in Chap. 3 :

ar_dom = {

stack : ST.t;

ad : AD.t;

hu : Heap.hu;

204

Auxiliary variables Formula variables Variables used for fixpoints

Variable type Var.t =

name : string;

time : float;

info : info;

StackVar.t = string FormVar.t = string

Sets of variables VarSet.t StackVarSet.t FormVarSet.t

Pairs VarPair.t = Var.t * Var.t

Sets of pairs VarPairSet.t

Mapping Environment : Var.t → ? ST.t : StackVar.t → Var.t FormEnvironment :

functors Tabular : VarPair.t → ? FormVar.t → ?

205

ho : Heap.ho;

sn : SN.all;

sninf : SN.inf;

tb : TB.t;

d : NumDom.t;

clean: bool;

}

The field clean is just a flag that remembers if a value has been “cleaned” or not (to

be “clean” has a meaning in the implementation and we do not claim that cleaning is a

normalization).

If we unfold the definitions of subdomains of ar dom we get Fig. 4.5. You can notice

that (in LocSet.element), we only allow locations of two variables for simplicity in the

implementation.

The type NumDom.t so far is only Top | Bot | D but D could be parametrized by an

existing numerical domain.

Examples

In the implementation, the arrows from variables in the formulae are registered in the field

stack. The arrows from auxiliary variables are registered in ad; all the arrows from one

variable are registered in one arrow in ad; the set of pointed values are split into sets of

variables through the field variables; a set of values in {Numt, Truet, Falset, Nilt}

in the field values; some boolean fields which indicate if the values are in the set or not

dangling, ood, loctop; and the last field loc is again a set of all the locations possible

but those locations can only be of two auxiliary variables. A location has 4 fields: ast1

and ast2 are the booleans’ meaning if we have ∗1 and ∗2, and car and cdr are auxiliary

variables for the first and second fields of the location. The fields hu and ho are as expected

for the heap bounds and sn and sninf for the summary nodes. tb is the table encoding

206

ar_dom = {

stack : StackVar.t -> Var.t;

ad : Var.t -> (Top | Bot | Set of { variables : VarSet.t;

values : ValSet.t;

dangling : bool;

ood: bool;

loctop : bool;

loc : LocSet.t; })

hu : VarSet.t;

ho : H of VarSet.t | Full | Bot;

sn : VarSet.t ;

sninf : VarSet.t;

tb : (Var.t * Var.t) -> (Top | Bot | Set of CleqSet.t);

d : NumDom.t;

clean: bool;

}

with

ValSet.element = Numt | Truet | Falset | Nilt

LocSet.element = {ast1: bool; ast2: bool; car : Var.t; cdr : Var.t}

ClEqSet.element = DD_eq | D_eq | Eq_eq | Sub_eq | Sup_eq | Sharp_eq | Circ_eq

Figure 4.5: The result domain structure

the domain CLeq. The implementation tries to avoid recording some redundances: in the

first example, the obvious values like (v3,v3) -> DD eq, Eq eq are not registered, and

(v4,v3) -> Set D eq is deduced from (v3,v4) -> Set D eq (if there was a Sup eq it

would become a Sub eq). The numerical information is recorded in the field d, which values

so far can only be Top, Bot and D. But D should be specialized with the advancement of

the implementation.

Example 1: The formula (x = y ∧ y = nil) ∨ (y = true) translates to

x //

&&LLLLLLLLL v4 //
OO
{†eq}

���
�

GFED@ABC⊤

v3 // ONMLHIJKNilt

y //

88rrrrrrrrr WVUTPQRSTruet

207

and in a non-graphical representation to

[ari|x → {v3, v4}|y → {v3, T ruet}|v3 → {Nilt}|v4 → ⊤],

∅,TVar, ∅, ∅,

ti

∣

∣

∣

∣

∣

∣

∣

v3 v4

v3 {‡eq, =eq} {†eq}

v4 {†eq} {‡eq, =eq}

,⊤D

which in the implementation would be

V {stack= <(x -> v1),(y -> v2)> ;

ad= <(v1 -> Set {variables: {v3,v4};

values: ValSet.empty;

dangling: false;

ood:false;

loctop:false;

loc: LocSet.empty;}),

(v2 -> Set {variables: {v3};

values: {Truet};

dangling: false;

ood:false;

loctop:false;

loc: LocSet.empty;}),

(v3 -> Set {variables: VarSet.empty;

values: {Nilt};

dangling: false;

ood:false;

loctop:false;

loc: LocSet.empty;}),

(v4 -> Top)>;

hu= VarSet.empty;

208

ho= Full;

sn= VarSet.empty;

sninf= VarSet.empty;

tb = <((v3,v4) -> Set {D_eq})>;

d = Top;

clean = true;

}

Example 2: If we want to translate the formula (x 7→ true, nil) we would have the

result

x // v1 // • 1 ///o/o/o

2 '''g
'g

'g v2 // WVUTPQRSTruet

v3 // ONMLHIJKNilt
, {v1}, {v1}, ∅, ∅, ti,⊤

D

which is

V {stack= <(x -> v1)> ;

ad= <(v1 -> Set {variables: VarSet.empty;

values: ValSet.empty;

dangling: false;

ood:false;

loctop:false;

loc: { {ast1:false;

ast2:false;

car: v2;

cdr: v3;} };}),

(v2 -> Set {variables: VarSet.empty;

values: {Truet};

dangling: false;

ood:false;

loctop:false;

209

loc: LocSet.empty;}),

(v3 -> Set {variables: VarSet.empty;

values: {Nilt};

dangling: false;

ood:false;

loctop:false;

loc: LocSet.empty;})>;

hu= {v1};

ho= {v1};

sn= VarSet.empty;

sninf= VarSet.empty;

tb = <>;

d = Top;

clean = true;

}

4.4 The translation of formula into elements of the

domain: sl2ar.ml

The translation (function sl2ar in file sl2ar.ml) takes a formula of type Form.t and returns

an overapproximation of it in the abstract language of type AR.t.

First, the formula is “canonized” (by calling the function Form.canonize), which is not

a real canonicalization but a function which changes the formula into an equivalent formula

which improve its translation (for example, it pushes the ¬ as deap as possible). This

function is not fully implemented yet, and probably can be specialised many times to gain

more and more precision.

Then, we call a recursive function sl2ar rec whose first argument is an element of the

abstract language of type AR.t (which for the first call is Top true meaning it’s the top of the

210

abstract language plus we know we did not do yet any approximation), second argument

is a formula of type Form.t and third argument is an environment of type FixPtEnv.t

which maps variable for fixpoints formula into values of type AR.t. (For the first call, it is

FixPtEnv.top which is an empty environment.) The function will return a value of type

AR.t which is an overapproximation of the intersection between the first argument and an

overapproximation of the translation of the second element taking the third argument (the

environment) for interpreting (some of) the fixpoint variables in the formula. The function

will also return an updated environment of type FixPtEnv.t.

Before, after and during the loop, the function AR.clean is called on the current element

of type AR.t. Again, this is not a canonicalization but a function which transforms an

element of the abstract language into an equivalent one which makes the analysis more

efficient (for example, to detect that the element is in fact equivalent to AR.bot).

Then, the function sl2ar rec splits cases on the connective of the formula and it respects

the translation presented in Sect. 3.

When treating a variable, we usually have to “initialize” it if it is not done yet, that is

picking a fresh auxiliary variable and set that variable pointing to this fresh auxiliary one

in the stack.

The equalities: For equality of expressions with boolean connectives we use rewrit-

ing rules (like C == A ∨ B is transformed into (true == C ∧ true == A) ∨ (true ==

C ∧ true == B) ∨ (false == C ∧ false == A ∧ false == B).

The numerical equalities are treated to rewrite expressions to get a boolean equal to a

numerical expression, then we call a function evaluate numerical expression on E or

¬E depending on the boolean. This function evaluate numerical expression principally

relies on a function of the numerical domain (not implemented yet) which takes a numer-

ical expression, a stack (mapping formula variable to auxiliary variables) and a value of

the numerical domain and returns an intersection of this value for the cases where the nu-

merical expression holds, and also returns an updated stack and the list of the variables

211

which are numerical. This function is called at the deepest level, so it won’t have to eval-

uate numerical expressions containing ∨ or ∧ or other complicated expressions. We then

update the numerical part with the updated numerical value and then we intersect in the

domain each numerical variable with the singleton containing Numt by calling the function

AD.inter var pvd.

A variable equal to Nil mainly consists of calling the function AD.inter var pvd for it and

for the singleton containing Nilt. A variable equal to true is the same but with Truet.

The equality of two variables is treated by the function AR.inter stackvar stackvar which

in a simple view consists of having the two variables pointing to a same variable and making

the intersection of what they were pointing to.

The equality of equalities are split (true == (A = B) become (A == B)). The case

false == (A = B) is a bit different and is kind of a rewriting of the equality cases but it

tries to push the negation as deep as possible. This phase obliges us to treat the intersec-

tion twice because if we have false == (x = Nil), we will do some kind of intersection

of x with “not” Nilt, which for simplicity, we do not express if x used to be anything.

Our domain can express only x 6= Nil by setting a fresh auxiliary variable to Nilt then

setting that x is not equal to that auxiliary variable, but this would be quite costly, and

would increase the size of the data we manipulate, so, to keep some precision we decide

that the translation of conjunction instead of being T (ar, A ∧ B) , T (T (ar, A), B) to be

T (ar, A ∧ B) , T (T (T (ar, A), B), A).

The theoretical translation of ∃ is T (ar, ∃x. P) , class(x, T (class(x, ar), x = x∧P)), so we

have a function AR.fun class which implement class and we in fact do at the end another

intersection with ar.

Fixpoints: The computation of µXv. P is correct only if the formula is equivalent

to the infinite union of the iterations. (This is the case for the formula produced by wlp

or sp and any of the “useful” formula one would write). We first set the value of Xv in

212

the fixpoint-environment to Bot, then we call sl2ar rec for ar ⊤ and P and we make a

union of the results at each step, then we call the widening, and we test for stopping if the

new result is equal or smaller than the previous one. For simplicity we implemented a weak

test in AR.weak knowing A is bigger than B then is A smaller which is a comparison of

two elements of the domain, knowing that A is already bigger than B, it says if A is also

smaller than B but sometimes says no when it is. This weak implementation is not proved

to terminate but we believe it does and at least it is safe and efficient. Then, when the

fixpoint is computed, we call again the function sl2ar rec but taking into account ar (the

fixpoint has to be computed independently from ar).

Currently, the widening is what is presented in the previous chapter, what can be changed

is the merging strategy which chose which auxiliary variables can be merged. The current

strategy consists of merging new auxiliary variables with the previous ones (if existing) which

have the same info, which means come from the same part of the formula. In practice, only

the ∃ will produce infinitely many auxiliary variables and they are the ones which will be

merged. This part can be changed to have more specific strategy of merging but we did not

yet implement this.

The computation of ν is always correct and does not ask that the fixpoint is an intersec-

tion, because we have νXv. P = P{(νXv. P)/Xv}. As for µ, we can not take ar into account

before we compute the approximation of the fixpoint. The procedure is a refinement; first we

overapproximate the value of the fixpoint to Top false, setting in the fixpoint-environment

Xv to Top false and translating P in this environment. We repeat the operation many

times with the new value. We stop like for µ using

AR.weak knowing A is bigger than B then is A smaller.

We improve the computation of ν when we know that it is a big intersection, because

then we can already start with Top true (which we indeed do if translating wlp or sp).

