
EAAI 2006

An abstract domain for separation logic
formulae

Élodie-Jane Sims 1

École Polytechnique, Palaiseau, France
Kansas State University, Manhattan, Kansas, USA

Abstract

We present a separation logic abstract domain for static analysis by abstract inter-
pretation. We consider separation logic with fixpoint formulae. The domain embeds
shape and alias information. The main originality compared to usual shape-graphs
is that we treat all values (numerical, heap locations, nil,...) the same way, thus
we can have numerical summary nodes. To keep the domain as general as possible,
it is parameterized by a numerical abstract domain which can be instantiated as
needed. We provide a semantics in terms of sets of memory (the usual model for
separation logic) and sound functions on the domain, including a widening and a
union which precision/cost can be tuned to the specific needs of the context where
the domain is used.

Key words: abstract interpretation, separation logic,
shape-analysis

1 Introduction

We are interested in doing static analysis of programs [4] that use shared
mutable data structures. The final goal of our work is to detect errors in a
program (problems of dereferencing, aliasing, etc.) or to prove that a program
is correct (with respect to these problems) in an automatic way. Abstract
interpretation [2,3,4] provides systematic methods for automatic inference of
complex properties. We are interested in shape or alias properties in separation
logic (extended with fixpoint) formulae.

Separation logic [5,10] is an extension of Hoare logic whose assertion lan-
guage is BI logic [5,9,8]. Assertions, φ, in separation logic are evaluated with
the contents of the local-variable stack, s, and the heap, h, written as s, h |= φ.
A new propositional connective, “separating conjunction,” ∗, lets one assert
s, h |= φ1 ∗ φ2 iff h can be split into disjoint regions, h1 and h2, such that

1 Email: Elodie-Jane.Sims@polytechnique.fr

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Sims

s, hi |= φi, for i ∈ {1, 2}. Separating conjunction permits concise, flexible,
and modular description of properties of data structures with controlled shar-
ing.

There are automatic and semi-automatic tools that use Hoare logic to
reason about programs; we are interested in designing static-analysis tools
(that address problems of dereferencing, aliasing, etc.) that employ separation
logic.

We have made first steps towards this goal: In previous work, we extended
separation logic with fixpoints, letting us express finitely separation-logic char-
acterizations of wlp and sp for while-loop programs [12].

Lying at the heart of the abstract domain is its semantic domain of deno-
tations. In this paper, we introduce the domain and its language, giving the
latter in both linear and graphical forms. Our graphical representation re-
sembles the graph formats found in pointer analysis and shape analysis [11,6],
which are also concerned with describing properties of aliasing and heap data
structures, respectively.

To keep our abstract separation-logic domain as general as possible, we
parameterize it on a numerical abstract domain, which can be instantiated
with existing numerical domains, including relational ones. Within our do-
main language, we treat numerical information in the same way as memory
information. We provide a semantics of our domain directly in term of sets of
memory.

As part of our domain language, we present some functions on the domain,
among with widening and union operators, whose precision and cost can be
tuned to the specific needs of the context where the domain is used.

The achievements of the paper are: (i) we define an abstract domain for
separation logic that is amenable to static analyis; (ii) we define operations
on the domain (iii) we give a rigorous semantics and use it to prove soundness
of the operations on the domain. These results provide a solid foundation for
implementing efficient static analyzers for separation logic.

2 Examples: Introduction to the domain, translations
of formulae

The domain we define is a tuple. Let (ad, hu, ho, sn, sn∞, t, d) be an element
of our domain:

• ad is a function that maps variables (and auxiliary variables) to abstract
denotations (graphically represented as a graph)

• hu is a set of auxiliary variables which represent an underapproximation of
the locations in the heap

• ho is a set of auxiliary variables which represent an overapproximation of
the locations in the heap, it can also take the value full

2

Sims

We write when the element of the tuple is not pertinent for the example.

formula or set states represented abstract representation

(1) (x = nil)
(

x Nilt , , , , , ,
)

(2)
¬(x = x)

{s, h | x 6∈ dom(s)}

(

x Oodt , , , , , ,
)

(3) false

(

x ∅ , , , , , ,
)

(4) (x = nil ∨ x = true)

x Nilt

T ruet

, , , , , ,

(5) (x = y)

(

x α >
y

, , , , , ,

)

(6) (x = y ∧ x = nil)

(

x α Nilt
y

, , , , , ,

)

(7) (∃x. x = y ∧ x = nil) ≡ (y = nil)

(

α Nilt
y

, , , , , ,

)

(8) (x < y + 3)

x α Numt

y β Numt
, , , , , , d

d ∈ D encodes that α < β + 3

Fig. 1. Introduction examples

• sn is a set of auxiliary variables which can represent a final set of concrete
values

• sn∞ is a set of auxiliary variables which can represent an infinite set of
concrete values

• t is a table which compares the values represented between two auxiliary
variables.

