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Chapter 1

Introduction

Martin Rinard is doing pointer analysis which transform a program in an object language into a double labeled
graphs. Then with this kind of graph he wants to check some correctness properties.

Daniel Jackson is working in a language called Alloy in which we can define a model and then check some
property of the model.

Our global goal was to code Rinard’s graphs in Alloy, to translate some linear-logic syntaxes into Alloy and
then check property of the graph. So our first work was with Alloy but we didn’t reach all our goals and we have
just translated CTL into Alloy. This first work is presented in chapter 2. Then we have studied Martin Rinard’s
pointer analysis and this work is presented in chapter 3.



Chapter 2

Alloy

2.1 Introduction

We have been considering ways of representing state-transition systems (STSs) in Alloy and checking the systems
for temporal-logic-like properties. The motivation for this work is that Martin Rinard’s shape graphs are a form
of STS, and the forms of correctness properties one wants to deduce on such systems are often neatly written as
temporal-logic formulas.

We have writing the STSs and coding temporal logic in Alloy (a language presented in section 2.2). The STSs
are stated rather reasonably, but there have been some interesting challenges in writing the temporal logics and
their semantics: CTL formulas can be coded more or less in a straightforward fashion, but modal mu-calculus has
proved problematic. After some struggles, we noted that the semantics of Alloy’s some operator was influencing the
effort—we were trying to define the notion of “least-fixed point” in Alloy, and we found that the usual set-theoretic
definition (that a least-fixed point of a functional is the intersection of all the functional’s prefixed points) could
not be written in a natural way. We have writing a letter to Daniel Jackson which explain our work and problem,
it is presented in section 2.4 and his answer is presented in section 2.5.

2.2 Presentation of Alloy

Alloy is a language with a tool for analyzing object models. It has three key ingredients: a language of constraints,
much like first-order logic with sets and relations, but with special forms for declarations; some structuring mecha-
nisms for organizing constraints so they can be used to describe the static and dynamic properties of systems; and
a simple typing scheme.

Alloy model contains the notions of set, quantifier, transitive closure and relation.

The Annexe G show an example of an Alloy file with all the feature of Alloy, the syntaxe is pretty intuitive.

Short description of Alloy syntaxe

- define some primitive sets : domain

- define some subsets in state with some key words like partition, static, !, +, *

- define relations where : Equipment -> Location!

- define indexed relations adj[Place]: Location -> Location

- express constraints formula with quantifier al1, some, sole, one, no

The main utility of Alloy is to describe a system and then to check some property of this system.
The main problem is that Alloy is not a decidable language and the answer it give are always in a finite scope, this
come from the fact that first-order logic is undecidable.
An other problem is that it translates the problem to be analyzed into a usually huge boolean formula and it can’t
analyze model in big scopes.

I have learn Alloy in the course Software Specification (CIS 771) : http://www.cis.ksu.edu/ hatcliff/771/.

There is a general description of Alloy in [1].



Memo of [1] for myself : Alloy is relational, declarative. assertions. Alloy can check that an operation preserves
an invariant, that one operation refines another, or that one invariant implies a second. invariant. operations.
not a decidable language. finite scope. output is an instance. no instance was found or counterexample. Alcoa is
essentially a compiler. translates the problem to be analyzed into a boolean formula. SAT solver. ...can, unlike
Alcoa, investigate elaborate temporal properties. Alcoa’s counterexample may be a transition from an unreachable
state. modular can analyze partial descriptions. a theorem ’refuter’. for everyday use. include quantifiers. implicit
frame conditions. graphical display of instances

There is a detailed description of Alloy in [4].

Memo of [4] for myself : domain. fized. state. static. definition. invariants. in. no. some. one. sole. condition.
assertions. operations. simulation. checking. set. relation. function. unit (an element is (e, unit) a set is a set
of (e, unit), there is no set of set.). navigation expression if a = {(el, f1); (e2, f2)} ~ a= {(f1, el); (12, e2)}
and a relation from {(el, unit); (e2, wnit)} to {(fl, unit); (f2, unit)} is type of {(el, f1); (el, f2), (e2, f2)}.
counterexample. scope. subsequent. fized. static. indexed relation.

In the paper [5] we can find how Alloy tool transform the Alloy file in a boolean formula for SAT.

Memo of [5] for myself : First order logic is undecidable. check consistency of a formula or check the validity of
a theorem. checking that one constraint follows from another, that one operation refines another, that an operation
preserves an invariant. The meaning of a problem is the collection of well-formed environments in which its formula
evaluates to true. Normalization of the relational formula, morgan’s laws. conjunctive normal form.

2.3 Linear logic
In this section, we recall some definitions.

Definition 1 A state-transition system STS is a triple, < X, —,1 > such that :
- ¥ is a finite set of states
- —»C ¥ x X is o transition relation
-1:%X — AProp maps each s € X to the set of atomic propositions that hold true for it

Definition 2 Syntaz of computational-tree logic :
pu=pl @ o1 NG| 1V | AXG | EX¢| AGH | EF¢ | Alp1Ugs] | E[p1U¢n] | AF$ | EG

Definition 3 A modal transition system MTSis a tuple, < ¥, Act, AProp, —, L > such that :
- Y. us a finite set of states
- Act is a finite set of action symbols
- AProp is a finite set of atomic propositions
- =»C ¥ x Act X X is a transition relation
-L:¥ — AProp is a labeling function

Definition 4 Syntaz of u — calculus :
pu=T|L[¢1Ad2|¢1Va|lap](a)g| X |pX.0|vX.$
Definition 5 Syntaz of linear-time logic :

pu=plo o1V | X(9)|Uldr,2) | F(¢) | G(¢)

In the paper [9] we can find some definition of the semantic of some linear-logic that we have used and a
description of the automata-approach that we have though to implement in Alloy for checking LTL formulas. We
have abandoned the idea of checking LTL’s formulas in Alloy because it appears that the only way for it would



have been the automaton method and Alloy was not interesting for this since it has limited scopes. The try is in
Annexe H.

The book [3] was useful for linear-logic definitions and examples.

The paper [11] compare CTL to LTL.

Memo of [11] for myself :
- Neither of CTL or LTL is included in the other
- CTL hard for programmers
- CTL O(nm), n size of system, m size of formula
- LTL O(n2™)
- BUT if we check for properties that can be expressed in both the superiority of CTL disappears.
- CTL is not adequate for modular verification
- LTL advantages : expressiveness, compositionality, semi-formal verification (c.f. ~ check emptiness), property-
specific abstraction, combined methods, uniformity, bounded model checking

There are classical examples of the “incompatibility” of CTL and LTL :
- the LTL formula F'G p is not expressible in CTL
- the CTL formula AF AG p is not expressible in LTL.

2.4 Letter to Daniel Jackson

This section transcript a letter we have send to Daniel Jackson to explain our try of translating pu — calculus to
Alloy.
This note lists several approaches at expressing the semantics of the modal u-calculus in Alloy. In each of the
approaches, difficulties are encountered when attempting to write the semantics of the least-fixed point operator.
Please recall that the least-fixed point operator is used to write recursive propositions. For example, the CTL
construction, EU(¢1, ¢2), can be coded in mu-calculus as

pZ-g2 V(¢ AOZ)

When a finite-state transition system is checked for such recursive properties, there is simple definition of the
semantics of u:

¢o = false
biv1 = [¢i/Z]¢

It would be nice to encode this semantics in Alloy, but this is not so easy. (See Approach 3 below.) In any case,
the standard definition of u is written with a semantic mapping, M : Proposition — Environment — P(State),
such that M (#)p maps ¢ to the set of states for which ¢ holds true. (Of course, p : Variable — P(State), gives the
meaning of free variables in ¢.)

Here is the “standard” semantics of u:

M(MX ' ¢)P = ﬂ{.’L‘ C State | M(¢)p[Xl—>w] - .CII}

s E pZ.¢ il there exists ¢ > 0 such that s = ¢;, where {

That is, the least-fixed point is the intersection of all pre-fixed points, z.

The coding of u in this style is attempted in Approach 1, below. (The modelling of a modular state-transition
system (MTS) is in Annexe E.)

First approach: Annexe C

The difficulty comes from the fix-points.

To write this translation we define the operators p and v :if

- S is the set of states

- p is the environment

- M(¢), is the subset of states that satisfy ¢ in the environment p
then :



M@wX -¢), =U{z C 5| M(§)px—0) 2 7}

As usual, we write s |= ¢ as the predicate that holds true exactly when s € M(¢),.
Now, how might we express s € M (uX - ¢), (similarly, v)?
The first approach was just a manual translation into Alloy of the above definitions: s € M (uX - ¢), translates
to this predicate:
[sEpX - -@l=alz|sinz|| {s2][s2 E ¢|(X.rho/z)}linz

And similarly, s € M(vX - ¢), might be translated as
[s EvX -9l =somez |sinx&&zin{s2|[s2 & §|(X.rho/z)}

This translation would have been correct if the semantics of some z would allow z to be any set instead of being
only a singleton set.

