Compositional Pointer and Escape
Analysis for Java Programs

John Whaley and Martin Rinard

08/16,/01

Elodie-Jane Sims. sims@ens.fr

Compositional Pointer and Escape Analysis for Java Programs Whaley - Rinard

Points-to escape graphs

e Points-to graphs : Characterize how local
variables and fields in objects refer to other
objects.

e escape information : Characterize how
objects allocated in one region of the
program can escape to be accessed by an
other region.

Elodie-Jane Sims. sims@ens.fr 1

Compositional Pointer and Escape Analysis for Java Programs Whaley - Rinard

class complex {
double x,y;
complex(double a, double b) { x = a; y = b; }
complex multiply(complex a) {
complex product =
new complex(x*a.x - y*a.y,x*a.y + y*a.x);
return(product) ;
}
complex add(complex a) {
complex sum = new complex(x+a.x,y+a.y);
return sum;
}
complex multiplyAdd(complex a, complex b) {
complex product = a.multiply(b);
complex sum = this.add(product);

return(sum) ;
}
}
a —ln':‘.
b —h:.
this —»
product —»-O
sum 4>-©
— inside edge ----- » outside edge
O inside node ;::‘ outside node

@ return value

Elodie-Jane Sims. sims@ens.fr 2

Compositional Pointer and Escape Analysis for Java Programs Whaley - Rinard

class multisetElement {
Object element;
int count;
multisetElement next;

multisetElement (Object e, multisetElement n)} {
count = 1;
element = e;
next = n;
}
synchronized boolean check((Ubject e) {
if (element.equals(e)) {

count++;
return(true);
} else return false;
}
synchronized multisetElement insert(Ubject e) { 1
mltisetElement m = this; i Ty 9 ement
while (m != null) { hed
if (m.check(e)) return this; B Caxt
m = m.next; this—ii0)
} ~“7~. next)
return new multisetElement (e, this); “‘*J—xf 2
3 b2 :next
} / g
m
class mltiset {
multisetElement elements; R)
B —> inside edge = ----- » outside edge
elements = null; o RN)
} O inside node ‘s outside node
synchronized void addElement(Object e) {)
if (elements == null) o @ return value
elements = new multisetElement(e,null); =
else elements = elements.insert(e);
}
} Figure 5: Analysis Result for insert

Elodie-Jane Sims. sims@ens.fr 3

Compositional Pointer and Escape Analysis for Java Programs Whaley - Rinard

Properties of the algorithm

e analyze arbitrary part of the program

e more precise as more of the program is
analyzed

e can distinguish where it does and does not
have complete information

analyze each method independently of its
callers

capable of analyzing a method without
analyzing all of the method that it invokes

Elodie-Jane Sims. sims@ens.fr 4

Compositional Pointer and Escape Analysis for Java Programs Whaley - Rinard

Applications

e ecleminate synchronization for objects that
are accessed by only one thread

e allocate objects on the stack instead of in
the heap

Elodie-Jane Sims. sims@ens.fr 5

Compositional Pointer and Escape Analysis for Java Programs Whaley - Rinard

Escape information

An object can escape if it is:

e reachable from a parameter or is the result value of
the currently analyzed method

e reachable from a parameter or the result value of
an invoked method, and we don’t know what the
invoked method do with it

e reachable from a static class variable or a runnable
object
An object is captured if it does not escape.

Escape information propagation constraint :

((nl,f>,n2> cOUl
e(n1) C e(ng)

Elodie-Jane Sims. sims@ens.fr 6

Compositional Pointer and Escape Analysis for Java Programs Whaley - Rinard

Program objects

e v &V : variables

— [€ L local variables
— p € P formal parameter variable
— ¢l € CL class names

o fc F : field object (ex: v.f or cl.f)

e op € OP : methods

cl receiver class
D0, s Dk © D0-0p(P1, ..., Dk)

e st € ST : nodes of control flow graph,
enteryp, exito, € ST

e m € M : method invocation site

e n € N : nodes

Elodie-Jane Sims. sims@ens.fr 7

Compositional Pointer and Escape Analysis for Java Programs Whaley - Rinard

Points-to escaped graph is an abstraction

e nodes represent objects

e edges represent references between objects

Properties:

a4 a single outside object may be represented by
multiple outside nodes

4@ each object is represented by at most one inside
node

@ all outside/inside references have a corresponding
outside/inside edge in the points-to escape graph

a if an object is represented by a captured node, it is
represented by only that node

Elodie-Jane Sims. sims@ens.fr 8

Compositional Pointer and Escape Analysis for Java Programs Whaley - Rinard

a

captured objects are reachable only via paths that
start with the local variables

a if a node is captured at the end of a method, the

objects that it represents become inacessible as soon
as the method return

Elodie-Jane Sims. sims@ens.fr 9

Compositional Pointer and Escape Analysis for Java Programs Whaley - Rinard

The nodes

e Ny : inside nodes

— represent objects created inside the currently
analyzed region and accessed via inside edges

e No : outside nodes

— represent objects created outside the currently
analyzed region or accessed via outside edges

— Ny : load nodes, if I = I5.f then the nodes
pointed by |l; are load nodes

— Np : parameter nodes

— N¢r, : class nodes

— Np : return nodes, if we have a statement
l; = ls.op(...) and the analysis skip the call it
create a return node to which |; will point to.

Elodie-Jane Sims. sims@ens.fr 10

Compositional Pointer and Escape Analysis for Java Programs Whaley - Rinard

The edges

e O C (N x F)x N : outside edges, represent
references created outside the currently analyzed
method

o /] C (VU(N x F)) x N : inside edges, represent
references created inside the currently analyzed
method

Elodie-Jane Sims. sims@ens.fr 11

Compositional Pointer and Escape Analysis for Java Programs

Whaley - Rinard

A points-to escape graph

<O,I,e,r>
u O C (N x F) x Np, : outside edges
u IC(VU(N x F))x N : inside edges
u e: N — 2PUCLUTUM

. escape function

u r C N : result nodes (# return nodes)

Elodie-Jane Sims. sims@ens.fr

12

Compositional Pointer and Escape Analysis for Java Programs Whaley - Rinard

Points-to escape graph’s comments

3 the escape function is just here to avoid to have
to compute it when we need escape information, it
just follow the definition of a node can escape.

3 result nodes # return nodes

result nodes = node the analyzed method return (i.e
nodes pointed by | if we have a statement return [
in the program)

return nodes = the “wrong’ nodes created by
skipping call site when analysing this method

Elodie-Jane Sims. sims@ens.fr 13

Compositional Pointer and Escape Analysis for Java Programs Whaley - Rinard

Statements
o | =v
o |l =Iy.f
o I1.f=15
e return |
e | = new ¢l
o | =lg.op(ly,..., Ig) : method invocation site

Elodie-Jane Sims. sims@ens.fr 14

Compositional Pointer and Escape Analysis for Java Programs Whaley - Rinard

Global algorithm

precompile the program to obtain a control-flow
graph of each method with the kind of statement
we want

do a topological sorting of the methods in the order
of calling

analyze the methods in the reverse topological sort
order and use a fixed-point algorithm within each
strongly connected component

apply a dataflow algorithm on each method to
obtain a points-to graph at each program point

e note that the control-flow graph is build without
using any information from the test of an if or a
while

Elodie-Jane Sims. sims@ens.fr 15

Compositional Pointer and Escape Analysis for Java Programs Whaley - Rinard

Dataflow algorithm for a method

initialize the points-to information at the entry
point of the method

- the parameters point to the corresponding
parameter nodes

- the class names point to the corresponding class
nodes

processes the statements in the method until
reaching a fixed point.

Elodie-Jane Sims. sims@ens.fr 16

Compositional Pointer and Escape Analysis for Java Programs Whaley - Rinard

Process a statement

joins the points-to escape graphs flowing into the
statement from all of its immediate predecessors in

the control-flow graph

apply the statement’s transfer function to the
joined points-to escape graph

Elodie-Jane Sims. sims@ens.fr 17

Compositional Pointer and Escape Analysis for Java Programs

Whaley - Rinard

Statement’s transfer function

I' = (I - KI”[) U GenI

O =0U Geno
Statement Kill Geny Killp
l=v edgesFrom(I, 1) {1} x I(v) 0
Iy =lof, Sp =0 | edgesFrom(I,) {1} xSy 0
i =lo.f, S # 0 edgesFrom(I, |) {li} x(SruU{n}) (Sg x {f}) x{n
|1.f: |2 1] (I(|1) X {f}) XI(|2) 0
| = new cl edgesFrom(I, |) {{I,n)} 0

e |; = lo.f: n the load node
Sg = {ng € I(ly).escaped({O,I,e,r),n2)} : set of escaped
nodes to which |y points
St = U{I(na,f).ng € I(l2)} : set of nodes accessible via inside edges

from lo.f
S

o return | : v/ = I(I)

e | =lg.op(ly,...,) : Call rules

Elodie-Jane Sims. sims@ens.fr

18

Compositional Pointer and Escape Analysis for Java Programs

Whaley - Rinard

Statement

1l =1-.f

1, =1,.f

1,.£f=1,

1 =newcl

Existing
Edges
1
v —
1
:|_2_> £
1,

12_’@

11_>O

1,

—> existing inside edge

------ » existing outside edge

Generated
Edges

1,—>

1

—@

— generated inside edge

------ » generated outside edge

Side
Conditions

@ is the load node
fOI‘ 11 = 12.f

@ escaped

is the inside node
for 1 = new cl

inside node or
outside node

Elodie-Jane Sims. sims@ens.fr
Figure 7: Generated Edges for Basic Statements

19

Compositional Pointer and Escape Analysis for Java Programs Whaley - Rinard

Call statement
| = |0.0p(|1,..., Ik)

Two choices :

e skipping the call :

remove inside edges from |

create a new return node for this method
invocation site

add an inside edge from the | to this new return
node

update the escape function (the parameter
escapes by the call site)

e analyzing the call : mapping process

map some nodes and edges of the called
method’s points-to graph to corresponding nodes
and edges in the current points-to escapes graph
using this mapping add nodes and edges to the
current points-to escapes graph

Elodie-Jane Sims. sims@ens.fr 20

Compositional Pointer and Escape Analysis for Java Programs Whaley - Rinard

Mapping rules

The mapping algorithm take :

the graph of the caller method with the escape
function and with the call skipped : < O,1I,e,r >,
O are the outside edges, I are the inside edges, e is
the escape function, r the set of nodes that represent
objects that may be returned by the method

the graph of the callee with the escape function :
< OR7 IR) €R,TR >

and it build a mapping from the nodes of the callee
graph to the nodes of the caller, and build a new
graph < O, Ing,epr, v >.

Elodie-Jane Sims. sims@ens.fr 21

Compositional Pointer and Escape Analysis for Java Programs Whaley - Rinard

e Initialization : [rule 4]

e Parameters : [rule 1]

e Return values + assign | : [rule 8 + 11]

e Add edges using the mapping : [rule 5, 7]

e Complete the mapping : [rule 3, 6, 7]

Elodie-Jane Sims. sims@ens.fr 22

Compositional Pointer and Escape Analysis for Java Programs

Whaley - Rinard

Elodie-Jane Sims. sims@ens.fr

23

Compositional Pointer and Escape Analysis for Java Programs

Whaley - Rinard

0<i<knel(l)
n € u(np,)

cl € CL
ney € p(ney)
{(ﬂlzf}iﬂ'ﬂ} S DR: {(ﬂ'3:f}:ﬂ4> S I:

n3 € p(ni),n1 & N;
14 € p(nz)

O C Oum I — edgesFrom (I,1) C Iar
e(n) C em(n) rCry

({ni1,£),n2) € I
(2(n1) x {£}) x p(ne) € In

{{r1, T}, m2) € Ig,n € p(m1), 12 € Nt U Ng

nz € p(nz)

((ﬂl,fhﬂz} S OR:-n € ,u(m),
escaped({Onr, Inr, enr, rag}, 1)
((ﬂ5f>,nz> € Ou, o E ,u-(ﬂz)

n€rrN(NrU Ng)
n € u(n)

n' € p(n)
er(n) —PCem(n)

{{n1, T}, n2) € Inr UOns
err(11) C enr(n2)

U{p(n)n € rg}t C (1)

Elodie-Jane Sims. sims@ens.fr

24

Compositional Pointer and Escape Analysis for Java Programs

Whaley - Rinard

(3)

f
103 ——— 114

H
f =
(| L > 71
3 4
1 I
f
1) ——— 119
7
7
£
1] —e 12
7
p
:
T > N2

n

— exisling inside edge

----- » cxisting ontside edge

1 exisling mapping

i
Thg—— Th4

n (7
b f

fdj=mn== > 11

7 (jt
f

ny——»mny

(L L[]

it (7
: 4
"

| —— T2

J
71 mmmmee ily
I (T
f
n

71

iy & Ny

o ENr UNR

i escaped

n€re N{N, UNg}

— peneraled inside edge

==ssee gencrated outside odge

fi gencrated mapping

Elodie-Jane Sims. sims@ens.fr

25

Compositional Pointer and Escape Analysis for Java Programs Whaley - Rinard

Explanation of the rules

e Initialization : To build the new graph the algorithm
first copy the caller points-to graph but remove
from it the insides edges from | (because | will be
assigned) [rule 4].

e Parameters : Then it links the actual parameters
with the formal parameter of the callee [rule 1].

e Return values + assign | : We said that the mapping
is a kind of equivalence between the nodes of the
callee and the nodes of the caller. By the [rule 8],
the algorithm map the result nodes of the callee to
themselves if they are inside nodes of the callee or if
they are return nodes of the callee (i.e. nodes
created by a skipped call when computing the
points-to graph of the callee). Mapping a node
to itself “add this node into the new graph”, if we
look at the [rule 11], which is used at the end of
the algorithm, it add an inside edge from | to all the

Elodie-Jane Sims. sims@ens.fr 26

Compositional Pointer and Escape Analysis for Java Programs Whaley - Rinard

nodes “equivalents” of a result node of the callee,
so the [rule 8| is a way to make | point to the
result nodes which are created by the callee.

e Add edges using the mapping :

- [rule 5] add an inside field edge to the new graph
using the mapping equivalence

- [rule 7] add an outside edge to the new graph
(after having complete the mapping)

e Complete the mapping :

- [rule 3] complete the mapping to add an
equivalence between an outside edge of the callee
and an inside edge of the caller

- [rule 6] complete the mapping to add an
equivalence between an inside edge of the callee
and an inside edge of the caller (with the help of
the [rule 5])

- [rule 7] complete the mapping to add an
equivalence between an outside edge of the callee
and an outside edge of the caller

Elodie-Jane Sims. sims@ens.fr 27

Compositional Pointer and Escape Analysis for Java Programs Whaley - Rinard

Example of application of mapping rules
elements = elements.insert(e)

caller : AddElement : |0 = elements, 11 = e
callee : insert : pO = this, pl=e

(N\

/

~- ~ next dlement -~ o7 next
/ ’V/// %’\/) next R
this %(/\ elements %(\ /),,[‘e,XE,,,>\\ /f ********* >\n\ull/)
L) (. J
P
result
rule 8
dlements elements
next ;7D
********* >null

Elodie-Jane Sims. sims@ens.fr 28

Compositional Pointer and Escape Analysis for Java Programs

Whaley - Rinard

Elodie-Jane Sims. sims@ens.fr

29

Compositional Pointer and Escape Analysis for Java Programs Whaley - Rinard
Pb in case [= ly.op(l4,...,1;)
where there is a k such that [= [,

class list{
list next;

1list O {3}

synchronized list callee (){
next = new list();
return(next) ;

}

synchronized void caller (){
res = this;

res = res.callee();

}

}

Elodie-Jane Sims. sims@ens.fr 30

Compositional Pointer and Escape Analysis for Java Programs

Whaley - Rinard

.

cdlee

. / -
this ——= JL@
J

this
\
~ ~ r_cdlee
thisé\/)

caller
res >)
~ ~ r_calee
this———=)
. - J
result

) res

result expected

nex C
__ru
this ——=
b res

J

Elodie-Jane Sims. sims@ens.fr

31

