
Pointers static analysis and BI-logic

Mémoire de D.E.A.
École Polytechnique, France

April-August 2002

Advisor : Radhia Cousot

Élodie-Jane Sims.

Under construction
Latest version : http : //www.eleves.ens.fr : 8080/home/sims/download/DEA/rapport−stage.ps.gz

This document has colors.

Contents

1 Introduction 5

2 BI-logic 6
2.1 Introduction . 6
2.2 Commands . 6

2.2.1 Syntax . 6
2.2.2 Configurations . 7
2.2.3 Operational semantics : C, s, h ; s′, h′ C, s, h ; C ′, s′, h′ 7

2.3 Formulas . 8
2.3.1 Semantics : s, h |= P . 9
2.3.2 Deduction rules for |= . 9

2.4 Triples . 10
2.4.1 Interpretation . 10
2.4.2 Utility of triples for the analysis . 10
2.4.3 Axioms . 10

2.5 Complements . 11

3 Backward analysis 12
3.1 Introduction . 12
3.2 Definitions of the wlp . 12

3.2.1 Preliminary definition . 12
3.2.2 wlp . 13

3.3 Proofs of the wlp . 13
3.3.1 Proofs . 14

4 Forward analysis 15
4.1 Introduction . 15
4.2 Step 1 : wlp(true, C) . 15
4.3 Step 2 : sp(P, C) in case P |= wlp(true, C) . 16
4.4 if P 6|= wlp(true, C) . 17
4.5 Proof of the sp . 18
4.6 Add of an error state . 18

4.6.1 Configurations . 18
4.6.2 Operational semantics: C, m → m′ C, m → C ′, m′ 19
4.6.3 BIe . 19
4.6.4 Triples . 19
4.6.5 BI2 . 20

5 Partitioning 24
5.1 Introduction . 24
5.2 Partitions analysis . 25

5.2.1 Commands . 25
5.2.2 Partition definition . 25
5.2.3 Strongest Post Conditions . 25

2

5.2.4 Weakest Pre Conditions . 26

5.3 γP : Partitions → BI’s formulas . 26

5.4 αP : BI’s formulas → Partitions . 27

5.5 Proof of the partition analysis . 27

5.5.1 x := nil . 27

5.5.2 new(x) . 28

5.5.3 x := y . 28

5.5.4 x := y.i . 29

5.5.5 x.1 := y . 30

5.5.6 C1; C2 . 35

5.5.7 if B then C1 else C2 . 35

5.5.8 if ¬ B then C1 else C2 . 35

5.5.9 if B then C1 . 35

5.5.10 if ¬ B then C1 . 36

5.5.11 while B do C1 . 36

5.5.12 while ¬ B do C1 . 37

5.5.13 wlp’s proofs . 37

5.6 Remarks . 37

6 Conclusion 38

A Frame axiom’s explanation 39

B sp’s proofs 40

B.1 x := E . 40

B.2 x := E.i . 40

B.3 E1.i := E2 . 40

B.4 x := cons(E1, E2) . 40

B.5 dispose(E) . 41

B.6 C1; C2 . 41

B.7 if E then C1 else C2 . 41

B.8 if E then C1 . 41

B.9 while E do C1 . 42

C sp2’s proofs 43

C.1 x := E . 43

C.2 x := E.i . 44

C.3 E1.i := E2 . 45

C.4 x := cons(E1, E2) . 45

C.5 dispose(E) . 45

C.6 C1; C2 . 45

C.7 if E then C1 else C2 . 46

C.8 if E then C1 . 47

C.9 while E do C1 . 48

D Why this definition of [x\y] 49

D.1 Definition 1 : recursive . 49

D.2 Definition 2 . 49

D.3 Definition 3 . 50

D.4 Definition 4 . 51

D.5 Definition 5 . 51

D.6 A step to γP . 52

3

E Substitutions formulas 53
E.1 [[E{E′/x}]]s = [[E]]s[x 7→ [[E′]]s] if [[E′]]s exists . 53
E.2 Proof that P [E/x] ≡ P{E/x} . 53
E.3 Proof that y = E[E ′/x] ≡ y = (E{E′/x}) ∧ is(E′) 54
E.4 Proof that y = E[E ′/x].i ≡ y = (E{E′/x}).i ∧ is(E′) 55
E.5 Proof that y 7→ E1[E

′/x], E2[E
′/x] ≡ y 7→ E1{E′/x}, E2{E′/x} ∧ is(E′) 55

4

Chapter 1

Introduction

Mon stage se place dans le cadre de l’analyse statique de logiciels comportant des objets alloués
dynamiquement sur un tas et repérés par des pointeurs. Samin Ishtiaq, Peter O’Hearn et John
Reynolds ont développé récemment la logique BI [4] qui est une logique de Hoare avec un langage
d’assertions/de prédicats permettant de démontrer qu’un programme manipulant des pointeurs sur
un tas est correcte. Nous souhaiterions utiliser la logique BI comme interface pour exprimer les
résultats d’analyses modulaires de pointeurs.

Pendant mon stage, j’ai étudié la logique BI que je présente au chapitre 2. J’ai prouvé la cor-
rection des plus faible pré-conditions (wlp)(chapitre 3). J’ai exprimé les plus fortes post-conditions
(sp), et conditions d’absence d’erreurs (wlp(true, C)) et prouvé la correction de l’analyse avant
(chapitre 4). J’ai ensuite démontré la correction de l’analyse de pointeurs en avant [2] en exprimant
une traduction des partitions (invariants de l’analyse) dans le langage BI (chapitre 5).