• d encodes numerical information

In Fig. 1 and 2, we present examples of formulae or sets of memory states
and their translations. We do not provide in this paper a complete description
of separation logic and its semantics (see [12]).

Concrete domain Let Loc be an infinite set of heap locations, let V al ,
Z] Bool] {nil}] Loc be the set of storable values, let S , V ar ⇀ V al
(⇀ stands for partial function) be the set of temporary-variable stacks, and
let H , Loc ⇀ (V al × V al) be the set of heaps (partial functions that map
locations to cons cells).
We define M , S × H. The standard model for the logic, which is also the

3

Sims

formula or set states represented abstract representation

(9)
“x is a location not allocated”

{s, h | s(x) ∈ Loc ∧ s(x) 6∈ dom(h)}

(

x Dangling Loc , , , , , ,
)

(10)
emp

{s, h | dom(h) = ∅}
(, , ∅, , , ,)

(11)
(x 7→ true, nil)

{s, h|[s(x) → 〈True, nil〉] = h}

(

x α • 1

2

Truet

Nilt
, {α}, {α}, , , ,

)

(12)
(x ↪→ true, nil)

{s, h|[s(x) → 〈True, nil〉] ⊆ h}

(

x α • 1

2

Truet

Nilt
, {α}, full, , , ,

)

(13)

approx. of (x = true ∧ y = false)

x = true

∨x = false

 ∧

y = false

∨y = true

x α Truet
y Falset

(14)

there is an finite acyclic list of True

starting from x

µXv.

(x = nil) ∨ ∃x2.

x ↪→ (true, x2) ∗ Xv[x2/x]

 x α • 1
∗2

Truet

Nilt

, , , {α}, , ,

(15)

x = nil

∧y = true

 ∨

x = true

∧y = nil

 α1

{†eq}

{†eq}

Nilt Nilt α3

{†eq}x y

α2

{†eq}

Truet Truet α4

(16)
x and y points to the same acyclic

list of True but x comes first
x α • 1

∗2

Truet

y
{⊂eq}

Nilt

(17) ((x 7→ true, nil) ∗ (y 7→ true, nil)) x α
{]eq}

• 1

2
Truet
Nilt

y β • 1

2

Truet
Nilt

Fig. 2. Introduction examples

domain for the concretisation of our abstract domain is P(M). Given some
s, h ∈ M , the denotation of a variable x, is s(x); when s(x) ∈ Loc, its deref-
erencing is h(s(x)). Since separation logic is oriented towards properties of
heap structures, such two-step dereferencing dominates one’s reasoning about
variables, and we make it a key feature of our abstract language.

4

Sims

Simple abstract values One might use separation logic to assert that the
value of a variable in the stack is nil, thus we have an abstract value Nilt (Ex.
1). As well, we translate true by Truet, false by Falset. A variable can be
out of the domain of the stack which corresponds to the abstract value Oodt
(Ex. 2). Since we have this Oodt, when in the abstract domain, a variable is
assigned to ∅, it does not mean that the variable in not in the stack domain
but the whole abstract value represent an emptyset or the false formula (Ex.
3). The domain assigns to variables a set of abstract values with a disjunctive
meaning (Ex. 4).

Auxiliary variables We use an infinite set of auxiliary variables TV ar to
encode aliasing (Ex. 5). In all our examples, we use x, y, ... ∈ V ar for program
variables, and we use α, β, ... ∈ TV ar for auxiliary variables that denote values
of our abstract domain. We use v, v1, v2, ... for variables in V ar ∪ TV ar. The
use of TV ar permits a cheap translation of conjunction, that is to translate
P ∧ Q we first translate P then we refine the result while translating Q (Ex.
5 and 6) and it also permits a cheap translation of quantifiers (Ex. 6 and 7).

Auxiliary variables can be used as wanted, for example, x Nilt can

also be represented by x α Nilt . But for efficiency, the domain

has some constrains (see [1]), for example we forbid x α ∅ which

should be represented as x ∅ .