To understand this point, consider the the semantics of Alloy in the paper Alloy:A Lightweight Object Modelling
Notation [4]. On Page 8 we have this semantics of the construction, somev : t | F :

X[somewv :t| Fle = V{M[F](e ® v — z) | (z,unit) € e(t)}
To make the typing exactly correct, we can restate the above to read :
X[somewv :t| Fle = V{M[F](e ® v — {(z,unit)}) | (x,unit) € e(t)}

Because in Alloy everything is a set, one might claim that this semantics is a bit counterintuitive. Indeed, we
were expecting to see the following as the semantics of ”some” in Alloy :

X[somev:t| Fle=V{M[F](e®v— z) |z Ce(t)}

This alternative semantics would have make our translation of the fixed-point operators in y-calculus correct.
(There is a similar issue with the semantics of ”all”.)

Is there some aspect of the semantics that we are misunderstanding? Or, for that matter, is there a neater way
to represent the two definitions of least and greatest fixed point portrayed earlier? Finally, it might be helpful to
us to understand the motivations and rationale for the current semantics of ”some”.

Second approach: Annexe D

Because the semantics of some z lets us discuss only singleton sets and not arbitrary sets, we tried next to
circumvent the situation by manually defining relations that define the least and greatest fixed points. Each
relation is defined from a state to a set of states, giving us the set we are searching for. Then, to check for the
fixed-point property, we just check if the set is empty (there is no such state) or not.

The implementation is:

domain {State,...}
state {

Rel_nu_phi : State -> State

}

def Rel_nu_phif{

all s1 | s1.Rel_nu_phi = {s2 | s1 in sl1.Rel_nu_phi &&
([s2 satisfy phi](X.rho/s1.Rel_nu_phi))}

}

and

s in M(vX - ¢), = some s.Relnuphi

This attempt doesn’t work, because nothing forces s1.Rel nu phi to be nonempty whenever possible. Is there
some way to force the relation to be a nonempty set?

Third approach

Next, we tried to use the transitive closure operator of Alloy: . In Alloy, if R : S; — S;4+1 then Sp - xR = US;.



But if we take this definition of y :

M(uX - ¢), = UM (X - $)yix oy | i > 0}

there is a problem at the outset, because the % operator doesn’t take an empty set to start—we can’t see how to
define the relation so that it uses transitive closure to compute (and union) the successive approximations to the
least fixed point.

About the “definition” construction in Alloy

In the paper Alloy:A Lightweight Object Modelling Notation [4], there is no semantics given for a definition.
The Alloy verifier seems to treat definitions like invariants.

Is there no semantics for the definition construct? This is not an idle question—here’s why:

This naive definition of a “set” is paradoxical:

P={deD|d¢P}

because, of course, for each d € D, we have d € P iff d ¢ P. Conventional set theory would not admit the definition,
because it is nonwell-founded (P is defined in terms of itself), but we can insert the definition of P into Alloy as
follows:

model basic{

domain {D}
state {
P:D->D
}

def P {all d | d.P = {d2| d2 'in d.P}}
}// end model

When the definition is executed by the Alloy checker, the definition seems to be treated just like this invariant :

model basicq

domain {D}
state {
P:D->D
}

inv unnamed_invariant {all d | 4d.P = {d2 | d2 'in d4.P}}
}// end model

In the second example, the semantics seems to be clear: the subformula {d2| d2 !'in d.P } has a value, and
we expect that Alloy’s tool will find no instance of the model.

But in the first example, if we think that we examined all 4 in D one after one and defined for each the value of
d.P, then {d2| d2 !in d.P} should have a value. But it doesn’t, because we are defining a model and not checking
an assertion.

The underlying problem is the recursion : there is not a unique solution of the definition, and we don’t know
(and cannot choose) which solution Alloy’s tool calculates. In contrast, the set defined by the invariant in the
second example appears to have an unambiguous value.

In summary, if we allow recursion within a definition, it would be nice to say something like ”the biggest set
such as”. There might already be a way to state this, but we are unaware how.

Translation from CTL to Alloy

Because it is less expressive, CTL can be coded in Alloy. A state transition system can be axiomatized as in
Annexe B, and the coding of CTL is seen in Annexe A.

2.5 Answer of Daniel Jackson



here are some initial reactions to the note you sent me. i haven’t had as
much time as i’d like to really think about encoding modal mu calculus in
Alloy, but i thought it would be better to send some rather general
responses anyway, and then perhaps work on it more when i understand your
problem better.

1. first, i don’t understand properly what you’re trying to achieve with
Alloy. writing your theory in a form that allows some of its theorems to be
automatically checked? investigating the limitations of Alloy in relation
to these calculi?

2. sorry about the gaff in the definition of quantification in the Alloy
paper. yes, your restatement is exactly right.

3. the reason that quantifiers bind a singleton in Alloy, in apparent
contradiction to the general set-based viewpoint of the language as a
whole, is that i wanted the language to remain first order. in this form,
the quantifiers are completely standard first order quantifiers, and the
set and relation operators (with the exception of closure) can be defined
away. allowing quantification over a variable bound to a set would
introduce a second order element to the language, and would make analysis
much less tractable. in a scope of 4, with 4 variables quantified, that
gives 64 instantiations of the formula. if the variables were bound to sets
instead, we’d have 2716 instantiations.

4. that said, we decided to include higher order quantifiers in the new
version of the language. our intent was to support formulas in which the
quantifier would be skolemized away prior to analysis. for example, to
express the theorem that union is commutative, you’d write

assert {all s, t: set X | s + t =t + s}

in the new language. the tool negates this and skolemizes, giving the first
order formula

in which s and t are constants to be determined. so you can now write
some s: set X | £
etc, but we’re not promising that the tool will always analyze it.

5. the problem with defining a least fixed point is not a surprise, because
you really need a second order constraint. however, when we’ve wanted to
minimize over a set (as in sarfraz’s specification of intentional naming),
we’ve written it rather inelegantly in first order form. here’s an example
in the new language:

fun 1fp (m: S -> S, x: set S) {
X.m = X
all e: x | (x-e).m !'= x-e

}



the keyword "fun" introduces a formula (more generally a function -- but
for now just view it as a formula). it constrains a relation m from S to S
and a set x. we constrain x to be a fixed point of m, and also to be
minimal: that is, if you take an element away, you no longer have a fixed
point.

6. the problem with using transitive closure is, again, the issue of trying
to express something second order. +r, the transitive closure of a relation
r: S -> S, is not the same as the transitive closure of the function R:
(set S) -> (set S) that maps sets to sets, and which cannot be declared in
Alloy because it’s not first order. unfortunately, i think it’s this
function that you want. you may be able to encode it in Alloy by the
following trick. declare a relation that maps predicates to states:

states: Pred -> State
and define the relation over predicates
R: Pred -> Pred

now write a constraint that canonicalizes the predicates, so that two
predicates with the same states must be equal:

all pl, p2: Pred | pl.states = p2.states => pl = p2

and then add some axioms that constrain R so that it’s monotonic over
states, and so on. i’m not sure if this will work. it’s certainly tedious,
but perhaps it can be done once and the details hidden.

7. about definitions. in Alloy, a definition differs from an invariant not
in its mathematical meaning but in how it is used. this is much like the
distinction Larch makes between "imports" and "assumes". the motivation for
this was two fold. first, to recognize an important methodological
distinction that is too often not recorded: this issue is discussed at
length in my father’s work; see for example the topics "definitions" and
"designations" in Software Requirements and Specifications, Addison, 1995.
second, to exploit the distinction in the automatic analysis. we intended
to build checks that would ensure that a definition of x (1) gave at least
one value of x for any combination of values of the other variables (ie,
totality) ; and (2) gave at most one such value (determinism). we never got
round to implementing the check. the russell’s paradox example would fail
check (1), since the formula

s = {x: X | x !'in s}
always evaluates to false. the checker does in fact exploit the marking of
a formula as a definition in several ways. first, it uses the distinction
in generating the formulas for checking invariant preservation, so that you

get something like

inv (s) && def (s) && op (s, s’) && def (s’) => inv(s’)



in which the definitions are always included in the post-state. second,
when it performs a dependence analysis to see which formulas to include, if
a certain user-determined flag is set, it will take on faith that the
definitions are well formed, and will only include a definition of x if
there is a mention of x itself in the formula to be analyzed (or in some
formula it depends on). in contrast, an invariant is included if any of its
variables are mentioned, since it is assumed that an invariant, unlike a
definition, can constraint all its variables.

i don’t understand the issue in the mts2 example. it’s a bit tricky to read
formulas that mix Alloy and denotational semantics. perhaps we should look

at a less general problem first, such as expressing the reachable states of
a machine using the least fixed point of a predicate transformer?

there’s a paper on the new version of the language at
http://sdg.lcs.mit.edu/~dnj/publications.html#micromodularity

comments v welcome! it should be more suitable for what you’re trying to
do, as it’s simpler and more general.