213

4.5 Analysis

The implementation is still not finished, as some functions have not been implemented yet

(in this case, they return the safest and simplest value). All the data structures are defined

and the main algorithm of translating formulae into elements of the domain is implemented.

The major task which remains to be implemented is the translation of numerical expres-

sions. This is not specific to our domain or our implementation or to separation logic, but

is a major goal to be implemented since we want the tool to be generic enough for when we

plug the numerical module with existing numerical domains.

Another important point of the implementation is the rewriting of the formulae to im-

prove the precision of the implementation. This is the case as explained earlier for negation.

Another important example, since the translation is an overapproximation, while translating

F→∗G, we do not have precise information about what is F , then we have to suppose that

it might have been equivalent to false thus we have to translate F→∗G to Top (false).

To gain precision there, we could split the cases of F or we could also improve the way we

record “when and where we do overapproximate” (now, only Top (true) allows to say we

did not overapproximate) and then write a function for →∗ directly in the abstract language

(like we did for ∗). Another example is that we treat (a 7→ b, c) ∗ true as a →֒ b, c and treat

→֒ as a specific connective which improves the analysis. During a previous implementation,

we had an intermediate domain which were sets of (a 7→ b, c), so we could make a more

precise translation if we were first collecting the locations (as much as possible). We did

not do this here since the implementation is not finished and we went for simplicity but this

point relates to the question of working directly with a logic which divides the separation

information from the other informations as is now common (as seen in the next chapter

about comparison with other works). It would be hazardous to compare, during other anal-

ysis, the cost to keep the formulae within a subset of the logic which keeps the separation

information separately and the cost in our analysis to rewrite formulae but here we believe

there is a link between those two “expenses”.

214

We already talked about fixpoints, when the implementation is finished, this is the major

place for tuning the precision of the analysis by making a more clever choice for merging

nodes. So far, we merge nodes built from translating the same part of the formula, in

practice that means we merge all the new nodes created by ∃ inside a fixpoint. We could

think of merging nodes only if they have some other common properties. (For example, if

the numerical domain could record the parity of numbers, we could think of cases where the

parity would also be a criterion for merging.)

We could add some sugared structures like “list” or “tree” and treat them specifically,

or more ambitiously add some mechanisms to build those structures by giving them some

definitions in the existing data structures and the way the analysis will treat them (fold-

ing/unfolding for example).

The major point of interest of the analysis is the way we use auxiliary variables, the way

we added them directly in the definition of our domain and gave them a semantics came

from a previous implementation where we found them useful.

The structure of the implementation with modules is convenient to modify different parts

of the analysis without having to make changes everywhere.

The test of inclusion for any element of our language would be very costly, and in

general, the language was not designed to be a usual abstract domain with all the functions

coming along but was designed to have a precise semantics and to fit the implementation

requirements. So, for example, to implement the test of inclusion, we only implemented

a weak test of inclusion, which is always safe, but precise only when we use it during

the fixpoint computation. (That is, if an auxiliary variable has the same name in the

two arguments, it comes from the same part of the translated formula, that is, we would

be precise for the intersection of x → v1 → Nilt with x → v1 → Top or even with

x → v2 → Top but not with x → v1 → Nilt and y → v1 → Falst which would never

happen in our implementation since we take care about taking fresh variables.)

215

Chapter 5

Comparison with other works

There exist many papers that use concepts similar to ours, but we will focus on two active

lines of work which have been operating for serveral years with many people: “smallfoot”,

the work from London which is the most involved with separation logic, and “TVLA”, a

well established work for analysing storage structure.

5.1 Smallfoot

In this section, we give some comparison with the work from the “East London Massive”,

as they call themselves. They are the major group involved in separation logic.

We will talk about 4 of their articles. The first, “Smallfoot: Modular Automatic As-

sertion Checking with Separation Logic”,20 was published in 2005. This was followed by,

“A local shape analysis based on separation logic”21, which introduced the Space Invader

tool. The two most recent works are “Shape analysis for composite data structures”22 and

“Footprint Analysis: A Shape Analysis that Discovers Preconditions”23.

5.1.1 Smallfoot: Modular Automatic Assertion Checking with

Separation Logic (FMCO’05)

This paper introduced the smallfoot analysis tool, which implements a program checker for

a subset of separation logic.

216

Applications of the tool

Smallfoot is made for checking specifications of programs dealing with pointers, in partic-

ular with lists or trees.

Characteristics/techniques

• The pre and post conditions for procedures and loop invariants must be specified with

the program to check.

• The specification must be written in a subset of separation logic where pure boolean

conditions (Π) are separated from the separation information (Σ).

The syntax of the separation logic subset is

B ::= E = F | E 6= F

Π ::= true | false | B1 ∧ · · · ∧ Bn

H ::= E 7→ (t1 : E1, ..., tn : En) | tree(E) | ls(E, E) | xlseg(E, E, E, E)

Σ ::= emp | H1 ∗ · · · ∧ Hn

P ::= Π ∧ Σ | if B then P else P

A program assertion is a P-phrase.

• The tool includes several built-in recursive predicates (tree, ls and xlseg) but no

mechanism for arbitrary inductive definitions of data structures. For example, tree(x)

asserts that x points to a tree in a heap and xlseg(x, y) asserts that there is a xor-

linked list between x and y.

• The tool does symbolic execution of assertions and generates a set of verification

conditions that must be solved by a theorem prover.

• The tool includes an extension to handle parallelism expressed with conditional critical

regions (CCRs).

Example: We have a procedure, disp tree, which disposes the cells of a binary tree:

217

procedure disp_tree (p) {

i := p -> l;

j := p -> r;

dispose_tree(i);

dispose_tree(j);

dispose(p)

}

If we supply the Hoare triple assumption for the procedure: {tree(p)}disp tree(p){emp},

then smallfoot generates this proof:

[(p 7→ l : x, r : y) ∗ tree(x) ∗ tree(y)]

i := p → l; j := p → r;

[(p 7→ l : i, r : j) ∗ tree(i) ∗ tree(j)]

disp tree(i);

[(p 7→ l : i, r : j) ∗ tree(j)]

disp tree(j);

[(p 7→ l : i, r : j)]

dispose(p);

[emp]

Advantages/drawbacks

Smallfoot is fundamentally a tool for checking, that is, the user has to give the loop invariants

and procedure pre- and post-conditions. For its purpose, the tool is good, since separation

logic is nice for handwriting specifications. But specification checking implies that one

already knows the properties of the program to be checked. It is unclear whether the tool

will scale to large programs, but this is a standard problem of the general technique of

checking.

Finally, the subset of separation logic implemented by smallfoot is not enough for ex-

pressing pre- and post-conditions for arbitrary commands, for example, for while loops or

for when the wlp needs →∗. (But since the tool does checking, the question of the paper is

218

to be able to check formulae from the specified subset and not to be able to express the wlp

and sp for every comand.

Relationship to our work

The smallfoot research is not directly comparable with our work since the goals are different.

Smallfoot is for checking programs and we cannot do that. To do so, we would need some

way to check the implications of the pre- or post-conditions given with the wlp or sp, or we

should write a procedure that checks inclusion of elements of our domain. (We do use such a

procedure when translating fixpoints, but it is an overapproximating procedure). Still, since

the primary goal of our work is to build an intermediate language that allow interactions

between different analyses, we could do this with our tool. Also, the subset of separation

logic used with smallfoot is different from ours since we use any separation logic formula. It

could be interesting to build a specific translation of the formulae from the subset accepted

by smallfoot into our domain.

5.1.2 A local shape analysis based on separation logic (TACAS’06)

This paper presents the “Space invader” tool.

Applications of the tool

The tool is dedicated to doing shape analysis of linked list programs, where Hoare

triples are calculated.

Characteristics/techniques

• As with smallfoot, the space invader tool employs a subset of separation logic

which is the domain of analysis. This subset separates the pure part (Π) and the

spatial part (Σ) of the formula as in smallfoot.

219

The syntax of assertions goes as follows:

Π ::= {} | {E = F} | Π1 ∧ Π2

Σ ::= ∅ | {E 7→ F} | {ls(E, F)} | {junk} | Σ1 ∗ Σ2

P ::= Π, Σ | P1 ∨ P2

Note that syntax of the heap structure is greatly restricted, limited to the three prim-

itive assertion forms:

i E 7→ F (E points to F)

ii ls(E, F) (there is a linear list from E to F)

iii junk (anything at all)

For this reason, space invader can deduce only basic properties of lists.

• The tool does not deal with numericals.

• The analysis uses symbolic execution of assertions but attempts to make an “abstract

domain” of canonical forms of assertions, which are “widened” using rewriting rules.

In the canonisation rules below, P (E, F) stands for E 7→ F or ls(E, F)

Figure 5.1: Table from the article

The laws (Gb1) and (Gb2) lose precision because they remove information about

some variables which correspond to unreachable nodes (garbage). The laws (Abs1)

and (Abs2) make abstraction by ignoring facts that depend on a midpoint in a list

segment, unless it is named by a program variable.

220

The rules are applied to canonicalise post-condition assertions, to ensure termination

of an analysis.

• The tool uses auxiliary variables and must check equalities, in particular when it uses

the rearrangement rule: Π0,Σ0∗P (E,G)
Π0,Σ0∗P (F,G)

Π0 |= E = F , which says that if the pure part

of a formula Π0 implies an expression equality E = F , then the formula implies the

formula where in the spatial part ∗P (E, G) is replaced by ∗P (F, G).

Example: In this reverse-list example, given a linked list as a precondition, the analysis

calculates that the postcondition might be a linked list or a single points-to fact, and the

analysis calculates also the loop invariant. Note that the assertions are disjunctions of pairs

of form (Π, Σ):
Program: p := nil; while (c 6= nil) do (n := c → tl; c → tl := p; p := c; c := n)

Pre: {}, {ls(c, nil)}

Post: {c = nil ∧ c = n ∧ n = nil}, {ls(p, nil)}

∨{c = nil ∧ c = n ∧ n = nil}, {p 7→ nil}

Inv: {p = nil}, {ls(c, nil)}

∨{c = n ∧ n = nil}, {p 7→ nil}

∨{c = n ∧ n = nil}, {ls(p, nil)}

∨{c = n}, {p 7→ nil ∗ ls(n, nil)}

∨{c = n}, {ls(p, nil) ∗ ls(n, nil)}

Advantages/drawbacks

The major deficiency of space invader is the need to check equalities among auxiliary vari-

ables, but the article does not give details on performing that task. We found it interesting

that in our domain, auxiliary variables have a precise semantics and also that we do not

have to check equalities on variables. Another drawback of the approximation used in space

invader is that, for each new data structure, it must employ a new analysis and rules to

perform analysis for loops. Also, the analysis does not allow other abstractions than the

ones for predicates or for considering part of the heap as junk.

221

Relationship to our work

The goal in both cases is to do shape analysis. Beyond this common goal, it is hard to

compare our work to space invader, since space invader is primarily a “list-shape” detector

- only lists can be analysed, no numerical, and for other data structures, there must be

extra predicates defined along with some rules to perform abstraction (folding/unfoldings

for examples) and canonicalization to analyse loops. Still, the idea of using a subset of

separation logic is good.

The use of predicates for the data structures that we know are used in the programs

is a good one. But our approach was to use an general approach for abstraction (with

summary nodes, like in TVLA, for example), and then plug into the analysis some “sugared

structures” and a system of folding/unfolding.

