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Thèse pour l’obtention du Doctorat de l’École Polytechnique 1er décembre 2007
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Analysing programs

Why ?

• Safety: Programs are used in spaceships, public transportations, powerplants,
banking,...

• Money: Debugging (finding errors) is a big part of the effort of programing

How ?

• The industry usually does testing (trying to run the program in various situations)
but this is not safe:

– one cannot test a program on an infinity of values to cover all behaviours;
– one cannot run a program forever before insuring it behaves properly forever.

• Formal methods try to address the problem by providing mathematically sound
techniques that guarantee a full coverage of all program behaviours.
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Requirements for our analyses

• are always safe: if we say no error, there are indeed no error possible, we cover all
possible behaviours of the programs;

• can be unprecise;
From undecidablity theorems: for any analyzer, there always exist programs for
which it will answer “I don’t know” (or not terminates).

• always terminates;

• are automatised, we do not want to make proofs by hand.
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The methodology: Abstraction

Example, the program
x := y + 3; z := 3/x;

runs to a division error if x = 0 that is if y = −3.

We can not try all integer for y to find this −3.

So we build an abstract domain, for example the sign domain and we get that:

if y is then x is and the result is

> 0 > 0 no ERROR
= 0 > 0 no ERROR
< 0 DONT KNOW DONT KNOW

DONT KNOW DONT KNOW DONT KNOW

If the answers are too imprecise, we refine our abstract domain, which means create
or use a domain for which the answer is more costly to get but more precise.
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Using logics to analyse programs

In the history of program analysis, people have often used Hoare logics as abstract
domains.
Take a short program:

x := 3; y := x;

You can run it starting with x and y equal to 0

[x "→ 0 | y "→ 0]
x:=3;
−−−−→ [x "→ 3 | y "→ 0]

y:=x;
−−−−→ [x "→ 3 | y "→ 3]

or you could also have

[x "→ 5 | y "→ 2]
x:=3;
−−−−→ [x "→ 3 | y "→ 2]

y:=x;
−−−−→ [x "→ 3 | y "→ 3]

So people started to use logic to characterise the state before and after running a
program:

{true} x:=3; y:=x; {x = 3 ∧ y = x}
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Automatisation and Search for precision:
We wrote

{true} x:=3; y:=x; {x = 3 ∧ y = x}

• we could also have written

{x = 5} x:=3; y:=x; {x = 3 ∧ y = x}

Weakest precondition: { ? }C{Q}
for a formula Q, and a program C what is the least restrictive formula P such that
{P}C{Q} is correct ?

• we could also have written

{true} x:=3; y:=x; {x = 3}

Strongest postcondition: {P}C{ ? }
for a formula, P , and a program, C, what is the most precise formula Q such that
{P}C{Q} is correct ?
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Pointer programs

The choice of the abstract domain is driven by the kind of program to analyse and
the kind of property we want to prove.

We focused on programs using pointers, for what is called pointer analysis: check
dereferencing errors, aliases, ...

Example of a pointer program with a bug, where (a ↪→ b, c) asserts that a points
to a cons cell whose head value is b and tail value is c:

!



























{∃z1, z2. (nil ↪→ z1, z2)≡ FALSE}
x := nil;

{∃z1, z2. (x ↪→ z1, z2)}
z := x;

{∃z1, z2. (z ↪→ z1, z2)}
y := z · 1;
{TRUE}
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Pointers analyses: Shape/alias analyses

• Shape analyses: the analysis builds a graph where

– the nodes represent locations in the heap
– the edges represent fields between locations

The analysis usually does approximation (represent more or less nodes/fields than
what is in the heap) and computes some more informations about the nodes or
edges of the graph.