Numerical information To allow translation of numerical values and even
numerical relations, we parameterize our domain on a numerical domain, D.
The graph will only contain the abstract value Numt and all the numerical
information are encoded in the element of the numerical domain (Ex. 8). For
example, in Ex. 8, d could be a “difference bound matrix” [7], and we would
have d(α, β) = i with any i ≥ 2.

Heap In the logic, one can say that a variable is a dangling pointer thus we
have an other abstract value Dangling Loc to represent this information (Ex.
9). To model pointers and the heap, the second and third component of our
tuples are (i) hu, a set of auxiliary variables that underapproximate the set of
locations allocated in the heap, and (ii) ho a similar overapproximation (ho
could also take the value, full , to give no information). They are used, for
example, to translate the formula emp which says that the heap is empty (Ex.
10). In separation logic, one writes assertions that state the exact contents
of the heap. For example, the formula, (x 7→ true, nil), not only says that
x points to a cell whose car-value is True and cdr-value is nil but also says
that the cons-cell pointed to by x is the only cell in the heap (Ex. 11). In
the translation • represents a heap location, 1 / 2 represents its
car/cdr. The formula (x ↪→ true, nil) is like (x 7→ true, nil) except that it
allows additional cells in the heap domain, thus ho takes the value full (Ex.
12).

Summary nodes Notice that we embed shape-graphs: • and being
their nodes and edges. To avoid infinite graphs (or to bound the computation

5

Sims

time), our graphs have summary nodes, which are nodes that represent mul-
tiple concrete values. By default, all variables represent only one value. The
forth (sn) and fifth (sn∞) components are sets of auxiliary variables which
are allowed to represent sets of values (possibly infinite for sn∞). Graphically,
normal summary nodes will be doubly circled/squared and infinite summary
nodes will be triply circled/squared. The main difference from usual shape-
graphs is that we allow to have summary nodes for values which are not
locations (Ex. 13). We also use summary nodes to represent a list of any
size (Ex. 14). In the formula, µ is a least-fixpoint connective and [] is a
postponed substitution connective which is used for the recursion [12]. Infor-
mally, the formula can be written as nclisttrue(x) , (x = nil) ∨ ∃x2. x ↪→
(true, x2) ∗ nclisttrue(x2).

To allow infinite lists, we would replace µ by ν in the above formula, and
in our domain, • would be replaced by •
Tables it is obvious that representing union of graphs by a graph with unions
(as we do, see Ex. 4) implies some approximations. It can be interesting to do
this approximation but we also want the domain to allow additional precision
if needed. In Sect. 5.2, we give an explanation on how to do a precise union.
The sixth component of the tuple is a 2-dimention table for auxiliary variables
which is graphically representated by annoted arrows, . The annota-
tions are sets properties on the concrete values represented by the auxiliary
variables. Details are given in Sec. 3. An arrow labeled with {†eq} means that
one of the two variables pointed represent no value (see Ex. 15 where α1 has
a value, then α2 and α3 do not, and when α4 has a value, then α2 and α3 do
not). An arrow labeled with {⊂eq} means that the values represented by one
variable are included in the ones represented by the other (see Ex. 16).

Separation information There are two ways to encode separation infor-
mation. The first way is to use , in particular {]eq} says that two
variables has no values in common in their concretisations (Ex. 17). The
second way is to use ∗1 / ∗2 instead of 1 / 2 . In Ex. 14, this
insures that the list is not cyclic: α can represent several locations and they
can point to one another through their cdr-values but ∗2 says that no path
through those locations is cyclic.

In an automatic translation of formulas, the first way would appear when
we translate P ∗Q. We would translate P and Q separately with disjoints sets
of fresh auxiliary variables. Then, while merging, variables which represent
only locations would have {]eq} toward the ones of the other component,
in particular the variables in hu. The second way would only appear while
translating fixpoints and building summary nodes.

3 Definition of the domain : AR

We now formalize the graphs from the previous section as denotations in our
abstract separation-logic domain.