5.1.3 Shape analysis for composite data structures (CAV’07)

The third tool in the series from the East London Massive analyzes programs with doubly-

linked lists.

Applications of the tool

The proposed approach gives a shape analysis for doubly-linked lists but here, some pred-

icates for different data structures can be found by the analysis.

Characteristics/techniques

• The analysis uses symbolic execution with focus and canonicalization steps (like TVLA).

• The analysis uses a “generic higher-order inductive predicate” (ls Λ) which is special-

ized during canonicalization. ls Λ (x, y, z, w) describes a (possibly empty, cyclic or

doubly-) linked list segment where each node in the segment itself is a data structure

described by Λ.

The syntax of assertions goes as follow:

222

E := x | x′ | nil

Π ::= true | E = E | E 6= E | Π ∧ Π

Σ ::= emp | true | Σ ∗ Σ | E 7→ T (~f : ~E) | ls Λ (E, E, E, E)

P ::= Π ∧ Σ

Λ ::= λ[x′, x′, x′, ~x′] · P

Unfortunately, the article does not provide a concrete semantics of the language and

in particular of ls and λ, which makes the approach difficult to understand.

• The analysis depends heavily on a theorem prover.

• The analysis uses heuristics to find predicates because the authors state that the usual

predicates are not enough for real programs.

Because the paper is a proposal and it does not document an implemented tool, there

are no simple examples that we can present that illustrate the synthesis of instances of the

doubly-linked list predicate, ls Λ.

Advantages/drawbacks

Creating predicates seems to be a better approach than asking the user to define all the

predicates.

But the current approach has one big disadvantage: the ls Λ (x, y, z, w) predicate is

complex (and unfortunately, the article does not provide the formal semantics of that pred-

icate) as well as the predicate discovery algorithm, which requires a theorem prover. It

would seem that the approach is not likely to work well with large programs unless a user

gives annotations.

Relationship to our work

In our work, we do not have special predicates (or abstract-data structures like lists) that

would be treated directly by the analysis, but we have summary nodes for abstraction.

223

With our abstract domain, we could not express doubly-linked lists which are not cyclic,

because our separation system of ∗1 and ∗2 does not allow one to say there is no cycle

through paths of “1” and not through paths of “2” while there could be through mixed

paths.

A good improvement in our domain, would be to allow labels for noncycling. This would

require adding1

• a set of labels, Labels

• Fields := {1, 2} (we could also in some version express more field possibilities)

V D := V D1 | Dangling Loc | Loc(P(Fields × Labels) × V D1 × V D1)

(This is used for the syntax of the graph part of our abstract domain, here we replaced

the actual P({∗1, ∗2}) by P(Fields × Labels).)

• R , Labels ⇀Loc ⇀ P(Loc)

(This domain is used in the concrete semantics of our abstract domain to record the

sets of reachable locations from each location.)

• JLoc(A, vd1, vd2), (h, f, r)K8 ,

l ∈ dom(h)

∣

∣

∣

∣

∣

∣

∣

• Π1(h(l)) ∈ Jvd1, (h, f, r)K8

• Π2(h(l)) ∈ Jvd2, (h, f, r)K8

• (f, i) ∈ A ∧ Πf(h(l)) ∈ Loc ⇒ Πf(h(l)) ∈ (r(i))(l)

(It is in this rule that the semantics of ∗i were taken into account in the last bullet,

now we record that a location is reachable by another but for a given label.)

• sem∗ ,

s, h, f, r

∣

∣

∣

∣

∣

∣

∣

∀i ∈ Labels. ∀l ∈ dom(r(i)).

• l 6∈ (r(i))(l)

• ∀l′ ∈ (r(i))(l) ∩ dom(r(i)).

(r(i))(l′) ⊆ (r(i))(l)

(This part of the semantics of our abstract domain which was insuring that there was

no cycle and that reachability is transitive. The new semantics is also the same but it

specifies that those two constraints should be satisfied for any label.)

1if you have a colored version, the changes are written in blue

224

Then we could express uncyclic doubly-linked lists.

5.1.4 Footprint Analysis: A Shape Analysis that Discovers Pre-
conditions (SAS’07)

The final paper we examine concentrates on precondition discovery.

Applications of the tool

The tool is made for finding a procedure’s safety preconditions (they call this “foot-

print analysis”) in separation logic by a forward analysis. The basic idea is: assume the

heap is “empty”; perform a forwards shape analysis on the procedure; each dereference to

the heap adds a cell to the “empty” heap, building a “footprint” that will be necessary for

sound execution of the procedure.

Characteristics/techniques

• Footprint analysis uses the same subset of separation logic, which splits the pure and

spatial parts of the formula into a Π-part and a Σ-part.

The syntax of assertions goes as follow:

E := x | x′ | nil | ...

Π ::= true | E = E ∧ Π | E 6= E ∧ Π

Σ ::= true | emp | E 7→ E | Σ ∗ Σ | lseg(E, E)

H ::= Π ∧ Σ

As before, lseg(E, E ′) denotes a linear list from address E to E ′.

• They do not have assertions with fixpoints.

• They use a theorem prover for proving entailments between symbolic heaps.

The work has a peculiar aspect: it is an imitation of a backward analysis by going for-

wards, so they find a set of safety preconditions but they do an overapproximation analysis.

This means the preconditions are not necessarily safe ! Thus they need to use another

225

forward shape analysis to discover post-conditions and check for errors that might arise if

the calculated precondition is unsound.

Here is their explaination (in23 page 2):

“We say ideally here because there is a complication. In order to stop the

footprint assertion from growing forever it is periodically abstracted. The ab-

straction we use is an overapproximation and, usually in shape analysis, this

leads to incompleteness while maintaining soundness. But, abstracting the foot-

print assertion is tantamount to weakening a precondition, and so for us is a

potentially unsound step. As a result, we also use a post-analysis phase, where

we run a standard forwards shape analysis to filter out the unsafe preconditions

that have been discovered. For each of the safe preconditions, we also generate

a corresponding postcondition.”

Here is an example, taken from their paper:

1: while (c!=0) {

2: t=c;

3: c=c->tl;

4: free(t);

5: }

Discovered Precondition: c == c ∧ lseg(c, 0)

Fig. 1. A program to delete a list and the discovered precondition when run in the start

state, (c == c ∧ emp, emp).

Their analysis returns what is in Fig. 5.2; again, the table is taken from their paper.

Within the table, it is hard to understand what is the “Current Heap”, “Footprint Heap”

and their relationship. My understanding is that the “Current Heap” corresponds to the

post-conditions, and the “Footprint Heap” corresponds to the pre-conditions. When in the

226

Figure 5.2: Return of example for SAS’07

figure it is said “Pre” and “Post”, I interpret that not as a pre-condition and post-condition

but as “Current Heap + Pre = post-condition between line 2 and 3”, “Current Heap + Post

= post-condition between line 3 and 4”, “Footprint Heap + Pre = pre-condition between

line 2 and 3” and “Footprint Heap + Post = pre-condition between line 3 and 4”.

So “Footprint Heap” is an attempt to compute a pre-condition in a forward way which

leads to unsoundness which needs to be checked afterward.

Advantages/drawbacks

Again, using a subset of the logic seems a good idea. On the positive side, the approach

appears to be useful for modular analysis. On the negative side, the generated preconditions

are not expressive enough for realistic applications.

Relationship to our work

This can not be compared to our work since the goals are not common. On the other

hand, the proposed analysis technique can combine to any other forward analysis based on

separation logic, so that’s where our work could be useful and why they cite us in their

paper.

227

5.1.5 Conclusions about smallfoot/space invader

The use of a subset of separation logic, which splits the pure assertion part from the sep-

aration part, is a recent, common approach. I believe it is quite a good approach but it

requires more work during analysis. One important thing that could be noticed is that the

subsets do not use the connective →∗, which is indeed a problem for us in our translation.

I believe the work that we could have done in transforming a formula with →∗ into one free

of that connective, corresponds to the work done in their analysis for staying free of that

connective.

A drawback of their analyses, is that they use theorem provers. It is not clear that the

theorem provers always terminate, and the work sometimes requires the use of heuristics.

But in counterpart, we use heuristics for choosing the way of doing summary nodes, which

affects the precision of our analysis.

Again, our primary goal was to use separation logic as an intermediate language from

different shape analysis, and it seems that this could be usuful for example for combining

it with the work presented in the SAS’07 paper.

5.2 TVLA

In this section, we give some comparisons with the work from TVLA (“Three-valued logical

analyser”) which can be seen in “Parametric Shape Analysis via 3-Valued Logic”, POPL’994

and ”TVLA: A System for Implementing Static Analyses”, SAS’0024.

Applications of the tool

The tool is a framework for shape analysis. It is made to find invariants of the shape of the

storage heap used by a program.

228

Characteristics/techniques

The domain of the analysis, is based on a 3-Valued logic, that is a formula is either true (1),

false (0), or “we don’t know” (1/2).

The domain has some abstract elements (can be seen as nodes of a shape graph), some

predicates, and it associates for each predicate its value (0, 1, 1/2) for any abstract element

(or tuple of elements).

The predicates are either “core-predicates” like in Fig. 5.3 where sm corresponds to

Figure 5.3: TVLA’s core predicates

summary nodes. Or the predicates can be “instrumentation predicates” that can be defined

so to improve the analysis, for example, they could be the ones in Fig. 5.4 .

The instrumentation predicates are formulae which syntax is given in Fig. 5.5 and their

semantics are given by Fig. 5.6 which shows the 3-valued interpretation of the connectives.

In Fig. 5.7 is a program for list reversal and an example of the analysis for the core

predicates for this program is in Fig. 5.8. The program uses three variables, x, y and n.

The core predicates are x(v), z(v), n(v), and sm(v). Fig. 5.8 shows how each statement,

st, updates the 3-valued interpretation of each core predicate.

Abstraction in TVLA comes from the 3-valued semantics but also from the core predicate

sm which says if an abstract element can represent several concrete elements or not. Those

are the summary nodes. (This is what inspired us to talk also of summary nodes.)

The user has to define the instrumentation predicates that describe shape properties of

229

Figure 5.4: some TVLA’s instrumentation predicates

Figure 5.5: TVLA’s formula syntax

230

Figure 5.6: TVLA’s formula semantics

the memory and provide the transfer function which describes how the command transforms

the value of those predicates. These must be defined in the same style as seen in Fig. 5.8.

In the case of loops, the user must choose which predicates are relevant or not, then if

two abstract elements have the same value for all relevant predicates, they are merged to a

summary node.

You can see the example with a graphical representation in Fig. 5.9. In fact, the domain

used in TVLA is not “one graph” but a set of graphs. To improve precision, the analysis

can apply a function called “focus” such that if a predicate has a value “1/2” for some

231

Figure 5.7: TVLA’s list-reversal program

abstract element, it will be split into several structures for each case that correspond. (In

some works this is called “specialization”.) In particular, a summary node splits into several

nodes. The analysis also has a “coerce” algorithm which sharpens the structures using some

compatibility constraints.

Advantages/drawbacks

The main advantage to TVLA is that the user can create new instrumentation predicates,

write the transfer functions, choose which predicates are relevant, and then use the already

implemented tool.