• Alias analyses: a point-to analysis which computes sets of variables

There have been and there are still tons of work on pointers: TVLA [POPL’99,
SAS’00], Smallfoot, SpaceInvader [FMCO’05, SAS’07], Magill [SPACE’06], Whaley
Rinard, Vivien Rinard [PLDI’01], Salcianu, Yang [ESOP’05], Rival [SAS’07], Andersen,
Steensgaard, Heintze, Tzolovski, Foster Aiken [SAS’00], Ryder Landi, Emilianov,
Deutsch, Jonkers, M∅ller, Reddy, ...
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Separation logic: a logic for pointer analysis

Separation logic allows easy descriptions of memory states, e.g.

• x points to a list of [1;2;3]
∃x2, x3. (x ↪→ 1, x2) ∗ (x2 ↪→ 2, x3) ∗ (x3 ↪→ 3, nil)

• x and y are aliased pointers
x = y ∧ ∃x1, x2. (x ↪→ x1, x2)

• Partitioning: x and y belong to two disjoint parts of the heap which have no
pointers from one to the other...
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➤ We wanted to use separation logic as an interface language for modular analysis

Call

function
F

F ′

D

D′

F, F ′: sep. logic formulae; D, D′ other analysis’s domain elements.

So we wanted to characterise programs with pre- and post-conditions in sep. logic,
and translate formulae into and from other domains. For this last point, we created
an intermediate language into which we translate separation logic formulae.
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Example for a piece of code inserting a cell in a linked list
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







































































#

{(x "→ 1, y) ∗ (y "→ 3, nil)}

x y

1

s

h 3 nil

t := cons(2, y);

{(x "→ 1, y) ∗ (y "→ 3, nil)∗(t %→ 2, y)}

x y

1

s

h 3 nil 2

t

x · 2 := t;

{(x "→ 1, t) ∗ (y "→ 3, nil) ∗ (t "→ 2, y)}

x y

1

s

h 3 nil 2

t
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Local reasoning
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













































































#

{

(x "→ 1, y) ∗ (y "→ 3, nil)
∗(z %→ 4, y)

}

x y

1

s

h 3 nil 4

z

t := cons(2, y);

{

(x "→ 1, y) ∗ (y "→ 3, nil)∗(t %→ 2, y)
∗(z %→ 4, y)

}

x

1

y
s

h 3 nil 2

t z

4

x · 2 := t;

{

(x "→ 1, t) ∗ (t "→ 2, y) ∗ (y "→ 3, nil)
∗(z %→ 4, y)

}

x

1

y
s

h 3 nil 2

t z

4
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Separation logic

Classical connectives
E = E′ | false

| P ⇒ Q | ∃x.P

Spatial connectives
| emp Empty heap | E "→E1, E2 Points to
| P∗Q Spatial conj. | P→∗ Q Spatial imp.

Expressions can be:

x | n | nil | True | False | E1 op E2
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Domain of interpretation: State

We have a set of variables V ar.

Val = Int ∪ Bool ∪ Atoms ∪ Loc V alues
S = Var ⇀ Val Stacks
H = Loc ⇀ Val × Val Heaps

State = S × H

Semantics of ∗

!P ∗ Q"ρ =







s, h0 · h1

∣

∣

∣

∣

∣

∣

• dom(h0) ∩ dom(h1) = ∅
• s, h0 ∈ !P "ρ

• s, h1 ∈ !Q"ρ






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Examples of formulae

Ex. 1 Ex. 2 Ex. 3

s = [x → l1, y → l2]
h1 = [l1 → 〈3, l2〉]

s = [x → l1, y → l2]
h2 = [l2 → 〈4, l1〉]

s = [x → l1, y → l2]

h1 · h2 =

»

l1 → 〈3, l2〉,
l2 → 〈4, l1〉

–

x y

3h1

s
x y

4h2

s
x y

3 4h1·h2

s

|= (x %→ 3, y) |= (y %→ 4, x)
|= (x %→ 3, y)∗(y %→ 4, x)
'|= (x %→ 3, y)∧(y %→ 4, x)
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Result 1

✦ When starting the work, recursive formulae could not be expressed within separation
logic, and moreover pre-conditions (wlp) and post-conditions (sp) for while loops
could not be expressed

➤ We have extended separation logic such that we can express recursive formulae,
and use them to instantiate existing triples rules and new ones.

