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Motivations

✦ We want to do Pointer analyses: check dereferencing problems, aliases,...

✦ Separation Logic allows descriptions of properties of the memory, e.g.

– x points to a list of [1;2;3]
∃x2, x3. (x ↪→ 1, x2) ∗ (x2 ↪→ 2, x3) ∗ (x3 ↪→ 3, nil)

– x and y are aliased pointers
x = y ∧ ∃x1, x2. (x ↪→ x1, x2)

– Partitioning: x and y belong to two disjoint pieces of a heap

➤ We want to use this logic as an interface language between analyses,
or as an intermediate language between the program and other analyses
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Results

✦ But currently, recursive formulae could not be expressed within the logic, and
moreover pre-conditions (wlp) and post-conditions (sp) for while loops could
not be expressed

➤ So we added to the logic fixpoints and postponed substitution, and expressed
the wlp and sp for any command and any formula and proved their correctness.
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Plan

- Programs

- The extended logic: BIµν

- Backward Analysis: wlp,
Forward analysis: sp

- Conclusions
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Semantic domain: Memory

Val = Int ∪ Bool ∪ Atoms ∪ Loc V alues
S = Var ⇀ Val Stacks
H = Loc ⇀ Val × Val Heaps

Memory = S × H

We write s, h as well as m for elements of Memory.
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Commands

C ::= x := E
| x := E.i
| E.i := E′

| x := cons(E1, E2)
| dispose(E)
| C1;C2

| if E then C1 else C2

| while E do C1

| skip

E ::= x | n | nil | True | False | E1 op E2

n ∈ Z, i ∈ {1, 2}
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Operational semantics of commands

C,m � C ′, m′

C,m � m′

Example for cons

l ∈ Loc, l 6∈ dom(h) ∪ range(h) ∪ range(s), v1 = � E1 �

s, v2 = � E2 �

s

x := cons(E1, E2), s, h � [s|x → l], [h|l → 〈v1, v2〉]
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The extended logic: BIµν

Classical connectives
E = E′ | false

| P ⇒ Q | ∃x.P

Spatial connectives
| emp Empty Heap | E 7→E1, E2 Points to
| P∗Q Spatial Conj. | P →∗ Q Spatial Imp.

Fixpoint connectives
| Xv Formula Variable | P [E/x] Postponed Substitution
| νXv.P Greatest Fixpoint | µXv.P Least Fixpoint

Varv = {Xv, Yv, ...} an infinite set of formula variables
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Operational semantics of formulae

ρ : Varv ⇀ P(Memory) : environment

� P � ρ ∈ P(Memory) : semantics

m |=P iff m ∈ � P � ∅

P ≡ Q iff ∀ρ.( � P � ρ = � Q � ρ) ∨ ( � P � ρ and � Q � ρ both do not exist)
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Classical connectives semantics
� E = E′
� ρ = {s, h | � E �

s = � E
′

�

s}

� false � ρ = ∅

� P ⇒ Q � ρ = (Memory \ � P � ρ) ∪ � Q � ρ

� ∃x. P � ρ = {s, h | ∃v ∈ Val. [s | x → v], h ∈ � P � ρ}
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Spatial connectives semantics
� emp � ρ = {s, h | dom(h) = ∅}

� E 7→ E1, E2 � ρ = {s, h | dom(h)= { � E �

s} and h( � E �

s) = 〈 � E1 �

s, � E2 �

s〉}

� P ∗ Q � ρ = {s, h0 · h1 | h0]h1, s, h0 ∈ � P � ρ and s, h1 ∈ � Q � ρ}

� P →∗Q � ρ = {s, h | ∀h′, if h]h′ and s, h′ ∈ � P � ρ then s, h·h′ ∈ � Q � ρ}

—————
h]h′ : dom(h) and dom(h′) are disjoint
h · h′ : union of disjoint heaps h and h′
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Examples of formulae