The drawbacks are

• the analysis is not compositional

• the user must know in advance the kind of properties he wants to find, and he should

know the type of data structures involved in the program

232

Figure 5.8: TVLA’s list-reversal result of analysis

• there is no extra assistance for analyzing loops; the user just chooses the relevant

predicates

• the tool does not deal with numerical information

233

Figure 5.9: TVLA’s example

Relationship to our work

Both TVLA and our tool are for making shape analysis. Our work was designed primarily

to make an interface between separation logic and other domains for shape analysis, and in

particular with TVLA. So, the basic shape graphs of TVLA are quite similar to ours.

When we have a single arrow from an element in our graph, we can see it as a “1” in the

3-valued domain, while when we do not have an arrow from an element, we can see it as a

“0”, then when we have two arrows from an element, we can be see them as “1/2” but in

addition, we know that at least one exists. We would think that in TVLA, to obtain similar

information, we would need to add a specific predicate which would be an ∨.

I can not say if adding more complicated structures to our domain, like some sugared

syntax for lists and then some system for treating them in the stabilization differently (like

234

for example with folding or unfolding), would be more or less work than adding a new

predicate for TVLA and writting the transfer functions.

It might be interesting to perform some kind of TVLA-based analysis where the original

logic would have separation connectives (or just E 7→ F , ls(E, F) and junk).

5.3 others

• Rinard in “Compositional Pointer and Escape Analysis for Java Programs”25 and

“Incrementalized Pointer and Escape Analysis”26 build precondition graphs like the

one in footprint analysis.

• Yang & al. in ”Automatic Verification of Pointer Programs Using Grammar-Based

Shape Analysis”17 use grammars to add recursivity to separation logic.

• Rival & al. in ”Shape Analysis with Structural Invariant Checkers”27 are using induc-

tive predicates with a separation connective and with a system of folding/unfolding.

• Magill & al. in ”Inferring Invariants in Separation Logic for Imperative List-processing

Programs”28 are doing similar work as smallfoot but they deal with numericals.

• There were attempts to do pointer analysis (alias analysis) using languages from

Deutsch29 or more recently “Storeless Semantics and Alias Logic”30.

• Salcianu, Andersen, Steensgaard, Heintze, Tzolovski, Foster Aiken, Ryder Landi,

Emilianov, Jonkers, MOller, Reddy,...

5.4 Conclusion

We finish this chapter with some perspectives on key aspects of the tools we have surveyed.

235

5.4.1 Modularity

A major attraction of separation logic is its support of modular reasoning — a property

about a command can be proved with only that part of the heap used by the command,

and the result is preserved when the command is used with a heap larger than the one used

in the proof. This concept is supported by the frame rule seen in Fig. 5.10

{φ1}C{φ2}

{φ1 ∗ φ′}C{φ2 ∗ φ′}
where φ′’s variables are not modified by C

Figure 5.10: Frame rule

The frame rule supports modular reasoning in that, when distinct properties are proved

of commands that use disjoint parts of the heap, the commands and their properties can be

composed without interference.

When we examine each of the tools that implement subsets of separation logic, we see

that the frame rule is used implicitly by the theorem provers. It is usually done by pattern

matching, but the details of the theorem provers are not clear. Also, doing pattern matching

implies the need for a subset of the logic which helps the use of heuristics.

Other systems, like TVLA, work with a global heap and do not employ modular reasoning

in any explicit way. For example, “when one updates a single abstract heap cell this may

require also the updating of properties assiociated with all other cells. Furthermore, each

update of another cell might itself depend on the whole heap.”21.

In our own work, we do not concern ourselves with an explicit or implicit representation

of the frame rule because we do not work with inference-rules for high-level commands.

5.4.2 Expressibility of heap logic

Each of the systems presented in this chapter uses its own subset of separation logic (or, in

TVLA’s case, a subset of three-valued predicate logic selected by the user). Some subsets

are chosen because the formulae have a convenient presentation or allow useful heuristics in

the system’s implementation. In particular, if you separate the boolean conditions from the

236

separation information, applying certains rules are easier, in particular, for pattern-matching

in the theorem provers.

A disadvantage of using a subset logic is loss of expressibility. For example, none of

the subsets of separation logic implemented in the tools from O’Hearn’s group can express

weakest liberal preconditions or strongest postconditions of commands in a while-loop lan-

guage. Or, the subsets selected are so limited in expressibility that when a tool calculates a

postcondition, the postcondition formula falls outside the subset, and an information losing

abstraction is needed to bring the formula back into the subset logic. Theorem provers are

typically used to do this.

5.4.3 Folding/unfolding

All of the systems use unfolding and folding to operate on recursively defined data types.

Since linear-list and tree types are recursively defined, this means the interpretation of

recursion is crucial to the correctness of the tool.

Many times this interpretation is hidden within the semantics of unfold/fold, which can

cause confusion.

Within our system, the semantics of recursive formulae (types) is precisely defined, and

there are precise, sound laws for manipulating the formulae. It would be interesting to

extend our system with “built-in” instances (like list, tree, etc.) that employ unfolding

and folding while computing the accelerations. This extension would be precise and sound

because it is built on top of a precise semantics.

The drawback of this system is that it asks the user to already know the kind of data

structures used in the program, and it might be nicer to have some general “heuristics” used

for acceleration instead of asking someone to know the data structure (that is, finding some

“general pattern” of folding/unfolding which is common to lists and trees instead of having

to define those data structures.

The work on grammars in17 for example is in some way an attempt to generalise this.

237

5.4.4 Theorem provers

Most of the systems described in this section rely crucially on theorem provers to solve

subgoals and do simplification. The theorem prover is typically treated as a “black box,”

and the success of the overall system in calculating a result can depend on the power of the

theorem prover connected to it. In some cases, this affects the utility of the tool.

Related to this is the choice of abstraction of the formulae; the abstraction can be stated

“manually”, as in TVLA, where the user selects the primitive predicates used within the

three-valued predicate logic, or automatically, as in the systems that define a subset logic,

where the abstraction is “built in” through the recursive predicates.

The major problem of using theorem provers is that they do not insure termination.

5.4.5 Auxiliary variables

A standard difficulty with analysis tools, like the ones presented in this chapter, is the

treatment of auxiliary variables.

In most published papers, the auxiliary variables (like ours) are not presented in depth in

the paper. But they must exist in some way when variable equality is checked (for example,

in the rearrangement rules in20) or when entailments are proved between symbolic heaps

(for example, in23). The matter of the semantics of auxiliary variables is often postponed

to an “implementation problem”.

In contrast, our system has a precise semantics for auxiliary variables which allow us to

prove operations that can be directly implemented.

5.4.6 Analysis versus verification

Although all the tools presented in this chapter are meant to help one verify a correctness

property of a program, almost all do an analysis of the heap that one must use to build a

correctness proof.

For smallfoot, the paper from FMCO’05 checks whether Hoare triples are correct. The

238

SAS’07 paper finds pre-conditions that might be unsound, and the TACAS’06 paper does

shape analysis by finding overapproximations of post-conditions from a given pre-state. So,

in those 3 papers, the safety of a program is not insured.

TVLA only finds shapes, but does not insure safety of the program. One might encode

a safety property as an instrumentation predicate.

Our work is also not meant to prove safety of a program. If we combine the computation

of the wlp or sp and the translation to our abstract domain, we have a shape analysis but

usually not verification. We can sometimes say that a program has no error if we compute

the safety precondition formula (wlp(true, C)) and then translate it to our abstract domain

and find that the formula is true. We can find that a program has for sure an error (or does

not terminate), if we compute the sp(wlp(true, C), C) and then translate it to our abstract

domain and find that the formula is false.

5.4.7 What is distinctive about our system

Our work was primarily designed to use separation logic as an interface between different

analyses. That is, a function could be characterized by formulae in separation logic, and this

information would be plugged into another analysis of a program which would make calls

to that function. So, our abstract domain takes ideas from the existing ones (in particular,

summary nodes).

The current work on separation logic often takes the path of choosing a subset of the

logic, adding some specific recursive predicates (list, tree, etc.), and computing the pre-

or post-conditions by making fixpoint computation with some folding/unfolding system. In

contrast, we added fixpoints to the logic itself, so there is no work to find pre- or post-

conditions in all cases. But the work of finding pre-/post-conditions which falls within

separation logic subsets is, I believe, equivalent to the efforts we make when we compute the

abstract value in our domain from a formula and we want it to be precise. We can improve

the precision of a translation if we rewrite the formula. The major advantage of our system

239

would be that we can do some abstraction which does not depend on knowledge about the

data structure involved.

240

Chapter 6

Conclusion

If we may summarize the main accomplishments of the thesis, these would be:

• adding fixpoints to separation logic, which provides a way to express recursive for-

mulae, expressing preconditions for while-loops, and expressing all post-conditions,

letting us prove useful properties about the extended logic

• giving a precise semantics of the abstract domain of separation formulae in terms of

sets of memory

• designing the abstract language as a partially reduced product of subdomains

• giving a semantics to auxiliary variables and not leaving this as an implementation

design question

• combining the domain’s heap analysis with a numerical domain which could be chosen

from existing ones (e.g. polyhedra, octogons)

• designing the novel tabular data structure which allows extra precision by using a

graph of sets instead of sets of graphs

The primary work to continue this thesis would be to finish the prototype implementa-

tion, to continue profiling studies with standard example programs, and to experiment with

strategies for building summary nodes.

241

The major improvement to the abstract language would be the addition of labels that

mark which information is overapproximate and which is not, instead of having the entire

graph and the entire answer being or not an overapproximation.

Most static analyses do predicate abstraction, or analysis that requires one to know in

advance which data structures the program deals with. We believe it is a great advantage

to have the approximations for translating fixpoints as we do, and building summary nodes

whose strategy can be changed to gain precision; but indeed, there are many programs

for which we know that they deal with lists, trees or other data structures, and it is also

advantageous if the analysis can incorporate that information. So in our work, it would be

nice to include the possibility of adding “sugared structures”, with probably the usual rules

for folding/unfolding, so that we would first try to apply those rules to keep those “sugared

structures” in the result, instead of using their equivalent in our abstract language, but still

enable the analysis to give information and termination without relying on the “sugared

structure”.

The way we allow separation information with ∗1 and ∗2 is still quite primitive since we

have only one family of edges among which cycles are forbidden. We could think to add

some labels to those ∗1 and ∗2 to have families of uncycling edges.

It would also be fun to design an analysis of programs directly in our abstract language.

But since the pre- and post-conditions characterise the program with no abstraction, it

would not directly bring something new. But as we noted earlier, with formula, we can gain

precision when we distinguish several subcases of a same connective, so there might be some

possibility to gain precision if we wrote the analysis directly on the program.

Sagiv’s TVLA project is quite fashionable at this point in time, even though it does not

scale well. One project, which might just be exploring a dead-end but could be fun, would

be to add separation connectives to the current logic used by TVLA.

If we try to be objective and optimistic, we would like to think that the way we built

the semantics of the abstraction language and in particular the semantics for the auxiliary

242

variables (which was quite complicated to match all the properties we wanted, in particular

in proofs of the translations) could give ideas to people who would do the same. We also

believe the way we used the new tabular data structure to cope with the imprecision from

not having sets of graphs might be useful in other forms of program analysis.

243

Bibliography

[1] P. Cousot., Méthodes itératives de construction et d’approximation de points fixes

d’opérateurs monotones sur un treillis, analyse sémantique de programmes., Université

scientifique et médicale de Grenoble, Grenoble, France.

[2] P. Cousot and R. Cousot, Abstract interpretation: a unified lattice model for static

analysis of programs by construction or approximation of fixpoints, in Conference

Record of the Fourth Annual ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, pages 238–252, Los Angeles, California, 1977, ACM Press,

New York, NY.