➤ We have a backward (wlp) and forward (sp) analysis with their soundness proofs
for any formula and any command, in particular for while-loops.

➤ We have proved various properties of the extended logic.
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Result 2

We have built an intermediate language such that:

➤ it is similar to the existing shape/alias analysis domains to allow translations of our
intermediate language from and to those existing domains

➤ it comes with a concrete semantics in term of sets of states
which is the same domain as for the formulae’s semantics

➤ we translated the separation logic formulae into our intermediate language and
proved sound those translations

➤ it is a partially reduced product of different subdomains so that we can cheaply tune
the precision depending on the needs (for example, the language is parametrised by
a numerical domain which can be ignored if we do not care about numericals)
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The logic: BIµν

Classical connectives
E = E′ | false

| P ⇒ Q | ∃x.P

Spatial connectives
| emp Empty heap | E "→E1, E2 Points to
| P∗Q Spatial conj. | P→∗ Q Spatial imp.

Fixpoints connectives
| Xv Variable for formulae | P [E/x] Postponed substitution
| νXv.P Greatest fixpoint | µXv.P Least fixpoint

Varv = {Xv, Yv, ...} infinite set of variables of formulae
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Fixpoint connectives semantics

ρ is an environment mapping formula variables to sets of State
!Xv"ρ = ρ(Xv) if Xv ∈ dom(ρ)

!µXv.P "ρ = lfp⊆
∅ λY. !P "[ρ|Xv→Y ]

!νXv.P "ρ = gfp⊆
∅ λY. !P "[ρ|Xv→Y ]

!P [E/x]"ρ =

{

s, h |
!E"s exists and
[s | x → !E"s], h ∈ !P "ρ

}

! " may be undefined: if the formula is not closed for variables of formulae
(e.g. !Xv"∅) or if the fixpoint does not exists (e.g. !µXv.¬Xv"ρ)
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[ / ] is not { / }

!true[y/x]" = {s, h | !y"s exists } Postponed substitution connective

!true{y/x}" = !true" = State Capture-avoiding substitution

{true}x := y{true} is false since the command will be stuck from a state that
has no value on its stack for y

but {is(y)}x := y{true} is true

so {P{y/x}}x := y{P} is unsound

but {P [y/x]}x := y{P} is sound

With is(E) ! (E = E), since !E = E"ρ = {s, h | !E"s has a value}
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List formula

“x points to a finite non-cyclic list of True”

nclist(x) ! µXv. ((x = nil) ∨ ∃x2. (x "→ true, x2 ∗ Xv[x2/x]))

Notice the combination of fixpoint and postponed substitution to write recursive
definitions
“nclist(x) = (x = nil) ∨ ∃x2.(x "→ true, x2 ∗ nclist(x2))”

x
s

h

x
s

h

x
s

h

nil

nil

..., ,
nil t tt

(to define finite or infinite lists replace µ by ν)
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Tree formula

“x points to a tree of True”

tree(x) ! µXv.
(x = nil) ∨ ∃xl, xr, x′.
((x "→ true, x′) ∗ (x′ "→ xl, xr) ∗ Xv[xl/x] ∗ Xv[xr/x])
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Unfolding theorems

As usual, the following theorems hold

µXv. P ≡ P{µXv. P/Xv}

νXv. P ≡ P{νXv. P/Xv}

We have proved some other theorems like variable renaming, variable substitution,
equivalence of µ and ν using ¬, simplifications of [ / ] by equivalent formulae.
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Backward Analysis: wlp

wlp : weakest liberal precondition, such that

{wlp(P,C)}C{P} true

wlp is expressed and proved sound for any P and any C

♦ {P [E/x]}x := E{P}

♦ {νXv. ((E = true ∧ wlp(Xv, C)) ∨ (E = false ∧ P ))}
while E do C {P}
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Forward analysis: sp

sp : strongest postcondition, such that

!sp(P,C)"∅ = {m′ | ∃m ∈ !P "∅. C,m !
∗ m′}

sp are expressed and proved sound for all P and all C

♦ sp(P, x := E) = ∃x′. P [x′/x] ∧ x = E{x′/x} with x′ .∈ FV (E,P )