The aim of this starting work is to do static analysis on programs dealing with pointers. De-
veloped by Ishtiaq, O’Hearn, Pym, Reynolds and Yang, BI-logic [4] is a Hoare logic for reasoning
about properties of heap storage, in terms of Hoare triples, {P}C{P ′}. We would like to use
BI-logic as an interface language for modularity with other pointers analyzes.

We present the logic BI in chapter 2. We proved the correction of the weakest preconditions
(wlp) (chapter 3). We have expressed the strongest postconditions (sp) and the conditions of safe
executions (wlp(true, C)) and proved the correction of the forward analysis (chapter 4). Then we
proved the correction of the pointers forward analysis [2] by expressing the translation of partitions
(analysis’s invariants) into BI’s language (chapter 5).

5

Chapter 2

BI-logic

2.1 Introduction

O’Hearn and Pym have developed the logic BI of bunched1 implications[5]. This is a Hoare
logic with an assertions/predicates language for reasoning about properties of heap storages, in
terms of Hoare triples, {P}C{P ′}. It allows to prove that a program dealing with pointers on a
heap is correct[6, 4]. This chapter gives a presentation of BI that comes from [4]. BI-logic is a
classical logic over states memory with some specific spatial connectives ∗ and →∗. P ∗ Q asserts
that P and Q holds for separate parts of a data structure. It provides a way to compose assertions
that refer to different areas of memory.

In this chapter, we first present the language we are analyzing, then the BI language itself and
then the Hoare’s triplets of the analysis.

2.2 Commands

We deal with the usual commands of an imperative language with some restrictions :

• we do not directly handle double-dereferencing, such as x.i.j

• dereferencing should be avoided either on the left or right of :=

• a pointer points only to a pair of cells.

Those restrictions do not limit the expressive power of the language.

2.2.1 Syntax

C ::= x := E
| x := E.i
| E.i := E′

| x := cons(E1, E2)
| dispose(E)
| C1; C2

| if E then C1 else C2

| if E then C1

| while E do C1

i ::= 1|2

E ::= x V ariable
| 42 Integer
| nil Atom
| a Atom
| True Atom
| False Atom
| E1 opa E2 Arithmetic operation
| E1 opb E2 Boolean operation

1The name comes from the sequent calculus of BI, instead of having Γ ` A where Γ is only a list of propositions
like in A ; B ` A ∧ B, we also have “bunches” like in A , B ` A ∗ B,

6

2.2.2 Configurations

Domain : A command is executed over a stack s ∈ S and a heap h ∈ H

V al = Int ∪ Atoms ∪ Loc
S = V ar ⇀fin V al
H = Loc ⇀fin V al × V al

V al = set of values
Loc = {l, ...} is an infinite set of locations
V ar = x, y, ... is a set of variables
Atoms = nil, a, ... is a set of atoms
⇀fin is for finite partial functions.

Configuration : A configuration is either C, s, h a command C to be executed on a memory
s, h, either a terminal configuration s, h.
Definitions :

• C, s, h stuck : 6 ∃K C, s, h ; K

• C, s, h safe : If C, s, h ;
∗ K Then K is not stuck.

Notice that we call safe configuration (among others) all the configurations with infinite com-
putation.

2.2.3 Operational semantics : C, s, h ; s′, h′ C, s, h ; C ′, s′, h′

The operational semantics requires the definition of the semantics of an expression [[E]]s.

[[x]]s = s(x)
[[42]]s = 42

[[true]]s = true
[[E1 + E2]]s = [[E1]]s + [[E2]]s

...

Notations In the following rules we use :

- r to range over elements of V al × V al

- πir for the first or second projection

- (r|i 7→ v) to indicate the pair like r except that the i’th component is replaced with v

- [f |x 7→ v] to indicate the function like f except that it maps x to v

- h − l is the heap like h except that it is undefined on l

Stack-altering commands
[[E]]s = v

x := E, s, h ; [s|x 7→ v], h

assign to x in the stack the value of E

[[E]]s = l ∈ Loc h(l) = r

x := E.i, s, h ; [s|x 7→ πir], h

assign to x in the stack the value of the i’th component of [[E]]s in the heap

7

Heap-altering commands

[[E]]s = l ∈ Loc h(l) = r [[E ′]]s = v′

E.i= E′, s, h ; s, [h|l 7→ (r|i 7→ v′)]

assign in the heap to the i’th component of [[E]]s the value of E ′

l ∈ Loc l ∈ dom(h) [[E]]s = l

dispose(E), s, h ; s, (h − l)

free in the heap the location value of E
notice that if E is the variable it creates a dangling pointer since the stack in not modified

Stack- and heap-altering commands

l ∈ Loc l 6∈ dom(h) [[E1]]s = v1, [[E2]]s = v2

x := cons(E1, E2), s, h ; [s|x 7→ l], [h|l 7→ 〈v1, v2〉]

assign to x in the stack a fresh location and assign in the heap to this fresh location the two values
of E1 and E2

Composed commands
C1, s, h ; C ′, s′, h′

C1; C2, s, h ; C ′; C2, s′, h′

C1, s, h ; s′, h′

C1; C2, s, h ; C2, s′, h′

[[E]]s = True

if E then C1 else C2, s, h ; C1, s, h

[[E]]s = False

if E then C1 else C2, s, h ; C2, s, h

[[E]]s = True

if E then C1, s, h ; C1, s, h

[[E]]s = False

if E then C1, s, h ; s, h

[[E]]s = True

while E do C, s, h ; C; while E do C, s, h

[[E]]s = False

while E do C, s, h ; s, h

Notice that ; is a not a total function.