Ex. 1 Ex. 2 Ex. 3

s = [x → l1, y → l2]

h1 = [l1 → 〈3, l2〉]
s = [x → l1, y → l2]

h2 = [l2 → 〈4, l1〉]

s = [x → l1, y → l2]

h1 · h2 =

�

l1 → 〈3, l2〉,
l2 → 〈4, l1〉

�

x y

3PSfrag replacements
h1

s
x y

4PSfrag replacements
h2

s
x y

3 4PSfrag replacements
h1·h2

s

|= (x 7→3, y)

|= (y 7→4, x) →∗
((x 7→3, y)∗(y 7→4, x))

|= (y 7→4, x)
|= (x 7→3, y)∗(y 7→4, x)

6|= (x 7→3, y) ∧ (y 7→4, x)
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Fixpoint connectives semantics
� Xv � ρ = ρ(Xv) if Xv ∈ dom(ρ)

� µXv.P � ρ = lfp⊆
∅ λY. � P � [ρ|Xv→Y ]

� νXv.P � ρ = gfp⊆
∅ λY. � P � [ρ|Xv→Y ]

� P [E/x] � ρ =

{

s, h | � E �

s exists and
[s | x → � E �

s], h ∈ � P � ρ

}

Remarks:

– � � may not be defined: e.g. � Xv � ∅, � µXv.¬Xv � ρ

– � true[y/x] � = {s, h | � y �

s exists } Postponed substitution connective

� true{y/x} � = � true � = Memory Capture avoiding substitution
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Example: List formula

“x points to a finite non-cyclic list of integers”

nclist(x) , µXv. (x = nil)∨∃x1, x2.(isint(x1)∧(x 7→ x1, x2 ∗ Xv[x2/x]))

isint(x) , ∃n.n = x + 1

Notice the combination of fixpoint and postponed substitution to write recur-
sive definitions
“nclist(x) = (x = nil) ∨ ∃x1, x2.isint(x1) ∧ (x 7→ x1, x2 ∗ nclist(x2))”
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Some properties of the logic

– [ / ] is not { / }
with
{ / } : capture avoiding substitution
[ / ] : postponed substitution connective

– Unfolding theorems holds
µXv. P ≡ P{µXv. P/Xv}
νXv. P ≡ P{νXv. P/Xv}

– { / } : no variable renaming theorem (see next slides)

– some simplification on [ / ] (see next slides)
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{ / } : no variable renaming theorem

∃y.P 6≡ ∃z.P{z/y}
with z 6∈ Var(P ) (when y 6= z)

Counter examples:
− � νXv.y = 3 ∧ ∃y.(Xv ∧ y = 5) � ∅ 6≡ � νXv.y = 3 ∧ ∃z.(Xv ∧ z = 5) � ∅

= =
∅ � y = 3 � ∅

− � ∃y.νXv.y = 3 ∧ ∃y.(Xv ∧ y = 5) � ∅ 6≡ � ∃z.νXv.z = 3 ∧ ∃y.(Xv ∧ y = 5) � ∅
= =
∅ Memory
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Definition of full substitution

{[ / ]} : full syntactical variable substitution

P{[z/y]} is P in which all y are replaced by z wherever they occur,

for example:

(∃y.P ){[z/y]} , ∃z.(P{[z/y]})

(P [E/x]){[z/y]} , (P{[z/y]})[E{z/y}/x{z/y}]
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Variable renaming theorem for BIµν

If

• P is v-closed (variables in Varv are all closed by µ or ν)

• z 6∈ Var(P )

• y 6∈ FV (P )

then
P ≡ P{[z/y]}

in particular ∃y.P ≡ ∃z.(P{[z/y]})
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Equivalences on [ / ]

– If P has no µ, ν, Xv, [ / ] then

P [E/x] ≡ P{E/x} ∧ is(E)

in particular (∃x.P )[E/x] ≡ (∃x.P ) ∧ is(E).