♦ sp(P,while E do C) =
(E = false) ∧ (µXv.sp(Xv ∧ E = true, C) ∨ P )
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Elements of the domain are tuples

Elements are 7-tuples (sg, hu, ho, sn, sn∞, t, d)

• sg ∈ SG A kind of shape graph

• hu ∈ P(TV ar) Under approximation of heap domain
• ho ∈ P(TV ar) / full Over approximation of heap domain

• sn ∈ P(TV ar) Set of finite summary nodes
• sn∞ ∈ P(TV ar) Set of infinite summary nodes

• t ∈ TB Tabular expressing inclusions
on the concrete values represented

• d ∈ D Numerical domain
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Simple abstract values (Nilt, Truet,...) and disjunction

Formulae x = nil

Semantics {s, h | s(x) = nil},...

Translation

(

x Nilt , , , , , ,

)

Formulae (x = nil∨x = true)

Translation



















x Nilt

T ruet

, , , , , ,


















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Aliasing and Conjunction
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We want cheap translation of ∧ : T (A ∧ B) ! T ′(T ′(0, A), B)
Formula x = y
Constraints refine the information for one variable

while also refining the information of the second one
in a cheap way

Adds infinite set of auxiliary variables TV ar
V AR ! V ar / TV ar

Translation













x α 0

y

, , , , , ,













Formula x = y∧x = nil

Translation













x α Nilt

y

, , , , , ,












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Quantifier

Formula x = y ∧ x = nil

Translation













x α Nilt

y

, , , , , ,













Formula (∃x. x = y ∧ x = nil) ≡ (y = nil)

Translation













α Nilt

y

, , , , , ,












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Numericals

Formula (x < y + 3)

Translation











x α Numt

y β Numt

, , , , , , d











d ∈ D encodes that α < β + 3
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Dangling pointers

Formula “x is a location not allocated”
isdangling(x) ≡ isloc(x) ∧ ¬isinheap(x)

Semantics {s, h | s(x) ∈ Loc ∧ s(x) .∈ dom(h)}

Translation

(

x Dangling Loc , , , , , ,

)

where

isint(x) ≡ ∃n. n = x + 1
isloc(x) ≡ ¬(x = nil) ∧ ¬(x = true) ∧ ¬(x = false) ∧ ¬(isint(x))

isinheap(x) ≡ ∃x1, x2. (x ↪→ x1, x2)
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emp, approximation of the heap

Formula emp

Semantics {s, h | dom(h) = ∅}
Subdomains HU ! P(TV ar)

HO ! P(TV ar) / full

Translation (0, ∅, ∅, , , , )
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Heap locations

Formula (x%→true, nil)
Semantics {s, h|[s(x) → 〈True, nil〉]= h}

Translation











x α •
1

2

Truet

Nilt

, {α}, {α}, , , ,











Formula (x↪→true, nil)
Semantics {s, h|[s(x) → 〈True, nil〉]⊆ h}

Translation











x α •
1

2

Truet

Nilt

, {α}, full, , , ,










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Summary nodes

Variables represent at most one value. To allow approximation we introduce
summary nodes which can represent several values.

Formula
approx. of (x = true ∧ y = nil)

by
(x = true ∨ x = nil)

∧(y = true ∨ y = nil)

Translation



















x α Truet

y Niltt

, , , {α}, , ,


















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Finite acyclic list of True starting from x

Formula µXv.