2.6 Conclusion

We have been able to translate CTL into Alloy but mu — calculus and LTL were to expressive for the version of
Alloy we had. One of our objectif to identify some subset of Alloy or Alloy notational patterns that are temporal-
logic like and can be used to check typical properties of STSs has also been abandoned since it appeared that to
express some simple temporal-logic property in Alloy we need to use several pattern. Even if the results of our work
didn’t reach our first goals this work has offered to me the possibility to learn about temporal-logic and became
more familiar with the meaning of CTL, LTL and mu — calculus’s syntaxes.
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Chapter 3

Compositional pointer analysis

3.1 Introduction

We have studied the paper “Compositional Pointer and Escape Analysis for Java Programs” of John Whaley
and Martin Rinard [13]. Pointer analysis build an abstraction of the objects and fields of a program in an object-
oriented language. This abstraction is called a points-to graph. The algorithm of the paper build a points-to escape
graph. It contains escape information which characterizes how objects allocated in one region of the program can
escape to be accessed by another region.

The principal interesting property of their algorithm is that it is a compositional analysis - it analyses each
method independently of its caller and can integrate or not the informations about the methods it invokes. The
main difficulty is when we want to integrate the result of the analysis of a method in the analysis of an other
method which invokes it. This is the point we have looked at, it is presented in the section 3.3.

3.2 Definition of the points-to escape graph

Definition of the points-to escape graph The algorithm consist in the construction of a points-to escape
graph for each method. The nodes represent objects; the edges represent references between objects or between a
variable and the object it represent.

There are two kind of edges :

e Inside edges : represent references created inside the currently analyzed method
e QOutside edges : represent references created outside the currently analyzed method
There are three kind of nodes :

e Inside nodes Ny : represent objects created inside the currently analyzed region and accessed from inside
edges

e Qutsides nodes Np : represent objects that are either created outside the currently analyzed region or accessed
via outside edges

e Return nodes Ng : represent the return value of a skipped method invocation site

The graph keep also the escape information - for each node it says if the object it represents can escape. An object
can escape if it is:

e reachable from a parameter or is the result value of the currently analyzed method

e reachable from a parameter or the result value of an invoked method, and we don’t know what the invoked
method do with it
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e reachable from a static class variable or a runnable object

An object is captured if it does not escape.

Definition of the abstraction The points-to escape graph is an abstraction of the objects and references
created during the execution of the program. A single concrete object in the execution of the program may be
represented by multiple nodes in the points-to escape graph. This abstraction insure that the absence of edges
between captured nodes guarantees the absence of references between the represented objects, and that captured
objects are inaccessible when the method returns.

The statements The algorithm represents the computation of each method using a control flow graph. The
nodes of the control flow graphs are statements of the form (the algorithm assumes the program has been preprocessed
to have only this statements):

-l=v

-l =1 f

- llf == 12

- return 1

-1 =new cl

-1=1p.0p(ly,-.., lg) : method invocation site
Where 1, v, 1; are variables, f is a field, op is a method and cl is a class.

The general algorithm The algorithm starts by building an initial points-to graph with :

- a node for each parameter (call parameter-node)

- an inside edge from each parameter to its corresponding parameter-node

- no outside edge

- no return node
Then at each point of the control flow graph, the algorithm join the points-to graphs of the predecessors points
and modify this joined points-to graph. The result is the points-to graph at the end of the control flow graph.
For the statement of type | = lg.op(ly,..., lx) the modification is explain in section 3.3.
For the other statement the algorithm do what we could expect, its effects are represented in Figure 3.1 and the
details are in the paper[13].

3.3 Analysis of the mapping rules

To proceed the statement of type 1 = lg.op(ly,..., 1) the first way is to skip the call by :

- creating a new return node in Ng for this call

- removing all inside edges from 1

- adding an inside edge from 1 to the new return node

If we want to integrate the informations from the called method, the algorithm use a mapping described in
section 3.3.1.

3.3.1 Description of the mapping rules

The mapping algorithm take :

- the graph of the caller method with the escape function and with the call skipped :

< O,1,e,m >, O are the outside edges, I are the inside edges, e is the escape function, r the set of nodes that
represent objects that may be returned by the method

- the graph of the callee with the escape function : < Og, Ig,egr,rr >

and it build a mapping from the nodes of the callee graph to the nodes of the caller, and build a new graph
< OM,IM,eM,T‘M >.

12
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Figure 3.1: Generated Edges for Basic Statements

The mapping is a kind of equivalence! between nodes of the callee and nodes of the caller.

The mapping rules of the paper are in the Figure 3.2. We won’t speak about the e, ey and eg here, it is just an
“implementation trick” to know if a node escape without having to recompute it. So we won’t explain the [rules
9, 10] and the part of the [rule 4] who speak about e.

1kind of equivalence and not equivalence because the mapping is only done for some interesting nodes, it’s not an equivalence but

just the subset useful for the computation
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Figure 3.2: Rules for p and < Opr, Ing,epnr, rar >

We won’t speak about the [rule 2] which is just for the static class variables.

o Initialization : To build the new graph the algorithm first copy the caller points-to graph but remove from it
the insides edges from 1 (because 1 will be assigned) [rule 4].

e Parameters : Then it links the actual parameters with the formal parameter of the callee [rule 1].

o Return values + assign l : We said that the mapping is a kind of equivalence between the nodes of the callee
and the nodes of the caller. By the [rule 8], the algorithm map the result nodes of the callee to themselves
if they are inside nodes of the callee or if they are return nodes of the callee (i.e. nodes created by a skipped
call when computing the points-to graph of the callee). Mapping a node to itself “add this node into the new
graph”, if we look at the [rule 11], which is used at the end of the algorithm, it add an inside edge from 1
to all the nodes “equivalents” of a result node of the callee, so the [rule 8] is a way to make | point to the
result nodes which are created by the callee.

o Add edges using the mapping :
- [rule 5] add an inside field edge to the new graph using the mapping equivalence

- [rule 7] add an outside edge to the new graph (after having complete the mapping)
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o Complete the mapping :

- [rule 3] complete the mapping to add an equivalence between an outside edge of the callee and an inside
edge of the caller

- [rule 6] complete the mapping to add an equivalence between an inside edge of the callee and an inside
edge of the caller (with the help of the [rule 5])

- [rule 7] complete the mapping to add an equivalence between an outside edge of the callee and an outside
edge of the caller

3.3.2 Implementation of the mapping algorithm

The paper give an algorithm to apply the mapping rules in a pseudo-language. We have implemented it in
ocaml to see how it run and to see if our intuition of what should be done for some example was confirmed.

3.3.3 Problems founded

3.3.3.1 Mismatches in the algorithm and the specification :

The implementation helped us to find a mismatch between the specification of the rules (Fig. 3.2) and the algorithm.

The [rule 6, 7] are applied in the algorithm just in the case n = n;. That means that those rules are first
applied for the classes nodes and for the returned nodes, and because themselves implies their utilization by mapping
the node ns to itself, we can resume that those rules if we add an class node or a return node then they add all
the “chains” following it.

We have run an example to find this in which the [rule 7] would have had a wrong node and field, this example
is the addElement method of the paper with a call to the insert method. The Figure 3.3 show this example and
the wrong application of [rule 7] is circled in red.

the paper is not exactly conform of the statement treated, “element” is not a variable like we expect for an assignment but
a field of “this”. To comnsider it as a variable have helped us to find the next problem studied in 3.3.3.2. If the program had
had been recompiled to satisfy this condition the problem would not be there

3.3.3.2 Case | =ly.0p(ly,...,l;) where there is a k such that | =

With the last example it show us a problem when in the statement | = lg.op(l1, -..,1;) there is a k such that [ = .
We have written a simple example to show this (see Figure 3.4):
l: res, lp : res, op : callee

class list{
list next;

1list O{}

synchronized list callee (){
next = new list();
return(next) ;

}

synchronized void caller (){
res = this;

res = res.callee();

}

}

In this example we see that what we would expect is not computed by the paper’s algorithm.
The problem are :
- the algorithm first cut the edges from the variable 1 to the right node and then make | point to a new “return”
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Figure 3.3: Example of addElement in a list

node (build for skipping the method) so when it need the old edges for the I it’s lost
- to link the parameters the algorithm use the old caller points-to graph which contain the skipping “return” node
and then include it in the new graph, which should not be
The way to avoid those problem would be :
- not allowed a [;, to be same as [ by adding a statement in the precompilation, or
- not to suppress the edges from ! when skipping (they would be suppressed after if treating the call), this is replace
in the new paper (cf. 3.4) by rememoring the “situation” before treating a call statement
- and always replace Ng by Ng without the return node of the callee treated presently

3.3.3.3 Coherence if a call is treated after all the method has already been treated :

class list{
list next;

list O {2}

synchronized list callee (){
next = new list();
return(next);

}

synchronized void caller (){
res = this; [1]
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Figure 3.4: Example of | = ly.op(l1, ..., ;) where there is a k such that [ = [,

res = res.callee(); [2]
new list(); [3]

res

In this example, if we first skipped the call and after if we want to analyze it we have first to remember the
points-to graph at point [1] then analyze it and then analyze the point [3].

The paper doesn’t say how they find the points-to graph at point [1] without restart completely the analysis of
the method from the beginning and for the following of the analysis they just say :” The analysis can incrementally
increase the precision by analyzing method invocation sites that it originally skipped. The algorithm will then
propagate the new, more precise result to update the analysis results at affected program points.“.

This seems to be quite expensive to analyses a call site after having already analyzed all the method.

3.4 New paper : resolve some problems we found in the last paper

We have next studied the paper “Incrementalized Pointer and Escape Analysis” of Frédéric Vivien and Martin
Rinard [12].

They avoid the problem found with the case [ = lp.op(ly, ...,1;) where there is a k such that [ = [j.
They don’t have the same statements as in the other paper and they don’t have method with return value so
the statements for call sites are type of lg.op(l1,...,1;). It’s same since we can just replace | = lg.op(l1, ..., lx) by
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lo.op(l1, ..., lg,1) but it avoid to lose the value of 1 before using it and it avoid to create return node when skipping
a call statement.

They maintain the coherence if a call is treated after all the method has already been treated by recording the
set, of skipped call sites and for each recording the initial parameter and the points-to graph before and after skip
and the set of the call sites skipped before and after the call site.

They say “this algorithm generates all of the new edges that a complete reanalysis would generate.” but they don’t
show it and in the rules they show it seems that when they treat a call site they kind of loose precision by using
only unions (c.f. 4.5).

3.5 Conclusion
* seems to be good idea, they have implemented it so it should be working
* doesn’t detail what they do, specially in the second paper they just affirm it works

* the information from the expression of a condition is lost
(* what about a recursive method, specially if the method doesn’t end)

18



Bibliography

[1] Daniel Jackson; Ian Schechter an dllya Shlyakhter. Alcoa: The alloy constraint analyzer.

[2] William Adjie-Winoto; Elliot Schwartz; Hari Balakrishnan and Jeremy Lilley. The design and implementation
of an intentional naming system. In Proc. 17th ACM SOSP, Kiawah Island, SC, Dec 1999.

[3] Michael R.A. Huth and Mark D. Ryan. Logic in Computer Science: Modelling and reasoning about systems.
Cambridge University Press, 199.

[4] Daniel Jackson. Alloy:a lightweight object modelling notation. Technical Report Technical Report 797, MIT
Laboratory for Computer Science, Cambridge, MA, Feb 2000.

[5] Daniel Jackson. Automating first-order relational logic. In Proc. ACM SIGSOFT Conf. Foundations of
Software Engineering, San Diego, November 2000.

[6] Michael Huth; Radha Jagadeesan and David Schmidt. Modal transition systems: a foundation for three-valued
program analysis.

[7] Sarfraz Khurshid and Daniel Jackson. Exploring the design of an intentional naming scheme with an automatic
constraint analyser.

[8] M. Sagiv; T. Reps and R. Wilhelm. Parametric shape analysis via 3-valued logic. In Proc. 26th ACM Symposium
on Principles of Programming Languages, San Antonio, TX, Jan 1999.

[9] M. Muller-Olm; D. Schmidt and B. Steffen. Model-checking: A tutorial introduction. In Springer, editor,
Proc. 6th Static Analysis Symposium, G. File and A. Cortesi, number 1694 in LNCS, pages 330-354, 1999.

[10] Moshe Y. Vardi. An automata-theoretic approach to linear temporal logic.
[11] Moshe Y. Vardi. Branching vs. linear time: Final showdown.

[12] F. Vivien and M. Rinard. Incrementalized pointer and escape analysis. In Proceedings of the SIGPLAN 01
Conference on Program Language Design and Implementation, Snowbird, Utah, June 2001.

[13] J. Whaley and M. Rinard. Compositional pointer and escape analysis for java programs. In Proceedings
of the 14th Annual ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages, and
Applications, Denver, CO, November 1999.

[14] Eran Yahav. Verifying sfety properties of concurrent java programs using 3-valued logic.

19



Chapter 4

Conclusion

20



Appendix A

Translation CTL to Alloy

sts.tex
[s=pl=pinsL

[s = 6] = not ([s = ¢])

[s = d1 A ] = (s |= ¢1]) && ([s = ¢2])

[s = o1V éa] = ([s = ¢1]) I ([s = ¢2])

[s = d1 = do] = ([s = du]) = (Is = ¢2])

[s = AX ] = all s2 | 52 in s.transition — ([s2 = g))

[s = EX¢] = some s2 | s2 in s.transition && ([s2 k= ¢])

s - AGY] = (s k= ) &&
(all 82 | s2 in s.xtransition — ([s2 | ¢)]))

[s = EF¢] = ([s = ¢]) |
(some s2 | s2 in s.xtransition && ([s2 = ¢]))

ES F Alg1 U]l = (s ¢2])* |l

([s E ¢1])°

&& (all 2 | 2 in s.x Rel (1 A —¢a)® —
(s2 lin s2.x Rel_(¢1 A —¢2)*
&& some s2.transition®

: && (all 83 | 83 lin s2.transition || ([s3 = ¢1]) || ([s3 E #2]))¢ )

[s = Elp:1U¢s]] = ([s = ¢2]) |l
(([s = ¢1])

Lcase s satisfy ¢o

2otherwise s satisfy ¢1

352 come from s by a path satisfying ¢1

4no path with always ¢; i.e. no cycle

5no stop state after a path satisfying ¢1 and not ¢
Safter transition if we don’t satisfy ¢1 we must satisfy ¢o
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&& (some s2 | some 83 | [s3 = ¢2] &&
2 in sl.xRel ¢ && s3 in s2.transition))

[s = AF¢] = ([s = ¢]) ||
(no s2 | s2 in s.x Rel —¢ && (s2 in s2.% Rel_—¢ || no s2.transition))

[s = EG¢] = ([s = ¢]) &&
(some s2 | 82 in s.x Rel_¢ && (s2 in s2.x Rel ¢ || no s2.transition))

State {
Rel_¢ : State — State
}
def Rel ¢ {
all s1 | s1.Rel ¢ = {s2 | s2 in sl.transition && ([s2 = ¢])}
}

[s ':kT] and [s = L] are part of [s | p)
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Appendix B

State transition system in Alloy

// sts-simple.all
// Elodie-Jane Sims, March, 2001

model STS {
domain { States, Prop}
state {

//definiton of States
partition State_0, State_1, State_2: States!

Top, Bot : Prop!
Atom : Prop
partition p, q, r:Atom!

transition : States -> States
L : States -> Prop

// all the relation for the CTL’s formula
Rel_neg_r : States -> States
}
def Rel_neg_r{
all sal| sal.Rel_neg_r = {sa2 | sa2 in sal.transition && r !in sa2.L}

}

inv def_of_the_sts {

State_0O.transition = {sa | sa = State_1 || sa
State_1.transition = {sa | sa = State_0 || sa
State_2.transition = State_2

State_2}
State_2}

State_0.L = {pr| pr = Top || pr = p || pr = q}
State_1.L = {pr| pr = Top || pr = r || pr = q}
State_2.L = {pr| pr = Top || pr = r}

}

inv def_of_Top_Bot{
// definition of Top
all sal| Top in sa.L
// definition of Bot
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all sa| Bot !in sa.L

}

assert p_and_q_State_0{
p in State_0.L && q in State_0.L
}

assert AFr_s0{
r in State_0.L || (no s2 | s2 in State_0.*Rel_neg_r && ( s2 in
s2.*Rel_neg_r|| no s2.transition))

}

}//end model sts
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Appendix C

Translation i — calculus to Alloy
(unworking versionl)

mts. tex
[s = T] = Top in s.L

[s = 1] = Bot in s.L

[s = d1 A d2] = ([s = 61]) && ([s = ¢2])
[s =61V 2] = ([s = ¢1]) | ([s = ¢2])

[s = [a]¢] = all s2 | all act |
act != a || s2 lin s.transition[act] || ([s2 |= ¢])

[s = (a)¢] = some s2 | all act |
act = a || (s2 in s.transition[act] && ([s2 |= ¢]))

[s = X] = s in X.rho
[sEpX.¢ =allx|sinx || {s2][s2  ¢](X.rho/x)} lin x
[s EvX.¢] =some x| sinx && xin {s2 | [s2 |E ¢](X.rho/x)}

[s2 = ¢](X.rho/x) means [s2 = ¢] where X.rho is replaced by x

“[s E ¢] = F” means that ¢ holds for the state s in our model iff the Alloy’s formula “F” is true in our model
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Appendix D