[3] P. Cousot and R. Cousot, Systematic design of program analysis frameworks, in

POPL’79, pages 269–282, San Antonio, Texas, 1979, ACM Press, New York, NY.

[4] M. Sagiv, T. Reps, and R. Wilhelm., Parametric shape analysis via 3-valued logic, in

POPL’99, 1999.

[5] P. Lam, V. Kuncak, and M. Rinard, Generalized typestate checking for data struc-

ture consistency, in 6th International Conference on Verification, Model Checking and

Abstract Interpretation, 2005.

[6] J. C. Reynolds, Separation logic : A logic for shared mutable data structures, in

LICS’02, pages 55–74, Denmark, 2002, IEEE Computer Society.

[7] C. A. R. Hoare, Comm. ACM 12, 576 (1969).

[8] E. W. Dijkstra, A Discipline of Programming, Prentice Halll, Englewood Cliffs, NJ,

1976.

244

[9] J. C. Reynolds, Syntactic control of interference, in POPL’78, pages 39–46, ACM

Press, New York, NY, 1978.

[10] S. Ishtiaq and P. O’Hearn, BI as an assertion language for mutable data structures, in

POPL’01, pages 14–26, 2001.

[11] H. Yang and P. O’Hearn, A semantic basis for local reasoning, in FoSSaCS’02, Lecture

Notes in Computer Science, pages 402–416, Springer, 2002.

[12] E. Moggi, Information and Computation 93, 55 (1991).

[13] É.-J. Sims, Extending separation logic with fixpoints and postponed substitution., in

AMAST, edited by C. Rattray, S. Maharaj, and C. Shankland, volume 3116 of Lecture

Notes in Computer Science, pages 475–490, Springer, 2004.

[14] É.-J. Sims, Theoretical Computer Science 351, 258 (2006).

[15] J. W. de Bakker, Mathematical Theory of Program Correctness, Prentice Hall, Engle-

wood Cliffs, NJ, 1980.

[16] H. Y. P. O’Hearn and J. Reynolds, Syntactic control of interference, in POPL’04, Italy,

2004, ACM Press, New York, NY.

[17] H. Y. O. Lee and K. Yi, Automatic verification of pointer programs using grammar-

based shape analysis, in ESOP’05, Edinburgh, 2005.

[18] L. B. Bodil Biering and N. Torp-Smith, Bi hyperdoctrines and separation logic, in

ESOP’05, Edinburgh, 2005.

[19] A. Miné, A new numerical abstract domain based on difference-bound matrices, in

PADO II, volume 2053 of LNCS, pages 155–172, Springer-Verlag, 2001.

[20] C. C. J Berdine and P. O’Hearn, Smallfoot: Modular automatic assertion checking

with separation logic, in FMCO’05, 2005.

245

[21] P. O. D Distefano and H. Yang, A local shape analysis based on separation logic, in

TACAS’06, 2006.

[22] B. C. . a. J Berdine, C. Calcagno, Shape analysis for composite data structures, in

CAV’07, 2007.

[23] P. O. C Calcagno, D Distefano and H. Yang, Footprint analysis: A shape analysis that

discovers preconditions, in SAS’07, 2007.

[24] T. Lev-Ami and M. Sagiv, Tvla: A system for implementing static analyses, in SAS’00,

2000.

[25] J. Whaley and M. Rinard, Compositional pointer and escape analysis for java programs,

in Proceedings of the 14th Annual ACM SIGPLAN Conference on Object-Oriented Pro-

gramming Systems, Languages, and Applications, Denver, CO, 1999.

[26] F. Vivien and M. Rinard, Incrementalized pointer and escape analysis, in Proceedings

of the SIGPLAN ’01 Conference on Program Language Design and Implementation,

Snowbird, Utah, 2001.

[27] X. R. B. Chang and G. Necula, Shape analysis with structural invariant checkers, in

SAS’07, 2007.

[28] E. C. S. Magill, A. Nanevski and P. Lee, Inferring invariants in separation logic for

imperative list-processing programs, in SPACE’06, 2006.

[29] A. Deutsch, A storeless model of aliasing and its abstractions using finite represen-

tations of right-regular equivalence relations, in Conference on Computer Languages,

1992.

[30] R. I. M. Bozga and Y. Lakhnech, Storeless semantics and alias logic, in Workshop on

Partial Evaluation and Semantics Based Program Manipulation, 2003.

246

Appendix A

Junk: ast algorithm

The algorithm works with 7 sets

• g0: set of pairs (x, S) ∈ V ar × PV D+ such that ar0(x) = S and S 6= ⊤, that is

s(x) ⊆
⋃

vd∈S

Jvd, (h0, f0, r0)K8

• G0: set of pairs (α, S) ∈ TV ar × PV D+ such that ar0(x) = S and S 6=�, that is

f(α) ⊆
⋃

vd∈S

Jvd, (h0, f0, r0)K8

• g1: set of pairs (x, S) ∈ V ar × PV D+ such that ar1(x) = S and S 6= ⊤ , that is

s(x) ⊆
⋃

vd∈S

Jvd, (h1, f1, r1)K8

• G1: set of pairs (α, S) ∈ TV ar × PV D+ such that ar1(x) = S and S 6=�, that is

f(α) ⊆
⋃

vd∈S

Jvd, (h1, f1, r1)K8

• g01: set of pairs (x, S) ∈ V ar × PV D+ such that s, h, f1
˙̇∪ f2, r0∪̇r1 ∈ Jx, SK5

• G01: set of pairs (α, S) ∈ TV ar × PV D+ such that s, h, f1
˙̇∪ f2, r0∪̇r1 ∈ Jα, SK5

• equal: set of pairs such that

– ∀(vd0, vd1) ∈ eq′. vd0 ∈ TV ar ⇒ f(vd0) ∈ Jvd1, (s, h, f, r)K8

– ∀(vd0, vd1) ∈ eq′. vd1 ∈ TV ar ⇒ f(vd1) ∈ Jvd0, (s, h, f, r)K8

247

(remark, for g0 and g1, S can never be � by domain counstraints, by default, S is ⊤ for

variables in V ar and � for those in TV ar)

The algorithm has 3 steps:

1. we built G01 roughly by just pasting the two graphs G0 and G1 together

2. we build g01 and update the ast information coming from the combination of g0 and

g1, the equalities coming from it are postponed for the next step and registed in equal

3. we resolve the equalities in equal

We have ast(ar0, ar1) is such that

• ∀v ∈ V AR. if (v, S) ∈ g01 ∪ G01 then ast(ar0, ar1)(v) = S

• ∀x ∈ V ar if ¬∃S. (x, S) ∈ g01 then ast(ar0, ar1)(x) = ⊤

• ∀α ∈ TV ar if ¬∃S. (α, S) ∈ G01 then

– if α 6∈ used(ar0) ∪ used(ar1) then ast(ar0, ar1)(α) =�

– if α ∈ used(ar0) ∪ used(ar1) then ast(ar0, ar1)(α) = ⊤

We will define some rules to modify the tuples of the 7 sets and we will prove that those

rules keep the properties satisfied by the sets.

We will have some rule such which will answer Ω, wich means that ast(ar0, ar1) does

not exists, this means it was not possible that we had all the hypothesis at the same time.

We make the proofs for unobvious rules.

We will always have ∀v ∈ V AR.∀S1, S2. ((v, S1) ∈ g01 ∪ G01 ∧ (v, S2) ∈ g01 ∪ G01) ⇒

(S1 = S2). We do not write the proof, it is at the begining and it is obvious that all rules

conserve this property.

248

STEP 1 : Initialization of G01

We present the case of G0, it is the same for G1

1. For all α such that

• (α, S) ∈ G0

• Dangling Loc ∈ S

then update

• G01 to G01 ∪ {(α, S ∪ {Loct})}

2. For all α such that

• (α, S) ∈ G0

• Dangling Loc 6∈ S

then update

• G01 to G01 ∪ {(α, S}

Proof. Tobeprecised As for the cases of g0, because of the auxiliary variables constraints

we took it is ok when we have auxiliary variables. For the case with Dangling Loc, this

comes because if α can be dangling in h0, then it is for sure a location but might not be

dangling in h. 2

THIS PART COULD BE REWRITEN SAYING THAT WE SET

G01 =
⋃

α∈dom(G0)∪dom(G1)

(α, basic ast(G0(α), G1(α)) with extending G0(α) = ⊤ if α ∈ dom(G1)\

dom(G0) (and the same for G1).

249

STEP 2 : Elimination of g0 and g1, creation of g01, update of G01, creation of
equal

We repeat the procedure until g0 and g1 are empty.

Let (v0, vd0) be reach2(g0, G0, x) and (v1, vd1) be reach2(g1, G1, x).

1. if vd0 = ∅ or vd1 = ∅ then Ω.

(just remember that if x was not in the stack, it should have assigned Oodt, the empty

set is satified by nothing)

2. If vd0 and vd1 are not pairs and ∀α ∈ TV ar. α 6∈ vd0 ∧ α 6∈ vd1 then

(cases with no cycle and no summary nodes)

(a) if basic ast(vd0, vd1) = Ω then Ω

(b) if basic ast(vd0, vd1) 6= Ω then

i. if v0 = v1 = x then update

• g0 to g0 \ {(x, {vd0})}

• g1 to g1 \ {(x, {vd1})}

• g01 to g01 ∪ {(x, basic ast(vd0, vd1))}

ii. if v0 = x and v1 ∈ TV ar then let vd01 be such that (v1, vd01) ∈ G01

• g0 to g0 \ {(x, {vd0})}

• g1 to g1 \ {(x, {vd1})}

• g01 to g01 ∪ {(x, g1(x))}

• G01 to G01\{v1, vd01}∪{v1, basic equal(basic ast(vd0, vd1), vd01, equal)}

iii. if v0 ∈ TV ar and v1 = x then let vd01 be such that (v0, vd01) ∈ G01

• g0 to g0 \ {(x, {vd0})}

• g1 to g1 \ {(x, {vd1})}

• g01 to g01 ∪ {(x, g0(x))}

250

• G01 to G01\{v0, vd01}∪{v0, basic equal(basic ast(vd0, vd1), vd01, equal)}

iv. if v0, v1 ∈ TV ar then let vd0
01 be such that (v0, vd0

01) ∈ G01 let vd1
01 be such

that (v1, vd1
01) ∈ G01

• g0 to g0 \ {(x, {vd0})}

• g1 to g1 \ {(x, {vd1})}

• g01 to g01 ∪ {(x, g0(x))}

• G01 to G01\{v0, vd0
01}\{v1, vd1

01}∪{v0, basic equal(basic ast(vd0, vd1), vd0
01, equal)}∪

{v1, basic equal(basic ast(vd0, vd1), vd1
01, equal)}

• equal to equal ∪ {(v0, v1)}

3. (Cases with cycles)

(a) If ∃α, α′ ∈ TV ar. vd0 = (α, α′) and ∃β, β ′ ∈ TV ar. vd1 = (β, β ′) then an

implementation would make something more precise here to keep a cycle, but we

don’t write it here and go to the following cases

(b) If ∃α, α′ ∈ TV ar. vd0 = (α, α′) then

• if (α′, v0) ∈ G01 then update G01 to G01 \ {(α
′, v0)}

• update G0 to G0 \ {(α
′, v0)}

(c) If ∃α, α′ ∈ TV ar. vd1 = (α, α′) then

• if (α′, v1) ∈ G01 then update G01 to G01 \ {(α
′, v1)}

• update G0 to G0 \ {(α
′, v1)}

4. In case of summary node, use the rule defined in Sect. 2b.

STEP 3 : elimination of equal, update of G01

We repeat the procedure until equal is empty.