2.3 Formulas

P, Q, R ::= α Atomic formula
| false

| P ⇒ Q Classical implication
| ∃x.P Existential quantification
| emp Empty heap
| P∗Q Spatial conjunction
| P→∗ Q Spatial implication

α ::= E = E′

| E 7→E1, E2

E ::= x V ar
| 42 Int
| nil nil
| a Atom

8

2.3.1 Semantics : s, h |= P

Definitions
h]h′ : dom(h) and dom(h′) are disjoint
h·h′ : the union of h and h′ with disjoint domains

P |= Q iff ∀s, h if s, h |= P then s, h |= Q

Atomic formulas

s, h |= E = E′ iff [[E]]s = [[E′]]s
s, h |= E 7→ (E1, E2) iff dom(h) = {[[E]]s} and h([[E]]s) = 〈[[E1]]s, [[E2]]s〉

E 7→ (E1, E2) says that the heap has exactly one location that looks like E 7→ (E1, E2).

Classical formulas

s, h |= false never
s, h |= P ⇒ Q iff If s, h |= P Then s, h |= Q
s, h |= ∃x.P iff ∃v ∈ V al.[s|x 7→ v], h |= P

∃x.P says that we can assign a value to x in the stack to satisfy P .

Spatial formulas

s, h |= emp iff h = [] : empty heap
s, h |= P ∗ Q iff ∃h0, h1 h0]h1, h = h0 · h1s, h0 |= P and s, h1 |= Q
s, h |= P →∗Q iff ∀h′, If h]h′ and s, h′ |= P Then s, h · h′ |= Q

P ∗ Q says that we can split the heap in two disjoint pieces, one that satisfies P and the other
satisfies Q.

P →∗Q says that for any piece of heap that satisfies P and is disjoint from the current heap,
we can add it to the current heap and we will satisfies Q.

Notice that if with the current stack, there is no heap that makes P holding, P →∗Q holds.
For readability of the formulas above, we omitted to write there that it is required that

FV (P) ⊆ dom(s) for s, h |= P , where FV (P) is the set of free variables in P .

Extension of the syntax We can define various other connectives :

¬P ≡ P ⇒ false

true ≡ ¬(false)
P ∨ Q ≡ (¬P) ⇒ Q
P ∧ Q ≡ ¬(¬P ∨ ¬Q)
∀x.P ≡ ¬(∃x.¬P)

E ↪→ a, b ≡ true ∗ (E 7→ a, b)

E ↪→ a, b says that the heap has among others one location that looks like E 7→ a, b.

2.3.2 Deduction rules for |=
Definition

P |= Q iff ∀s, h. s, h |= P implies s, h |= Q

• The usual rules of classical logic are sound for |=

• ∗ is commutative, associative, with unit emp

• P ′|=P Q′|=Q

P ′∗Q′|=P∗Q

9

• R∗P |=Q

R|=P→∗Q

• R|=P→∗Q R′|=P

R∗R′|=Q

• No weakening2 : P ∗ Q 6|= P

• No contraction3 : P 6|= P ∗ P

2.4 Triples

2.4.1 Interpretation

{P}C{Q} true iff ∀s, h If s, h |= P and FV (Q) ⊆ dom(s) Then
- C, s, h is safe
- if C, s, h ;

∗ s′, h′ then s′, h′ |= Q

Notice that this interpretation of triple is different from the usual Hoare triple’s interpretation
since {P}C{Q} true implies that C can be executed from any state satisfying P .

The usual Hoare triple definition would be :

{P}C{Q} true iff ∀s, h If
- s, h |= P and FV (Q, C) ⊆ dom(s)
- C, s, h is safe

Then
if C, s, h ;

∗ s′, h′ then s′, h′ |= Q

2.4.2 Utility of triples for the analysis

From the interpretation of triples we have that :

√
If we know that {P}C{true} is true then
we will know that C is safe to execute in any state satisfying P .

√
If we know that {P}C{Q} is true then
we will know that C is safe to execute in any state satisfying P
and that from those states any terminal state satisfies Q.

This is the main point of our analysis. So we will define some rules that prove that a triple is
true and use them for the analysis.

In the chapter 3, we will give for each statement a rule of the form {wlp(P, C)}C{P} and the
proofs that for each statement those triplets are true.

In the chapter 4, we will give for each statement a rule of the form {P}C{sp(P, C)} and the
proofs that for each statement, those triplets are true.

2.4.3 Axioms

Sequencing
{P}C{Q} {Q}C ′{R}

{P}C; C ′{R}

Consequence
P |= P ′ {P ′}C{R′} R′ |= R

{P}C{R}
2because we have a notion of size of the heap with ∗
3as well

10

Frame Axiom Introduction

{P}C{Q}
{P ∗ R}C{Q ∗ R} ModifiesOnly(C) ∩ FV (R) = ∅

ModifiesOnly(C) : set of variables appearing to the left of := in C and not dereferenced.

To know why this restriction for the Frame Axiom is necessary and sufficient, see Appendix A.

We can do local reasoning since because of the Frame Axiom, a specification can concentrate
on only those cells that a program accesses.