Translation p — calculus to Alloy
(unworking version?2)

mts2.ps
[s = T] = Top in s.L

[s = 1] = Bot in s.L

[s = 61 A 2] = ([s = ¢1]) && ([s = ¢2])
[s = ¢1 Vo] = ([s Edil) [l ([s = ¢2])

[s = [a]¢] = all s2 | all act |
act !=a || s2 lin s.transition[act] || ([s2 |= ¢])

[s = (a)¢] = some s2 | all act |
act != a || (s2 in s.transition[act] && ([s2 = ¢]))

[s = X] = sin X.rho
[s = puX - 4] = no s.Rel v—=X - —¢

[s EvX - ¢] =some sRelvX - ¢

[s2 = ¢](X.rho/x) means [s2 |= ¢] where X.rho is replaced by x

“[s = ¢] = F” means that ¢ holds for the state s in our model iff the Alloy’s formula “F” is true in our model

State {

Rel_.vX - ¢ : State — State

}
def Rel vX - ¢ {

all s1 | sl.LRel vX - ¢ = {s2 | sl in sl.Rel vX - ¢ && ([s2 |= ¢](X.rho/s1.Rel v X - ¢))}
}
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Appendix E

Modal transition system in Alloy

// mts-simple.all
// Elodie-Jane Sims, April, 2001

model MTS {
domain { States, Act, Prop, Var}
state {

transition [Act] : States -> States
L : States -> Prop

//definiton of States
partition State_s, State_t, State_u, State_v: States!
partition act_a, act_b : Act!

partition Top, Bot, holds_A, holds_F, holds_F_bis,
holds_G: Prop!

//all the relation for the mu-calculus’s formula
X_F : States -> States
X_G : States -> States

}

def X_F {all sa | sa.X_F = {s2 | (some s2_2 | all act | act '= act_b
|| (s2_2 in s2.transition[act] && s2_2 in sa.X_F)) &% sa in sa.X_F}}

def X_G {all sa | sa.X_G = {s2 | ((some s2_2 | all act | act != act_b
|| s2_2 in s2.transition[act])
&% (some s2_3 | all act | act !'= act_a
|| (s2_3 in s2.transition[act] && s2_3 in sa.X_G)))
&% sa in sa.X_G}}

inv def_of_the_mts {
all act]
(act = act_a —>
(  no State_s.transition [act]
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&% no State_t.transition [act]
&% State_u.transition [act] = State_v
&% no State_v.transition [act])
)
&&
(act = act_b ->
(  no State_s.transition [act]
&& State_t.transition [act] = {sa | sa = State_s || sa = State_u}
&% State_u.transition [act] = State_u
&& State_v.transition [act] = State_u)
)
}

inv def_of_Top_Bot {
// definition of Top
all sal| Top in sa.L
// definition of Bot
all sa| Bot !'in sa.L

}

inv prop {

{sa |

some s2 | all act| act !'= act_a || (s2 in sa.transition[act])
}

= {sa |holds_A in sa.L}
{sa |

some sa.X_F

}

= {sa |holds_F in sa.L}
{sa |

some sa.X_G

}

= {sa |holds_G in sa.L}

{sa |

some x | sa in x &&

x in {s2 | some s2_2 | all act | act != act_b || (s2_2 in
s2.transition[act] && s2_2 in x

)}

}

= {sa |holds_F_bis in sa.L}
}
}//end model
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Appendix F

Implementation of the mapping rules’s
algorithm in points-to escape analysis

(ke ks ok ok sk ok o s ko ook ko o sk ok ok o ok sk ok oo sk o o ok ok o o K ok o sk ok o o o koK K kK ook oK )
(* graph.ml *)

open List;;

type op = string;;
type variable_name = string;;
type variable = op * variable_name;;

type field_name = string;;
type class_name = variable_name;;

type node_out =

CL of class_name

|Pa of variable * int
|L of op * int

[R of op * int;;

type node_in =
T of int
[T of op * int;;

type node =

Out of node_out

|In of node_in;;

type field = F of field_name;;
type start_point =

Field of (node * field)
| Var of variable;;
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type edges = (node * field) * node;;
type o = edges list;;

type edges_in = start_point * node;;
type 1 = edges_in list;;

type escape_data =
P of int

|C1 of int

IT of int

IM of int;;

type e = (node * escape_data list )list;;

type r = node list;;

type graph = {mutable o:0; mutable i:i; mutable e:e; mutable r:r};;

type map = (node * node list) list;;
type delta = (node * (node * field) list) list;;
type d = (node * node) list;;

type w_list = (node * edges) list;;

type work_list = {mutable we:w_list; mutable wi:w_list;
mutable wo:w_list};;

(* some fonction to union list without double element *)
let rec add 11 = function

1 ->11

|lh::t => if (mem h 11) then add 11 t

else add (h::11) t;;

(* add_map add a set of node nl_list to the mu of a node nl %)
let rec add_map_list nl_list nl= function

[0 -> [(n1, nl1_list)]

|(n, n_list)::t when (n = nl1) -> (n, add n_list nl_list)::t
|[h::t -> h::(add_map_list nl_list nl t);;

(* end of some fonction to union list without double element *)

(ke s o o ks s s o o e ok sk o sk sk o e ok sl o o sk o o ke s o o e e s s o e ks o o ks o o ok )
(* escape.ml *)

open List;;
open Graph;;

let escape (g: graph) (n : node) =

let e_n = try (assoc n g.e) with Not_found -> [] in
(ecn !=[1) || (mem n g.1);;
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(ko ok ook ook ok ok o ok o ok o ok ok ok ook o sk sk ok sk ko ok sk o sk ok ok ok ko ko sk sk ok ok ok ok sk o koo ok ok )
(x propagate.ml *)

open List;;
open Graph;;

let rec union_e infol = function

[1 -> info1l

|h::t -> if (mem h infol) then union_e infol t
else h::(union_e infol t);;

let rec succ_o n = function

0 ->1

| ((n1, £) , n2)::t when (nl=n) -> n2::(succ_o n t)
|h::t -> succ_o n t;;

let rec succ_i n = function

-1

| (Field (n1, f) , n2)::t when (nl=n) -> n2::(succ_i n t)
|_::t -> succ_in t;;

let succ g n =

let osucc = succ_o n g.o in

let isucc = succ_in g.i in

union_e osucc isucc;;

let rec change n new_e_n = function

[1 -> (match new_e_n with

1 ->10

|_ -> [(n, new_e_n)])

| (m, old_e_n)::t when (m = n) -> (match new_e_n with
1>t

|_ -> (n, new_e_n)::t)

[h::t -=> h::(change n new_e_n t);;

let rec union_special chgmt e_n2 = function
[1 -> chgmt:= false; e_n2
[h::t -> if (mem h e_n2) then union_special chgmt e_n2 t
else let res = (h::(union_special chgmt e_n2 t))
in chgmt:= true; res;;

let rec update_2_special (e_M:e) nl n2 (chgmt: bool ref) =
let e_nl = try (assoc nl e_M) with Not_found -> [] in

let e_n2 = try (assoc n2 e_M) with Not_found -> [] in

let new_e_n2 = union_special chgmt e_n2 e_nl in

change n2 new_e_n2 e_M;;

let rec propag (g : graph) chgmt = function

0 ->0

[nl::t1 -> updating chgmt nl g tl1 (succ g nl)

and updating chgmt nl g t1 = function

[1 -> propag g chgmt t1

[n2::t2 -> g.e <~ (update_2_special g.e nl n2 chgmt);
if ((!chgmt) = true) then

updating chgmt nl g (n2::t1) t2
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else updating chgmt nl g tl1 t2;;

let propagate (g : graph) nodes =
let chgmt = ref false in
propag g chgmt nodes;;

(ks ok o ks o o o e ks o ks o e ok sk o o sk ok o ke sk o o ek sk o e ks o o sk ok ok ok o ok )
(* worklist.ml *)

open List;;
open Graph;;

let rec make_wk n = function
0 ->10
le::t => (n, e)::(make_wk n t);;

(*the last parameter is the work listx)
let rec union_work_list n (edges: edges list) = function
[J -> (match edges with [1 -> [] |_ -> make_wk n edges)
|(n_w, e)::t when (n_w=n) -> if (mem e edges) then
union_work_list n edges t
else (n_w, e)::(union_work_list n edges t)
|[h::t -> h ::(union_work_list n edges t);;
(ke o s o s o s o sk o sk o sk ok ok R ok K o K o sk ook o ok o ok ok o sk o sk o ok o ok ok o K o sk o koK ok K ok ko sk ook ok )
(* edgesFrom.ml *)

open List;;
open Graph;;

let rec edgesFrom_in n = function

0->10

| (Field (nl1, £) , n2)::t when (nl=n) -> ((nl, f) , n2)::(edgesFrom_in n t)
|h::t -> edgesFrom_in n t;;

let rec edgesFrom_out n = function

0->10n

| ((n1, £) , n2)::t when (nl=n) -> ((nl, £f) , n2)::(edgesFrom_out n t)
|[h::t -> edgesFrom_out n t;;
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(ko ok ook ook ok ok o ok o ok o ok ok ok ook o sk sk ok sk ko ok sk o sk ok ok ok ko ko sk sk ok ok ok ok sk o koo ok ok )
(x addEdges.ml *)

open List;;
open Graph;;
open Propagate;;

let rec make_edges_in n = function

0 -—> 1

[h::t -> (Field (h) , n)::(make_edges_in n t);;

let rec make_edges_in_list edg_list = function

0 ->1

[h::t -> (make_edges_in h edg_list)@(make_edges_in_list edg_list t);;
let rec make_edges_out n = function

0 ->1

[h::t => (h, n)::(make_edges_out n t);;

let rec make_edges_out_list edg_list = function

0 ->1

[h::t -> (make_edges_out h edg_list)@(make_edges_out_list edg_list t);;

let rec insert_inside_edge in_edge = function
[1 -> [in_edge]
| (Field(n1l, f) , n2)::t -> (match in_edge with
(Field (nl1_add, f_add) , n2_add) when
((n1=n1_add) && (f=f_add) && (n2=n2_add)) ->
(Field(n1l, f) , n2)::t
[_ -> (Field(nl, f) , n2)::(insert_inside_edge in_edge t))
| (Var (v), n)::t -> (match in_edge with
(Var (v_add), n_add) when
((v=v_add) &&(n=n_add)) -> (Var (v), n)::t
[_ => (Var (v), n)::(insert_inside_edge in_edge t));;
let rec union_edges_in edges_in_list = function
[0 -> edges_in_list
[h::t -> union_edges_in (insert_inside_edge h edges_in_list) t;;

let rec insert_outside_edge (out_edge: edges) = function

[1 -> [out_edgel

[((n1, £), n2)::t -> (match out_edge with

((ni1_add, f_add), n2_add) when

((n1=n1_add) && (f=f_add) && (n2=n2_add)) ->

((n1, £), n2)::t

[_ => ((n1, £), n2)::(insert_outside_edge out_edge t));;

let rec union_edges_out edges_out_list = function

[1 -> edges_out_list

[h::t -> union_edges_out (insert_outside_edge h edges_out_list) t;;

let addInsideEdges g edg_list n_list=

let starting nodes = fst(split edg_list) in

let new_edges = make_edges_in_list edg_list n_list in
g.i <~ (union_edges_in g.i new_edges) ;

propagate g starting_nodes;;

let addOutsideEdges g edg_list n_list=
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let starting nodes = fst(split edg_list) in

let new_edges = make_edges_out_list edg_list n_list in
g.0 <- (union_edges_out g.o new_edges);

propagate g starting_nodes;;

(ke ke ek s sk o s o sk o sk o sk ok o ok ok o ok o ok o ok o ok ko sk o sk o sk ok sk ko ko sk o ok ok o ok ko ook ok )
(* mapNode.ml *)

open List;;
open Graph;;
open Propagate;;
open AddEdges;;
open EdgesFrom;;
open Worklist;;

(* function for the update of mu *)
let rec add_map n_add nl = function
[ -> [(n1, n_add::[]1)]

|(n, n_list)::t when (n = nl1) -> if (mem n_add n_list) then (n, n_list)::

else (n, n_add::n_list)::t
|h::t -=> h::(add_map n_add nl t);;
(* end of function for the update of mu *)

(* function for the update of D *)

let rec add_d (nl:node) (n:node) = function

[1 -> [(n1, n)]

|(n1_2, n_2)::t when (n1_2 = n1) && (@_2 = n) -> (n1_2, n_2)::t
|lh::t -> h::(add_d n1 n t);;

(* end of function for the update of D *)

(* function for the update of e_M *)

let rec change n new_e_n = function

[1 -> (match new_e_n with

o->1

|_ -> [(n, new_e_n)])

| (m, old_e_n)::t when (m = n) -> (match new_e_n with
[1->t

|_ -> (n, new_e_n)::t)

|h::t -> h::(change n new_e_n t);;

let rec un_P = function
o->1

|IP (a)::t => un_P t
|lh::t -> h::(un_P t);;

let update_e (e_M:e) (e_R:e) n nl =

let e_M_n = try (assoc n e_M) with Not_found -> [] in
let e_R_nl = try (assoc nl e_R) with Not_found -> [] in
match (un_P e_R_nl) with

[ ->e_M

|new_e_R_nl1 —>

(let new_e_M_n = union_e e_M_n new_e_R_nl in

change n new_e_M_n e_M);;
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(x end of function for the update of e_M *)

(x function for updating delta *)

let rec updt_delta (n2: node) (new_delta_n2 : (node * field) list) = function
[J -> (match new_delta_n2 with

1->0

|_—> [(n2, new_delta_n2)])

| (n, v)::t when (n=n2) -> (match new_delta_n2 with

[1 -> updt_delta n2 new_delta_n2 t

|_-> (n2, new_delta_n2)::(updt_delta n2 new_delta_n2 t))

[h::t -> h::(updt_delta n2 new_delta_n2 t);;

let update_delta n2 new_delta_n2 (delta: delta ref) =
delta := updt_delta n2 new_delta_n2 !delta;;

(* function for updating delta *)

(* function for the step of adding inside egdges *)
(*the last parameter is I_Rx*)

let rec step_add_in (g_M:graph) (nl:node) (n:node)
(delta : delta ref) (mu: map ref) = function

[ ->0

| (Field (n1_1, f) , n2_1)::t when (nl1_1=nl1) ->
(addInsideEdges g_ M [(n, f)] (try (assoc n2_1 !'mu) with Not_found -> []);
update_delta n2_1 (add [(n,f)] (try (assoc n2_1 !delta)
with Not_found -> [])) delta;

step_add_in g M nl n delta mu t

)

[h::t -> step_add_in g_M nl n delta mu t;;

(* function for the step of adding inside egdges *)

let mapNode (nl: node) (n:node) (mu : map ref) (d : d ref)
(delta : delta ref) (g_M: graph) (g_R : graph) (wk : work_list)=
if not(mem (nl1, n) 'd) then
(mu:= add_map n nl (!mu);
d:= add_d n1 n (!'d);
g M.e <- (update_e g_M.e g_ R.e n nl);
propagate g M [n];
addInsideEdges g_M (try (assoc nl !delta) with Not_found -> []1) [n];
step_add_in g_M nl n delta mu g R.i;
wk.we <- union_work_list n (edgesFrom_out nl g_R.o) wk.we;
if (nl=n) then
(wk.wi <- union_work_list n (edgesFrom_in nl g_R.i) wk.wi;
wk.wo <- union_work_list n (edgesFrom_out nl g_R.o) wk.wo);
)
else ();;

(ko ok sk ook ok sk ook ook o ok ok ok o sk ok ook ok sk ok o sk ok sk ook o ok sk ok sk ok ok ok ok koo )
(* mapping.ml *)

open List;;

open Graph;;
open MapNode;;
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open Escape;;
open AddEdges;;

(* function to initialise the I_M *)

let rec init_i v = function

0->10

| (Var(v2), n)::t when (v=v2) -> (init_i v t)
|lh::t -> h::(init_i v t);;

(* end of function to initialise the I_M *)

(* function mapping parameter nodes *)

let rec get_param_node (number: int) (callee : op) = function
0->10

|Out (Pa((op, v), n))::t when (op=callee)&&(number=n)

-> Out(Pa((op, v), n))::(get_param_node number callee t)
|h::t -> get_param_node number callee t;;

let rec assoc_list n = function

0 ->10

| (n2,m)::t when (n2=n) -> m::(assoc_list n t)
|h::t -> assoc_list n t;;

let rec make_couple 11 = function

0 -> 1l

|h2::t2 -> (mk_couple h2 11)@(make_couple 11 t2)
and mk_couple h2 = function

0 -—> 1l

|[h1::t1 -> (h1l, h2)::(mk_couple h2 t1);;

let map_one_node g caller callee mu d delta g_M g_R wk nodes_set 1i =

let vari = fst 1i in

let number = snd 1li in

let n_pointed_by_li = (try (assoc_list (Var vari) g.i) with Not_found -> []) in
let nl = get_param_node number callee nodes_set in

let map_func mu d delta g_ M g_R wk = function

(n1, n) -> (mapNode nl n mu d delta g M g R wk) in

iter (map_func mu d delta g_M g_R wk) (make_couple nl n_pointed_by_1i);;

let map_parameter_nodes g caller callee mu d delta g M g_R wk nodes_set 1_i =
let f g caller callee mu d delta g M g_R wk nodes_set =

map_one_node g caller callee mu d delta g M g_R wk nodes_set in

iter (f g caller callee mu d delta g_M g_R wk nodes_set) 1_ij;;

(* end function mapping parameter nodes *)

(* function mapping class nodes *)

let f_class mu d delta g M g R wk = function

cl_name ->

(mapNode (Out(CL(cl_name))) (Out(CL(cl_name))) mu d delta g M g_R wk);;
(* end of function mapping class nodes *)

(* function mapping return nodes *)

let f_recturn_value mu d delta g_M g_R wk = function
n -> (mapNode n n mu d delta g M g_R wk);;
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let rec select_return_node = function

1 ->10

[In(a)::t -> In(a)::(select_return_node t)
|Out(R(a,b))::t -> Out(R(a,b))::(select_return_node t)
|h::t -> select_return_node t;;

(* end of function mapping return nodes *)

(* function of W list *)

let rec do_e mu d delta g g_M g_R wk = function

[l -> do_i mu d delta g g M g_R wk wk.wi

| (n3, ((Out(nd), f), n2))::t ->

wk.we <- t;

let n4_list = assoc_list (Field(n3, f)) g.i in

let map_func mu d delta g_M g_R wk = function

(n1, n) -> (mapNode nl n mu d delta g M g_R wk) in

iter (map_func mu d delta g_M g_R wk) (make_couple [n2] n4_list);
do_e mu d delta g g M g_R wk wk.we

[h::t -> wk.we <- t; do_e mu d delta g g_M g_R wk wk.we
and do_i mu d delta g g_M g_R wk = function

[T -> do_o mu d delta g g M g_R wk wk.wo

| (n, ((n1, £), In(a)))::t —>

wk.wi <- t;

mapNode (In(a)) (In(a)) mu d delta g_M g_R wk;

do_e mu d delta g g_M g_R wk wk.we

| (n, ((n1, £), Out(R(a,b))))::t ->

wk.wi <- t;

mapNode (Out(R(a,b))) (Out(R(a,b))) mu d delta g_M g_R wk;
do_e mu d delta g g M g_R wk wk.we

[h::t -> wk.wi <- t; do_i mu d delta g g_ M g_R wk wk.wi
and do_o mu d delta g g_M g_R wk = function

[ ->0

[(n, ((n1, £), n2))::t when (escape g_M n) ->

wk.wo <- t;

addOutsideEdges g_ M [(n, )] [n2];

mapNode n2 n2 mu d delta g_M g_R wk;

do_e mu d delta g g_M g_R wk wk.we

[h::t -> wk.wo <~ t; do_o mu d delta g g M g_R wk wk.wo

(*x end of function of WE %)

(* fonction to update I_M at the end for the result *)

let rec get_result_nodes mu = function

1 ->10

[n::t -> add (try (assoc n mu) with Not_found -> []) (get_result_nodes mu t);;
(* used as get_result_nodes mu g_R.r *)

let rec make_new_l_nodes 1 = function

0 ->1

|n::t -> (Var(l), n)::(make_new_1_nodes 1 t);;

(x end fonction to update I_M at the end for the result *)
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let mapping_intra (g : graph) (g_R : graph) (g_M : graph)
(caller:op) (1: variable) (callee : op) (1l_i: (variable * int) list)
(nodes_set : node list) (cl_list : class_name list) =

let (wk : work_list) = {we=[1; wi=[]; wo=[1} in

let (d : d ref) = ref [] in

let (mu : map ref) = ref [] in

let (delta : delta ref) = ref [] in

g_M.o <- g.o;
g_M.i <~ (init_i 1 g.i);
g_M.e <- g.e;

g_M.r <- g.r;

map_parameter_nodes g caller callee mu d delta g M g_R wk nodes_set 1_i;
iter (f_class mu d delta g_M g_R wk) cl_list;

iter (f_recturn_value mu d delta g_M g_R wk) (select_return_node g_R.r);
do_e mu d delta g g_ M g_R wk wk.we;

g_M.i <- g_M.i@(make_new_1l_nodes 1 (get_result_nodes !'mu g_R.r));;

(* function to put the number to the parametersx)
(* and to peut the caller name to them *)

let rec do_parameters_intra caller num 1_i =
match 1_i with

0->10
|v::t -=> (let n = !'num in
(num:= !'num + 1;((caller, v), n)::(do_parameters_intra caller num t)));;

let do_parameters caller 1_i =

let num = ref 0 in

do_parameters_intra caller num 1_3i;;

(* end function to put the number to the parameters*)
(* and to peut the caller name to them *)

(* function to collect the nodes %)
let insert_node n 1 = if (mem n 1) then 1 else n::1;;

let rec collect_nodes_in list = function

a->0

| (Field(n1, f), n2)::t -> list:= insert_node nl1 (insert_node n2 !list);
collect_nodes_in list t

|(Var(_), n)::t -> list:= insert_node n !list; collect_nodes_in list t;;

let rec collect_nodes_out list = function

a->0

|((n1, £), n2)::t -> list:= insert_node nl (insert_node n2 !list);
collect_nodes_out list t;;

let rec collect_nodes_r list = function
n->0

|n::t -> list:= insert_node n !'list; collect_nodes_r list t;;

let collect_nodes_intra g list =
collect_nodes_in list g.1i;
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collect_nodes_out list g.o;
collect_nodes_r list g.r;;

let collect_nodes g g_R =
let list = ref [] in
collect_nodes_intra g list;
collect_nodes_intra g_R list;
(11list);;

let rec collect_classes = function

o ->1

|Out(CL(cl_name))::t -> cl_name:: (collect_classes t)
|h::t -> collect_classes t;;

(x end of function to collect the nodes x)

let mapping (g : graph) (g_R : graph) (caller:op)

(1: variable_name) (callee : op) (1l_i: variable_name list) =
let (g_M : graph) = {o=[1;i=[];e=[1;r=[1} in

let 12 = (caller, 1) in

let 1_i2 = (do_parameters caller 1_i) in

let nodes_set = collect_nodes g g_R in

let cl_list = collect_classes nodes_set in

mapping_intra g g_R g_M caller 12 callee 1_i2 nodes_set cl_list;
g-M;;
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(ko s o ok sk o sk o ok sk ok ok sk o sk ok ok ks ok sk o ok o ok sk o o sk o sk o o ok o ok o sk ok o sk ok o ok )
(* run3.ml *)

open List;;

open Graph;;

open Mapping;;

#use "load_all.ml";;

let (g: graph ) = {

o = [((Out(Pa(("addElement", "elements"), 0)), F("element")),

Out (L("addElement", 1)));
((Out(Pa(("addElement", "elements"), 0)), F('"next")),

Out (L("addElement", 2)));
((Out(L("addElement", 2)), F("next")), Out(L("addElement", 2)));
((Out(L("addElement", 2)), F("next")), Out(L("addElement", 3)))

i = [(Var("addElement", "e"), Out(Pa(("addElement", "e"), 1)));
(Var("addElement", "elements"), Out(Pa(("addElement", "elements"), 0)))

e = [(Out(Pa(("addElement", "e"), 1)), [ P(1) 1);
(Out (Pa(("addElement", "this"), 0)), [ P(0) 1);
(Out (Pa(("addElement", "elements"), 0)), [ P(0) 1);
(Out (L("addElement", 1)), [ P(0) 1);
(Out (L("addElement", 2)), [ P(0) 1);
(Out (L("addElement", 3)), [ P(0) 1)

r =[]
}s5s

let (g_R: graph ) = {
o=[((0ut (Pa(("insert", "this"), 0)), F("next")), Out(L("insert", 0)));
((Out (L("insert", 0)), F("next")), Out(L("insert", 0)))
1;
i=[(Var("insert", "e"), Out(Pa(("insert", "e"), 1)));
(Var ("insert", "this"), Out(Pa(("insert", "this"), 0)));
(Var("insert", "m"), Out(L("insert", 0)));
(Field(In(I("insert", 0)), F("element")), Out(Pa(("insert", "e"), 1)));
(Field(In(I("insert", 0)), F("next")), Out(Pa(("insert", "this"), 0)))
1;
e=[(Out(Pa(("insert", "e"), 1)), [ P(1) 1);
(Out (Pa(("insert", "this"), 0)), [ P(0) 1);
(Out (L("insert", 0)), [ P(0) 1);
(In(I("insert", 0)), [1)
1;
r=[0ut (Pa(("insert", "this"), 0));
In(I("insert", 0))

]

}5;

let (caller : op) = "addElement";;

let (1 : variable_name) = "elements";;

let (callee : op) = "insert";;

let (1_i : variable_name list) = ["elements"; "e"];;
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let (g_M : graph) = mapping g g_R caller 1 callee 1_ij;;
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Appendix G

An example of a model in Alloy

// Simple model of an airport’s ground-based resources
// Elodie-Jane Sims, February, 2001

model GroundControl {
domain {fixed Location, fixed Place, Equipment }
state {
partition Gate, Runway, Taxiway : static Place
partition Plane, Vehicle : static Equipment

//where say in wich location is an equipment

//equipment say whate are the equipment in a place

// C1: mobile resources can be at one location at a time
where (“equipment) : Equipment -> Location!

//location give the locations which are the place

// place give say of wich place this location is a part of
//C3-begin : fixed resources consist of some number of locations
location (“place) : Place+ —> Location+

location_adj: static Location -> Location

// place_adj give for a place all the place wich have one location adjacent
place_adj: static Place -> Place

//adj[P] give for a location the adjacent location wich are in P
adj[Place]: static Location -> Location

intersect : Place -> Place

}
def place_adj {all p | p.place_adj = p.location. location_adj.place}
def adj {all P | all 1 | 1.adj[P]= (1.location_adj&P.location)}

def intersect { all p | p.intersect = p.location.place - p}

inv Policy{

1This model has been writen for the homework#2 of the course Software Specification (CIS 771) at K.S.U
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// adjacent is reflexive
all 1 | 1 in 1.location_adj

//C2 : a location can hold at most one plane
all 1 | sole l.equipment&Plane

//C3-end : fixed resources consist of adjacent location
all p : Place| all 1| 1 in p.location -> p.location = 1.*adjl[p]

//C4 : Gates consist of a single location

all g : Gate | one g.location

//C4 : that is adjacent to a single taxiway

&% one g.place_adj&Taxiway

//C4 : at a single location

&& one g.location.location_adj&(g.place_adj&Taxiway).location

//C5 : Runways consist of multiple locations
all r : Runway | not sole r.location

//C6 : of the fixed resources, only runways can intersect and at atmost one location
all pl : Place - Runway |all p2 | pl != p2 -> no pl.location&p2.location
all p1,p2 : Runway | pl != p2 -> sole pl.location&p2.location

//C7 : Taxiways are adjacent to other fixed resources at atmost one location
all t : Taxiway | all p | sole t.location.adj[p]

//C8 : Planes can reach a runway from any gate
all g :Gate | some g.*place_adj&Runway

//C10 : Only planes can be on runways
all e : Equipment - Plane | no e.where.place&Runway

//C11 : At most one plane can be on a runway

all r : Runway | sole r.location.equipment&Plane
//C12 : Gates can have a single plane

all g : Gate | sole g.location.equipment&Plane

//C13 : Gates can have multiple service vehicles
//nothing to specifie

//C14 : If a plane is at a gate, then a vehicle should be there to service it
all g : Gate | some g.location.equipment & Plane -> some g.location.equipment & Vehicle

X

op Move(e: Equipment!, 1 : Location!){
//pre conditions

//C9 : Mobile resources can only move between adjacent locations
1 in e.where.location_adj

// the location should be empty
no l.equipment
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//post conditions
e.where’ =1

//Frame condition
Equipment’ = Equipment

all el : Equipment - e | el.where’ = el.where’
all 11| 11.place’ = 1ll.place
all p| p.location’ = p.location

}

op Takeoff (p : Plane!){
//pre conditions

//C15 : a plane can take off on a runway
p-where.place in Runway

//C15 : when all intersecting runways are empty
no p.where.place.intersect.location.equipment

//post condition

Plane’ = Plane - p

all 1 | l.equipment’ = l.equipment - p
Equipment’ = Equipment - p

//Frame condition

all 1| l.place’ = l.place

all pl| pl.location’ = pl.location
}

op Land (p : Plane’!, r : Runway){

//pre conditions

//C6 : of the fixed resources, only runways can intersect and at atmost one location
all pl : Place - Runway l|all p2 | pl != p2 -> no pl.location&p2.location

all pl,p2 : Runway | pl != p2 -> sole pl.location&p2.location

//precondition put because the check of C10 and cll show bugs

//end of precondition put because the check of C10 and cl1 show bugs

p !'in Plane

//C16 : a plane can land on a runway when it is empty
no r.location.equipment

//post condition

Plane’ = Plane + p

Equipment’ = Equipment + p

one 11 |all 12| (11 in r.location && 1l1.equipment’=11.equipment + p)

//Frame condition

&& ((11 '=12) -> 12.equipment’ = 12.equipment )
//if r cross an other runway it should also be impty to care about C11
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4% no ll.place.location.equipment

all 1| l.place’ = l.place
all p1l| pl.location’ = pl.location

}

cond Realism {
//1 : at least one gate, runway, vehicle and plane
some Gate && some Runway && some Plane && some Vehicle

//2 : some intersecting runways
some r | some r.intersect //don’t have to specify runway because of C6

}

inv C10 {
//C10 : Only planes can be on runways
all e : Equipment - Plane | no e.where.place&Runway

}

inv C11 {

//C11 : At most one plane can be on a runway

all r : Runway | sole r.location.equipment&Plane

}
assert Gate_to_any_runwayf{

all g: Gatelall r : Runway| r in g.*place_adj
}

} //end of model GroundControl
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Appendix H

Try of automaton in Alloy for checking
LTL’s formulas

// STS model
// Elodie-Jane Sims, March, 2001

model STS {
domain { Sigma, States_G, Prop, States_phi, States_int}
state {

//definiton of States_G

partition i_G, State_G_0, State_G_1, State_G_2: States_G!
init_states_G : States_G

final_states_G : States_G

//definiton of States_phi

partition State_phi_O, State_phi_1, State_phi_2: States_phi!
init_states_phi : States_phi

final_states_phi : States_phi

//propositions

Top, Bot : Prop!

Atom : Prop

partition p, q, r:Atom!

//definition of the path automata
transition_G : States_G -> States_G
L_G : States_G -> Prop

//definition of the phi automata
transition_phi : States_phi -> States_phi
L_phi[States_phi] : States_phi -> Prop

//definition of the intersection automata
map_G : States_int -> States_G!
map_phi : States_int -> States_phi!

init_states_int : States_int
final_states_int : States_int
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transition_int : States_int -> States_int
L_int : States_int -> Prop
}

inv def_of_the_intersection {

//one state for one couple

all sintl| all sint2| (sintl != sint2)->

((sintl.map_G = sint2.map_G)-> (sintl.map_phi != sint2.map_phi))

//definition of init_states_int

all sint: init_states_int| init_states_int.map_G in init_states_G &&
init_states_int.map_phi in init_states_phi

all sg : init_states_G| all sp : init_states_phi | some sint|
sint.map_G = sg &&% sint.map_phi = sp

//definition of final_states_int

all sint: final_states_int| final_states_int.map_G in final_states_G &&
final_states_int.map_phi in final_states_phi

all sg : final_states_G| all sp : final_states_phi | some sint|
sint.map_G = sg && sint.map_phi = sp

// definition of the transition of intersection

all sint1]| all sint2|
( (sint2 in sintl.transition_int) ->
((sint2.map_G in sintl.map_G.transition_G)
&& (sint2.L_int = sint2.map_G.L_G)
&&(sint2.map_phi in sintl.map_phi.transition_phi)
&& (sint2.L_int = sint2.map_phi.L_phi[sintl.map_phi])
)
)
&&
( ((sint2.map_G in sintl.map_G.transition_G)
&& (sint2.L_int = sint2.map_G.L_G)
&&(sint2.map_phi in sintl.map_phi.transition_phi)
&& (sint2.L_int = sint2.map_phi.L_phil[sintl.map_phil)
) >
(sint2 in sintl.transition_int)
)
}

inv def_of_the_path {
init_states_G = i_G
all s_G | s_G in final_states_G

sa = State_G_2}
State_G_2}

State_G_0.transition_G = {sa | sa = State
State_G_1.transition_G = {sa | sa = State_G_
State_G_2.transition_G = State_G_2

2]
V]
1]

State_G_0.L_G = {pr| pr = Top || pr = p || pr = q}
State_G_1.L_G = {pr| pr = Top || pr = r || pr = q}
State_G_2.L_G = {pr| pr = Top || pr = r}
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}

inv def_of_the_phi {
init_states_phi = {s_phi| s_phi = State_phi_2}
final_states_phi = {s_phi| s_phi = State_phi_2}

State_phi_0.transition_phi = {sa | sa = State_phi_1 || sa = State_phi_2}
State_phi_1.transition_phi = {sa | sa = State_phi_O0 || sa = State_phi_2}

State_phi_2.transition_phi = State_phi_2
State_phi_0.L_phi = {pr| pr = Top || pr = p || pr = q}
State_phi_1.L_phi = {pr| pr = Top || pr = r || pr = q}
State_phi_2.L_phi = {pr| pr = Top || pr = r}

}

inv def_of_Top_Bot{

// definition of Top
all sg| Top in sg.L_G
all sp| Top in sp.L_phi

// definition of Bot

all sg| Bot !in sg.L_G
all sp| Bot !in sp.L_phi
}

assert non_phi_hold{
some sint: final_states_int| sint in init_states_int.transition_int

}

}//end model sts
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