– If





P is v-closed
x1 6∈ Var(E)
x1 6= x2

then (∃x1.P )[E/x2] ≡ ∃x1.(P [E/x2])

– (A ∨ C)[E/x] ≡ (A[E/x]) ∨ (C[E/x])
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– If y 6∈ Var(P ) then
(µXv.P )[y/x] ≡ (µXv.P{[y/x]}) ∧ is(y)
(νXv.P )[y/x] ≡ (νXv.P{[y/x]}) ∧ is(y)

To understand the last rule, we can come back to the program point of view

seeing
• fixpoints as while loops
• [ / ] as assignments

C wlp(true, C)
——————— ———————
x := w;
while x = y
do x := x + 1

(νXv.(x 6= y) ∨ ((x = y) ∧ Xv[x + 1/x]))[w/x]

≡ ≡
while w = y
do w := w + 1

(νXv.(w 6= y) ∨ ((w = y) ∧ Xv[w + 1/w])) ∧ is(w)
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Backward Analysis: wlp

wlp : weakest liberal precondition, such that
� wlp(P, C) � ∅ =

{

m | − C,m cannot run to an error
− {m′ | C,m � ∗ m′} ⊆ � P � ∅

}

wlp is expressed for any P and any C

♦ wlp(P, x := E) = P [E/x]

♦ wlp(P, while E do C) = νXv. ((E = true ∧ wlp(Xv, C)) ∨ (E = false ∧
P ))

Remark: � wlp(true, C) � ∅ = {m | C, m cannot run to an error}
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Forward Analysis: sp

sp : strongest postcondition, such that

� sp(P,C) � ∅ = {m′ | ∃m ∈ � P � ∅. C,m � ∗ m′}

sp is expressed for any P and any C

♦ sp(P, x := E) = ∃x′. P [x′/x] ∧ x = E{x′/x} with x′ 6∈ FV (E, P )

♦ sp(P, while E do C) = (E = false) ∧ (µXv.sp(Xv ∧ E = true, C) ∨ P )
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Conclusions

√
We have extended separation logic so that recursive formulae can be expressed
within the logic, can be used to instantiate existing and new triple-rules

√
We have a backward (wlp) and a forward (sp) analyses with the proofs of
their correctness for any formula and any command including while loops

➟ The use of separation logic as an intermediate or interface language is still an
ongoing work...
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Example : unfolding nclist42

nclist42(x) , µXv.(x = nil) ∨ ∃x2.((x 7→ 42, x2) ∗ Xv[x2/x]) (with x2 6= x).

Then

nclist42(x2) = µXv.(x2 = nil) ∨ ∃x3.((x2 7→ 42, x3) ∗ Xv[x3/x2]) (with x3 6= x2).

We can prove that Xv[x2/x] is equivalent to nclist42(x2).

nclist42(x) , µXv.(x = nil) ∨ ∃x2.((x 7→ 42, x2) ∗ Xv[x2/x])

(unfolding) = (x = nil) ∨ ∃x2.((x 7→ 42, x2) ∗ ((µXv.(x = nil)

∨ ∃x2.((x 7→ 42, x2) ∗ Xv[x2/x]))[x2/x]))

(variable renaming for BIµν) = (x = nil) ∨ ∃x2.((x 7→ 42, x2) ∗ ((µXv.(x = nil)

∨∃x3.((x 7→ 42, x3) ∗ Xv[x3/x]))[x2/x]))

(simplification [ / ] case µ) = (x = nil) ∨ ∃x2.((x 7→ 42, x2) ∗ (µXv.(x2 = nil)

∨∃x3.((x2 7→ 42, x3) ∗ Xv[x3/x2])))

, (x = nil) ∨ ∃x2.((x 7→ 42, x2) ∗ nclist42(x2))
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Expressions semantics

� x �

s , s(x), � 42 �

s , 42, � false �

s , false, � E1 + E2 �

s , � E1 �

s + � E2 �

s, ...
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Triples

{P}C{P ′} iff

∀m if m |= P then
- C can be executed from m without error
- if C,m � ∗ m′ then m′ |= P ′

This definition differ from the usual one of Hoare triples.
(If m |= P and C,m � ∗ m′ then m′ |= P ′)

In particular with our definition, if {P}C{true}, then C can be executed
without error from any memory satisfying P .
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Backward Analysis: wlp

wlp : weakest liberal precondition, such that

{wlp(P,C)}C{P}

wlp is expressed for any P and any C

♦ {P [E/x]}x := E{P}

♦ {νXv. ((E = true ∧ wlp(Xv, C)) ∨ (E = false ∧ P ))} while E do C {P}
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Forward analysis: sp

We would like to have sp such that:

{P}C{sp(P,C)}
But it may happens that :

6 ∃Q. {P}C{Q}

e.g. : ∀Q. ¬({true}x := nil;x.1 := 3{Q})
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➜ A two steps analysis

① Express the conditions of no error wlp(true, C)

② Express the sp for any P and any C such that

If m |= P and C, m � ∗ m′ then m′ |= sp(P,C).
(the usual definition of Hoare triples).

We then have:
{P ∧ wlp(true, C)}C{sp(P,C)}

sp(P, while E do C) = (E = false) ∧ (µXv.sp(Xv ∧ E = true, C) ∨ P )
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Difference between ∗ and ∧

♦ (x 7→ 1, 2) ∗ (x 7→ 1, 2) ≡ false

♦ (x 7→ 1, 2) ∧ (x 7→ 1, 2) ≡ (x 7→ 1, 2)

♦ (x 7→ 1, 2) ∧ ¬(x 7→ 1, 2) ≡ false

♦ (x 7→ 1, 2) ∗ ¬(x 7→ 1, 2) ≡ (x 7→ 1, 2) ∗ true
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Tree formula

“x points to a tree of integers”

tree(x) , µXv.
(x = nil) ∨ ∃xv, xl, xr, x

′.isint(xv)∧
(x 7→ xv, x

′ ∗ x′ 7→ xl, xr ∗ Xv[xl/x] ∗ Xv[xr/x])
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[ / ] is not { / }

{ / } : capture avoiding substitution
[ / ] : postponed substitution connective

{true}x := y{true} is false since the command will be stuck from a state
that has no value on its stack for y

but {is(y)}x := y{true} is true

so {P{y/x}}x : = y{P} is unsound

but {P [y/x]}x : = y{P} is sound

With is(E) , (E = E), since � E = E � ρ = {s, h | � E �

s has a value}
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Detailed semantics of νXv.y = 3 ∧ ∃y.(Xv ∧ y = 5)
� νXv.y = 3 ∧ ∃y.(Xv ∧ y = 5) � ∅

= gfp⊆
∅ λY. � y = 3 ∧ ∃y.(Xv ∧ y = 5) � [Xv→Y ]

= gfp⊆
∅ λY. � y = 3 � [Xv→Y ] ∩ � ∃y.(Xv ∧ y = 5) � [Xv→Y ]

= gfp⊆
∅ λY. {s, h | s(y) = 3} ∩ {s, h | ∃v.[s | y → v], h ∈ � Xv ∧ y = 5 � [Xv→Y ]}

= gfp⊆
∅ λY. {s, h | s(y) = 3} ∩ {s, h | ∃v.[s | y → v], h ∈ Y ∧ [s | y → v](y) = 5}

= gfp⊆
∅ λY. {s, h | s(y) = 3} ∩ {s, h | [s | y → 5], h ∈ Y }

= ∅
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Detailed semantics of νXv.y = 3 ∧ ∃z.(Xv ∧ z = 5)
� νXv.y = 3 ∧ ∃z.(Xv ∧ z = 5) � ∅

= gfp⊆
∅ λY. � y = 3 ∧ ∃z.(Xv ∧ z = 5) � [Xv→Y ]

= gfp⊆
∅ λY. � y = 3 � [Xv→Y ] ∩ � ∃z.(Xv ∧ z = 5) � [Xv→Y ]

= gfp⊆
∅ λY. {s, h | s(y) = 3} ∩ {s, h | ∃v.[s | z → v], h ∈ � Xv ∧ z = 5 � [Xv→Y ]}

= gfp⊆
∅ λY. {s, h | s(y) = 3} ∩ {s, h | ∃v.[s | z → v], h ∈ Y ∧ [s | z → v](z) = 5}

= gfp⊆
∅ λY. {s, h | s(y) = 3} ∩ {s, h | [s | z → 5], h ∈ Y }

= {s, h | s(y) = 3}
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