6

Sims

V D1 ::= Numt | Truet | Falset | Oodt | Nilt | Dangling Loc | TV ar

V D ::= V D1 | Loc(P({∗1, ∗2}) × V D1 × V D1)

PV D+ ::= (P(V D)]
�

,t,u)

AD ::= VAR
total
→ PV D+

CLeq ::= P({‡eq, †eq, =eq,⊂eq,⊃eq,]eq,©©eq})

TB ::= (TV ar × TV ar)
total
→ CLeq

AR ::= AD × P(TV ar) × (P(TV ar)] full) × P(TV ar) × P(TV ar) × TB

×(D, � · � D : D → (TV ar
total
→ P(Z)))

For the domain PV D+ we define
�

tS , S, St
�

, S,
�

uS , S, Su
�

, S, ∀S1, S2 6=
�

. S1 t S2 , S1 ∪ S2, S1 u S2 , S1 ∩ S2.

For the domain P(TV ar)] full we define full ∪ S , full, S ∪ full , full,

full ∩ S , S, S ∩ full , S, full \ S , full, ∀α.α 6∈ full.

Fig. 3. Syntax of the domain

Let V ar and TV ar be two disjoint infinite sets of variables (typically V ar
will be the set of program/formula variables and TV ar will be auxiliary vari-
ables). We define VAR , V ar] TV ar, the set of all variables.

The formal definition of the syntax of the domain are presented in Fig. 3.

V D1 is an abstract domain for all values except locations. V D is V D1
plus abstract values for locations in the heap. PV D+ is either a powerset of
values in V D either the undefined value noticed

�
.

AD corresponds to the graph drawn in the introduction.

Abstract values in CLeq through elements in TB are associated to pairs
(α, β) of auxiliary variables:

• ‡eq means both α and β represent an empty set of values

• †eq means exactly one of α and β represents an empty set of values

• =eq means both α and β represent the same non empty set of values

• ⊂eq means the non empty set of values represented by α is strictly included
in the set represented by β

• ⊃eq means the non empty set of values represented by β is strictly included
in the set represented by α

•]eq means α and β represent two non empty disjoints sets of values

• ©©eq means that the three sets of values represented only by α, only by β
and by both are non empty

Notice that if α and β are not summary nodes, we have ⊂eq, ⊃eq,]eq and ©©eq

7

Sims

have all the same meaning : α and β both have a concrete value and their
concrete values are differents, we could write it 6=eq.

An implementation could also work with only a sublatice of P({‡eq, †eq, =eq

,⊂eq,⊃eq,]eq,©©eq}).

4 Semantics of the domain

The abstractions of separation-logic formulae can be efficiently implemented
because we formalize them as a disjunction of eight simple semantic-interpretation
functions. This makes a denotation into a tuple of orthogonal elements.

First, we recall the concrete domains:

V al , Z] Bool] nil] Loc V al′ , V al ∪ {ood}

S , V ar ⇀ V al S ′ , V ar
total
→ V al′

H , V ar ⇀ (V al × V al) F , TV ar
total
→ P(V al′)

R , Loc ⇀ P(Loc)

M , S × H MFR , P(S ′ × H × F × R)

For simplicity, we work with total functions, so we extend V al with the “out
of domain” value ood to define V al′. S ′ are total stacks, that is we have a
bijection between a normal stack and a total stack. We define ¯ : S ′ → S by
s̄′ , s′ �dom(s′)∩{x|s′(x)6=ood}, and ¯ : S → S ′ by s̄ , [x ∈ dom(s) → s(x) | x 6∈
dom(s) → ood].

To lighten the notation, we define a union of stacks in S ′ and stacks for

auxiliary variables in F : ·+· : (S ′ × F) → (V AR
total
→ P(V al′)) such that if

x ∈ V ar then s+f(x) , {s(x)} and if α ∈ TV ar then s+f(α) , f(α).

For (s, h, f, r) ∈ MFR, the s corresponds to a (total) stack, h is the heap,
f is a stack for the variables in TV ar, where a variable can map to a set of
values (cf. a summary node), and r maps locations to their reachable set of
locations, thus encoding separation information.

We define � · � , the semantics of elements of our domain, in term of P(M):

� · � ∈ AR → P(M)

� ar � , {s̄, h | s, h, f, r ∈ � ar � ′

}

It uses an intermediate semantics, � · � ′

, in MFR which is an intersection of
semantics of every part of the domain. (The need for � · � ′

— instead of having
directly � · � as a conjunction — is explained in [1]):

� · ��� ∈ AR → MFR

� (ad, hu, ho, sn, sn∞, t, d) � ′

, � ad � 4 ∩ � hu � 1 ∩ � ho � 1′ ∩ � sn � 2 ∩ � sn∞ � 2′ ∩ � t � 3 ∩ � d � 7 ∩ sem∗

The semantics of the graph ad is also a conjunction for all assignments:

8

Sims

� · � 4 ∈ AD → MFR

� ad � 4 ,
⋂

v∈V AR

� v, ad(v) � 5

An assignment to a set is a disjunction of assignments:

� · � 5 ∈ (V AR × PV D+) → MFR

� v,> � 5 , MFR

� v,
� � 5 , {s, h, f, r | s+f(v) = ∅}

S 6= >,
� � v, S � 5 , {s, h, f, r | s+f(v) ⊆

⋃

vd∈S

� vd, (h, f, r) � 8}

We use an auxiliary function, � · � 8, which gives the sets of concrete values
in V al′ that correspond to an abstract value in V D for a particular element
of H × F × R:

� · � 8 ∈ (V D × (H × F × R)) → P(V al
�

)

� Nilt, � 8 , {nil} � Truet, � 8 , {True}

� Falset, � 8 , {False} � Oodt, � 8 , {ood}

� Numt, � 8 , Z � Dangling Loc, (h, ,) � 8 , Loc \ dom(h)

� v, (, f,) � 8 , f(v) when v ∈ TV ar

� Loc(A, vd1, vd2), (h, f, r) � 8

,

l ∈ dom(h)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

• Π1(h(l)) ∈ � vd1, (h, f, r) � 8

• Π2(h(l)) ∈ � vd2, (h, f, r) � 8

• ∗1 ∈ A ∧ Π1(h(l)) ∈ Loc ⇒ Π1(h(l)) ∈ r(l)

• ∗2 ∈ A ∧ Π2(h(l)) ∈ Loc ⇒ Π2(h(l)) ∈ r(l)

The semantics of the separation information in the abstract domain (P({∗1, ∗2}))
is given by this last rule (� Loc(A, vd1, vd2), (h, f, r) � 8) and sem∗:

sem∗ ∈ MFR

sem∗ ,

s, h, f, r

∣

∣

∣

∣

∣

∣

∀l ∈ dom(r).

• l 6∈ r(l)

• ∀l′ ∈ r(l) ∩ dom(r).r(l′) ⊆ r(l)

The semantics of the lower bound of heap’s domain is given by � · � 1:

� · � 1 ∈ P(TV ar) → MFR

� hu � 1 ,
⋂

α∈hu

{s, h, f, r | f(α) ∩ dom(h) 6= ∅}

and the semantics of the upper bound of heap’s domain is given by � · � 1′ :

9

Sims

� · � 1 � ∈ (P(TV ar)] full) → MFR

� full � 1′ , MFR

� ho � 1′ , {s, h, f, r | dom(h) ⊆
⋃

α∈ho

f(α)}

The sets of summary nodes say which nodes can represent several values,
their semantics are given by � · � 2 and � · � 2′

� · � 2 ∈ P(TV ar) → MFR

� sn � 2 , {s, h, f, r | ∀α ∈ TV ar \ sn.|f(α)| ≤ 1}

� · � 2 � ∈ P(TV ar) → MFR

� sn∞ � 2 , {s, h, f, r | ∀α ∈ TV ar \ sn∞. f(α) is finite}

The semantics of the table is a conjunction of all semantics of its assign-
ments:

� · � 3 ∈ TB → MFR

� t � 3 ,
⋂

(α1,α2)∈TV ar×TV ar

{

s, h, f, r
∣

∣ � t(α1, α2), f(α1), f(α2) � 6′
}

An assignment of the table is a disjunction of assignments:

� · � 6 � ∈ (CL ��� × P(V al
�

) × P(V al
�

)) → Bool

� S, A, B � 6′ ,
∨

l∈S

� l, A, B � 6

The table encodes aliasing, non-aliasing information, and mutual exclusion.
(For example, †eq insures that two variables cannot live at the same time, and
]eq insures that two variables are not aliased.)

� · � 6 ∈ (> ��� × P(V al
�

) × P(V al
�

)) → Bool

� ‡eq, A, B � 6 , A ∪ B = ∅ � †eq, A, B � 6 , A = ∅ xor B = ∅

� =eq, A, B � 6 , A = B ∧ A 6= ∅ � ⊂eq, A, B � 6 , A ⊂ B ∧ A 6= ∅

� ⊃eq, A, B � 6 , A ⊃ B ∧ B 6= ∅ �]eq, A, B � 6 , A ∩ B = ∅ ∧ A 6= ∅ ∧ B 6= ∅

� ©©eq, A, B � 6 , A ∩ B 6= ∅ ∧ A \ B 6= ∅ ∧ B \ A 6= ∅

The semantics of the numerical part is given by � · � 7:

� · � 7 ∈ D → MFR

� d � 7 ,
⋃

g∈ � d � D

⋂

α∈TV ar

{s, h, f, r | f(α) ∩ Z ⊆ g(α)}

5 Operations on the domain

We now present four key operations and describe how they are computed
within the abstract domain. All the operations have been proved sound with

10

Sims

respect to the formal semantics, but due to lack of space, formal definitions
of the functions, the theorems and proofs are found in [1].

Below, P is a formula in separation logic (with recursion) and T (P) is the
transformation of the formula.

For all the transformations T in our domain, we give theorems of this form:
∀s, h, f, r ∈ MFR.∃g. s, h, f, r ∈ � ar � ′

⇒ s, h, g(f), r ∈ � T (ar) � ′

To explain, we should say that we want to translate formulae in separation
logic with fixpoints into the domain. If T is a translation of separation-logic
formula P to the domain, we want � P � ⊆ � T (P) � . For efficiency on the compu-
tation of conjunction, we will define another translation, T ′, from an element
of the domain and a formula to an element of the domain. For example, we
have T ′(ar, P1 ∧ P2) = T ′(T ′(ar, P1), P2).

We do the proofs by induction on the syntax of the formula. We do the
proofs at the level of � · � ′

and need to keep the properties at this level and
not � · � because � ar1 � ⊆ � ar2 � 6⇒ � ar1 � ′

⊆ � ar2 � ′

. Then at the end we define
T (P) = T ′(ari, P). Since we have ∀s, h, f, r ∈ MFR. ∃g. s, h, f, r ∈ ari ∧
s̄, h ∈ � P � ⇒ s, h, g(f), r ∈ � T (P) � ′

and � ari � ′

= MFR, we get � P � ⊆ � T (P) � .
The ∃g. part of the theorems is there because we want to allow changes

for auxiliary variables (like for the function merge).

5.1 Extension

We present two extension functions, which add a “fresh variable” (a variable
whose value is

�
) as an intermediary between a variable and its assignment.

They have the same properties. Those functions will be combined with union 2

and will improve precision of the union. The first one is cheaper but the second
one contributes better to the precision of the union than the first.

The first version of extension, named extend(v, α,) (which is cheaper) will
replace

v1 v Nilt by v1 v α Nilt
v2 v2

but the second, will replace it by v1 v α Nilt
v2

Proposition 5.1 ∀v ∈ V AR.α ∈ TV ar.[ar | α →
�

] ∈ AR.(s, h, f, r) ∈
MFR.
s, h, f, r ∈ � [ar | α →

�
] � ′

⇔ s, h, [f | α → s+f(v)] ∈ � extend(v, α, [ar | α →
�

]) � ′

5.2 Union

The basic union is almost a simple union of all nodes and edges except that if
a variable in V ar has no outgoing edges (that is the variables is assign to >)

2 those functions are what one could do instead of doing variable renaming before union

11

Sims

the union graph does not have edges from this variables.

union:(AR × AR) → AR

union
((

ad1, hu1, ho1, sn1, sn
∞
1 , t1, d1

)

,
(

ad2, hu2, ho2, sn2, sn
∞
2 , t2, d2

))

,
(

ad1ṫ ad2, hu1 ∩ hu2, ho1 ∪ ho2, sn1 ∪ sn2, sn
∞
1 ∪ sn∞

2 , t1∪̇ t2, d1 t
D d2

)

ṫ/∪̇ being the point to point applications of t/∪

Proposition 5.2 ∀ar1, ar2 ∈ AR. � ar1 � ′

∪ � ar2 � ′

⊆ � union(ar1, ar2) � ′

But this is not precise, for example it translates (x = y∧y = nil)∨(y = true)
as

union

(

x α Nilt
y

,
y T ruet
x >

)

=

y α Nilt

T ruet
x >

which is (y = nil) ∨ (y = true).

So we will combine the basic union with extend. For the same example

union

(

x α Nilt
y

,
y T ruet
x >

)

= union

(

x α Nilt
y

,
y T ruet
x β >

)

=

x β
{†eq}

>

α Nilt

y Truet

This is exactly (x = nil ∧ y = nil) ∨ (y = true)

You can see this example with the non-graphical presentation in [1].

So one can tune the precision of the union by combining it with extend but
it is more expensive (using it everywhere would be comparable to renaming
all variables before union). We would suggest to apply extend only when we
have to union > with S 6= > such that ∃α ∈ TV ar. α ∈ S.

We do not suggest to first do several extend, then do the normal union.
The extend could be done on the fly, we would just have to be careful to pick
fresh variables for both sides.

5.3 Merging nodes

We define polymorphic functions for merging two nodes. The first node infor-
mation gets included in the second one and the first node is removed. This
function will be used to reduce the number of auxiliary variables which are
used and will create summary nodes.

12

Sims

For example,

after merging α1 into α2 in we get

x α1 Nilt
α2 Truet

x Nilt
α2 Truet

5.4 Widening

This widening does not insure stabilization but that the widening will take
a finite number of values, to have termination, the user should apply it to a
trace which have some information which is monotonic.

The widening operator combines the widening on the numerical domain
and a strategy to bound the number of used variables. When applying the
widening operator, we will apply the widening for the numerical element and
we will apply the function merge to merge nodes to keep the number of nodes
bounded.

Remember that we have as a condition on D, ∇D : (
⋃

n∈ �
[0, n]

total
→ D) → D

such that

• ∀w ∈ Z
total
→ D. ∃i ∈ Z.∀i′ ≥ i. ∇D(w �

[0,i′]
total
→ D

) = ∇D(w �
[0,i]

total
→ D

)

• ∀w ∈ Z
total
→ D. ∀i ∈ Z. ∀g1 ∈ � w(i) � D.∃g2 ∈ � ∇D

(

w �
[0,i]

total
→ D

)

� D.

∀α ∈ dom(g1) ∩ dom(g2). g1(α) ⊆ g2(α)

We define give d : AR → D, (ad, hu, ho, sn, sn∞, t, d) 7→ d and give d :

(Z
total
→ AR) → (Z

total
→ D), w 7→ (i 7→ give d(w(i))).

set d : (AR×D) → AR, ((ad, hu, ho, sn, sn∞, t, d), d′) 7→ (ad, hu, ho, sn, sn∞, t, d′)

We can extend ∇D to be applied with elements of AR:

∇D
AR : (

⋃

n∈ �

[0, n]
total
→ AR) → AR

such that

∀w ∈ Z
total
→ AR. ∀i ∈ Z.∇D

AR(w �
[0,i]

total
→ D

) = set d(w(i),∇D(give d(w �
[0,i]

total
→ D

)))

We can easily see that we have:

• ∀w ∈ Z
total
→ AR. ∃i ∈ Z.∀i′ ≥ i. give d(∇D

AR(w �
[0,i′]

total
→ D

)) = give d(∇D
AR(w �

[0,i]
total
→ D

))

• ∀w ∈ Z
total
→ AR. ∀i ∈ Z. ∀g1 ∈ � give d(w(i)) � D.∃g2 ∈ � give d(∇D

AR

(

w �
[0,i]

total
→ AR

)

) � D.

∀α ∈ dom(g1) ∩ dom(g2). g1(α) ⊆ g2(α)

13

Sims

Suppose that we have a strategy for merging:

∇merge : (
⋃

n∈ �

[0, n]
total
→ AR) → (

⋃

n∈ �

[0, n]
total
→ (TV ar × TV ar))

such that:

∀w ∈ Z
total
→ AR. ∃A ∈ P(TV ar). (A is finite) ∧ ∃i ∈ Z.∀i′ ≥ i.

(used(merge(∇merge(w �
[0,i′]

total
→ AR

), w(i′))) ⊆ A)
(1)

This stategy could for example consist on merging variables which have
been used while analysing the same program point or the same part of a
formula (typically the variable build for translating ∃).

We can now define :

Definition 5.3 ∇AR : (
⋃

n∈ �
[0, n]

total
→ AR) → AR) such that

∀w ∈ Z
total
→ AR. ∀i ∈ Z.

∇AR(w �
[0,i]

total
→ AR

) , ∇D
AR

([

w �
[0,i]

total
→ AR

| i → merge(∇merge(w �
[0,i]

total
→ AR

), w(i))
])

(2)

Proposition 5.4
∀w ∈ Z

total
→ AR. ∃A ∈ P(AR). (A is finite) ∧ ∃i ∈ Z.∀i′ ≥ i.

∇AR(w �
[0,i′]

total
→ AR

) ∈ A

Proposition 5.5 ∀w ∈ Z
total
→ AR. ∀i ∈ Z. ∀s, h, f, r.∃g. s, h, f, r ∈ � w(i) � ′

⇒
s, h, g(f), r ∈ � ∇AR(w �

[0,i]
total
→ AR

) � ′

6 Conclusion

In this paper, we presented a new abstract domain for separation logic whose
denotations resemble shape graphs. The improvement is that numericals and
locations are treated the same way, thus we can have numerical summary
nodes. This domain is designed for the abstraction of separation logic with
fixpoint’s formulae. To keep the domain as general as possible, it is parame-
terized by a numerical abstract domain which can be instantiated as needed
with existing ones including relational ones.

The originality was to design a semantics in terms of sets of memory (the
usual model for separation logic). This is very suitable to prove the correctness
of functions on the domain. In particular, the semantics of a graph is the
disjunction of the semantics of its edges. Our domain being a tuple, the
semantics is the disjunction of each elements of the tuple, thus one can drop
some elements of the tuples losing precision but not correctness.

14

Sims

Therefore, we provide a widening and a union (along with their correctness
proofs) where precision/cost can be tuned to the specific needs of the context
where the domain is used.

Here we only presented the domain, however we have designed the trans-
lation of the formulae into the domain and most of them are already proven
which convince that the domain together with its semantics is suitable.

The domain was designed with the goal of building a translation toward/from
existing shape-graphs, so we believe that the domain along with its seman-
tics will prove useful for both separation-logic and also heap-shape analysis.
Please remark that a lonely outgoing edge can be seen as a “must” arrow (or
valued 1), several outgoing edges from a variable can be seen as a “may” arrow
(or valued 1/2, but it is a bit more precise because we know that one of them
should exist), and an edge to ∅ can be seen as a “must not” arrow (or valued
0).

References

[1] Appendix for An abstract domain for separation logic formulae:
http://www.enseignement.polytechnique.fr/profs/informatique/Elodie-
Jane.Sims/publications/EAAI06/annexes/.

[2] P. Cousot. Méthodes itératives de construction et d’approximation de points
fixes d’opérateurs monotones sur un treillis, analyse sémantique de programmes.
Thèse d’État ès sciences mathématiques, Université scientifique et médicale de
Grenoble, Grenoble, France, March 1978.

[3] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In
POPL’77, pages 238–252, Los Angeles, California, 1977. ACM Press, New York,
NY.

[4] P. Cousot and R. Cousot. Systematic design of program analysis frameworks.
In POPL’79, pages 269–282, San Antonio, Texas, 1979. ACM Press, New York,
NY.

[5] S. Ishtiaq and P. O’Hearn. BI as an assertion language for mutable data
structures. In POPL’01, pages 14–26, 2001.

[6] Patrick Lam, Viktor Kuncak, and Martin Rinard. Generalized typestate
checking for data structure consistency. In 6th International Conference on
Verification, Model Checking and Abstract Interpretation, 2005.

[7] A. Miné. A new numerical abstract domain based on difference-bound matrices.
In PADO II, volume 2053 of LNCS, pages 155–172. Springer-Verlag, May 2001.

[8] D.J. Pym. The Semantics and Proof Theory of the Logic of Bunched
Implications, volume 26 of Applied Logic Series. Kluwer Academic Publishers,
2002.

15

Sims

[9] D.J. Pym, P.W. O’Hearn, and H. Yang. Possible worlds and resources:
The semantics of BI. Theoretical Computer Science, 315(1):257–305, 2004.
Erratum: p. 285, l. -12: “, for some P ′, Q ≡ P ;P ′ ” should be “P ` Q”.

[10] J. C. Reynolds. Separation logic : A logic for shared mutable data structures.
In LICS’02, pages 55–74, Denmark, 2002. IEEE Computer Society.

[11] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued
logic. In ACM Transactions on Programming Languages and Systems, 2002.

[12] Élodie-Jane Sims. Extending separation logic with fixpoints and postponed
substitution. Theoretical Computer Science, 5775, 2005.

16

	Introduction
	Examples: Introduction to the domain, translations of formulae
	Definition of the domain : AR
	Semantics of the domain
	Operations on the domain
	Extension
	Union
	Merging nodes
	Widening

	Conclusion
	References