By construction equal ⊆ P(TV ar × V D1) ∪ P(V D1 × TV ar). (equal is updated in

STEP 2 when applying basic equal which updates it only when encoutering two Loc(...)

and also in STEP 2 rule 2.b.iv).

251

1. (vd, vd) ∈ equal then update equal to equal \ {(vd, vd)}

2. cases with one variable and one not variable

• if

– (α0, vd1) ∈ equal with α0 ∈ TV ar, vd1 6∈ TV ar

– (β0, vd0) = reach(G01, α0)

– vd0 6∈ sn, vd0 not a pair

– basic equal(vd0, vd1, equal) = (vd01, eq
′) 6= Ω

then update

– equal to eq′ \ {(α0, vd1)}

– G01 to G01 \ {(β0, vd0)} ∪ {(β0, vd01)}

• if

– (α0, vd1) ∈ equal with α0 ∈ TV ar, vd1 6∈ TV ar

– (β0, vd0) = reach(G01, α0)

– vd0 6∈ sn, vd0 not a pair

– basic equal(vd0, vd1, equal) = Ω

then Ω

• if

– (α0, vd1) ∈ equal with α0 ∈ TV ar, vd1 6∈ TV ar

– (β0, vd0) = reach(G01, α0)

– vd0 ∈ sn

then use the rule defined in Sect. 2b.

• if

– (α0, vd1) ∈ equal with α0 ∈ TV ar, vd1 6∈ TV ar

252

– (β0, (vd0, vd′
0)) = reach(G01, α0)

then update

– equal to eq′ \ {(α0, vd1)}

– G01 to G01 \ {(vd′
0, β0)} ∪ {(vd′

0, vd1)}

• if (vd0, α1) ∈ equal with vd0 6∈ TV ar, α1 ∈ TV ar

similar to previous cases

3. Cases with two variables, if (α0, α1) ∈ equal with α0, α1 ∈ TV ar

Let (v0, vd0) be reach(G01, α0) and (v1, vd1) be reach(G01, α1).

• if vd0 ∈ sn01 or vd1 ∈ sn01 then use the rule defined in Sect. 2b.

• if vd0 = (vd′
0, vd′′

0) and vd1 = (vd′
1, vd′′

1) then

– G01 to G01 \ {(vd′′
0, {v0}), (vd1, {vd′

1})} ∪ {(vd′′
0, {vd′

1}), (vd1, {vd0})}

– equal to equal \ {(α0, α1)}

• if vd0 = (vd′
0, vd′′

0) then G01 to G01 \ {(vd′′
0, {v0})} ∪ {(vd′′

0,⊤)}

• if vd1 = (vd′
1, vd′′

1) then G01 to G01 \ {(vd′′
1, {v1})} ∪ {(vd′′

1,⊤)}

• if vd0, vd1 are not pairs and 6∈ sn01 (i.e. 6∈ TV ar) then

– if basic equal({vd0}, {vd1}, equal) = Ω then Ω

– if basic equal({vd0}, {vd1}, equal) = (vd01, eq
′) then update

∗ G01 to G01 \ {(v0, {vd0}), (v1, {vd1})} ∪ {(v0, {v1}), (v1, vd01)}

∗ equal to eq′ \ {(α0, α1)}

253

Appendix B

Intersection

Recall ar⊤ , (ad top, ∅, full, TV ar, TV ar, t top)

inter : (AR × AR) → AR

1. inter(ar⊤, ar2) , ar2

2. inter(ar1, ar⊤) , ar1

3. inter

(

(ad1, hu1, ho1, sn1, sn
∞
1 , t1),

(ad2, hu2, ho2, sn2, sn
∞
2 , t2)

)

, inter

(

(ad1, ∅, ho1, sn1, sn
∞
1 , t1),

(ad2, hu1 ∪ hu2, ho2, sn2, sn
∞
2 , t2)

)

4. inter

(

([ad1 | v → S], hu1, ho1, sn1, sn
∞
1 , t1),

([ad2 | v → ⊤], hu2, ho2, sn2, sn
∞
2 , t2)

)

, inter

(

([ad1 | v → ⊤], hu1, ho1, sn1, sn
∞
1 , t1),

([ad2 | v → S], hu2, ho2, sn2, sn
∞
2 , t2)

)

5. inter

(

([ad1 | α →�], hu1, ho1, sn1, sn
∞
1 , t1),

(ad2, hu2, ho2, sn2, sn
∞
2 , t2)

)

, inter

(

([ad1 | α → ⊤], hu1, ho1, sn1, sn
∞
1 , t1),

(ad2, hu2, ho2, sn2, sn
∞
2 , t2)

)

6. inter

(

(ad1, hu1, ho1, sn1, sn
∞
1 , t1),

([ad2 | α →�], hu2, ho2, sn2, sn
∞
2 , t2)

)

, inter

(

([ad1 | α → ⊤], hu1, ho1, sn1, sn
∞
1 , t1),

([ad2 | α → ad1(α)], hu2, ho2, sn2, sn
∞
2 , t2)

254

Appendix C

Intersection proof

Proposition 3.27. ∀ar1, ar2 ∈ AR. Jar1K′
∩ Jar2K′

⊆ Jinter(ar1, ar2)K′

Prop. 3.27. We do the proof by recursion on the difference between ar1 and ar⊤ (in other

words we do the proof for each rule). Recall that ar⊤ , (ad⊤, ∅, full, TV ar, TV ar, t⊤,⊤D)

We note ⊓ the polymophique definition of inter.

We suppose that we have an total order < on the variables such that ∀α, β ∈ V AR. α <

β ∨ β < α ∨ α = β) and ∃α ∈ V AR. ∀β ∈ V AR.α < β.

We suppose that the number of differences in ad1 and ad2 is finite.

1. Jar⊤⊓ar2K
′
, Jar2K

′
= Jar⊤K′

∩ Jar2K
′

2. Jar1⊓ar⊤K′
, Jar1K

′
= Jar1K

′
∩ Jar⊤K′

3.

J(ad1, hu1, ho1, sn1, sn
∞
1 , t1, d1)⊓(ad2, hu2, ho2, sn2, sn

∞
2 , t2, d2)K′

, J(ad1⊓ad2, hu1⊓hu2, ho1⊓ho2, sn1⊓sn2, sn
∞
1 ⊓sn∞

2 , t1⊓t2, d1⊓d2)K
′

= Jad1⊓ad2K4 ∩ Jhu1⊓hu2K1 ∩ Jho1⊓ho2K1′ ∩ Jsn1⊓sn2K2 ∩ Jsn∞
1 ⊓sn∞

2 K2′

∩Jt1⊓t2K3 ∩ Jd1⊓d2K7 ∩ sem∗

⊇ Jad1K4 ∩ Jad2K4 ∩ Jhu1K1 ∩ Jhu2K1 ∩ Jho1K1′ ∩ Jho2K1′ ∩ Jsn1K2 ∩ Jsn2K2

∩Jsn∞
1 K2′ ∩ Jsn∞

2 K2′ ∩ Jt1K3 ∩ Jt2K3 ∩ Jd1K7 ∩ Jd2K7 ∩ sem∗

= J(ad1, hu1, ho1, sn1, sn
∞
1 , t1, d1)K′

∩ J(ad2, hu2, ho2, sn2, sn
∞
2 , t2, d2)K′

255

4.

Jhu1⊓hu2K1

, Jhu1 ∪ hu2K1

=
⋂

α∈hu1∪hu2

{s, h, f, r | f(α) ∩ dom(h) 6= ∅}

=
⋂

α∈hu1

{s, h, f, r | f(α) ∩ dom(h) 6= ∅} ∩
⋂

α∈hu2

{s, h, f, r | f(α) ∩ dom(h) 6= ∅}

= Jhu1K1 ∩ Jhu2K1

5.

Jho1⊓fullK1′

, Jho1K1′

= Jho1K1′ ∩ JfullK1′

6.

Jfull⊓ho2K1′

, Jho2K1′

= JfullK1′ ∩ Jho2K1′

7.

Jho1⊓ho2K1′

, Jho2K1′

= {s, h, f, r | dom(h) ⊆
⋃

α∈ho2

f(α)}

⊇ {s, h, f, r | dom(h) ⊆ (
⋃

α∈ho1

f(α)) ∩ (
⋃

α∈ho2

f(α))}

= {s, h, f, r | dom(h) ⊆
⋃

α∈ho1

f(α)} ∩ {s, h, f, r | dom(h) ⊆
⋃

α∈ho2

f(α)}

= Jho1K1′ ∩ Jho2K1′

Notice that this approximation is a choice, we could chose also ho1⊓ho2 , ho1.

8.

Jad⊓adK4

, JadK4

= JadK4 ∩ JadK4

9.

[

Jad1⊓ad2K4

, gfpJad1⊓ad2K4

10.

J[ad1 | v →�]⊓[ad2 | v → S]K4

, J[ad1 | v → S]⊓[ad2 | v → S]K4

= J[ad1 | v → S]K4 ∩ J[ad2 | v → S]K4 by rec.

=
⋂

v′ 6=v

Jv′, ad1(v
′)K5 ∩ Jv, SK5 ∩

⋂

v′ 6=v

Jv′, ad2(v
′)K5

⊇
⋂

v′ 6=v

Jv′, ad1(v
′)K5 ∩ Jv, �K5 ∩ Jv, SK5 ∩

⋂

v′ 6=v

Jv′, ad2(v
′)K5

= J[ad1 | v →�]K4 ∩ J[ad2 | v → S]K4

256

11.

J[ad1 | v → S]⊓[ad2 | v →�]K4

, J[ad1 | v → S]⊓[ad2 | v → S]K4

= J[ad1 | v → S]K4 ∩ J[ad2 | v → S]K4 by rec.

=
⋂

v′ 6=v

Jv′, ad1(v
′)K5 ∩ Jv, SK5 ∩

⋂

v′ 6=v

Jv′, ad2(v
′)K5

⊇
⋂

v′ 6=v

Jv′, ad1(v
′)K5 ∩ Jv, SK5 ∩ Jv, �K5 ∩

⋂

v′ 6=v

Jv′, ad2(v
′)K5

= J[ad1 | v → S]K4 ∩ J[ad2 | v →�]K4

12.

J[ad1 | v → ⊤]⊓[ad2 | v → S]K4

, J[ad1 | v → S]⊓[ad2 | v → S]K4

= J[ad1 | v → S]K4 ∩ J[ad2 | v → S]K4 by rec.

=
⋂

v′ 6=v

Jv′, ad1(v
′)K5 ∩ Jv, SK5 ∩

⋂

v′ 6=v

Jv′, ad2(v
′)K5

= J[ad1 | v → ⊤]K4 ∩ J[ad2 | v → S]K4

13.

J[ad1 | v → S]⊓[ad2 | v → ⊤]K4

, J[ad1 | v → S]⊓[ad2 | v → S]K4

= J[ad1 | v → S]K4 ∩ J[ad2 | v → S]K4 by rec.

=
⋂

v′ 6=v

Jv′, ad1(v
′)K5 ∩ Jv, SK5 ∩

⋂

v′ 6=v

Jv′, ad2(v
′)K5

= J[ad1 | v → S]K4 ∩ J[ad2 | v → ⊤]K4

14. when S1, S2 6= ⊤, � and S1 ⊆ S2

J[ad1 | v → S1]⊓[ad2 | v → S2]K4

, J[ad1 | v → S1]⊓[ad2 | v → S1]K4

= J[ad1 | v → S1]K4 ∩ J[ad2 | v → S1]K4 by rec.

=
⋂

v′ 6=v

Jv′, ad1(v
′)K5 ∩ Jv, S1K5 ∩

⋂

v′ 6=v

Jv′, ad2(v
′)K5

=
⋂

v′ 6=v

Jv′, ad1(v
′)K5 ∩

⋂

v′ 6=v

Jv′, ad2(v
′)K5

∩

{

s, h, f, r | s+f(v) ⊆
⋃

vd∈S1

Jvd, (h, f, r)K8

}

=
⋂

v′ 6=v

Jv′, ad1(v
′)K5 ∩

⋂

v′ 6=v

Jv′, ad2(v
′)K5

∩

{

s, h, f, r | s+f(v) ⊆
⋃

vd∈S1

Jvd, (h, f, r)K8

}

∩

{

s, h, f, r | s+f(v) ⊆
⋃

vd∈S2

Jvd, (h, f, r)K8

}

=
⋂

v′ 6=v

Jv′, ad1(v
′)K5 ∩ Jv, S1K5 ∩ Jv, S2K5 ∩

⋂

v′ 6=v

Jv′, ad2(v
′)K5

= J[ad1 | v → S1]K4 ∩ J[ad2 | v → S2]K4

15. when S1, S2 6= ⊤, � and S2 ⊆ S1

257

J[ad1 | v → S1]⊓[ad2 | v → S2]K4

, J[ad1 | v → S2]⊓[ad2 | v → S2]K4

= J[ad1 | v → S2]K4 ∩ J[ad2 | v → S2]K4 by rec.

=
⋂

v′ 6=v

Jv′, ad1(v
′)K5 ∩ Jv, S2K5 ∩

⋂

v′ 6=v

Jv′, ad2(v
′)K5

=
⋂

v′ 6=v

Jv′, ad1(v
′)K5 ∩

⋂

v′ 6=v

Jv′, ad2(v
′)K5

∩

{

s, h, f, r | s+f(v) ⊆
⋃

vd∈S2

Jvd, (h, f, r)K8

}

=
⋂

v′ 6=v

Jv′, ad1(v
′)K5 ∩

⋂

v′ 6=v

Jv′, ad2(v
′)K5

∩

{

s, h, f, r | s+f(v) ⊆
⋃

vd∈S1

Jvd, (h, f, r)K8

}

∩

{

s, h, f, r | s+f(v) ⊆
⋃

vd∈S2

Jvd, (h, f, r)K8

}

=
⋂

v′ 6=v

Jv′, ad1(v
′)K5 ∩ Jv, S1K5 ∩ Jv, S2K5 ∩

⋂

v′ 6=v

Jv′, ad2(v
′)K5

= J[ad1 | v → S1]K4 ∩ J[ad2 | v → S2]K4

16. when S1, S2 6= ⊤, � (and S1 6⊆ S2 and S2 6⊆ S1)

let’s define NoV ar = gfp{Numt, Truet, Falset, Oodt, Nilt, Dangling Loc}∪{Loc(A, vd1, vd2) ∈

V D | vd1, vd2 ∈ NoV ar}.

(a) when S1 = {vd1}, S2 = {vd2} with vd1, vd2 ∈ NoV ar

i. if v = x ∈ V ar

258

J[ad1 | x → S1]⊓[ad2 | x → S2]K4

, Jar⊥K4

= ∅

=
⋂

v′ 6=x

Jv′, ad1(v
′)K5

∩{s, h, f, r | {s(x)} = ∅}

∩
⋂

v′ 6=x

Jv′, ad2(v
′)K5

=
⋂

v′ 6=x

Jv′, ad1(v
′)K5

∩{s, h, f, r | {s(x)} ⊆ Jvd1, (h, f, r)K8 ∩ Jvd2, (h, f, r)K8}

∩
⋂

v′ 6=x

Jv′, ad2(v
′)K5

=
⋂

v′ 6=x

Jv′, ad1(v
′)K5

∩{s, h, f, r | {s(x)} ⊆ Jvd1, (h, f, r)K8}

∩ {s, h, f, r | {s(x)} ⊆ Jvd2, (h, f, r)K8}

∩
⋂

v′ 6=x

Jv′, ad2(v
′)K5

=
⋂

v′ 6=x

Jv′, ad1(v
′)K5 ∩ Jx, S1K5 ∩ Jx, S2K5 ∩

⋂

v′ 6=x

Jv′, ad2(v
′)K5

= J[ad1 | x → S1]K4 ∩ J[ad2 | x → S2]K4

ii. if v = α ∈ TV ar

259

J[ad1 | α → S1]⊓[ad2 | α → S2]K4

, Jclean([ad1 | α →�]⊓[ad2 | α →�])K4 (in practice we clean on-the-fly)

= J[ad1 | α →�]⊓[ad2 | α →�]K4 (by Prop. D.2)

= J[ad1 | α →�]K4 ∩ J[ad2 | α →�]K4 (by rec.)

=
⋂

v′ 6=α

Jv′, ad1(v
′)K5

∩Jα, �K4

∩
⋂

v′ 6=α

Jv′, ad2(v
′)K5

=
⋂

v′ 6=α

Jv′, ad1(v
′)K5

∩{s, h, f, r | f(α) = ∅}

∩
⋂

v′ 6=α

Jv′, ad2(v
′)K5

=
⋂

v′ 6=α

Jv′, ad1(v
′)K5

∩{s, h, f, r | f(α) ⊆ Jvd1, (h, f, r)K8 ∩ Jvd2, (h, f, r)K8}

∩
⋂

v′ 6=α

Jv′, ad2(v
′)K5

=
⋂

v′ 6=α

Jv′, ad1(v
′)K5

∩{s, h, f, r | f(α) ⊆ Jvd1, (h, f, r)K8}

∩ {s, h, f, r | f(α) ⊆ Jvd2, (h, f, r)K8}

∩
⋂

v′ 6=α

Jv′, ad2(v
′)K5

=
⋂

v′ 6=α

Jv′, ad1(v
′)K5 ∩ Jα, S1K5 ∩ Jα, S2K5 ∩

⋂

v′ 6=α

Jv′, ad2(v
′)K5

= J[ad1 | α → S1]K4 ∩ J[ad2 | α → S2]K4

(b) when S1 = {vd} with vd ∈ NoV ar , S2 = {Loc(A, vd1, vd2)}

Same treatment as for case 16a.

(c) when S2 = {vd} with vd ∈ NoV ar , S1 = {Loc(A, vd1, vd2)}

Same treatment as for case 16a.

(d) when S1 = {β} and S2 ⊆ NoV ar

Same treatment as for case 16a.

(e) ...

(f)

260

17.

18. by domain countrains we get that α ∈ TV ar
J[ad1 | v →�]K4 ∩ Jad2K4

=
⋂

v′ 6=α

Jv′, ad1(v
′)K5 ∩ Jα, �K5 ∩ Jad2K4

⊆
⋂

v′ 6=α

Jv′, ad1(v
′)K5 ∩ Jad2K4

=
⋂

v′ 6=α

Jv′, ad1(v
′)K5 ∩ Jv,⊤K5 ∩ Jad2K4

= J[ad1 | v → ⊤]K4 ∩ Jad2K4

19. by domain countrains we get that α ∈ TV ar
Jad1K4 ∩ J[ad2 | α →�]K4

=
⋂

v′ 6=α

Jv′, ad1(v
′)K5 ∩ Jα, ad1(α)K5

⋂

v′ 6=α

Jv′, ad2(v
′)K5 ∩ Jα, �K5

⊆
⋂

v′ 6=α

Jv′, ad1(v
′)K5 ∩ Jα, ad1(α)K5

⋂

v′ 6=α

Jv′, ad2(v
′)K5

= J[ad1 | v → ⊤]K4 ∩ J[ad2 | α → ad1(α)]K4

————————————————————–

I want to prove that ∀s, h, f1, f2, r, ad1, ad2.∃f12.

• s, h, f1, r ∈ Jad1K4

• s, h, f2, r ∈ Jad2K4
⇒ s, h, f12, r ∈ Jad1⊓ad2K4

We define ADTPL , P(V AR × PV D+). and

tpl ∈ AD
total
→ ADTPL

tpl(ad) ,
⋃

v∈V AR

{(v, ad(v))}

∀adtpl ∈ ADTPL. if ∀v ∈ V AR.∃!S ∈ PV D+. (v, S) ∈ adtpl then we define tpl−1(adtpl) ,

ad ∈ AD such that tpl(ad) = adtpl.

Recall that JadK4 ,
⋂

v∈V AR

Jv, ad(v)K5

We define
J·K4′

∈ ADTPL → MFR

JadtplK4′ ,
⋂

v∈V AR

Jv, adtpl(v)K5

By construction we have ∀ad.Jtpl(ad)K4′ = JadK4 and ∀adtpl such that tpl−1(adtpl) exists

Jtpl−1(adtpl)K4 = JadtplK4′ .

261

We define ad1⊓ad2 , tpl−1(⊓(tpl(ad1) ∪ tpl(ad2)))

We have to prove that it exists and that

• s, h, f1, r ∈ Jtpl(ad1)K4′

• s, h, f2, r ∈ Jtpl(ad2)K4′
⇒ s, h, f1⊓̇f2, r ∈ J⊓(tpl(ad1) ∪ tpl(ad2))K

′4

We will first prove that:

• s, h, f1, r ∈ Jad1K4

• s, h, f2, r ∈ Jad2K4
⇒ s, h, f1⊓̇f2, r ∈ Jad1K4 ∩ Jad2K4

and then prove that

∀adtpl ∈ ADTPL. JadtplK
′4 ⊆ J⊓(adtpl)K

′4

Let’s proceed the first proof: We want :

• s, h, f1, r ∈
⋂

v∈V AR

Jv, ad1(v)K5

• s, h, f2, r ∈
⋂

v∈V AR

Jv, ad2(v)K5 ⇒
• s, h, f1⊓̇f2, r ∈

⋂

v∈V AR

Jv, ad1(v)K5

• s, h, f1⊓̇f2, r ∈
⋂

v∈V AR

Jv, ad2(v)K5

it’s symetrical for ad1 and ad2 so we will prove:

• s, h, f1, r ∈
⋂

v∈V AR

Jv, ad1(v)K5

• s, h, f2, r ∈
⋂

v∈V AR

Jv, ad2(v)K5 ⇒ • s, h, f1⊓̇f2, r ∈
⋂

v∈V AR

Jv, ad1(v)K5

by recurrence on the definition of J·K5.

• case ad1(v) = ⊤, we directly have s, h, f1⊓̇f2, r ∈ Jv,⊤K5

• ad1(v) =�, by the domain constraints, we have v ∈ TV ar, and by hypothesis we have

s, h, f1, r ∈ Jv, �K5 so we have f1(v) = ∅ thus f1⊓̇f2(v) = ∅ and then as expected

s, h, f1⊓̇f2, r ∈ Jv, �K5

• ad1(v) = S, with S 6= ⊤, �, by hypothesis we have : s+f1(v) ⊆
⋃

vd∈S

Jvd, (h, f1, r)K8, we

have by construction s+(f1⊓̇f2)(v) ⊆ s+f1(v), so it remains to prove that:

⋃

vd∈S

Jvd, (h, f1, r)K8 ⊆
⋃

vd∈S

Jvd, (h, f1, r)K8

262

————————————————————

1. Case s, h, f1, r ∈ J[α → {β}

2. Case v 6∈ sn1 ∩ sn2

(we have then |s+f1(v)| ≤ 1) :

s, h, f1, r ∈ J[v → {vd1} ∪ S1 | ad1]K4

∧ s, h, f2, r ∈ J[v → {vd2} ∪ S2 | ad2]K4

≡ s, h, f1, r ∈ Jv, {vd1} ∪ S1K5

∧ s, h, f1, r ∈
⋂

v′∈V AR6=v

Jv′, ad1(v
′)K5

∧ s, h, f2, r ∈ Jv, {vd2} ∪ S2K5

∧ s, h, f2, r ∈
⋂

v′∈V AR6=v

Jv′, ad2(v
′)K5

≡ s+f1(v) ⊆ Jvd1, (h, f1, r)K8 ∪
⋃

vd′1∈S1

Jvd′
1, (h, f1, r)K8

∧ s, h, f1, r ∈
⋂

v′∈V AR6=v

Jv′, ad1(v
′)K5

∧ s+f2(v) ⊆ Jvd2, (h, f2, r)K8 ∪
⋃

vd′2∈S2

Jvd′
2, (h, f2, r)K8

∧ s, h, f2, r ∈
⋂

v′∈V AR6=v

Jv′, ad2(v
′)K5

≡ (s+f1(v) ⊆ Jvd1, (h, f1, r)K8

∨s+f1(v) ⊆
⋃

vd′1∈S1

Jvd′
1, (h, f1, r)K8)

∧ s, h, f1, r ∈
⋂

v′∈V AR6=v

Jv′, ad1(v
′)K5

∧ (s+f2(v) ⊆ Jvd2, (h, f2, r)K8

∨s+f2(v) ⊆
⋃

vd′2∈S2

Jvd′
2, (h, f2, r)K8)

∧ s, h, f2, r ∈
⋂

v′∈V AR6=v

Jv′, ad2(v
′)K5

263

≡ (s+f1(v) ⊆ Jvd1, (h, f1, r)K8

∧s, h, f1, r ∈
⋂

v′∈V AR6=v

Jv′, ad1(v
′)K5

∧s+f2(v) ⊆ Jvd2, (h, f2, r)K8

∧s, h, f2, r ∈
⋂

v′∈V AR6=v

Jv′, ad2(v
′)K5)

∨ (s+f1(v) ⊆
⋃

vd′1∈S1

Jvd′
1, (h, f1, r)K8

∧s, h, f1, r ∈
⋂

v′∈V AR6=v

Jv′, ad1(v
′)K5

∧s+f2(v) ⊆ Jvd2, (h, f2, r)K8

∧s, h, f2, r ∈
⋂

v′∈V AR6=v

Jv′, ad2(v
′)K5)

∨ (s+f1(v) ⊆ Jvd1, (h, f1, r)K8

∧s, h, f1, r ∈
⋂

v′∈V AR6=v

Jv′, ad1(v
′)K5

∧s+f2(v) ⊆
⋃

vd′2∈S2

Jvd′
2, (h, f2, r)K8

∧s, h, f2, r ∈
⋂

v′∈V AR6=v

Jv′, ad2(v
′)K5)

∨ (s+f1(v) ⊆
⋃

vd′1∈S1

Jvd′
1, (h, f1, r)K8

∧s, h, f1, r ∈
⋂

v′∈V AR6=v

Jv′, ad1(v
′)K5

∧s+f2(v) ⊆
⋃

vd′2∈S2

Jvd′
2, (h, f2, r)K8

∧s, h, f2, r ∈
⋂

v′∈V AR6=v

Jv′, ad2(v
′)K5)

264

≡ (s, h, f1, r ∈ J[v → {vd1} | ad1]K4

∧s, h, f2, r ∈ J[v → {vd2} | ad2]K4)

∨ (s, h, f1, r ∈ J[v → S1 | ad1]K4

∧s, h, f2, r ∈ J[v → {vd2} | ad2]K4)

∨ (s, h, f1, r ∈ J[v → {vd1} | ad1]K4

∧s, h, f2, r ∈ J[v → S2 | ad2]K4)

∨ (s, h, f1, r ∈ J[v → S1 | ad1]K4

∧s, h, f2, r ∈ J[v → S2 | ad2]K4)

⇒ (by rec) ∃f. s, h, f, r ∈ J[v → {vd1} | ad1]⊓[v → {vd2} | ad2]K4

∨ ∃f ′. s, h, f ′, r ∈ J[v → S1 | ad1]⊓[v → {vd2} | ad2]K4

∨ ∃f ′′. s, h, f ′′, r ∈ J[v → {vd1} | ad1]⊓[v → S2 | ad2]K4

∨ ∃f ′′′. s, h, f ′′′, r ∈ J[v → S1 | ad1]⊓[v → S2 | ad2]K4

⇒ (by proof of Prop. 3.3) ∃g. s, h, g, r ∈

u
wwwv

([v → {vd1} | ad1]⊓[v → {vd2} | ad2])

⊔̇ ([v → S1 | ad1]⊓[v → {vd2} | ad2])

⊔̇ ([v → {vd1} | ad1]⊓[v → S2 | ad2])

⊔̇ ([v → S1 | ad1]⊓[v → S2 | ad2])

}
���~

4

So we can say that we have :

s, h, f1, r ∈ J[v → S1 | ad1]K4

∧ s, h, f2, r ∈ J[v → S2 | ad2]K4

⇒ ∃f ′. s, h, f ′, r ∈ J ˙⊔

vd1∈S1,vd2∈S2

([v → {vd1} | ad1]⊓[v → {vd2} | ad2])K4

2

265

Appendix D

Clean proof

We define ∀α ∈ TVar. V Dα , {α} ∪ {Loc(A, vd1, vd2) ∈ V D | vd1 = α ∨ vd2 = α}. and

∀V ∈ P(TVar). V DV ,
⋃

α∈V

V Dα.

Definition D.1. 1. When ∀v.V DV ∩ (ad1(v) ∪ ad2(v)) = ∅

clean(V, ad1, ad2) , (ad1, ad2)

2. when V DV ∩ S1 6= ∅ and S1 \ V DV 6= ∅

clean(V, [ad1 | v → S1], [ad2 | v → S2]) , clean(V, [ad1 | v → S1 \ V DV], [ad2 | v →

S2])

3. when V DV ∩ S1 6= ∅ and S1 \ V DV = ∅

(a) when x ∈ V ar

clean(V, [ad1 | x → S1], [ad2 | x → S2]) , (ar⊥, [ad2 | x → S2])

(b) when α ∈ TVar

clean(V, [ad1 | α → S1], [ad2 | α → S2]) , clean(V ∪ {α}, [ad1 | α →�], [ad2 |

α →�])

4. when V DV ∩ S1 = ∅ and V DV ∩ S2 6= ∅ and S2 \ V DV 6= ∅

266

clean(V, [ad1 | v → S1], [ad2 | v → S2]) , clean(V, [ad1 | v → S1], [ad2 | v →

S2 \ V DV])

5. when V DV ∩ S1 = ∅ and V DV ∩ S2 6= ∅ and S2 \ V DV = ∅

(a) when x ∈ V ar

clean(V, [ad1 | x → S1], [ad2 | x → S2]) , ([ad1 | x → S1], ar⊥)

(b) when α ∈ TVar

clean(V, [ad1 | α → S1], [ad2 | α → S2]) , clean(V ∪ {α}, [ad1 | α →�], [ad2 |

α →�])

Proposition D.2.

∀α ∈ TVar. ad1, ad2 ∈ AD

∗ Jfst(clean(α, [ad1 | α →�], [ad2 | α →�])K4 = J[ad1 | α →�]K4

∗ Jsnd(clean(α, [ad2 | α →�], [ad2 | α →�])K4 = J[ad2 | α →�]K4

∗ the number of difference between

fst(clean(α, [ad1 | α →�], [ad2 | α →�])

and snd(clean(α, [ad1 | α →�], [ad2 | α →�])

is inferior or equal to the one between

[ad1 | α →�] and [ad2 | α →�]

Prop. D.2. We suppose that {v|ad1(v) 6=�,⊤∨ ad2(v) 6=�,⊤} is finite.

Let V Dα , {α} ∪ {Loc(A, vd1, vd2) ∈ V D | vd1 = α ∨ vd2 = α}

1. When ∀v.V Dα ∩ (ad1(v) ∪ ad2(v)) = ∅

clean(α, ad1, ad2) , (ad1, ad2)

2. when V Dα ∩ S1 6= ∅ and S1 \ V Dα 6= ∅

clean(α, [ad1 | v → S1], [ad2 | v → S2]) , clean(α, [ad1 | v → S1 \ V Dα], [ad2 | v →

S2])

...

267

	Table of Contents
	List of Figures
	Acknowledgements
	Introduction
	Motivations
	Introduction to separation logic
	History of the project and contributions
	Structure of the manuscript

	Separation logic with fixpoints
	Commands and basic domains
	Command syntax
	Semantic domains
	Small-step semantics

	BI
	Syntax of formulae
	Semantics of formulae
	Interpretation of Triples
	Fixpoints and postponed substitution

	Backward analysis
	Forward analysis
	Variations of BI
	Appendix
	Definitions
	Stack Extension Theorem
	Variable Renaming Theorem for BI
	Unfolding theorems
	Substitution theorems for BI
	Substitution theorems for BI general
	 and coincide
	Simplifications on [/]
	sp's proofs
	wlp's proofs
	Upper-continuous results
	Simplification theorems

	An abstract language for separation logic
	Introduction
	Examples: Introduction to the language, translations of formulae
	Full example: tree

	Definition of the language, AR
	Semantics of the language
	Operations on the language
	Extension
	Union
	Merging nodes
	Stabilization
	ast
	Intersection

	Translation of formulae
	Properties of the translation
	Translation of
	Translation of
	Translation of
	Translation of E1=E2
	Translation of x E1,E2
	Translation of and

	Conclusion
	Appendix
	Replace
	Cheap extension proofs
	Extension proofs
	Union proofs
	Merging proofs
	Functions on CLeq proofs
	Widening proofs
	Basic ast proofs
	Extra ast proofs
	Basic equal proofs
	Reach functions proofs
	Class proofs
	Exists proofs
	Why using "474A771 "574B779 ' ?

	Implementation
	Introduction
	Software architecture
	Reading from files
	Computing informations
	Building executables

	Syntaxes of inputs and data structures
	Program syntax
	Formula syntax
	Abstract data syntax

	The translation of formula into elements of the domain: sl2ar.ml
	Analysis

	Comparison with other works
	Smallfoot
	Smallfoot: Modular Automatic Assertion Checking with Separation Logic (FMCO'05)
	A local shape analysis based on separation logic (TACAS'06)
	Shape analysis for composite data structures (CAV'07)
	Footprint Analysis: A Shape Analysis that Discovers Preconditions (SAS'07)
	Conclusions about smallfoot/space invader

	TVLA
	others
	Conclusion
	Modularity
	Expressibility of heap logic
	Folding/unfolding
	Theorem provers
	Auxiliary variables
	Analysis versus verification
	What is distinctive about our system

	Conclusion
	Bibliography
	Appendix
	Junk: ast algorithm
	Intersection
	Intersection proof
	Clean proof

