An abstract domain for separation logic formulae

Élodie-Jane Sims

Elodie-Jane.Sims@polytechnique.fr

Situation

- ♦ Goal: pointer analysis: check dereferencing errors, aliases, ...
- $lacktriangleright BI^{\mu\nu}$ a separation logic which permit easy descriptions of the memory, e.g.
 - x points to a list of [1;2;3] $\exists x_2, x_3. \ (x \hookrightarrow 1, x_2) * (x_2 \hookrightarrow 2, x_3) * (x_3 \hookrightarrow 3, \text{nil})$
 - x and y are aliased pointers $x = y \land \exists x_1, x_2. \ (x \hookrightarrow x_1, x_2)$
 - Partitionning: x and y belong to two disjoints parts of the heap which have no pointers from one to the other...

➤ We want to use this logic as an interface language for modular analysis

Analysis $1 \to BI^{\mu\nu} \to \text{Analysis 2}$ Program $\to BI^{\mu\nu} \to \text{Analysis 3}$

We have build an intermediate domain such that:

- ➤ it is similar to the existing shape/alias analysis domains to allow translations from/to those domains
- ➤ it comes with a concrete semantics in term of sets of states which is the same domain as for the formulae's semantics
- > we can translate the formulas into our domain
- ➤ it is a cartesian product of different subdomains so that we can cheaply tune the precision depending on the needs (for example, the domain is parametrised by a numerical domain which can be forgotten if we do not care about numericals)

The concrete domain: State

We have a set of variables Var.

$$Val = Int \cup Bool \cup Atoms \cup Loc \quad Values$$
 $S = Var \rightarrow Val \quad Stacks$
 $H = Loc \rightarrow Val \times Val \quad Heaps$
 $State = S \times H$

Rq: stacks can be partial functions

The logic: $BI^{\mu\nu}$

 $Var_v = \{X_v, Y_v, ...\}$ infinite set of variables of formulae

Semantic of *

$$\llbracket P * Q \rrbracket_{\rho} = \left\{ s, h_0 \cdot h_1 \middle| \begin{array}{c} \bullet & dom(h_0) \cap dom(h_1) = \emptyset \\ \bullet & s, h_0 \in \llbracket P \rrbracket_{\rho} \\ \bullet & s, h_1 \in \llbracket Q \rrbracket_{\rho} \end{array} \right\}$$

Examples of formulae

Ex. 1

$$s = [x \to l_1, y \to l_2]$$

$$h_1 = [l_1 \to \langle 3, l_2 \rangle]$$

$$\models (x \mapsto 3, y)$$

Ex. 2

$$s = [x \to l_1, y \to l_2]$$

$$h_1 = [l_1 \to \langle 3, l_2 \rangle]$$

$$s = [x \to l_1, y \to l_2]$$

$$h_2 = [l_2 \to \langle 4, l_1 \rangle]$$

$$\models (y \mapsto 4, x)$$

Ex. 3

$$s = [x \to l_1, y \to l_2]$$

$$h_1 \cdot h_2 = \begin{bmatrix} l_1 \to \langle 3, l_2 \rangle, \\ l_2 \to \langle 4, l_1 \rangle \end{bmatrix}$$

$$\models (x \mapsto 3, y) * (y \mapsto 4, x)$$

$$\not\models (x \mapsto 3, y) \land (y \mapsto 4, x)$$

Formulae	$x = \mathtt{nil}$
Semantics	$\{s,h\mid s(x)= ext{nil}\},\dots$
Translation	$\left(\boxed{x} \rightarrow \boxed{Nilt}, -, -, -, -, -\right)$

Formulae	$(x = \mathtt{nil} \lor x = \mathtt{true})$
Translation	Nilt,,,,

Formula	$\neg(x=x)$
Semantic	$\{s, h \mid x \not\in dom(s)\}$
Translation	$\boxed{\left(\boxed{x} \rightarrow \boxed{Oodt}, \neg, \neg, \neg, \neg, \neg, -\right)}$

Do not confuse with:

Formula	false
Semantic	\emptyset
Translation (for ex.)	$\left(\boxed{x} \rightarrow \boxed{\emptyset}, -, -, -, -, -\right)$

Formula	$A \wedge B$
Constraints	cheap translation of ∧
Translation	$T(A \wedge B) \triangleq T'(T'(\top, A), B)$

Ex4, Ex5

Formula	x = y
Constraints	refine the information for one variables
	while also refining the information of the second one
	in a cheap way
Adds	infinite set of auxiliary variables $TVar$
	$VAR \triangleq Var \uplus TVar$
Translation	$\begin{bmatrix} x \\ y \end{bmatrix}$
Formula	$x = y \wedge x = \mathtt{nil}$
Translation	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

Formula	"x is a location not allocated"
Semantic	$\{s, h \mid s(x) \in Loc \land s(x) \not\in dom(h)\}$
Translation	$\boxed{\left(\boxed{x} \longrightarrow Dangling_Loc}, _, _, _, _, _, _\right)}$

Formula	emp
Semantic	$\{s, h \mid dom(h) = \emptyset\}$
Adds	$HU \triangleq \mathcal{P}(TVar)$
	$oldsymbol{HO} riangleq \mathcal{P}(TVar) riangleq exttt{full}$
Translation	$(-, -, \emptyset, -, -, -, -)$

Formula	$(x \mapsto \mathtt{true}, \mathtt{nil})$
Semantic	$\{s, h [s(x) \to \langle True, \mathtt{nil} \rangle] = h\}$
Translation	$ \begin{array}{c c} \hline x \rightarrow \alpha \rightarrow \bullet & Truet \\ \hline 2 & Nilt \\ \end{array}, \{\alpha\}, \{\alpha\}, _, _, _, _ $

Formula	$(x \hookrightarrow \mathtt{true}, \mathtt{nil})$
Semantic	$\{s, h [s(x) \to \langle True, \mathtt{nil} \rangle] \subseteq h\}$
Translation	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

Variables represent at most one value. To allow approximation we introduce summary nodes which can represent several values.

Ex12: finite acyclic list of True starting from x

 \emptyset is the set of infinite summary nodes, for infinite list μ would be replaced by ν and \emptyset by $\{\alpha\}$).

Ex13: increase precision of union

Formal definition of the domain

```
VD1 ::= Numt \mid Truet \mid Falset \mid Oodt \mid Nilt \mid Dangling\_Loc \mid TVar
VD ::= VD1 \mid Loc(\mathcal{P}(\{*1,*2\}) \times VD1 \times VD1)
PVD^{+} ::= (\mathcal{P}(VD) \uplus \otimes, \sqcup, \sqcap)
AD ::= VAR \xrightarrow{total} PVD^{+}
CL_{eq} ::= \mathcal{P}(\{\ddagger_{eq}, \dagger_{eq}, =_{eq}, \subset_{eq}, \supset_{eq}, \sharp_{eq}, \bigotimes_{eq}\})
TB ::= (TVar \times TVar) \xrightarrow{total} CL_{eq}
AR ::= AD \times \mathcal{P}(TVar) \times (\mathcal{P}(TVar) \uplus \text{full}) \times \mathcal{P}(TVar) \times \mathcal{P}(TVar) \times TB
\times (\mathcal{D}, \llbracket \cdot \rrbracket^{\mathcal{D}} : \mathcal{D} \to (TVar \xrightarrow{total} \mathcal{P}(\mathbb{Z})))
```

Semantic

Why the F?

$$\begin{bmatrix}
\cdot \end{bmatrix} \in AR \to \mathcal{P}(State) \\
[ar] \stackrel{\triangle}{=} \{\bar{s}, h \mid s, h, f, r \in [ar]'\}$$

$$\begin{bmatrix}
\cdot \end{bmatrix}' \in AR \to MFR \\
[(ad, hu, ho, sn, sn^{\infty}, t, d)]' \stackrel{\triangle}{=} [ad]^{4} \cap [hu]^{1} \cap [ho]^{1'} \cap [sn]^{2} \cap [sn^{\infty}]^{2'} \\
 \cap [t]^{3} \cap [d]^{7} \cap sem*$$

$$\begin{bmatrix}
\cdot \end{bmatrix}^{4} \in AD \to MFR \\
[ad]^{4} \stackrel{\triangle}{=} \bigcap [v, ad(v)]^{5}$$

Operations

- union
- extension (replace $[v \to S]$ by $[v \to \{v'\}|v' \to S]$ with a fresh v') used to tune the precision of the union
- merging (replace $[v_1 \to S_1 \mid v_2 \to S_2]$ by $[v_2 \to (S_1 \cup S_2)]$) used with the widening
- translations from formulae to the domain

Comparisons

- The \bullet the represent locations in the usual shape graphs
- ➤ summary nodes as for other shape graphs, seems to give more possibilities than predicate abstraction (with each time a specific predicate for list, etc...) but the technics of predicate and their algorithm/heuristics (like folding/unfolding) could probably also be use on our graphs
- ➤ a lonely outgoing edge can be seen as a "must" arrow (or valued 1), several outgoing edges from a variable can be seen as a "may" arrow (or valued 1/2, but it is a bit more precise because we know that one of them should exist), and an edge to \emptyset can be seen as a "must not" arrow (or valued 0)

- ➤ we deal with numerical (for what we know, only *Magill & al.* also do)
- ➤ we have a formal semantic of our domain, the semantics of auxiliary variables are formally defined and formally used in the proofs
- ➤ we don't have to check for equalities of variables
- ➤ the domain is a cartesian product, we can add or remove some parts depending on the precision we want

Ende