(

(x = nil) ∨ ∃x2.
x ↪→ (true, x2) ∗ Xv[x2/x]

)

Translation













x α •
1

∗2

Truet

Nilt

, , , {α}, ∅, ,













∅ is the set of infinite summary nodes, for infinite list µ would be replaced by ν
and ∅ by {α}.
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Tabular to increase precision of union

Formula

(

x = nil

∧y = true

)

∨

(

x = true

∧y = nil

)

Translation α1

{†eq}

{†eq}

Nilt Nilt α3

{†eq}x y

α2

{†eq}

Truet Truet α4

The dashed arrows are drawned to represent the tabular:

α1 α2 α3 α4

α1 {‡eq,=eq} {†eq} {†eq} 0eq

α2 {‡eq, =eq} 0eq {†eq}
α3 {‡eq, =eq} {†eq}
α4 {‡eq, =eq}
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Operations

We have proved soundness of the operations we use, in particular:

• union, intersection

• extension ( replace v1 v Nilt by v1 v α Nilt

v2 v2

or by
v1 v α Nilt

v2

)

used to tune the precision of the union

• merging (replace [v1 → S1 | v2 → S2] by [v2 → (S1 ∪ S2)])
used with the widening

• translations from formulae to the abstract language
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Comparisons

➤ the •
1

2

represent nodes in the usual shape graphs

➤ summary nodes, as for other shape graphs, seems to give more possibilities than predicate abstraction
(with each time a specific predicate for list, etc...) but the framework of predicate abstraction and
their algorithm/heuristics (like folding/unfolding) could probably also be use on our graphs

➤ a lonely outgoing edge can be seen as a “must” arrow (or valued 1), several outgoing edges from a
variable can be seen as a “may” arrow (or valued 1/2, but it is a bit more precise because we know
that one of them should exist), and an edge to ∅ can be seen as a “must not” arrow (or valued 0)

➤ we deal with numerical information (not many works do, for example Magill & al. also do)

➤ we have a formal semantic of our domain, the semantics of auxiliary variables are formally defined
and formally used in the proofs. We don’t have to check for equalities of variables

➤ we directly have in the domain the “Dangling” information which is suitable for cleaning checking
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Prototype

We have build a prototype implementation:

data of type

Prog.t

defined in

program.ml

data of type

Form.t

defined in

formula.ml

data of type

Form.t

defined in

formula.ml

data of type

AR.t

defined in

prog2sl.ml

computes the
wlp and sp

sl2ar.ml

computes the
translation of formula
to our abstract language ar.ml

The type AR.t defined in ar.ml

uses subtypes defined in

sn.ml
tb.ml cleq.ml
numerical_domain.ml

ad.ml
heap.ml

and they all use all_domain.ml

Implement the computation of pre- and post-conditions in the extended separation
logic and the translation of the formulae into the abstract language.
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Conclusions

√
We added fixpoints to separation logic, which provides a way to express recursive formulae and
while-loops pre- and post-conditions.

√
We proved useful properties about the extended logic

√
We gave a precise semantics of the abstract language for separation formulae in terms of sets of
states. We gave a semantics to auxiliary variables and did not leave this as an implementation design
question

√
We designed the abstract language as a partially reduced product of subdomains. We combined
the domain’s heap analysis with a numerical domain which could be chosen from existing ones (e.g.
polyhedra, octogons)

√
We designed a novel tabular data structure which allows extra precision by using a graph of sets
instead of sets of graphs

√
We expressed and proved the translation of separation logic formulae into our abstract language and
implemented it in a prototype.
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Future work

• finish the prototype implementation, profiling studies with standard example programs, experiment
various strategies to build summary nodes

• improve the abstract language with labels indicating where we do overapproximation

• add sugar structures to do abstract language like lists (or a system to add those structures) and
functions to use the mechanisms of folding/unfolding those structures when needed

• adding labels to ∗1 and ∗2 to allow to have several families of uncycling edges instead of one

• it could be fun to design a program analysis directly in our abstract language

• actually do interface the abstract language with some existing pointer analysis
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End
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