2.5 Complements

• Computability : deciding the validity of an assertion is not recursively enumerable but if
quantifiers are prohibited, the validity of an assertion is algorithmically decidable. (Yang
and Calcagno [1])

• There exists a new version of BI [6, 7], to permit unrestricted address arithmetic, all values
are integers (included addresses).

• There exists a intuitionist version of BI. A property is satisfied in a memory if it is for any
extension of the heap. An inconvenient is that the property emp can never be satisfied.

11

Chapter 3

Backward analysis

3.1 Introduction

In the paper [4], the authors give axioms of the form {wlp(P, C)}C{P} for some commands C
and prove the correctness of the axioms for the commands E.i := E ′ and x := cons(E1, E2).

We have defined the wlp for the other commands and prove the correctness of all the wlp.

3.2 Definitions of the wlp

wlp stands for weakest liberal precondition where“liberal” means that we collect the configurations
with infinite computation.

3.2.1 Preliminary definition

If we have that P{E/x} is the formula P where x has been syntactically replaced by the formula
E
we define

s, h |= P [E/x] iff s[x 7→ [[E]]s], h |= P

We define this because if s, h |= P [E/x], we have :

• [[E]]s is defined, so the command x := E can be executed

• s[x 7→ [[E]]s], h |= P , so P holds after the execution of x := E

So we will use this for the precondition of the assignment x := E.

This definition might look like an add to the language BI, but it is not since in Appendix E,
we prove that P [E/x] ≡ P{E/x} ∧ is(E),
where is(E) ≡ (E = E) means that E has a value, we have s, h |= E = E iff [[E]]s is defined
and P ≡ Q iff P |= Q ∧ Q |= P .

If FV (E) ⊆ FV (P) then, P [E/x] ≡ P{E/x}, in fact we only need FV (E) ⊆ FV (P{E/x}).

The use of the distinction between [/] and {/}, can be view in the example : {true}x := y{true}
is false but {y = y}x := y{true} is true.

Remark : in other version of BI [7], there is no need of distinction between P [E/x] and P{E/x}, since

the triples needs FV (C, Q) ⊆ dom(s) to be true and not only FV (Q) ⊆ dom(s) like here.

12

3.2.2 wlp

wlp(P, x := E) = P [E/x]
wlp(P, x := E.i) = ∃x1∃x2.(P [xi/x] ∧ (E ↪→ x1, x2))

with xi 6∈ FV (E, P)
wlp(P, E.1 := E′) = ∃x1∃x2.(E 7→ x1, x2) ∗ ((E 7→ E′, x2) →∗P)

with xi 6∈ FV (E, E′, P)
wlp(P, E.2 := E′) = ∃x1∃x2.(E 7→ x1, x2) ∗ ((E 7→ x1, E

′) →∗P)
with xi 6∈ FV (E, E′, P)

wlp(P, x := cons(E1, E2)) = ∀x′.(x′ 7→ E1, E2) →∗P [x′/x]
with x′ 6∈ FV (E1, E2, P)

wlp(P, dispose(E)) = P ∗ (∃a∃b.(E 7→ a, b))
with a, b 6∈ FV (E)

wlp(P, C1; C2) = wlp(wlp(P, C2), C1)
wlp(P, if E then C1 else C2) = (E = true∧ wlp(P, C1)) ∨ (E = false ∧ wlp(P, C2))
wlp(P, if E then C1) = (E = true∧ wlp(P, C1)) ∨ (E = false ∧ P)

wlp(P, while E do C1) = gfp
|=
true λX.((E = true ∧ wlp(X, C1))

∨(E = false ∧ P))

wp(P, while E do C1) = lfp
|=
false

λX.((E = true ∧ wp(X, C1)) ∨ P)

We define P ≡ Q iff P |= Q and Q |= P .

Here we write gfp
|=
true λX.F (X) for a BI formula P which satisfies :

• P ≡ F (P)

• for any formula Q, (Q ≡ F (Q) implies Q |= P)

This BI formula does not always exists and like any formula is not unique. To express the
wlp(P, while E do C1) in any case we could take
wlp(P, while E do C1) = (E = false∧ P).
We would have a complete and correct analysis, but in this case the wlp will not be the “weakest”
pre condition.
We expressed the wlp(P, while E do C1) with a fixpoint to give a way to be able some-
times to compute a more precise precondition by iterations of applying the function λX.((E =
true ∧ wlp(X, C1)) ∨ (E = false ∧ P)) to formulas starting by true and stopping when two
consecutive formulas are equivalent in the sens of ≡.

There are some explanations of the formulas in the case when P = true in 4.2.

Remark : If we would like to implement the analysis, for the while case, we would need a theorem
prover1. Deciding whether P |= Q is the same problem as deciding the validity of P ⇒ Q. As said in the
previous chapter, this is not recursively enumerable, so we might not be able to compute the gfp. If we
would like to implement the analysis, we could at least use the approximation E = false ∧ P .

3.3 Proofs of the wlp

First we should precise that in this chapter we only want to prove that our analysis is sound.
That is we proof that all the triples {wlp(P, C)}C{P} are true but we do not proof that the wlp’s
formulas are actually the weakest one. This is the case in fact for the simple statements but not
for the while.

Definition : γ(P) = {s, h | s, h |= P}
1there have been some works done for proof-search in BI Logic [3] but, to our knowledge, only for the intuitionist

version of BI

13

Definition of wlpo We define the wlp in the operational domain :
wlpo(∆, C) = {s, h | C, s, h is safe ∧(if C, s, h ;

∗ s′, h′ then s′, h′ ∈ ∆}

We can rewrite the definition of a true triple as :

{wlp(P, C)}C{P} true iff (γ(wlp(P, C)) ∩ {s, h | FV (P) ⊆ dom(s)}) ⊆ wlpo(γ(P), C)

So we will prove that for each C, and P , we have γ(wlp(P, C)) ⊆ wlpo(γ(P), C)

BI

γ

��

� � ���
� � 	�
BI

wlp

��

γ

��

op ⊆ op
wlpo

��

Here, op = S × H

3.3.1 Proofs

We just need to express wlpo for each command and we will prove the correctness by induction
on the syntax of C. (we wrote the proofs but did not type them)

14

Chapter 4

Forward analysis

4.1 Introduction

In the chapter 3, we have given for each C and each P a wlp(P, C) such that {wlp(P, C)}C{P}
is true.

We can not always define sp(P, C), where sp stands for strongest post condition. That is we
can find a C and a P such that there exists no Q that makes {P}C{Q} true. This is so because
to be true a triple asks for C to be executable from all states satisfying P (and also such that
FV (Q) ⊆ dom(s)) which is obviously not the case for any C and P .
For example {true}x = nil; y = x.1; {?} has no solution, since all states satisfy P but the com-
mand can never be executed(nil.1 not defined).

So we have to split the analysis into two steps. The first step is to check whether C is executable
from all states satisfying P or not. The second step is to give sp(P, C) that makes the triple
{P}C{sp(P, C)} true if C is executable from all states satisfying P .

4.2 Step 1 : wlp(true, C)

We have that C is executable from any state satisfying P iff P |= wlp(true, C).
So for the first step we just need to express the wlp(true, C)’s formulas.

Definition is(E) ≡ E = E, it means that E has a value in the current memory.

wlp(true, x := E) = is(E)
wlp(true, x := E.i) = ∃x1∃x2.E ↪→ x1, x2

with xi 6∈ FV (E)
wlp(true, E.i := E ′) = ∃x1∃x2.(E 7→ x1, x2) ∧ is(E′)

with xi 6∈ FV (E, E′)
wlp(true, x := cons(E1, E2)) = is(E1) ∧ is(E2)
wlp(true, dispose(E)) = ∃x1∃x2.E ↪→ x1, x2

with xi 6∈ FV (E)
wlp(true, C1; C2) = wlp(wlp(true, C2), C1)
wlp(true, if E then C1 else C2) = (E = true ∧ wlp(true, C1))

∨(E = false∧ wlp(true, C2))
wlp(true, if E then C1) = (E = true ∧ wlp(true, C1)) ∨ E = false

wlp(true, while E do C1) = gfp
|=
true λX.((E = true ∧ wlp(X, C1))

∨E = false)

15

Some explanation :

wlp(true, x := E) = is(E)
we need E to have a value to execute the command

wlp(true, x := E.i) = (∃x1, x2. E ↪→ x1, x2)
we need E to be a pointer assigned which point to two values

wlp(true, E1.i := E2) = ((∃x1, x2. E1 ↪→ x1, x2) ∧ is(E2))
we need E1 to be a pointer assigned which point to two values and we need E2 to have a value

wlp(true, x := cons(E1, E2)) = (is(E1) ∧ is(E2))
we need E1 and E2 to have a value to execute the command

wlp(true, dispose(E)) = (∃x1, x2. E ↪→ x1, x2)
we need E to be a pointer assigned which point to two values

wlp(true, C1; C2) = wlp(wlp(true, C2), C1)
here, it is not the composition of wlp(true, 2)
so we will not do composition of the first step

4.3 Step 2 : sp(P, C) in case P |= wlp(true, C)

First we define

s, h |= P [E/x] iff s[x 7→ [[E]]s], h |= P
s, h |= x = E[E2/y] iff s(x) = [[E]]s[y 7→ [[E2]]s]
s, h |= x = E[E2/y].i iff s(x) = πi(h([[E]]s[y 7→ [[E2]]s]))

s, h |= x 7→ E1[E0/y], E2[E0/y] iff dom(h) = {s(x)}
∧h(s(x)) =< [[E1]]s[y 7→ [[E0]]s], [[E2]]s[y 7→ [[E0]]s] >

In Appendix E, we prove that those definitions correspond to the syntactic substitution with
some modification like in chapter 3. So that those new definitions are covered by the syntax of BI .
Actually, x = E.i is not a BI ’s formula, but we write it as a shortcut for the formula ∃x1, x2. (E ↪→
x1, x2) ∧ (x = xi).

sp(P, x := E) = ∃x′. P [x′/x] ∧ x = E[x′/x]
with x′ 6∈ FV (E, P)

sp(P, x := E.i) = ∃x′. P [x′/x] ∧ x = (E[x′/x]).i
with x′ 6∈ FV (E, P)

sp(P, E1.1 := E2) = ∃x1∃x2.(E1 7→ E2, x2) ∗ ((E1 7→ x1, x2) →∗P)
with xi 6∈ FV (E1, E2, P)

sp(P, E1.2 := E2) = ∃x1∃x2.(E1 7→ x1, E2) ∗ ((E1 7→ x1, x2) →∗P)
with xi 6∈ FV (E1, E2, P)

sp(P, x := cons(E1, E2)) = ∃x′.(P [x′/x] ∗ (x 7→ E1[x
′/x], E2[x

′/x]))
with x′ 6∈ FV (E1, E2, P)

sp(P, dispose(E)) = ∃x1, x2. ((E 7→ x1, x2) →∗P)
with x1, x2 6∈ FV (E, P)

sp(P, C1; C2) = sp(sp(P, C1), C2)
sp(P, if E then C1 else C2) = sp(P ∧ E = true, C1)

∨sp(P ∧ E = false, C2)
sp(P, if E then C1) = sp(P ∧ E = true, C1)

∨(P ∧ E = false)

sp(P, while E do C1) = (lfp
|=
P λX.sp(X ∧ E = true, C1) ∨ X)

∧ (E = false)

The lfp does not necessary exists (for example if the program enumerates the prime numbers,
the formula would be infinite and BI does not have infinite ∨ or ∧).

We could, if the lfp does not exist, have

sp(P, while E do C1) = E = false

16

but in this case sp will not be the “strongest” post condition.

As discussed for the wlp case, if we would like to implement this analysis, we would not neces-
sarily be able to compute the lfp because of the quantifiers. But we have that deciding the validity
of an assertion without quantifiers is algorithmically decidable. So a solution for implementation
could be to lose the quantifiers and lose some precision. For example, in the case of x := E, if x
does not occur in E, we could replace ∃x′. P [x′/x] ∧ x = E[x′/x] by x = E and we could possibly
keep some information from P that does not depend on x. Then we would no more have the sp
but still have true triples. We did not look at the implementation problem, a solution for the while
could be to give E = false when we can not compute the lfp.

Some explanation :

sp(P, x := E) = ∃x′. P [x′/x] ∧ x = E[x′/x]
with x′ 6∈ FV (E, P)

x′ plays the role of the previous value of x

sp(P, x := E.i) = ∃x′. P [x′/x] ∧ x = (E[x′/x]).i
with x′ 6∈ FV (E, P)

x′ plays the role of the previous value of x

sp(P, E1.1 := E2) = ∃x1∃x2.(E1 7→ E2, x2) ∗ ((E1 7→ x1, x2) →∗P)
with xi 6∈ FV (E, E′, P)

it means that there were two previous values x1 and x2 such that
if we take out E and add this previous E, P holds

and actually E is pointing the updated cells

sp(P, x := cons(E1, E2)) = ∃x′.(P [x′/x] ∗ (x 7→ E1[x
′/x], E2[x

′/x]))
with x′ 6∈ FV (E1, E2, P)

x′ plays the role of the previous value of x
we can split the memory into two parts,

one part was holding P with the previous value of x,
the other part is x that points to what it should

sp(P, dispose(E)) = ∃x1, x2. ((E 7→ x1, x2) →∗P)
with x1, x2 6∈ FV (E, P)

it means that there were two previous values, that E was pointing to,
and if we add to the actual memory, E pointing to those values,

we hold P as before the dispose

4.4 if P 6|= wlp(true, C)

If P 6|= wlp(true, C), we can conclude that C can not be executable from all states satisfying
P and for those from which it is executable, the final states satisfy sp(P ∧ wlp(true, C), C).

Remark P 6|= wlp(true, C) does not imply that the previous sp are necessary false.

For example, true 6|= is(y) but {true}x := y{∃x′. x = y} is true, since we have the special
restriction that x := y as to be executable from all state satisfying P which is not true here but also
that have FV (∃x′. x = y) ⊆ dom(s) which is is(x) ∧ is(y) and implies that those states |= is(y)
and so the triple is true.

But this is a particular case, and we do not have P∧“FV (sp(P, C)) ⊆ dom(s)′′ |= wlp(true, C).

This problem does not come only from the composition or if and while. For example,
wlp(true, dispose(x)) = ∃x1, x2. x ↪→ x1, x2,
sp(true, dispose(x)) = ∃x1, x2. (x 7→ x1, x2) →∗true
and “FV (sp(true, dispose(x))) ⊆ dom(s)′′ = is(x)

17

but true ∧ is(x) 6|= ∃x1, x2. x ↪→ x1, x2.

4.5 Proof of the sp

First we should precise that in this chapter we only want to prove that our analysis is sound.
That is we do not prove that the sp’s formulas are actually the stongest one. This is the case in
fact for the simple statements but not for the while.

We want to prove that :

If P |= wlp(true, C) then {P}C{sp(P, C)} true

Definition of spo We define the sp in the operational domain :
spo(∆, C) = {s′, h′ | ∃s, h ∈ ∆. C, s, h ;

∗ s′, h′}

So we can rewrite the definition of a true triple as :

{P}C{Q} true iff P |= wlp(true, C) ∧ spo(γ(P), C) ⊆ γ(Q)

So we want to prove for each command C that :

If P |= wlp(true, C) then spo(γ(P), C) ⊆ γ(sp(P, C))

.

� � ���
� � ���BI

sp 	

γ

��

BI

γ

��

op
spo 	
 ⊆ op

But since spo is defined such that it only collect the final states of successful computation, we
only have to prove that for each command C :

spo(γ(P), C) ⊆ γ(sp(P, C))

See appendix B.

4.6 Add of an error state

There is a second approach, the one we first took, that is to add an error state to our domain.
So we make the transition function a total function. We have changed the syntax of BI and the
interpretation of a triple. We now produce for all P and C, a triple {P}C{Q} which is true. For
our analysis, to know that a program is executed without error from the states satisfying P , we
will just have to check if the error state satisfies Q.

4.6.1 Configurations

Domain : (stack S + heap H) or Error The domain is the union of the previous domain
with {Ωo}.

Ωo is the error memory in the operational domain.

18

4.6.2 Operational semantics: C, m → m′ C, m → C ′, m′

C, m → m′ iff (m = Ωo ∧ m′ = Ωo)
∨(m = s, h ∧ m′ = Ωo ∧ C, s, h 6;)
∨(m = s, h ∧ m′ = s′, h′ ∧ C, s, h ; s′, h′)

C, m → C ′, m′ iff m = s, h ∧ m′ = s′, h′ ∧ C, s, h ; C ′, s′, h′

Then the operational semantics → is a total function.
There are no more stuck configurations.

4.6.3 BIe

Syntax of BIe

P ::= Q BI’s formulas
| Err the atomic formula for error
| true added since the law of the excluded middle does not hold anymore
| ∀x.P as well

We add to the syntax of BI a predicate Err that holds only for the state Ωo.

Semantics: m |=e P

m |=e P iff (m = Ωo ∧ Ωo |=e P)
∨(m = s, h ∧ s, h |=e P)

Ωo |=e Err always
Ωo |=e P ⇒ Q iff If Ωo |=e P Then Ωo |=e Q
Ωo |=e true never
Ωo |=e ∀x.P never
Ωo |=e one of the others BI ′s formulas never
s, h |=e Err never
s, h |=e true always
s, h |=e ∀x.P iff ∀v ∈ V al.[s|x 7→ v], h |= P
s, h |=e P a BI ′s formulas iff s, h |= P

All the special BI’s formulas define a “normal” memory, so Ωo does not satisfy any of them. The
only predicate that Ωo satisfies is Err. The usual meaning of ⇒ is valid for error or non error
memory. ∃x... had the meaning that we could assign a value to x in the stack, so it supposed that
the stack exist, and so Ωo does not satisfy any ∃ or ∀.

4.6.4 Triples

The previous interpretation of triples can be written

{P}C{Q} iff P |= wlp(true, C) ∧ spo(γ(P), C) ⊆ γ(Q)

.
Remember that was

• C is executable from all states satisfying P

• all final states of a computation of C from P satisfy Q

Now we have

{P}C{Q} iff spe
o(γ

e(P), C) ⊆ γe(Q)

with γe(P) = {m | m |=e P}.

Which is

19

• if Ωo satisfies P then Ωo satisfies Q

• if C can not be executable from all “normal” states satisfying P , then Ωo satisfies Q

• all “normal” final states of a computation of C from P satisfy Q

We could express spe with the two steps of the previous analysis :
Step 1 : check if P |= wlp(true, C)
Step 2 : if yes then spe(P, C) = sp(P, C)
if not then spe(P, C) = Err ∨ sp(P ∧ wlp(true, C), C).

Notice that we do not have spe(P, C1; C2) = spe(spe(P, C1), C2) in the above definition since
sp : BI → BIe and so also spe : BI → BIe but we can extend the definition of spe so that
spe(P, C1; C2) = spe(spe(P, C1), C2) since Ω0 6|= P ∧ wlp(true, C).

4.6.5 BI2

Introduction

If we do not want spe written with two steps. And if we want that spe(P, C1; C2) = spe(spe(P, C1), C2).
This is less efficient so this section does not need to be read.

We said that we have

{P}C{Q} iff spe
o(γ

e(P), C) ⊆ γe(Q)

with γe(P) = {m | m |=e P}.

Which is

• if Ωo satisfies P then Ωo satisfies Q

• if C can not be executable from all “normal” states satisfying P , then Ωo satisfies Q

• all “normal” final states of a computation of C from P satisfy Q

We can rewrite this as

• Err |=e P then Err |=e Q

• if P 6|=e wlp(true, C) then Err |=e Q

• sp(P ∧wlp(true, C), C) |= Q, here we write sp and not spe because we are in the case where
we go from “normal states” to “normal states”

Here we want to find an spe such that {P}C{spe(P, C)} is true

so we would like spe to be like

spe(P, C) = (Err ∧ P)
∨(Err ∧ (P 6|=e wlp(true, C)))
∨sp(P ∧ wlp(true, C), C)

but 6|= can not be expressed in BIe,
so we have extended its syntax into BI2 with ∀2 and ∃2 to get :

true |=e P iff m |=2 ∀2m′. P
P |=e Q iff m |=2 ∀2m′. P ⇒ Q

and we can express :

sp2(P, C) = (Err ∧ (P ∨ (∃2m. (P ∧ ¬wlp(true, C)))))
∨sp(P ∧ wlp(true, C), C)

20

meaning that we have the state error if the state error satisfies P or if there is a state satisfying P
from which C is not executable, and we also have all “normal” post states.

The idea of the necessity of BI2 is that we have to express that Ωo satisfies a formula which
says that there was a previous “normal” memory from which the command can not be executed.
This previous “normal” memory can not be expressed from Ωo, so it can not be expressed in BIe.

Syntax of BI2

P ::= Q BIe’s formulas
| ∀em. P
| ∃em. P

Semantics: m |=2 P

m′ |=2 ∀2m. P iff ∀m. (m = s, h ⇒ m |=2 P)
m′ |=2 ∃2m. P iff ∃m. (m = s, h ∧ m |=2 P)
m′ |=2 other P iff same definition as for BIe

Triples
We have sp2

o(∆, C) = {m′ | ∃m ∈ ∆. C, m →∗ m′}

and then

{P}C{Q} true iff sp2
o(γ

2(P), C) ⊆ γ2(Q)

� � ���� � ���BI2
sp2 	

γ2

��

BI2

γ2

��

op
spo 	
 ⊆ op

Preliminary definition
First we define

s, h |= P [E/x] iff ∃m′. m′ = s′, h′ ∧ m′ |= P ∧ h′ = h ∧ s′(x) = [[E]]s ∧ ∃v . s = s′[x 7→ v]
s, h |= x = E[E2/y] iff ∃m′. m′ = s′, h′ ∧ h′ = h ∧ s(x) = [[E]]s′ ∧ ∃v . (s′ = s[y 7→ v] ∧ v = [[E2]]s)
s, h |= x = E[E2/y].i iff ∃m′. m′ = s′, h′ ∧ h′ = h ∧ s(x) = πi(h

′([[E]]s′))
∧∃v . (s′ = s[y 7→ v] ∧ v = [[E2]]s)

s, h |= x 7→ E1[E0/y], E2[E0/y] iff ∃m′. m′ = s′, h′ ∧ h′ = h ∧ dom(h) = {s(x)} ∧ h(s(x)) =< [[E1]]s
′, [[E2]]s

′ >
∧∃v . (s′ = s[y 7→ v] ∧ v = [[E0]]s)

We should prove that those definitions correspond to the syntactic substitution with some mod-
ification like in chapter 3. So that those new definitions are covered by the syntax of BI2. We
should look more carefully about Ωo |=2 ...[.../...], we did not looked at this right now since it is
not directly useful in the proofs we made.

Definitions of the sp2

sp2(P, C) = (Err ∧ (P ∨ (∃2m. (P ∧ ¬wlp(true, C)))))
∨sp(P ∧ wlp(true, C), C)

For ; and if and while, the formulas are not written like that. If the formulas where like that,
this would do the same work as the method with the two steps, supposing that for composition,
we do the first step only for the composition and not for the subcommand separately. For the
composition, we have written sp2(P, C1; C2) = sp2(sp2(P, C1), C2), which implies that we do more

21

“first step” work than in the formula above.
Remark : this formula above is just an explanation of the formulas written after since the sp
written is not the sp : BI → BI since P ∧ wlp(true, C) is in BI2 but Ωo 6|= P ∧ wlp(true, C).

sp2(P, x := E) = (Err ∧ (P ∨ (∃2m. (P ∧ ¬(E = E)))))
∨(∃x′. P [x′/x] ∧ x = E[x′/x])

sp2(P, x := E.i) = (Err ∧ (P ∨ (∃2m. (P∧
¬(∃x1, x2. E ↪→ x1, x2))))

∨(∃x′. P [x′/x] ∧ x = (E[x′/x]).i)
with x′ 6∈ FV (E, P)

sp2(P, E1.1 := E2) = (Err ∧ (P ∨ (∃2m. (P∧
(¬(∃x1, x2. E1 ↪→ x1, x2) ∨ ¬(E2 = E2))))))

∨(∃x1∃x2.(E1 7→ E2, x2) ∗ ((E1 7→ x1, x2) →∗P))
with xi 6∈ FV (E, E′, P)

sp2(P, E1.2 := E2) = (Err ∧ (P ∨ (∃2m. (P∧
(¬(∃x1, x2. E1 ↪→ x1, x2) ∨ ¬(E2 = E2))))))

∨(∃x1∃x2.(E1 7→ x1, E2) ∗ ((E1 7→ x1, x2) →∗P))
with xi 6∈ FV (E, E′, P)

sp2(P, x := cons(E1, E2)) = (Err ∧ (P ∨ (∃2m. (P∧
(¬(E1 = E1) ∨ ¬(E2 = E2))))))

∨(∃x′.(P [x′/x] ∗ (x 7→ E1[x
′/x], E2[x

′/x])))
with x′ 6∈ FV (E1, E2, P)

sp2(P, dispose(E)) = (Err ∧ (P ∨ (∃2m. (P∧
¬(∃x1, x2. E ↪→ x1, x2)))))

∨(∃x1, x2. ((E 7→ x1, x2) →∗P))
with x1, x2 6∈ FV (E, P)

sp2(P, C1; C2) = sp2(sp2(P, C1), C2)
sp2(P, if E then C1 else C2) = (Err ∧ (P ∨ (∃2m. (P ∧ ¬(E = E)))))

∨(sp2(P ∧ E = true, C1))
∨(sp2(P ∧ E = false, C2))

sp2(P, if E then C1) = (Err ∧ (P ∨ (∃2m. (P ∧ ¬(E = E)))))
∨(sp2(P ∧ E = true, C1))
∨(P ∧ E = false)

sp2(P, while E do C1) = (lfp
|=2

P λX.
(Err ∧ (X ∨ (∃2m. (X ∧ ¬(E = E)))))
∨(sp2(X ∧ E = true, C1))
∨X)

∧ (E = false ∨ Err)

The lfp does not necessary exists as seen before.

To have a total sp2 function, we could, if the lfp does not exist, have

sp2(P, while E do C1) = E = false∨ Err

As discussed before, if we would like to implement this analysis, we would not necessarily be
able to compute the lfp because of the quantifiers. A solution for the while could be to give
E = false ∨ Err when we can compute. We would not have a sp but still have true triples.

Proof of the sp2

We have

{P}C{Q} true iff sp2
o(γ

2(P), C) ