Pointers static analysis and Bl-logic

~ Mémoire de D.E.A.
Ecole Polytechnique, France
April-August 2002

Advisor : Radhia Cousot

Elodie-Jane Sims.

Under construction

Latest version : http : //www.eleves.ens.fr : 8080/home/sims/download/DEA/rapport —stage.ps.gz

This document has colors.

Contents

1 Introduction 5
2 Bl-logic 6
2.1 Imtroduction L 6
2.2 Commands 6
221 Syntax e 6

2.2.2 Configurations 7

2.2.3 Operational semantics : C,s,h~> s’ h' C,s,h~C',s'h' 7

2.3 Formulas e 8
2.3.1 Semantics: s,h =P oL Lo 9

2.3.2 Deductionrulesfor = L 9

2.4 Triples e 10
2.4.1 Interpretation Lo e 10

2.4.2 Utility of triples for the analysis 10

2.4.3 Axioms 10

2.5 Complements 11

3 Backward analysis 12
3.1 Imtroduction 12
3.2 Definitions of the wlp L 12
3.2.1 Preliminary definition oL oL 12

3.2.2 wlp .o 13

3.3 Proofsofthewlp 13
3.3.1 Proofs 14

4 Forward analysis 15
4.1 Introduction Lo 15
4.2 Step 1: wip(true,C) 15
4.3 Step 2: sp(P,C) in case P = wip(true,C) 16
44 if PR wip(true,C)o 17
4.5 Proofofthesp 18
4.6 Addofanerrorstate 18
4.6.1 Configurations Lo 18

4.6.2 Operational semantics: C,m —m’ Com—C'.m' 19

4.6.3 BI® . . . 19

4.6.4 Triples L e 19

4.6.5 BI? . .. 20

5 Partitioning 24
5.1 Imtroduction L 24
5.2 Partitions analysis Lo 25
5.2.1 Commands L 25

5.2.2 Partition definition oL o 25

5.2.3 Strongest Post Conditions L L. 25

5.2.4 Weakest Pre Conditions e
5.3 ~p : Partitions — B’'sformulas o oL oL
5.4 «ap : BD’s formulas — Partitions
5.5 Proof of the partition analysis oL oL
5.5.1 x:=mil e e e e e e e
5.5.2 mew(T)
553 IS . o e e
5.0 4 T =YL e e
5.0 wl:i=y ...
5.5.6 Cl;CQ
5.5.7 if B then Cy else Co
558 if m B then Cqp else Co 0 e
5.5.9 dif B then Cy1 o
55.10 if =B then Cy
5.5.11 while B do C1 e e
5.5.12 while =B do C1 e
5.5.13 wip’sproofs
5.6 Remarks L e e

Conclusion
Frame axiom’s explanation

sp’s proofs

Bl x:=FE . . . e
B2 x:=FEqd . . . e e e
B.3 El.i = Eg ...
B4 z:=cons(E1,E2) . . .
B.5 dispose(E)
B.6 01;02 ...
B.7 if E then Cqp else Co 0 e
B.8 if E then C1
B9 while E do Cy. e e e

sp?’s proofs

Cl z:=FE . . . e e
C2 T:=Fua . ..o
C3 El.i = E2 ...
Cd z:=cons(E1,E2) e
C.h dispose(E)
C.6 01;02 ...
C.7T if E then Cy else Co o 0 o e
C.8 if E then Ci« . e
CO9 while E do Ci. e e e e e

D Why this definition of [z\y]

D.1 Definition 1 : recursive
D.2 Definition 2 e
D.3 Definition 3 e
D.4 Definition 4 e e
D.5 Definition 5 L e e
D6 Asteptoap . . o o e

38

39

40
40
40
40
40
41
41
41
41
42

43
43
44
45
45
45
45
46
47
48

E Substitutions formulas 53

E.1
E.2
E.3
E4
E.5

[E{E'/x}]s = [E]s[x — [E']s] if [E']s exists 53
Proof that P[E/x| = P{E/x} 53
Proof that y = E[E' /] =y = (E{E'/x})Nis(E') 54
Proof that y = E[E'/z].i=y = (E{E'/x}).iNis(E") 55
Proof that y — E1[E’/x], E3[E'/z] =y Er{E'/x}, E2{E'/x} Nis(E') 55

Chapter 1

Introduction

Mon stage se place dans le cadre de ’analyse statique de logiciels comportant des objets alloués
dynamiquement sur un tas et repérés par des pointeurs. Samin Ishtiaq, Peter O’Hearn et John
Reynolds ont développé récemment la logique BI [4] qui est une logique de Hoare avec un langage
d’assertions/de prédicats permettant de démontrer qu’un programme manipulant des pointeurs sur
un tas est correcte. Nous souhaiterions utiliser la logique BI comme interface pour exprimer les
résultats d’analyses modulaires de pointeurs.

Pendant mon stage, j’ai étudié la logique BI que je présente au chapitre 2. J’ai prouvé la cor-
rection des plus faible pré-conditions (wip) (chapitre 3). Jai exprimé les plus fortes post-conditions
(sp), et conditions d’absence d’erreurs (wip(true,C)) et prouvé la correction de l'analyse avant
(chapitre /). J’ai ensuite démontré la correction de ’analyse de pointeurs en avant [2] en exprimant
une traduction des partitions (invariants de ’analyse) dans le langage BI (chapitre 5).

The aim of this starting work is to do static analysis on programs dealing with pointers. De-
veloped by Ishtiaq, O’Hearn, Pym, Reynolds and Yang, Bl-logic [4] is a Hoare logic for reasoning
about properties of heap storage, in terms of Hoare triples, {P}C{P’}. We would like to use
Bl-logic as an interface language for modularity with other pointers analyzes.

We present the logic BI in chapter 2. We proved the correction of the weakest preconditions
(wlp) (chapter 3). We have expressed the strongest postconditions (sp) and the conditions of safe
executions (wlp(true, C)) and proved the correction of the forward analysis (chapter 4). Then we
proved the correction of the pointers forward analysis [2] by expressing the translation of partitions
(analysis’s invariants) into BI's language (chapter 5).

Chapter 2

Bl-logic

2.1 Introduction

O’Hearn and Pym have developed the logic BI of bunched® implications[5]. This is a Hoare
logic with an assertions/predicates language for reasoning about properties of heap storages, in
terms of Hoare triples, { P}C{P’}. It allows to prove that a program dealing with pointers on a
heap is correct[6, 4]. This chapter gives a presentation of BI that comes from [4]. Bl-logic is a
classical logic over states memory with some specific spatial connectives * and —«. P * () asserts
that P and @ holds for separate parts of a data structure. It provides a way to compose assertions
that refer to different areas of memory.

In this chapter, we first present the language we are analyzing, then the BI language itself and
then the Hoare’s triplets of the analysis.

2.2 Commands
We deal with the usual commands of an imperative language with some restrictions :
e we do not directly handle double-dereferencing, such as x.i.j
e dereferencing should be avoided either on the left or right of :=

e a pointer points only to a pair of cells.

Those restrictions do not limit the expressive power of the language.

2.2.1 Syntax

¢ |: xx—:EEz E = x Variable
| = z_— E, | 42 Integer
| 2 := cons(F1, Es) I nil jﬁom
| dispose(F) T ou= 12 “ o
| Che | True Atom
1;C2
| if B then Cy else Cy i ElFoa]jseE Arithm;l;?:peration
if E then C @ 2
I f 1 |

while E do Cy E1 opy, Eo Boolean operation

IThe name comes from the sequent calculus of BI, instead of having I' - A where I is only a list of propositions
like in A; B+ A A B, we also have “bunches” likein A, B+ A x B,

2.2.2 Configurations

Domain : A command is executed over a stack s € S and a heap h € H
Val = IntU AtomsU Loc
S = Var =y, Val
H = Loc—y¢n Val x Val

Val = set of values

Loc = {l,...} is an infinite set of locations
Var = x,y,... is a set of variables

Atoms = nil,a,... is a set of atoms

— ¢in is for finite partial functions.

Configuration : A configuration is either C, s, h a command C to be executed on a memory
s, h, either a terminal configuration s, h.
Definitions :

e C,s,hstuck : AK C,s,h~ K
e C,s,hsafe: If C;s,h~* K Then K is not stuck.

Notice that we call safe configuration (among others) all the configurations with infinite com-
putation.

2.2.3 Operational semantics : C,s,h~ s b’ C,s,h~ C", s N

The operational semantics requires the definition of the semantics of an expression [E]s.

[z]s = s(x)

[42]s = 42
[true]s = true

[[El + EQ]]S = [[El]]s + [[EQ]]S

Notations In the following rules we use :

r to range over elements of Val x Val
- m;r for the first or second projection
- (r]i — v) to indicate the pair like r except that the i’th component is replaced with v

- [f|x — v] to indicate the function like f except that it maps = to v

h — [is the heap like h except that it is undefined on [

Stack-altering commands
[E]s=v
x:=FE,s,h~ [s|z— v],h

assign to x in the stack the value of

[E]ls=1¢€ Loc h(l)=r
x:= FE.,s,h~ [s|x— mr],h

assign to x in the stack the value of the i’th component of [E]s in the heap

Heap-altering commands

[Els=1€ Loc h(l)=r [E']s=7
E.i=FE' s,h~ s, [h|l— (r|i — v')]

assign in the heap to the i’th component of [E]s the value of E’

l € Loc 1edom(h) [E]s=1
dispose(E),s,h~ s, (h —1)

free in the heap the location value of E
notice that if E is the variable it creates a dangling pointer since the stack in not modified

Stack- and heap-altering commands

1€ Loc 1 ¢dom(h) [Er]s = v1, [Ea]s = va
x := cons(Fy, Ea), s,h~> [s|lz — 1], [h|l — (vi,v2)]

assign to x in the stack a fresh location and assign in the heap to this fresh location the two values

of E1 and Es

Composed commands
Ci,8,h~ C' s h
Cl;CQ,S,h’\’) Cl;0278/7h/
Ci,8,h~ s I
01;027S7h"\’) 0278/7hl
[E]s = True
if E then Cy else Co,8,h~ Cy,s,h
[E]s = False
if E then Cy else Co,8,h~ Cy,8,h
[E]s = True
if E then Ci,s,h~ Ci,s,h
[E]s = False
if E then Ci,s,h~ s,h
[E]s = True
while E do C,s,h~ C;while E do C,s,h
[E]s = False
while E do C,s,h~>s,h

Notice that ~ is a not a total function.

2.3 Formulas

PQ,R := « Atomic formula
| false B oo
| P=Q Classical implication 0 - E_p |_ 42
| de.P Existential quantification £ B E i1
| emp Empty heap | R R | nd
| PxQ Spatial conjunction | “
| P—Q Spatial implication

Var

Int

nil
Atom

2.3.1 Semantics : s,h = P

Definitions
hgh' : dom(h) and dom(h') are disjoint
h-h' : the union of h and b’ with disjoint domains
PE=Q iff Vs, hif s,h = P then s,h = Q

Atomic formulas
s,h E=F iff [E]s = [F']s
s,h = E— (FEy,Ey) iff dom(h)={[E]s} and h([E]s) = {[E1]s, [F2]s)

E — (E1, E3) says that the heap has exactly one location that looks like E — (E1, Es).

Classical formulas

s,h | false never
s,h E P=Q iff Ifs,hl=PThens,hkE=EQ
s,h E Fz.P iff FveVallslz—v],h =P

3

dx.P says that we can assign a value to x in the stack to satisfy P.

Spatial formulas

s,h | emp iff h=1]: empty heap
S,h ': P*Q iff Hho,hl hoﬁhl, h:ho'hls,ho |:Pand S,hl ':Q
s,h = P —Q iff VR, If hih' and s,h’ = P Then s,h-h' = Q

P x @ says that we can split the heap in two disjoint pieces, one that satisfies P and the other
satisfies Q.

P —xQ says that for any piece of heap that satisfies P and is disjoint from the current heap,
we can add it to the current heap and we will satisfies Q.

Notice that if with the current stack, there is no heap that makes P holding, P —@ holds.

For readability of the formulas above, we omitted to write there that it is required that
FV(P) C dom(s) for s,h = P, where FV(P) is the set of free variables in P.

Extension of the syntax We can define various other connectives :

-P = P = false
true = —(false)
PvQ = (=P)=Q
PAQ = (=P V-Q)
Ve.P = —(3z.—P)

E<—ab = truex(Er— a,b)

E — a,b says that the heap has among others one location that looks like E +— a,b.

2.3.2 Deduction rules for =

Definition
PEQ iff Vs h.s,h = Pimplies s,h =Q

e The usual rules of classical logic are sound for =

e x is commutative, associative, with unit emp

PEP QEQ

R+xP=Q
R=P—Q

REP—=Q R'EP
R+R'=Q

No weakening? : P* Q [~ P

No contraction® : P [~ P* P

2.4 'Triples

2.4.1 Interpretation

{P}C{Q} true iff Vs,h Ifs,h = Pand FV(Q) C dom(s) Then
-C,s,his safe
- ifC s, h~* s’ h/ then ', E Q

Notice that this interpretation of triple is different from the usual Hoare triple’s interpretation
since {P}C{Q} true implies that C can be executed from any state satisfying P.
The usual Hoare triple definition would be :

{P}C{Q} true iff Vs,h If
-s,h|= Pand FV(Q,C) C dom(s)
-C,s,his safe
Then
if C,s,h~* ¢ h' then ', b = Q

2.4.2 Utility of triples for the analysis

From the interpretation of triples we have that :

v/ If we know that { P}C{true} is true then
we will know that C' is safe to execute in any state satisfying P.

v/ If we know that {P}C{Q} is true then
we will know that C' is safe to execute in any state satisfying P
and that from those states any terminal state satisfies Q.

This is the main point of our analysis. So we will define some rules that prove that a triple is
true and use them for the analysis.

In the chapter 3, we will give for each statement a rule of the form {wip(P,C)}C{P} and the
proofs that for each statement those triplets are true.

In the chapter 4, we will give for each statement a rule of the form {P}C{sp(P,C)} and the
proofs that for each statement, those triplets are true.

2.4.3 Axioms

Sequencing
{Prci{@r {Q}C{R}
{P}C; C'{R}

Consequence
a PP {P}C{R'} RER
{PYC{R}

2because we have a notion of size of the heap with
3as well

10

Frame Axiom Introduction

P *{;{gig}* I ModifiesOnly(C)N FV(R) =0

ModifiesOnly(C) : set of variables appearing to the left of := in C' and not dereferenced.
To know why this restriction for the Frame Axiom is necessary and sufficient, see Appendix A.

We can do local reasoning since because of the Frame Axiom, a specification can concentrate
on only those cells that a program accesses.

2.5 Complements

e Computability : deciding the validity of an assertion is not recursively enumerable but if
quantifiers are prohibited, the validity of an assertion is algorithmically decidable. (Yang
and Calcagno [1])

e There exists a new version of BI [6, 7], to permit unrestricted address arithmetic, all values
are integers (included addresses).

e There exists a intuitionist version of BI. A property is satisfied in a memory if it is for any
extension of the heap. An inconvenient is that the property emp can never be satisfied.

11

Chapter 3

Backward analysis

3.1 Introduction

In the paper [4], the authors give axioms of the form {wilp(P, C)}C{P} for some commands C
and prove the correctness of the axioms for the commands E.i := E’ and = := cons(E}, E3).

We have defined the wip for the other commands and prove the correctness of all the wip.

3.2 Definitions of the wlp

wlp stands for weakest liberal precondition where “liberal” means that we collect the configurations
with infinite computation.

3.2.1 Preliminary definition

If we have that P{E/x} is the formula P where x has been syntactically replaced by the formula
E
we define

s,h = P|E/z] iff s[z+— [E]s],hEP
We define this because if s, h = P[E/xz], we have :

e [E]s is defined, so the command x := E can be executed

e s[x — [E]s],h = P, so P holds after the execution of z := F
So we will use this for the precondition of the assignment z := E.

This definition might look like an add to the language BI, but it is not since in Appendix E,
we prove that P[E/xz] = P{E/x} Nis(E),
where is(E) = (E = E) means that E has a value, we have s,h | E = E iff [E]s is defined
and P=Qif PEQAQEP.

If FV(E) C FV(P) then, P[E/xz] = P{E/x}, in fact we only need FV(E) C FV(P{E/z}).

The use of the distinction between [/] and {/}, can be view in the example : {true}z := y{true}
is false but {y = y}z := y{true} is true.

Remark : in other version of BI [7], there is no need of distinction between P[E/x] and P{E/z}, since
the triples needs FV(C, Q) C dom(s) to be true and not only FV(Q) C dom(s) like here.

12

wlp(P, x:=F) = P[E/x]
wip(P, x:= E.i) = a3z (Plai/z]) A (E — x1,12))
with z; ¢ FV(E, P)
wlp(P, E1l1:=F) = Jx13ze.(F — x1,22) *x ((E — E' z9) —P)
with x; ¢ FV(E,E’, P)
wlp(P, E2:=F) = drJze.(E— x1,22) * (B — 21, E') —P)
with x; ¢ FV(E,E’, P)
wlp(P, x := cons(F1, E»)) = Va'.(a' — Ey, Ey) —P[2' /]
with @' ¢ FV(E;, Ey, P)
wlp(P, dispose(FE)) = Px(3a3b.(E — a,b))
with a,b ¢ FV(E)
wlp(P, C1;Co) = wip(wlp(P,Cs),C1)
wip(P, if E then Cy else Cy) = (F =trueAwlp(P,C1))V (E = false Awip(P,C3))
wlp(P, if E then Cy) = (E =true Awlp(P,Cy))V (E =false A P)
wip(P, while E do Ch) = gfp I?rue AX.((E = true A wip(X, Ch))
V(E = false A P))
wp(P, while E do C4) = IfpEL. AX.((E = true Awp(X,Cy)) V P)

We define P=Q iff PEQ and Q = P.
Here we write gfp lfme AX.F(X) for a BI formula P which satisfies :

o P=F(P)
e for any formula Q, (Q = F(Q) implies Q = P)

This BI formula does not always exists and like any formula is not unique. To express the
wlp(P, while E do C1) in any case we could take
wip(P,while E do C;) = (E = false A P).
We would have a complete and correct analysis, but in this case the wilp will not be the “weakest”
pre condition.
We expressed the wip(P, while E do C7) with a fixpoint to give a way to be able some-
times to compute a more precise precondition by iterations of applying the function AX.((E =
true A wip(X,C1)) V (E = false A P)) to formulas starting by true and stopping when two
consecutive formulas are equivalent in the sens of =.

There are some explanations of the formulas in the case when P = true in 4.2.

Remark : If we would like to implement the analysis, for the while case, we would need a theorem
prover'. Deciding whether P |= @ is the same problem as deciding the validity of P = Q. As said in the
previous chapter, this is not recursively enumerable, so we might not be able to compute the gfp. If we
would like to implement the analysis, we could at least use the approximation E = false A P.

3.3 Proofs of the wlp

First we should precise that in this chapter we only want to prove that our analysis is sound.
That is we proof that all the triples {wip(P, C)}C{P} are true but we do not proof that the wip’s
formulas are actually the weakest one. This is the case in fact for the simple statements but not
for the while.

Definition : ~(P) = {s,h|s,h = P}

Lthere have been some works done for proof-search in BI Logic [3] but, to our knowledge, only for the intuitionist
version of BI

13

Definition of wip, We define the wlp in the operational domain :
wipo(A,C) = {s,h | C,s,hissafe A(if C,s,h ~* s',h/ then s', ' € A}

We can rewrite the definition of a true triple as :

{wlp(P,C)}C{P} true iff (v(wip(P,C)) N{s,h | FV(P) C dom(s)}) C wip,(y(P),C)

So we will prove that for each C, and P, we have v(wip(P,C)) C wip,(y(P),C)

Here, op =S5 x H

3.3.1 Proofs

We just need to express wlp, for each command and we will prove the correctness by induction
on the syntax of C. (we wrote the proofs but did not type them)

14

Chapter 4

Forward analysis

4.1 Introduction

In the chapter 3, we have given for each C' and each P a wip(P,C') such that {wip(P,C)}C{P}
is true.

We can not always define sp(P,C'), where sp stands for strongest post condition. That is we
can find a C and a P such that there exists no @ that makes {P}C{Q} true. This is so because
to be true a triple asks for C' to be executable from all states satisfying P (and also such that
FV(Q) € dom(s)) which is obviously not the case for any C and P.

For example {true}z = nil;y = z.1;{?} has no solution, since all states satisfy P but the com-
mand can never be executed(nil.l not defined).

So we have to split the analysis into two steps. The first step is to check whether C' is executable

from all states satisfying P or not. The second step is to give sp(P,C) that makes the triple
{P}C{sp(P,C)} true if C is executable from all states satisfying P.

4.2 Step 1 : wip(true,C)

We have that C' is executable from any state satisfying P iff P = wip(true, C).
So for the first step we just need to express the wip(true, C')’s formulas.

Definition is(F) = F = E, it means that F has a value in the current memory.

wip(true, z:=F) = is(E)
wip(true, x = FE.i) = dri3dws.E — x1, 20
with z; ¢ FV(E)
wlp(true, Ei:=F) = Fx13zo.(F — z1,22) Nis(E')
with x; ¢ FV(E,E")
wip(true, x := cons(F1, E2)) = is(E1) Nis(Es)
wip(true, dispose(FE)) = dzri3dws.E — x1, 29
with z; & FV(E)
wlp(true, C1; C9) = wip(wlp(true,Cs),Cq)
wlp(true, if E then Cy else C3) = (FE =trueAwlp(true,Cy))

V(E = false A wip(true, Cy))
wip(true, if E then C) = (F = true Awilp(true,C))V E = false
wlp(true, while E do Ci) = gfp ‘fme AX.((E = true A wip(X, Ch))

VE = false)

15

Some explanation :

wlp(true,z := E) = is(E)
we need E to have a value to execute the command
wip(true,z := E.i) = (3z1,22. E — x1,29)
we need E to be a pointer assigned which point to two values
wip(true, Fh.i := Ey) = ((Jz1,22. B1 — x1,22) Nis(Es))
we need Fy to be a pointer assigned which point to two values and we need Ey to have a value
wlp(true,z := cons(E1, E2)) = (is(E1) A is(E2))
we need E1 and Ey to have a value to execute the command
wlp(true,dispose(E)) = (Jz1,22. F — 1, 22)
we need E to be a pointer assigned which point to two values
wip(true, C1; Cy) = wip(wlp(true, Cy),Cy)
here, it is not the composition of wip(true, 1)
so we will not do composition of the first step

4.3 Step 2 : sp(P,C) in case P = wip(true, C)

First we define

s,h = P|E/z] iff s[x— [E]s],hEP
s,h =x = E[Ey/y] iff s(x) = [E]sly — [F2]s]
s,h = x = E[Ey/y]. ift s(x) = m(h([E]s[y — [E=]s]))
s,h = x— E1[Ey/y], Ea[Eo/y] iff dom(h) = {s(z)}

Ah(s(z)) =< [E1]sly = [Eo]s], [E2]s[y — [Eo]s] >

In Appendix E, we prove that those definitions correspond to the syntactic substitution with
some modification like in chapter 3. So that those new definitions are covered by the syntax of BI.
Actually, z = E.i is not a BI's formula, but we write it as a shortcut for the formula 3x1, z5. (E —
x1,x2) A (T = ;).

sp(P, x:=F) = Ja'. P[z'/x] Nz = B2’ /2]
with ¥’ ¢ FV(E, P)
sp(P, x:= E.) = Ja'. Pl2'/x] Az = (B2’ /z]).4
with ' ¢ FV(E, P)
Sp(P, E1.1 = Eg) = 3$13!E2.(E1 — E2,$2) * ((El — $1,$2) —)*P)
with iz g FV(El, EQ, P)
Sp(P, E12 = EQ) = 33313332.(E1 = T, EQ) * ((El = xl,xg) —*P)
with ZT; g FV(El, Eg, P)
sp(P, x := cons(F1, E»)) = a2’ .(P[z'/x] * (x — E1[z'/x], Ea[z’ /x]))
with o' & FV (B, Ey, P)
sp(P, dispose(E)) = Jz1, 2. (F— 21,22) —P)
with 1,29 € FV(E, P)
sp(P, C1;Co) = sp(sp(P,C4),Cs)
sp(P, if E then C; else C3) = sp(PAE =true,C)
Vsp(P A E = false, Cy)
sp(P, if E then C) = sp(PAE =true,Ch)
V(P A E = false)
sp(P, while E do Cy) = (fp5 A\X.sp(X A E = true,Cy) V X)
A (E = false)

The I fp does not necessary exists (for example if the program enumerates the prime numbers,
the formula would be infinite and BI does not have infinite V or A).
We could, if the [fp does not exist, have

sp(P, while E do C;) = FE =false

16

but in this case sp will not be the “strongest” post condition.

As discussed for the wip case, if we would like to implement this analysis, we would not neces-
sarily be able to compute the [fp because of the quantifiers. But we have that deciding the validity
of an assertion without quantifiers is algorithmically decidable. So a solution for implementation
could be to lose the quantifiers and lose some precision. For example, in the case of = := E, if x
does not occur in E, we could replace 3z’. P[z'/x] Az = E[2'/x] by x = E and we could possibly
keep some information from P that does not depend on z. Then we would no more have the sp
but still have true triples. We did not look at the implementation problem, a solution for the while
could be to give E = false when we can not compute the [fp.

Some explanation :

sp(P, x:=E) = 32'. P[2'Jx] Aoz = E[2' /]

with ' ¢ FV(E, P)

z' plays the role of the previous value of x
sp(P, x := E.4) = q2'. Pz’ /z] Ao = (El2'/x]).i
with ' ¢ FV(E, P)

x' plays the role of the previous value of x
S]D(P7 E1.1 = Eg) = 3$13!E2.(E1 — Eg,xg) * ((El = $1,{E2) —*P)
with x; ¢ FV(E,E', P)

it means that there were two previous values r1 and xs such that
if we take out E and add this previous E, P holds

and actually E is pointing the updated cells
sp(P, z := cons(E1, Es)) = 2/ .(Pla'/z] x (x — Ei[z' /z], Ea[2’ /z]))
with ' ¢ FV (Ey, Ea, P)

z' plays the role of the previous value of ©

we can split the memory into two parts,
one part was holding P with the previous value of x,
the other part is x that points to what it should
sp(P, dispose(FE)) = Jz1,z2. (E +— x1,22) —*P)
with x1,x2 € FV(E, P)
it means that there were two previous values, that E was pointing to,
and if we add to the actual memory, E pointing to those values,
we hold P as before the dispose

4.4 if P [~ wip(true, C)

If P}~ wip(true, C), we can conclude that C can not be executable from all states satisfying
P and for those from which it is executable, the final states satisfy sp(P A wip(true, C),C).

Remark P {= wip(true, C) does not imply that the previous sp are necessary false.

For example, true [~ is(y) but {true}lz := y{3Iz’. x = y} is true, since we have the special
restriction that x := y as to be executable from all state satisfying P which is not true here but also
that have FV(3z'. x = y) C dom(s) which is is(x) A is(y) and implies that those states = is(y)
and so the triple is true.

But this is a particular case, and we do not have PA“F'V (sp(P,C)) C dom(s)” = wip(true, C).
This problem does not come only from the composition or ¢f and while. For example,
wlp(true, dispose(x)) = 1, x2. T — 21,2,

sp(true, dispose(z)) = Jx1, 2. (x — x1,T2) —xtrue
and “FV (sp(true,dispose(x))) C dom(s)” = is(x)

17

but true Ais(x) ¥ Jrq, 20 & — 21, T0.

4.5 Proof of the sp

First we should precise that in this chapter we only want to prove that our analysis is sound.
That is we do not prove that the sp’s formulas are actually the stongest one. This is the case in
fact for the simple statements but not for the while.

We want to prove that :

If P = wip(true, C) then {P}C{sp(P,C)} true

Definition of sp, We define the sp in the operational domain :
spo(A,C) ={s',h' | Is,h € A. C,s,h ~* s’ W'}

So we can rewrite the definition of a true triple as :
[PYC{Q} true iff P = wip(true, C) A spo(1(P), C) € (Q)
So we want to prove for each command C' that :

If P = wip(true, C) then sp,(v(P),C) C v(sp(P,C))

BD)————BI

op—L 5 Cop

But since sp, is defined such that it only collect the final states of successful computation, we
only have to prove that for each command C' :

spo(V(P), C) € v(sp(P, C))

See appendiz B.

4.6 Add of an error state

There is a second approach, the one we first took, that is to add an error state to our domain.
So we make the transition function a total function. We have changed the syntax of BI and the
interpretation of a triple. We now produce for all P and C, a triple {P}C{Q} which is true. For
our analysis, to know that a program is executed without error from the states satisfying P, we
will just have to check if the error state satisfies Q.

4.6.1 Configurations

Domain : (stack S + heap H) or Error The domain is the union of the previous domain
with {Q,}.

), is the error memory in the operational domain.

18

4.6.2 Operational semantics: C,m —m’ C,m — C',m/

Com—m' ff (m=Q,Am =Q,)
Vim=s,hAm' =Q, NC,s,h+)
Vim=s,hAm' =5 KN ANC,s,h~ s k)

Cm—C',m iff m=s,hAm' =s,WANC,s,h~C" s h

Then the operational semantics — is a total function.
There are no more stuck configurations.

4.6.3 BI°
Syntax of BI°
P == Q BI’s formulas
| Err the atomic formula for error
| true added since the law of the excluded middle does not hold anymore
| Vz.P as well

We add to the syntaz of BI a predicate Exrr that holds only for the state €,.

Semantics: m ¢ P

m =€ r iff (m=Q,AQ, ¢ P)
V(m=s,hAs,h=¢P)

Q, [Err always

Q E° P=Q ift IfQ,®PThenQ, E°Q

Q, [true never

Q, [E° Va.P never

Q, E° oneof the others BI's formulas never

s,h € Err never

s,h € true always

s,h € Va.P ifft Yo eVal[s|z— v],h =P

s,h P a BI's formulas ifft s,hEP

All the special BI'’s formulas define a “normal” memory, so Q, does not satisfy any of them. The
only predicate that Q, satisfies is Err. The usual meaning of = is valid for error or non error
memory. 3x... had the meaning that we could assign a value to = in the stack, so it supposed that
the stack exist, and so), does not satisfy any 3 or V.

4.6.4 Triples

The previous interpretation of triples can be written
{PYC{Q} iff P = wip(true, C) A sp(v(P), C) € Q)

Remember that was
e (' is executable from all states satisfying P
e all final states of a computation of C' from P satisfy @
Now we have
{PyC{@Q} iff sp5(v°(P),C) € (Q)
with v¢(P) = {m | m E° P}.

‘Which is

19

o if Q, satisfies P then 2, satisfies @
e if C' can not be executable from all “normal” states satisfying P, then), satisfies @
e all “normal” final states of a computation of C from P satisfy @

We could express sp® with the two steps of the previous analysis :
Step 1 : check if P = wip(true, C)
Step 2 : if yes then sp¢(P,C) = sp(P,C)
if not then sp®(P,C) = Err V sp(P A wip(true, C),C).

Notice that we do not have sp¢(P,Cy;Cs) = sp®(sp°(P,C1),C2) in the above definition since
sp : BI — BI° and so also sp® : BI — BI®¢ but we can extend the definition of sp® so that
spe(P, Cy; Cy) = spe(spe(P,C1),Cy) since Qg = P A wlp(true, C).

4.6.5 BI?

Introduction

If we do not want sp® written with two steps. And if we want that sp¢(P, C1; C2) = sp®(sp®(P, C1), Ca).
This is less efficient so this section does not need to be read.

We said that we have

{P}YC{Q} iff sp(v°(P), C) € 7*(Q)
with v¢(P) = {m | m E° P}.
Which is
o if , satisfies P then 2, satisfies Q)
e if C' can not be executable from all “normal” states satisfying P, then €, satisfies @
e all “normal” final states of a computation of C from P satisfy @
We can rewrite this as
e Err =° P then Err =° Q)
o if P }~° wip(true,C) then Err ¢ Q

o sp(PAwlp(true,C),C) = Q, here we write sp and not sp® because we are in the case where
we go from “normal states” to “normal states”

Here we want to find an sp® such that {P}C{sp®(P,C)} is true

so we would like sp® to be like

sp®(P,C) = (Err A P)
V(Err A (P }£° wip(true, C)))
Vsp(P A wlp(true,C),C)

but }~ can not be expressed in B¢,
so we have extended its syntax into BI? with V? and 32 to get :

true ¢ P iff m =2 V2m'. P
PEQ iff mpE2V2ml.P=Q

and we can express :

sp*(P,C) = (Err A (PV (Fm. (P A ~wlp(true, C)))))
Vsp(P A wip(true,C),C)

20

meaning that we have the state error if the state error satisfies P or if there is a state satisfying P
from which C' is not executable, and we also have all “normal” post states.

The idea of the necessity of BI? is that we have to express that €2, satisfies a formula which
says that there was a previous “normal” memory from which the command can not be executed.

This previous “normal” memory can not be expressed from 2, so it can not be expressed in BI*.

Syntax of BI?

P = Q BI¢’s formulas
| V°m.P
|

3°m. P

Semantics: m =2 P

"2 V?m. P iff Vm. (m=s,h=mE?P)
" B2 FPm. P iff Im. (m=s,hAmE2P)
" E% other P iff same definition as for BI®

333

Triples
We have sp2(A,C) = {m’ | Im € A. C,m —* m’'}

and then

{PYC{Q} true iff sp3(7°(P),C) € 7°(Q)

Preliminary definition
First we define

s,h = P[E/x] it Im'.m' = MWAm'EPARN =hAs(x)=[E]sATv.s=s[z—]
s,h =x = E[Ey/y] it Im'.m/ =5 WAL =hAs(z)=[E]s"ATv. (s =s[y—v]Av=[Es]s)
s,h |Ex = E[Ey/yl.i it Im'.m/ = AR =hAs(z)=mh([E]s))

AJv . (8" = s[y — v] Av = [Eq]s)
s,h =z Er[Ey/yl, Eo|Eo/y] f Im/.m' = W AW =hANdom(h) = {s(x)} Ah(s(z)) =< [E1]s, [E2]s >
AJv . (s = s[y — v] Av = [Eo]s)

We should prove that those definitions correspond to the syntactic substitution with some mod-
ification like in chapter 3. So that those new definitions are covered by the syntax of BI2. We
should look more carefully about Q, =2 ...[.../...], we did not looked at this right now since it is
not directly useful in the proofs we made.

Definitions of the sp?

sp?(P,C) = (Err A(PV (F*m. (P A ~wlp(true, C)))))
Vsp(P A wip(true, C),C)
For ; and if and while, the formulas are not written like that. If the formulas where like that,
this would do the same work as the method with the two steps, supposing that for composition,

we do the first step only for the composition and not for the subcommand separately. For the
composition, we have written sp?(P, C1; Cz) = sp?(sp?(P, C4), Cs), which implies that we do more

21

“first step” work than in the formula above.
Remark : this formula above is just an explanation of the formulas written after since the sp
written is not the sp : BI — BI since P A wip(true,C) is in BI? but Q, & P A wip(true, C).

sp?(P, z:=FE) = (Err A(PV (Fm. (P AN —=(E = E)))))
V(3z'. Plx'/x) Nx = E[x'/z])
sp?(P, x:= E.Q) = (Err A (PV (F2m. (PA

—\(Elxl,a:g. FE — xy, 332))))
V(3z'. Plz'/x] Nz = (B2’ /z]).%)
with ' ¢ FV(E, P)
sp?(P, E,.1:=E5) = (Err A (PV (F2m. (PA
(=321, w2, By — w1, w2) V (B2 = E3))))))
V(E|$1E|$2.(E1 — EQ, 332) * ((El = 331,332) —»*P))
with z; & FV(E,E', P)
sp?(P, E\.2:=Ey) = (Err A (PV (Fm. (PA
(321, w2, By — 1, @2) V (B2 = Ey))))))
V(E|$1E|$2.(E1 = T, EQ) * ((El = 331,332) —»*P))
with z; ¢ FV(E,E', P)
sp?(P, x := cons(E1, Es)) = (Err A (PV (F*m. (PA
(—(Er = E1) V ~(E2 = E3))))))
V@ (Pl fx] * (¢ — Er[' 2], Eala /)
with 33/ g FV(El, EQ, P)
sp?(P, dispose(F)) = (Exrr A (PV (F*m. (PA
—\(Elxl,a:g. FE — xy, 332)))))
V(3z1,x2. (E — x1,22) —P))
with z1,x9 € FV(E, P)
sp?(P, C1;Co) = sp?(sp?(P,C1),C3)
P, if E then Cy else Cy) = (Err A(PV (Fm. (P A—(E =E)))))
V(sp*(P A E = true, (1))
V(sp?(P A E = false, C3))
sp*(P, if E then Cy) = (Err A (PV (Fm. (P A~(E = E)))))
V(sp?(P A E = true, (1))
V(P A E = false)
sp* (P, while E do C) = (fp'p AX.
(Err A (X V (Fm. (X A—(E =E)))))
V(sp* (X A E = true, (1))
VX)
A (E = false V Err)

The [fp does not necessary exists as seen before.
To have a total sp? function, we could, if the I fp does not exist, have

sp?(P, while E do C,) = FE =falseVErr

As discussed before, if we would like to implement this analysis, we would not necessarily be
able to compute the [fp because of the quantifiers. A solution for the while could be to give
FE = false V Err when we can compute. We would not have a sp but still have true triples.

Proof of the sp?

We have

{PYC{Q} true iff sp3(y*(P),C) € 7*(Q)

So we want :
spa(v2(P),C) € +*(sp”(P,C))

22

op—p“>g0p

We just need to express sp? for each command and we will proof the correctness by induction
on the syntax of C. It is almost the same proofs as for the sp’s.
See Appendiz C.

23

Chapter 5

Partitioning

5.1 Introduction

In the previous chapter, we have seen a backward and a forward analyzes that could be run on
a program using BI logic.

In this chapter we are interested in using BI as an interface language for modularity with other
analyzes.
We could give with the analyzes of the previous chapters some properties that holds before and

BI P
function \/
‘ P

Figure 5.1: Use BI’s analysis in a analysis over a domain P

after a piece of program (BI and BI' in fig 5.1). And then for an other analysis over a domain P,
if we give a translation from P into BI’s formulas (yp in fig) and from BI’s formulas into P (ap
in fig), we would be able to use the result of BI’s analysis.

As an example, we have chosen an analysis from chapter /.2 of [2]. It is an analysis that says
if some pointers can not for sure transitively reach a same location.

In fact this analysis gives a partition that is a set of collections of pointers that may reach a same
location. Since the set of variables of a program is finite, we have represented the partition as a set of
couple of variables that for sure do not reach each other. If in the paper ! they give {V,W/X,Y, Z}
as a partition for a program with variables in {V,W,X,Y,Z, A}, we will have for our parti-
tion {[VAX], [VAY], [VAZ], [VAA], W\X], [W\Y], [W\Z], W\ A], [A\X], [A\Y],[A\Z]} (we natu-
rally have [a\b] € P = [b\a] € P).

1We describe the partitions domain of the paper as a footnote since we do not use it anymore after this example.
{V,W/X,Y,Z} means that :
- there *may* be a way to “link” V and W
- there is definitelly no way to “link” V or W to any other variable, even if they are not in {X,Y, Z}
- there *may* be a way to “link” X and Y, X and Z or Y and Z
- there are definitely no way to “link” them to any other variable

24

We also have restricted the language over which the analysis is done to match with our work on BI.
In this chapter, we describe the analysis over the partitions, then we give the translation from

Partitions to BI’s formula, and then for some commands, we prove that the spp’s formulas are
right.

5.2 Partitions analysis

5.2.1 Commands

B = z=nil C == E
E = gz:=nil | T=y | new(z) as“x:=cons(nil,nil)’
| z:=uy.i | zi=y | if B’ then Ci else Co
| zi=y B = B | if B’ then C4
| - B | while B" do C1

We do not write the operational semantics of the above commands, they are the same as in the
previous chapters.

5.2.2 Partition definition

A partition is a set of [a\b]. [a\b] means that a and b are not pointers that can reach each other
or can be both reach by a same location. If [a\b] is not in the partition, ¢ and b may reach each
other. If [a\b] € P then [b\a] € P.

5.2.3 Strongest Post Conditions

We have spp : Partitions x Commands — Partitions.
Were Partions is the power set of {[a\D] | a,b € Var} ordered by the inclusion of sets.

The analysis will start with the top partition, Ya,ba # b . [a\b] € P.
Then we express the postconditions for our commands.

spp (P, new(z)) = P\{[z\z]|Vz}U{[z\2] |Vzz #z}

spp(P, x:=nil) = P\ {[z\z]|Vz}U{z\z]|Vz}

spp(P, x=nil) = spp(P,z:=nil)

spp(P, zi=y) = P\{[z\z]|V2}U{[z\2] | [y\2] € P}

spp(P, r=y) = spp(Pri:=y)

spp(P, wi=yi) = P\{[2\z] |V} U{[z\2] | [y\z] € P, z # x}

spp(P, x=yi) = spp(Pxi:=y)

spp(P. vimy) = P\{{o\u]|(s\w] € PA[\e] £ P)
V(iz\u] & P A [\v] ¢ P)}

spp(P, vi=y) = spp(Pwzi:=y)

spp (P, C1;C3) = spp(spp(P,Ch),C7)

spp(P, if B then Ci else C3) = spp(spp(P,B),C1)Nspp(P,Cs)

spp(P, if — B then Cy else C) = spp(P,Ch) ﬂspp(spp(P B),(Cs)

spp(P, if B then C1) = spp(spp(P,B),C1)NP

spp(P, if =B then C1) = spp(P,Ci)Nspp(P,B)

spp(P, while B do C1) = gfp}%)\X. spp(spp(X,B),C1)NX

spp(P, while = B do Cy) = gfp%)\X. spp(X,C1) Nspp(X, B)

spp(P, -B) = P

Here we give some explaination why the case of new(x) is not the same as the case of := nil.
It’s just that in our definition of [a\b], we consider that if 2 does not point to a location (i.e. x

25

is nil or is a number) then [z\z] holds but if x points to a location, which is the case after a
allocation new(z), then [z\z] does not hold.

This can be view in section 5.3.

5.2.4 Weakest Pre Conditions

wlpP(Pa B) = SpP(Pa B)

wlpp (P, new(z)) = P\{[2\:]| ¥z}

wlpp (P, x:=nil) = P\ {[z\z]|Vz}

wlpp(P, z:=y) = P\{[z\z]|Vz} orQpif3z[z\z] € PAy\z] &P
wlpp(P, z:=y.i) = P\{[z\z]|Vz} orQpif3z.|z\z] € PAy\z] &P
wlpp(P, zi=y) = P or Qpif Iz.[x\z] € PA[y\z] & P

wlpp (P, C1;Cy) = wipp(wlpp(P,Cs),Ch)

wlpp (P, if B then C; else C3) = wlpp(wlpp(P,C1),B) Nwlpp(P,Cs)

wlpp(P, if = B then Ci else C3) = wlpp(P,Cy) Nwlpp(wlpp(P,Cs), B)

wlpp(P, if B then Cy) = wipp(wlpp(P,C1),B)NP

wlpp(P, if =B then C1) = wlpp(P,Ci)Nwlpp(P,B)

wlpp (P, while B do C1) = gfp %Op AX. wlpp(wlpp(X,C1),B)N P

wlpp(P, while = B do Ci) = gfp :%Op AX. wlpp(X,Cy) Nwipp (P, B)

wpp (P, while B do C1) = lfp% AX. wipp(wlpp(X,C1),B)NX

wpp (P, while = B do Cy) = lfp%)\X. wipp (X, Ch) Nwlpp(X, B)

wlpp(P, -B) = P

Where Qp is a partition error.

5.3 ~p : Partitions — BI’s formulas

Preliminary definitions

isloc(x)
isinheap(x)
isdangling(z)

Nodangling?2

[z\y] as a BI formula

[z\y]

—isloc(z) V —isloc(y)
\/Hxl, T2,Y1,Y2-

—(z =nil) A =(z = true) A ~(z = false) A (In.n =z + 1)
Jz1, z2. (T — x1,22)

isloc(x) A —isinheap(z)
Yo, v'. (isinheap(v) A (v =v.1 V v =0.2)) = - isdangling(v’)

(r — x1,22 A Nodangling2)
*(y < y1,y2 A Nodangling?2)

*Nodangling?2

Notice that in case x or y reaches a dangling location, we do not have [x\y].

vp :Partitions — Bl

Yp(P)

A

[a\b]e P

[a\b] A Nodangling2 A A
Vz4€""P

— isdangling(z)

Since a partition is a finite set of [a\b] we can have this definition.

Notation : Vz“ €” P = Jw.[2\w] € P.

To have some explanations of those definitions, see Appendix D.

26

5.4 «ap : BI’s formulas — Partitions

We can not express ap(F') by induction on the syntax of F. So we would have to check whether
F | Nodangling2 A A — isdangling(z), and if so ap(F) = {[a\b] | F = [a\b]}.
Vz var of the program

Which means we will have to check whether F' |= [a\b] for all pairs of variables.

5.5 Proof of the partition analysis

Partitions

sPo spp

op C=— Bl <~ Partitions

’

Y

with 7/ =y o yp.

We prove the analysis by induction on the syntax of the commands.
So we have two ways for each command we can either prove that :

Spo(A//(P)v O) c fyl(SpP(P’ O))

or prove that :

(sp(v-(P),C)) €+ (spp(P,C))

since we already know that :

spo(7(Q),C) € 1(5p(Q,C)) -

The partition analysis does not deal with errors, so in fact we only have :

spo (7 (P), C)\ {Q6} € 7' (spp(P, C))

we do not deal with errors in our proofs.

5.5.1 2z :=nil

spo(Y (P),x :=mnil) = {s,h|3s.h.s,hE=(A [a\b] ANodangling2A /A - isdangling(z))
[a\bleP vz“e!" P
AR = h A s’ =s[z— nil]}
v (spp(P,z:=nil)) = {s,h'|s,h= A [a\b] A Alz\z] ANodangling2 A A - isdangling(z)}
[a\b]eP vz Vzierp
a,b#x

So we have to prove that if

s,h = /\ [a\b] A Nodangling2 A /\ - isdangling(z)

[a\b]leP Vz“e" P
then
slx — nil],h E /\ [a\b] A /\[a:\z] A A /\ - isdangling(z)
[a\b]eP V2 Vzée/p
a,bEz

e We have FV ([a\b]) = {a,b} soif s, h = [a\b] for a,b # = then sz — nil], h = [a\b].

27

e We have that s[z +— nil],h = —isloc(z) so s[z — nil],h E Alz\z].
Vz

° s, h = Nodangling2 we have s[z — nil], h = Nodangling2

e since s,h = /\ - isdangling(z) we have s[x +— nil],h}= A - isdangling(z)
Va4l p Vzéer P

5.5.2 new(x)

spo(7'(P), new(x))

{s/,h" | 3s.h.s,h = (A [a\b] ANodangling2 A /A — isdangling(z))
[a\b]€ P Vz4e! P
A3l € Loc.l & dom(h) Ah' = h[l — (nil,nil)] A s’ = s[z —]}

{,n" s 0= N\ fa\blA A [2\2]

v (spp (P, new(z))

[a\b]e P Vz, z#x
a,btx
ANodangling2 A A - isdangling(z)}
Vzéen p

So we have to prove that if

s,h = /\ [a\b] A Nodangling2 A /\ - isdangling(z)
[a\b]eP vzterp

then VI € Loc. | & dom(h)

sl 1], h[l — (nil,nil)] /\ [a\b] A /\ [2\z] A A /\ - isdangling(z)
[a\b]eP Vz, z#x Vz“e"" P
a,btx

e We have FV([a\b]) = {a,b} and | & dom(h) so if s,h = [a\D] for a,b # = then s[z —
I, h[l — (nil,nil)] &= [a\b].

o for z # z, if s,h = —isloc(z) then s[z — I],h[ll — (nil,nil)] = —isloc(z) and sz —
I, h[l — (nil,nil)] & [z\z]

o for z # x, if s, h = isloc(z)
since s, h = —~isdangling(z) A Nodangling?2
we have s, h = 321, 20. 2 — 21, 20 A Nodangling?2
and then sz +— I, h |= 321, 22. 2 — 21, 22 ANodangling?2 (since there are no free variables in
Nodangling?2)
we have s[z —], [l — (nil,nil)] E 321, x9. ¢ — 2122 A Nodangling?2
and since s[x +—], () = Nodangling2 we have
slz — 1], h[l — (nil,nil)] E [z\2]

e if 5,h = Nodangling?2 then sz +—], h[l — (nil,nil)] = Nodangling?2 since we can lose the
property Nodangling?2 only if the heap his reduced or if the cell add have some dangling?2
(which is not the case of nil).

e if s;h = A\ - isdangling(z) then sz —], h[l — (nil,nil)] = A - isdangling(z)
Vzée! P Vzée! P
since we did not reduce the heap and we just added x to the stack to a non dangling location

5.5.3 z:=y
spo(Y(P),x:=y) = {s',h|3sh.s,hi=(N [a\b]ANodangling2A A — isdangling(z))
[a\b]eP Vzienp
AR =hAs =slz— s(y)]}
V(spp(Poa:=y)) = {0 [s "= A [a\bJA A [2\z] ANodangling2
[aa\l;]fzp ly\z]ep

A /A - isdangling(z)}
Vzie" P

28

So we have to prove that if

s,h = /\ [a\b] A Nodangling2 A /\ - isdangling(z)
[a\b]eP varenp

then

slz— s(y)],h = /\ a\b] A /\ [x\z] A A /\ - isdangling(z)
[a\b]e P [y\z]eP Vz“e" P
a,b#z
e We have FV([a\b]) = {a,b} so if s, h = [a\b] for a,b # x then sz — s(y)], h = [a\b].
e We have that s,h = A [y\Z]

ly\zleP
so we have s[z — s(y),h = 32'.(A [y\z])[z'/z] Ax =y (from BI’s sp)
[y\z]eP
so we have sz — s(y),h = A [2\Z]
[y\z]eP
z#x
. s, h = Nodangling2 we have s[z — s(y)],h = Nodangling2

e since s, h = — isdangling(y)
we have s[x — s(y)],h = — isdangling(z)

e since s,h = /\ - isdangling(z) we have s[z — s(y)],h = /A - isdangling(z)

vzt P Vz4e!' P
Fa Fa
5.5.4 z:=yua
spo(Y (P),xz:=y.i) = {s,h'|3s.h.s,h=(A [a\b]ANodangling2 A A - isdangling(z))
[a\b]e P Vz“e""P
AW =hAs = sz — m(h(s(y)))]}
Y (spp(Pyx:=yi)) = {s,hW|s,ME A [a\bJ]A A [x\z] ANodangling?2
[a\b]eP [y\z]eP
a,btz P
A /A - isdangling(z)}
vz P

So we have to prove that if

s,h = /\ [a\b] A Nodangling2 A /\ - isdangling(z)

[a\b]eP Vzte! P
then
slx — mi(h(s(y))], b E /\ a\b] A /\ [x\z] A A /\ - isdangling(z)
[a\b]eP [y\z]eP Vz“e"" P
a,btz

o We have FV ([a\b]) = {a,b} soif s,h |= [a\b] for a,b # x then s[z — m;(h(s(y)))], b = [a\b].
e We have that s,h = A [y\Z]

[y\z]eP
so we have s[z — m;(h(s(y)))],h E Hx'.([\/]\ep[y\z])[ac'/x] ANz =y.i (from BI’s sp)
so we have s[z — m;(h(s(y)))],h E [\/\ep[y\z] AN x=y.i

we now want to prove that if sz — m;(h(s(y))],h = [y\z] A z = y. then s[z —

mi(h(s(y))], b = [2\2]

29

if sz — m;(h(s(y)))], h = —isloc(z) then it’s ok

if m;(h(s(y))) & Loc then it’s ok

otherwise since s[x — m;(h(s(y)))], h E [y\z] we have

sl — mi(h(s(¥)))], b E Jy1,y2, 21, 22. (Y — Y1, y2/ANodangling2)(z < z1, z2/ANodangling?2)x
Nodangling?2

and if ', = (y — y1,y2 A Nodangling?2) and y; € Loc then from Nodangling2 we have
that y; € dom(h') and so s', b = Jyi1, yiz- (Yi — i1, yi2 A Nodangling?2)

and then s[x — m(h(s(y))],h E v, vi2, 21,22. (Yi — Vi1, Y2 A Nodangling?2) * (z —
21,22 A Nodangling?) * Nodangling?2

and 50 sfz — mi(h(s(s)], b I [2\]

. s, h = Nodangling2 we have s[z — m;(h(s(y)))], h = Nodangling?2
e since s, h = Nodangling?2 we have sz — m;(h(s(y)))], h |E —~isdangling(x)

e sinces,h = A - isdangling(z) we have s[z — m;(h(s(y)))],h = /A — isdangling(z)

Vzierp Vzte! P
2Fa 2Za
5.5.5 z.1l:=y
spo(Y(P),xz.1:=y) = {s,h'|3Is.h.s,h=(A [a\b] ANodangling2A A - isdangling(z))
[a\ble P vz“e" P

AR = hls(z) = (s(y), ma(h(s(2))))] A 8" = s}
V' (spp(Pxl:=y)) = {S’,h’IS’,h’lz[A [a\o] A A [a\Of A A e\ A A [a\D]

a\bleP l[a\b]leP l[a\b]leP [a\b]e P
la\z]eP [a\y]eP [a\z]eP [b\z]eP
[b\z]eP [b\yleP [a\yleP [b\yleP
A Nodangling2 A /A - isdangling(z)}
Vz4enp

So we have to prove that if

s,h = /\ [a\b] A Nodangling2 A /\ - isdangling(z)

[a\b]eP Vzée! P
then

s, hs(x) = (s(y), m2(h(s(2))))] = [a\o] A A [a\o] A A [a\O] A A [a\D]
l[a\b]leP l[a\b]leP l[a\bleP [a\b]eP
la\z]eP l[a\y]eP la\z]eP [b\z]eP
[b\z]eP [b\yleP l[a\y]eP [b\yleP
A A A\ - isdangling(z)

vzée! P
e Here we want to prove that if s, h = [a\b] A [a\z] A [b\z]

then s, h[s(z) — (s(y), m2(h(s(x))))] =

a\Db]

Lemma[l] Let us define
P(h1,h2) = h=hy.ha A s,h ENodangling2 A [€ dom(hy)

|h1] be the cardinal of dom(h1)
If hy and R} are two heaps such that 3hs.P(hy, ha) and Fha.P(h], he) hold and |hq| and |A]]|

are minimals
then

hy = H)

30

Lemmal1]’s proof : Let hy and k] be two heaps satisfying the hypothesis of the lemma.
Suppose that hy # b} ,

1- from the hypothesis’s condition of smallnessity we have that |hi| = |h]|

2- from our supposition of hy # hf, there exist an I’ € dom(h1) such that I’ & dom(h}).

3- Let split hy in hy = hio.h11 and split by in b} = hjy.h}; such that hig = hj, and
VI'. 1" € dom(hi1) = U & dom(hly) and VI'. I € dom(h};) = U' & dom(hi1) .

4- we have from 2- that |hig| < h1| and with also I- |h],| < |h}]
5- we have [€ dom(hyp) since both [€ dom(h1) and I € dom(h})

6- since h; was the smallest in term of size of the domain to satisfy the hypothesis and
from 5- we have that s, h1g = Nodangling?2

7- since s, hy | Nodangling?2, with 6- we have 3’ € dom(hip), I € dom(hi1) and their
exist a value a such that either (I’ — 1" a) € hyg either (I’ — a,l”) € hio.

8- from the definition of h1; we have I” & dom(h},).

9- from 7- and 3- we have I” & dom(hig)
10- since hig = bl , I & dom(h}y) and so h” & dom(h})
11- from 10- and 7- we have [” is dangling2 in A}

and so there is a contradiction with the hypothesis. O.

Let’s go back to what we want to prove :
if s,h = [a\b] A [a\z] A [b\2]
then s, h[s(x) — (s(y), m2(h(s(x))))] = [a\b]

Let AB be s,h = [a\b], AX be s,h = [a\z] and BX be s,h |= [b\z] and C be s, h[s(z) —
(s(y), m2(h(s(x))))] k= [a\b].

We want ABANAX ANBX = C.

If s,h |= —isloc(a) or s,h |= —isloc(b) we have directly C true. So from now on we will
be in the case s,h = —isloc(a) and s,h = —isloc(b). We also have s, h & —isloc(x)
otherwise we would not be able to run the command form s, h and the analysis is in case we
can run the programm.

So we can unfold the definitions for AB into
a1, Va2, Vo1, V2, b1, ko, hs.

— h=hy.ha.hs

— ha(s(a)) = (va1, va2)

— ha(s(b)) = (vp1, ve2)

— s[al — va1, a2 — va2,bl — vp1, [b2 — vp2], h1 = Nodangling?2

— s[al > vg1, a2 — Va2, bl — vp1, [b2 > Vp2], hy = Nodangling?2

— s[al — va1, a2 — va2,bl — vp1, [b2 — vp2], hg = Nodangling?2
and simplify it in :

3hq, ha, hs.

— h = hy.hy.h

— ha(s(a)) = h(s(a))

— ha(s(b)) = h(s(b))

31

— s,hy = Nodangling?2
— s,hy = Nodangling?2
— s,h3 |= Nodangling?2

The same way we have AX equivalent to

h = h!.h,.h
— hi(s(a)) = h(s(a))
hy(s(x)) = h(s(z))

— s,h} = Nodangling?2

— s,hf = Nodangling?2
— s,h% = Nodangling?2

BX equivalent to
3h11/7 h12/7 hlgl'

h= YRy

~ HY(s(8)) = A(s()
h3(s(x)) = h(s(z))

s, h{ = Nodangling2

— s,hY = Nodangling?2
— s,hY = Nodangling?2

C equivalent to
303, B3 3.

— Rls(@) = (s(y), ma(h(s(@))] = hi.h3.h
~ hi(s(a) = h(s(a))
~ B3 (s(0)) = h(s(v))

— s,h} = Nodangling?2
— s,h} = Nodangling?2
— s,h} = Nodangling?2

Remark, here we can write for example that h)(s(a)) = h(s(a)) instead of hj(s(a))
hls(z) — (s(y), m2(h(s(x))))](s(a)) since if [a\z] hold we have s(a) # s(x).

Since we have AB, AX and BX we can chose some hq, ha, hg, h], ... that satisfy the properties.
Let’s take them such that |hi],|ha|, |RY|, [hS], [R5 |, |hY] are the smallest as possible. From
Lemma [1] we then have hy = hf, ho = h”"2 and h% = hY.

Now we have to find the A7, h3, h} that would make C true.

Let split the proof in 3 case :

Case 1 s(y) & dom(h1) and s(y) & dom(hz)
Case 2 s(y) &€ dom(h1) and s(y) € dom(hs)
Case 8 s(y) € dom(h1) and s(y) & dom(hs)

32

Case 1 See Fig. 5.2 and Fig. 5.3 We can take :
hi =hy
hs = hg

hs = hs[s(x) = (s(y), m2(h(s(x))))]

To prove C the only not obvious (almost everything comes from AB) thing in this case is to
prove that s, h% = Nodangling?2 wich is

s, hs[s(x) > (s(y), ma(h(s(2))))] |- Nodangling2

From AB we have that s, hg = Nodangling2.

So the —Nodangling?2 could only come from the [s(x) — (s(y),m2(h(s(x))))] part of the
heap. From AX we have that s(z) € dom(h;). From BX we have that s(z) € dom(hY)
which is also s(z) € dom(hg). So since s(z) € dom(h) (since we can run the command), we
have s(z) € dom(hs). And so the —Nodangling?2 could only come from the s(y) in [s(x) —
(s(y), m2(h(s(x))))]. But since we are in the case where s(y) € dom(h1) and s(y) & dom(hg)
we have s(y) € dom(hs) and so we have as expected

s, h3 = Nodangling?2

h

1
hi = ha[s(z) — (s(y), m2(h(s(x))))] h2 = hs[s(x) — (s(y), ma(h(s(x))))]
hY h o o |1/
v ’
1, s
Figure 5.2: Cas 1 Figure 5.3: Cas 1 bis

Case 2 See Fig. 5.4 We can take :
hi=h

hs = hy.hals(z) — (s(y), m2(h(s(z))))]
h3 = hs\hg

To prove that with those k7, h3, hi C hold, the first 3 points are obvious by construction.
s,h} = Nodangling?2 from AB since h} = h;.

s, h} = Nodangling?2 in the same as for the prove in the Case I that s, h} = Nodangling?2
: from AX we have s, h; = Nodangling?2, from AB we have s, hs = Nodangling?2 so the
—Nodangling?2 could only come from [s(x) — (s(y), m2(h(s(x))))], and since s(x) € dom(h})
the only dangling could be s(y). But we are in the case where s(y) € dom(hs) and so we
have as expected

s, h3 = Nodangling?2

33

=

@/}th = hs\l,

Figure 5.4: Cas 2

Now we still have to prove that s, h} = Nodangling2. We have hsy = h%.hj, from AB we
have s, hs |= Nodangling2, from AX we have s,h5 = Nodangling2, so if we would have
s, h3 = —Nodangling?2 , there would be a location ! € dom(h3) such that h(l) = (v1,ve) with
vy € dom(h}) or vy € dom(hj). But from AX we know that s, h}, = Nodangling?2 and which
is s, hy.h% |= Nodangling?2, but ki = h¥ so if v; € dom(h%) we have v; & dom(hy)) and so we
would have s, hi.hj [~ Nodangling?2.

Case 3 See Fig. 5.5 It’s the same case as Case 2 with a and b exchanged. We can take :
By = Wyhals(@) = (s(y), ma(h(s(2)))]
hs = hs
hy = hs\lj

Bt = Wb [s(x) — (s(y), ma(h(s(2)))]

b=]LQ

hi|= hs\h

Figure 5.5: Cas &

Here we want to prove that if s, h = [a\b] A [a\y] A [b\y]
same kind of proof as above

Here we want to prove that if s, h = [a\b] A [a\z] A [a\y]
same kind of proof as above

Here we want to prove that if s, h = [a\b] A [D\z] A [b\y]
same kind of proof as above.

since s, h = —isdangling(y) A Nodangling?2

we have s, h[s(x) — (s(y),m2(h(s(x))))] = Nodangling?2

if s,h = — isdangling(z)

we have s, h[s(z) — (s(y), m2(h(s(x))))] | — isdangling(z)

)
so we have s, h[s(z) — (s(y), m2(h(s(2))))] E . “/e\”Pﬁ isdangling(z)

34

5.5.6 Cl; CQ

We prove that sp,(7'(P),C1;C2) C +'(spp(P,C1;Cs)) by induction on the size of the command.
spo(7'(P), C1; Ca) sPo(spo(7'(P),C1),C2) definition

spo (Y (spp(P,C1)),C2) induction hypothesis

' (spp(spp(P,Ch)),C2)) induction hypothesis
v (spp(P,Cy1;C2)) de finition

1NN

5.5.7 if B then C; else Cs

First notice some lemmas :
[[1] if Pl g P2 then ’y/(Pl) ;) ’y/(Pg)
e spp(P,B) C P

So we have that : v/(P) C v/(spp(P, B))
and so :

(3] 7'(P) N (B = true) C +/(spp(P, B)).
We have :

o [4]if A; C Ay then sp,(A1) C spo(As)
We will prove that :

spo(Y'(P),if B then Cy else C3) C «'(spp(P,if B then Cj else Cs))

by induction on the size of the command:

v'(spp(Pyi Bt CieCs)) = +'(spp(spp(P,B),C1) Nspp(P,C2)) def. of spp
2 +'(spp(spp(P,B),C1)) Ugamma’(spp(P,C3)) [1]
2 8po(’y (spp(P, B)),C1) U spo(v'(P), C2) ind. hyp.
2 spo(v'(P) Ny(B = true), C1) Uspo(v'(P) Ny (B = false), C2) (3] [4]
= spo(v'(P),if B then C; else Cs) def. of sp,

5.5.8 if = B then C) else Cy
We can just notice that :
spp(P,if — B then Ci else Co) = spp(P,if B then Cz else C1)

and that
spo(A,if = B then Cy else C3) = spo(A,if B then Cs else Ch)

and then then with the proof of :
spo(Y'(P),if B then Co else C1) C +'(spp(P,if B then Cy else Cy))
we have

spo(Y'(P),if — B then Cy else Cs) C v (spp(P,if — B then C; else C5))

5.5.9 if B then C)

This can be treated as a sub-case of if B then C; else Cy with skip as Cs.

skip is not in our language, but we can define it with sp,(A, skip) = A and extend spp with
spp(P, skip) = P.

We then have sp,(y'(P), skip) = v/ (spp (P, skip)) and so sp,(y'(P), skip) C +'(spp(P, skip)) as
needed.

35

5.5.10 if — B then C

Same prove as the if B then C4’s one.

5.5.11 while B do C;
If we suppose that we have [1]:
LIPS AX- A (@AY (X) = X} S/ (9/p 5 AX. Q)
. We can prove that
spo(y'(P),while B do Cy) C ~'(spp(P,while B do Ci))

by induction on the size of the command.

v (spp(P,w BdCy)) = ’y’(gfp%,)\X. (spp(X,if Bthen C1)N X)) def of spp
D 1fpS,pAX- Y (spp(X,if Bthen Ci){+'(X) = X}UX 1]
2 lfp%,(P))\X. spo (v (X),if Bthen C1)UX ind hyp
O (Ifp v (P)SAX. spo(v/(X),if B then C1)UX)N~(B = false)
= spo(7(P),w B dCh) def of sp,

So we have as expected

spo(y'(P),while B do Cy) C ~+'(spp(P,while B do Ci))
Lemma [1] If LfpS, , AX. 7 (Q){7(X) — X} and gfp S A\X. Q exists then
7 (P) P

LS AX- 7 (@QFY(X) = X} Co'(gfp 5 AX. Q)

with {A — B} the syntactical substitution

Lemma’s proof : let’s define U = gfp 1% AX.Q and F =)X. v (Q){¥(X) — X}

U is a fixpoint of AX. @,

S0 U = Q{X—-U}

then /() = 7(Q{X —UY)
= Y(@Q{(X) =)}
= Y(@{/(X) = XHX —+(U)}
= F(/(U))

and so +/(U) is a fixpoint of F' and then ~'(U) D Ifp F.O.

To have our proof finished, we should prove that for our use of lemma [1], the fixpoints exist.
In our case @ = spp(X,if B then C1) N X, so AX. @ is monotonic since spp is monotonic, and
since the partition domain is a complete lattice (since it is sets over a finite domain), by Tarski’s
fixpoint theorem we have gfp 1% AX. Q exists.
It remains to prove that the other fixpoint exists. If we add a top to the domain of the sets of
memory, we have a complete lattice, and then we should just prove that the function
AX. ~ (spp(X,if Bthen C1)){7y'(X) — X}UX is monotonic.

To finish, we should prove that

v (spp(X,if B then C1)){'(X) - X}UX

is equal to
v (spp(X,if B then C1) N X){7(X) — X}

which is obvious since 7'(A N B) = +/'(A) U~'(B).

36

5.5.12 while = B do C;

Proved the same way as for while B do C}.

5.5.13 wlp’s proofs
Not proved yet.

5.6 Remarks

Those definitions do not work for other version of BI where the locations are integers because
of the way we have defined isloc. But the partition analysis is not defined for such a programming
language.

Yang has defined some similar definitions like allocated(z), noDangling(z) and noDanglingR
in his Ph.D. dissertation that are almost like isinheap(z), isdangling(z) and Nodangling2 (he
did not work with the integer version either).

37

Chapter 6

Conclusion

We are interested in Bl-logic since it allows to work only in the part of the memory that is used
by the program and the Frame Axiom let us do modular reasoning.

In chapter 4, we have given strongest post-conditions that could be used for a forward static
analysis. We did not find forward analysis with BI in the literature.

In chapter 5, we have used BI as an interface for an other analysis. In the future, we would like
to do it for different analyzes and in particular to abstract Bl-logic into escape- and shape-analyzes.

Acknowledgment

Je remercie Radhia Cousot qui m’a accueillie dans son équipe ainsi que Patrick Cousot pour
leurs conseils.

Je remercie mes camarades de bureau Charles, Damien et Francesco pour leurs conseils. Je
remercie particulierement Charles et Bruno pour leurs corrections lors de la rédaction de ce rap-
port.

38

Appendix A

Frame axiom’s explanation

{Prc{Q}
{P* R}C{Q * R}

ModifiesOnly(C)N FV(R) =0

ModifiesOnly(C) : set of variables appearing to the left of := in C and not dereferenced.

Formal proof Yang and O’Hearn gave a formal proof of the Frame Axiom in [8].

Here I am just trying to give an “intuition” of why this restrictions ModifiesOnly(C)NFV(R) = {.

Why this restriction is needed ?

{ly=1,2)}z = y{(y — 173)

} true
{(y = 1,2)x (2 =3, 4)jw = y{(y — 1,2) *

(x — 3,4)} false

Why this restriction is enough ?

e no need of a z from z.7
because then P is necessary of the form of (z +— x1,22) * P’ for C to executable
and then if z is in R and R intersects with P and P x R is never satisfied and it’s OK.

e 1o need of a y from x := y because

if y is not a pointer it will be only modified by a y := ... and then it will appear in the
restriction
if y is a pointer, it can not be modified by a = := ... and then to be modified by a z.i := ...

it implies that we already had the P of the shape of (y — x1,x2) * P’ and we can conclude
like the previous case

e Why can’t we modify a variable not mentioned in C but in P ? Because we do not have
Eijor Ei=EF'j

39

Appendix B

sp’s proofs

Bl z:=F
spo(Y(P),x:=E) = {s,h |3s,h. s,hl= PA K =hA s =s[z— [E]s]}
v(sp(P,z :=E)) = {s,h| s’ h' | 3a'. Plz/z] N © = E[z'/x]}
= {s,h| Fv ((3s1, h1
A s1,h1 ': P
Ahl=h
A s1=8'[z" — vz — v])
A (3827h2
ANh2=H

A s'(x) = [E]s
A sz = §'[z" — vz — v])))}

We can prove the inclusion by taking v = s(x) if © € dom(s) and any value otherwise, s1,h1 =
S2, ho = s[z’ — v][z > v], h.
We could also prove the inclusion in the other way by taking s, h = s'[z — v], .

B.2 x:=F.

spo(Y(P),x := E.i)
v(sp(P,z := E.7))

{s',h' |3s,h. s,hl= PA K =hA [E]s € Loc A (Fv.v=mi(h([E]s)) A s =s[z— v])}
{s', | s W' 3. Plx'/z] A x = (Elx'/z]).i}
= {8/7h/ | 3’02 ((3817h1
A s1, h1 ': P
Ahl=h
A s1 = 8'[z" — vz — v2])
A (382,h2
Ah2=h
A s'(z) = mi(ha([E]s2))
A sz = s'[a" = vo][— v2])))}

We can prove the inclusion by taking ve = s(x) if € dom(s) and any value otherwise, s1,hq =
S2, hy = s’ — va][x — va], h.
We could also prove the inclusion in the other way by taking s, h = s'[x — vs], h'.

B.3 ElZ = E2

Not typed yet.

B.4 1z := cons(Fy, E»)

Not typed yet.

40

B.5 dispose(E)

Not typed yet.

B.6 01; 02

We prove that sp,(v(P),C1;Cs) C v(sp(P,C1; C)) by induction on the size of the command.

spo(V(P), C1; Ca)

1N

B.7 if E then Cy else Cy
C=if E then Cy else Cy

spo(V(P),C) =

v(sp(P,C))

{s',h' | s, h. s,hEP
{s',n | 3s, h. ((s,h EP
V(s,h =P
spo(Y(P AN E = true),C1) U
{s'. 1" s’ h'
{517 h’, | S,, hl ':
u{s’, n' | s b E

v(sp(P A E = true,C1)) U

)
)

Spo(spo (’Y(P), 01)7 CQ)
spo(v(sp(P, C1)), C2)

v(sp((sp(P, C1)
v(sp(P,C1; Ca)

) 02))

definition
induction hypothesis
induction hypothesis
definition

A (([E]ls =True A s',1 € spo({s,h},Ch))
V([E]s = False A s',h' € sp,({s,h},C2)))}

AE = true A s',h' € spo({s,h},C1))
AE = false A s',h' € spo({s,h},C2)))}

(sp(P AN E = true, C1)
Vsp(P A E = false, C2))}
sp(P A E = true,C1)}
sp(P N\ E = false,Cs)}

We prove by induction in the size of the command.

B.8 if E then C

C=if E then C

spo(v(P),C) =

v(sp(P,C)) =

{s',h' | 3s, h.
{s’,h' | 3s, h.

spo(7(P A E = true), Ch)
{s',h' | 3s, h.

{s",h"]
u{s’, ' |
v(sp(P A E = true, Cy))

We prove by induction in the size of the command.

41

A (([E]s =True A s',h' € spo({s,h},Ch))
V([E]s = False N s',h =s,h))}

AE =true A s',h € sp,({s,h},C1))

AE =false A s',h' =s,h))}

(sp(P A E = true,Ch)
V(P AE = false))}
sp(P AN E = true,C4)}
P AE =false}

B.9 while E do C4

Lemma If Ifp 5AX. Q and Ifp 5 AX. 7(Q){7(X) — X} exists then
Y(UfP PAX. Q) 2 1fp 5 p AX. 4(@Q){V(X) — X}

with {A — B} the syntactical substitution

Lemma’s proof : let’s define U = Ifp ‘;)\X. Q and F = X. y(Q){v(X) — X}

U is a fixpoint of AX. Q,

SO U
then ~(U)

Q{X - U}

Y(Q{X — U})

V(@) {(X) = ~(U)}

V(@) {(X) = XHX —~(U)}
F(y(U))

and so y(U) is a fixpoint of F' and then v(U) D Ifp F.O

spo(Y(P),w EdCy) = (Ifp %(P))\X. {s',h' | 3s,h. s,he€ XA (([E]s =True As',h € spo({s,h}, C1))
V(s',h" = s,h))})
N{s', ' | [E]s = false}

= (Ifp %(P))\X. {s',h | 3s,h. s,h € XN [E]s=True ANs',h' € spo({s,h},C1)}
UX)
N ~y(E = false)
= (Ifp %(P))\X. spo(X N(E = false),C1) U X)
N y(E = false)
v(sp(P,w EdCh)) = ~(fp ‘;)\X. (sp(X AN E = true,C1) V X)
A(E = false))
= ~(fp E)\X. (sp(X AN E = true,C1) V X))

N y(E = false)

So by induction on the size of the command and by the lemma we have that if the [fp s exist,
spo(y(P),while E do C1) C v(sp(P,while E do Cy)).

And if the [fp does not exist, y(sp(P,while E do Ci)) = ~v(E = false) in which
spo(Y(P),while E do Cy) is included since the N and so we have spo(7y(P), while E do Cy) C
~v(sp(P,while E do Ch)).

42

Appendix C

sp®’s proofs

Cl z:=F

spE(VA(P),z:=E) = {m/|3m.mE*PA ((m' = QoA (m=29Q
V(m=shA m?-(E=E))))
V(im'=s' ' Am=sh
{ AW =hA s =s[z— [E]s])}
= {m|Im.mE>PA (m =Q.A (m=9Q
Vim=s,hA mE>=(E=E))))}
U{m’ | Im.m 2PN (m' =s,K'A m=sh
AR =hA Fv.v=[E]sA s =slz—0])}
PP (P = B) = (| 2 (Bren (P
V(Fm. (P A ~(E = E)))))
v(3z'. Plz'/z] Axz=(E[z'/z])))}

= {m|m > (ErTA (P
V(Fm. (P A ~(E = E)))))}
u{m' | m’ =* ' Pla'/z] Az ([2'/x]))}
= {m'|3Im.m[* PA (m' = QoA (m=29Q,
V(m =shA m?=(E=E)))}
u{m’ |m’ =5 h'A v (@Fm1. m1 = 51,1
A mq ':2
Ahl=h

A s1=8'[2" — o]z —)
A (ng, ma = S2, ha
Ah2=Hn
A §s'(x) = [E]s2
A sy =s'[a’ = vz —0])))}
Remarque that we write =(E = FE) as a condition for E not to be defined.
We have the red parts equals (error cases).
So we need to prove that the blue part of sp?(y?(P),x := E) is included in the blue part of
72 (sp?(P,x := E)). We can prove it by taking v = s(z) if z € dom(s) and any value otherwise,
ml =m2 = s[z’ — v][x — v],h.
We could also prove the inclusion in the other way by taking m = s'[z — v], h’.

43

C2 z:=Fu

sp2(VA(P),z := E.i) {m/ | Im. m =% PA

= {m'|3Im.m[E*PA

u{m’ | Im. m =2 PA

V(sp*(Pa=E) = {m|[m

— {m/ | m/ ':2
U{m’ | m/ ':2

= {m'|3Im.m[* PA

u{m’ |m’' =5, h'A

We have the red parts equals (error cases).

((Errn

V(3z'. Pz’ /x]
(ErrA

3z’ Plz’/x]
(m' = QoA
Jvg

(m=Q
V(m=s,h

Am E? =(3z1,22. E < 21,72))))
Am=sh
AR =h
A [E]s € Loc
A Gv.v = m(h([Es) A 5 = sl v)
(m=Q,
V(m =s,h

Am E? =(3z1,z2. E < x1,22))))}
m=s,h
AW =h
A [E]s € Loc
A Gv.v = m(h(IE]s) A ' = sl u])))
(P
V(Zm. (P A =(3z1,22. E — x1,22)))))
(Aw = (E[2'/2]).1))}

P
V(Fm. (P A =(3z1,22. E — x1,22)))))}
Az = (E[2'/z]).49)}
(m=Q
V(m =s,h
Am):2 —(3z1, x2. E — z1,22))))}
((Elml. mi1 = 81, hl
A mq ':2 P
Ahl="H
A s1=s'[2" — vo][z — v2])
A (Ima. ma = s2, ho
A h2="H
A §'(z) = mi(h2([E]s2))
A s = s'[z" — vo][z — v2])))}

So we need to prove that the blue part of sp?(y?(P),z := E) is included in the blue part of
v*(sp?(P,x := E)). We can prove it by taking vo = s(x) if z € dom(s) and any value otherwise,

ml =m2 = s[z/ — va][x — va], h.

We could also prove the inclusion in the other way by taking m = s'[x — vg], h'.

44

C.3 Ell = E2

Not typed yet.

C.4 x:= cons(Fy, E»)

Not typed yet.

C.5 dispose(F)

Not typed yet.

C.6 ;0%
We prove that sp2(v2(P),C1; C2) € v2(sp?(P,C1; Ca)) by induction on the size of the command.
sp2(v2(P),C1;C2) = sp2(sp2(v2(P),C1),Ca) definition
c SPO(W (sp?(P,C4)),Cs) induction hypothesis
C 22(sp*((sp?(P,Ch)),Co)) induction hypothesis
= 7 (sp*(P,C1; () definition

45

C.7 if E then Cy else Cy
C=if E then Cy else Cy

sp2(VA(P),C) = {m'|3Im. mE>P A((m' = QoA (m=29Q,
V(m=s,h
Am B2 (B = B))))
V(m = s,h A[E]s = True
Am' € sp?,(m,CH))
V(m =s,h A[E]s = False
Am' € sp3(m, C2)))}
= {m'|3Im. (mE>P Alm' = QoA (m=29Q
V(m=s,h
Am [~(E = E)))))
V(m 2 P Am=sh A[E]s = True
Am' € spy(m,Cr))
V(m 2 P Am=sh A[E]s = False
{ Am’ € sp2(m,C2)))}
= {m'|3Im. (mE>P A(m' = QoA (m=9Q
V(m =s,h

Am E?* =(E = E)))))
VimE2PAE=true A m € sp2(m,C1))
Vim *2 PAE =false Am € .s/),‘),(mi('g)))}
PEAPC) = m| m (Exen (Pv
(Fm. (P A ~(E = E))))
Vsp*(P A E = true, C1)
Vsp?(P A E = false, C2))}

= {m/ | @m.m =2 P Alm’ = QoA (m=Q
V(m=s,h
Am 2 ~(E = B))
vm' =2 sp*(P A E = true,C1)
vm' =2 sp’(P A E = false, C2))}
= {m' | (3m.m [P Alm" = QoA (m=9Q
V(m=s,h
A 2 (B = B)))
U v (sp*(P A E = true, C1))
] “_)‘_g/)_)(j)' FE = false, (C5))

We prove by “color” cases and for blue and green by induction in the size of the command.
If m’ is in sp2(y2(P),if E then C; else Cs), then there is a m such that :
- we are in the red case, then m' is in v2(sp?(P,if E then Cy else C3)) by his red set.
- we are in the blue case then m’ € sp?(y?(P A E = true), (1), then by induction hypothesis m’
is in the blue set of v2(sp?(P,if E then Cy else C3))
- we are in the green case then m’ € sp?(vy?(P A E = false), (1), then by induction hypothesis m’
is in the green set of v2(sp?(P,if E then C; else C3))

We can conclude that sp?(v2(P),if E then Cy else Co) C v2(sp*(P,if E then Cy else C3))

46

C.8 if E then C)
C=if E then C;
spa(VA(P),C) = {m'|3m. m[*P
= {m/ | Im. ((m ':2 P
V(m 2 P
V(m 2 P
= {m'|Im. (mE>P
v(m ':2 P AFE = true
V(m [E* PAE = false
72(5102(13, Q) = {m/ | m’ ':2
= {ml | (Fm.m ':2 P
vm/ =2
vm' =2
= {m" | 3m.mE? P
@]
@]

A((m’ = QoA
V(m=s,h
V(m =s,h
A(m' = QoA
Am=sh

Am/ € sp2(m,Ch))
Am=sh

Am' =m))}
Alm' = QoA

Am' € spy(m,Ch))
Am’ =m))}
((ErrA

Vsp?(P A E = true, C1)
VP A E = false))}
Alm' = QoA

sp*(P A E = true,C1)
(PAE =false))}
A(m' = QoA

v*sp*(P A E = true, C1))
v*(P A E = false)

(m=Q
V(m=s,h

Am E2 ~(E = E))))
A[E]s = True

Am’ € sp2(m, Ch))
A[E]s = False

Am’ = m))}
(m=Q
V(m =s,h

Am E2 ~(E = E)))))
A[E]s = True

A[E]s = False

(m=2%Q,
V(m =s,h
Am 2 (B = B))))

(PV
(Fm. (PN =(E = E)))))

(m=Q
V(m=s,h

Am = =(E = E)))))

(m=2%Q,
V(m =s,h

Am E? (B = E)))))}

We prove by “color” cases and for blue and green by induction in the size of the command.
If m’ is in sp2(y*(P),if E then Ci), then there is a m such that :
- we are in the red case, then m’ is in v2(sp?(P,if E then C})) by his red set.
- we are in the blue case then m’ € sp2(v2(P A E = true),C}), then by induction hypothesis m’

is in the blue set of v2(sp?(P,if E then C1))

- we are in the green case then m’ € v?(P A E = false) and then m’ is in the green set of

V2 (sp*(P,if E then Ch))

We can conclude that sp?(v2(P),if E then Cy) C +v*(sp*(P,if E then Ci))

47

C.9 while E do C4

Lemma It 1fp AX. Q and 1fp S p AX. 72(Q){7(X) — X} exists then
V(UpE AX. Q) 21fp 5 p AX. 2 (Q{(X) — X}

with {A — B} the syntactical substitution

Lemma’s proof : let’s define U = [fp ‘;Q)\X. Q and F =)\X. ?2(Q){v(X) — X}
U is a fixpoint of AX. Q,

SO

Q{X - U}
then ~%(

Y(Q{X — U})

V(Y (X) = (U)}
V(Q{Y(X) = XHX — +*(U)}
F(y*(U))

and so v2(U) is a fixpoint of F and then v2(U) D Ifp F.O

S«

oo N

sp2(V3(P),w E d C1) (Ifp %2(P)>\X. {m'|Im. meXA (((m =Q.A (m=%Q

V(m =s,h
Am B2 (B = B))))
V(m=s,h A[E]s = True
Am' € spg(m7 Ch))
V
n{m’ | (m’ =2 E = false) vm' = Q,}
P(spP(PwEdC)) = 22(fph AX. ((ErrA (X
V(FZm.X A~(E = E))))
Vsp? (X ANE = true,C1)

A(E = false V Err))
So by the lemma we have that if the [fp s exist,
sp2(v2(P),while E do Cy) C +*(sp?(P,while E do Ci)).

And if the [fp does not exist, v?(sp?(P,while E do C;)) = v*(E = falseV Err) in which
sp2(v3(P),while E do C4) is included since the N and so we have sp?(y2(P),while E do C;) C
v2(sp?(P,while E do Cy)).

48

Appendix D

Why this definition of [z\y]

D.1 Definition 1 : recursive

[\y] = —isloc(z)V —isloc(y)
\/Elxl,xg,yl,yQ.
(@ = @1, 22) * (Y < y1,92)
ANz \y) A fz2\y] A [2\y1] A [2\y2]

This is obviously right.
But it does not allow to make proofs if we have cycles.

For example, to prove that :

e) [t e

y—=ly by = Ly, 1y
We should prove that (among other things):

Ty
Y=y
Ty — Uy lmlealz

Y1 ’_’lu

Y2 ’_’lu

and so on. So we would never end.

D.2 Definition 2

The idea here is that if two pointers can not reach a same location after several dereferencing, then
we could split the memory into two pieces that can not reach each other and that each one have
one of those pointers. Since BI have some connective * that somehow split the memory, we would
like to use it. But in BI we have dangling pointers (some variables in the heap are assigned to
locations that are not in the heap domain), and specially * do not split all the memory but only
the heap and so it create dangling pointers.

So we could try to split the memory and say that there are no new dangling pointers:

[z\y] = -isloc(z)V —isloc(y)

\/Hxl, Z2,Y1,Y2-
(r — x1,x2 A Nodangling?) * (y — y1,y2 A Nodangling?2)

49

But it is a wrong definition.
For example, to prove that :

[z — 1, ly = 1z, 1y
i yr=ly |7yl

|

We should prove that (among other things):

x|
y’_>ly
T — g
To Iy
yl'_>ly
y2'_>ly

, [lp = g,y] = 2 < x1,x2 A Nodangling?2

which is wrong since here we have y as a new dangling pointer, however [x\y] was holding.

D.3 Definition 3

Here we can see that they are two kind of dangling locations, the ones mentioned in the stack, and
the ones mentioned in the heap. We call those last ones the dangling2.

For example, in :

y’_’ly

[mle],[lelalz}

ly is a simple dangling location, while [is a dangling2 location.

So our third definition will be :

[z\y] = -—isloc(z)V —isloc(y)
\/Hirl y L2, Y1, Y2-
(x — 1,22 A Nodangling?2) * (y — y1,y2 A Nodangling?2)

So for example, to prove that :
T — 1y lo =1z, 1y
o D e
we will have to prove that
Tl
Y=y
Ty — Uy
Io — ly

, [lo = g, ly } = x — x1,x2 A Nodangling?2

we have x — x1, 72 holding but not Nodangling?2, since [, is a new dangling? location, so as
expected we did not had [z\y].

But we still have a problem .
For example, if we want to prove that

ler:| l:lm'’lzalz
’ l

L Y=y ly =1y, 1

| e

we will have to prove that

Tl
y'_’ly
$1'—>lw
o= 1y |

[o= 1ls,l. | 2 — 21,22 A Nodangling2

a0

which holds since [, the only dangling2 pointer was already dangling

and we would also have to prove that

Ty
Y ly
Y1y
y?’_’lz

, [Ly — 1y, L, } E vy < y1,y2 A Nodangling?2

which holds for the same reason.

So we would conclude that [x\y] which is obviously not right.

D.4 Definition 4

So our next definition will be not to allow any dangling?2.

[z\y] = -isloc(z)V —isloc(y)

vaxla Z2,Y1,Y2-
(x — x1,x2 A Nodangling?) * (y — y1,y2 A Nodangling?2)

But with this definition :
Ty Iz — 1,2
|:y'_>ly:|’|:ly'_>354lz'_>lwalw ':_‘[f\y]
[2\y] will not hold since to prove it we will either have to prove that :

T — 1y
Yy ly
xl»—>1
332'—>2

, [le — 1,20, — Ly, Ly] E x — x1,x2 A Nodangling?

which does not hold because of [,,
or either have to prove that:

Tl
y'_>ly
y1—3
Yo 4

, [ly — 3,41, = Ly, Ly } = 2 — x1,x2 A Nodangling?2

which does not hold because of [,,.
where we could want to say that :

T — 1y lp — 1,2
[y 1,]{ ly — 3,41, — Ly, L = [2\y]

D.5 Definition 5

So our definition will split the memory (heap), into 3 piece, two for and y with no dangling2 and
one for the rest.

[\y] = -isloc(x)V —isloc(y)
\/3331,332, Yi,Y2.
(x — x1,x2 A Nodangling?) * (y — y1,y2 A Nodangling?2) * Nodangling?2

And it will be ok for the previous example.

Remark : we need the Nodangling?2 to hold also for the “rest” of the heap since otherwise, x
and y could not be able to reach each other but some other pointer might be able to reach both of
them.

o1

D.6 A step to vp

Now that we got a definition of [z\y] that seems to works (it would be great to prove that the 5th
definition implies the first one, but with the way the first one is written, we have nothing decreasing
and so we can not prove anything), we have to define vyp.

Since P is a set of [a\b], the first thing we thought to do was just,

vp(P) = /\ [a\b]

[a\bleP

But if we look at spp(P,z = new(z)), we have Vz. [z\z], which can obviously not be right with
our definition. For example if before the execution of = new(z), we had y reaching a dangling2
pointer, the execution will not have changed it, and y will still be reaching a dangling2 pointer,
and we would not have [z\y].

So we have change the vp into:

v(P) = A [a\b] ANodangling2 A /\ - isdangling(z)
[a\bleP vzee" P

which says that we only work on memory with no dangling and dangling2 pointers, which is
conserved after all our commands executions.

92

Appendix E

Substitutions formulas

E.1 [E{FE'/x}]s = [E]slx — [E']s] if [E']s exists

o{E'[z}]s = [E']s = [z]s[z — [E']s]
y{E [x}] = lyls = [ylsle — [E]s]

o [true{E’/z}] = [true]s = true = [true]s[z — [E']s]

42{E'/x}] = [42]s = 42 = [42]s[z — [E']s]
o [(Eyop Ex){E'/z}] = [E\{E'/x} op Ex{E'/z}]s = [E\{E'/x}]s op [E2{E'/z}]s =

[
[
[
o [false{E'/x}] = [false]s = false = [false]s[z — [E']s]
[
[
[Erlslz — [E']s] op [Eo]s[z — [E']s] = [Er op Ez]s[z — [E']s]

E.2 Proof that P[E/x| = P{E/x}
Remember is(E') = E' = E’ so s,h |= is(E’) iff [E']s exists.

In this section we prove that the formula P[E’/x] is not add to the BI syntax and it is just a
shortcut for P{E’/x} Nis(E'").

Recall that s, h = P[E'/x] iff sz — [E']s],h = P.

By induction on the size of the proposition P:

o s,h|=(Ey = Ex){FE' [z} Nis(E")
iff s,h = E1{E'/x} = Ex{F'/x} Nis(E’)
iff [E1{FE'/z}]s = [E2{FE’/z}]s and [E’]s exists
iff [Ex]s[z — [E']s] = [E2]slz — [E']s]
iff s[x — [E']s],h = E1 =
iff s,h = (E1 = E>)[E' /1]

e s,hi=(Ew— Ey, E){E /x} Nis(E')
iff s,h = E{E'/x} — E\{E'/z}, E2{E'/x} Nis(E")
ifféio[[ﬂg(]]h) = {[E{E"[x}]s} and h([E{E'/2}]s) = ([E\{E'/x}]s, [E2{ E' /x}]s)
an "Ts exists
iff dom(h) = {[E]s[x — [E']s]}
and WElslz — [E']s]) = ([Er]slz — [E']s], [Ea]s[e — [E]s])
ff sjz — [E']s],h = E — E1, Es
1ff s,h = (Ew— Ey,Ey)[E'/x]

93

e s,h|=false{E'/z} Nis(FE’)
iff s,h = false Ais(E’)
iff sz — [E’]s],h = false
iff s,h = false[E'/x]

o s,hl=(P= Q){E [z} Nis(E')
iff s,h = (P{E'/z} = Q{E'/z}) Nis(E")
iff [E']s exists and If s,h = P{E’/x} then s,h |= Q{E'/z}
iff [E']s exists and If s[z — [E’]s],h = P then s[z — [E']s],h = Q
iff sjz— [E']s],h EP=Q
iff s,h = (P = Q)E/z]

e s,h = (3z. P){E'/x} Nis(E')
iff s,h = (3z. P) Nis(E)
iff Jv.s[z — v],h |E P and [E']s exists
iff Ju.s[x +— [E']s][x — v],h = P and [E’]s exists
iff sz — [E']s],h = Jz. P
iff s,h = (Jz. P)[E'/x]

e s,h|=(Fy. PY{E'/z} Nis(E') with z £ y
iff s,h = (Jy. P{E'/z}) Nis(E")
iff Ju.sly — v],h = P{E’/z} and [E']s exists
iff Jv.s[y — v][x — [E']s],h = P and [E']s exists
iff Jv.s[z — [E']s][y — v],h = P and [E']s exists
iff s[x — [E']s],h = Jy. P
iff s,h = (Jy. P)[E'/x]

e s,h |=emp{FE'/x} Nis(E')
iff s,h |=emp Ais(E")
iff sz — [E’]s],h = emp
iff s,h |= emp[E’ /]

o s,h = (PxQ){E'/x} Nis(E')
iff s,h = (P{E'/x}+«Q{E'/z}) Nis(E")
iff 3hg, hy. holthi, ho.h1 = h, s, hg = P{E’/z} and s, h; = Q{E’/x} and [E’]s exists
iff 3hg, hy. hotthi, ho.h1 = h, s[z — [E']s], ho E P and s[z — [E']s],h1 E Q and [E']s exists
iff sl — [E']s], b |= (P * Q)
iff s,h = (PxQ)E/x]

e s, h = (P{E'/x} —Q{E'/z}) Nis(E")
iff VA'. if W'8h and s, b’ |= P{E’/xz} then s, h.h’ |E Q{E’/x} and [E’]s exists
iff VA'. if W'8h and s[x — [E’]s], b’ = P then s[z +— [E']s], h.h' = Q and [E’]s exists
iff sjz — [E']s],h = P —Q
iff s,h = (P —=Q)[E'/x]

E.3 Proof that y = F[F' /x| =y = (E{E'/z}) Nis(E")

In this section we prove that the formula y = E[E’/x] is not add to the BI syntax and it is just
a shorteut for y = (E{E'/x}) Nis(E’).

Recall that s, h =y = E[E’/z] iff s(y) = [E]s[z — [E']s].

e s,hi=Ey=FE{FE'/x} Nis(E)
iff [y]s = [E{E’/z}]s and [E']s exists
iff s(y) = [E{E’/z}]s and [E']s exists
iff s(y) = [E]s[xz — [E']s] by E.1
iff s,h =y = E[E'/x]

o4

E.4 Proof that y = F[E'/x]i=y = (E{E'/z}).i Nis(E')

In this section we prove that the formula y = E[E’/x].i is not add to the BI syntax and it is
just a shorteut for y = (E{E’/x}).i Ais(E").

Actually, y = E.iis not a BI’s formula, but we write it as a shortcut for the formula 3z, xo. (E —
x1,22) A\ (Y = ;).

Recall that s, h =y = E[E’ /2] iff s(y) = mi(h([E]s[z — [E-2]s])).

e s,hi=Ey=(E{E'/x}).iNis(E)
iff s,h =3z, 20. (E{E'/2}) — z1,22) A (y = ;) Nis(E')
iff Juq, vg. s[z1 — vi][xe — va],h = ((E{E'/z}) — x1,22) A (y = x;) and [E']s exists
iff Jvq, va. s[x1 = vi][xe — vo],h = (E{E'/z}) — x1,22) and s[z1 +— v1][xe — vo],h Ey =
x; and [E']s exists
iff Juy,vg. s[z1 — v1][x2 — va],h = (E < x1,22){E’/2z}) and s(y) = v; and [E']s exists
iff Juq, va. s[z1 — vi][x2 — vo][z — [E']s],h | (E — z1,22)) and s(y) = v;, by E.2
iff Juq, va. h([E]s[z1 — v1][z2 — vo][z — [E']s]) = (v1,v2) and s(y) = v;
iff Jvq, va. h([E]s[z — [E']s]) = (vi,v2) and s(y) = v;
iff s(y) = mi(h([E]s[x — [E]s]))
iff s,h =y = E[E'/x].i

E.5 Proofthaty— Ei[E'/z|, E5[E /z] =y — E\{E'/x}, Eo{E'/x}N
is(E')
In this section we prove that the formula y — E1[E’/x], F2[E’/z] is not add to the BI syntax
and it is just a shorteut for y — FE1{E’/x}, Eo{E’'/x} Nis(E’).

Recall that s,h | y — E1[E'/z], E2[E'/z] iff dom(h) = {s(y)} and h(s(y)) = ([Ei]s[z —
[E]s], [Eals[z — [E"]s]).

o s,hl=y— E\{E [z}, E2{E'/x} Nis(E')
iff dom(h) = {s(y)} and h(s(y)) = ([E1{E'/z}]s, [E2{E’/x}]s) and [E']s exists
iff dom(h) = {s(y)} and h(s(y)) = ([Er]s[z — [E']s], [Ex]s[x — [E]s]), by E.1
iff s,h =y — E1[E' /2], Eo|E'/x]

95

Bibliography

1]

2]

Cristiano Calcagno, Hongseok Yang, and Peter W. O’Hearn. Computability and complexity
results for a spatial assertion language for data structures. Lecture Notes in Computer Science,
2245:108-77, 2001.

P. Cousot and R. Cousot. Static determination of dynamic properties of generalized type unions.
In ACM Symposium on Language Design for Reliable Software, Raleigh, North Calorina, ACM
SIGPLAN Notices 12(3):77-94, 1977.

D. Galmiche and D. Méry. Connection-based proof search in propositional BI logic. In Int.
Conference on Automated Deduction, CADE’02, Copenhagen, Danemark, July 2002.

Samin S. Ishtiaq and Peter W. O’Hearn. BI as an assertion language for mutable data structures.
In POPL’01, pages 14-26, 2001.

P. W. O’'Hearn and D. J. Pym. The logic of bunched implications. In Bulletin of Symbolic
Logic, June 1999.

Peter O’Hearn, John Reynolds, and Hongseok Yang. Local reasoning about programs that alter
data structures. In LNCS 2142 (©Springer-Verlag, editor, Proceedings of CSL’01, pages 1-19,
Paris, 2001.

John Reynolds. Separation logic : A logic for shared mutable data structures. In LICS’02,
Copenhagen, Denmark, July 22-25 2002.

Hongseok Yang and Peter W. O’Hearn. A semantic basis for local reasoning. In Proceedings of
FOSSACS’02, 2002.

96

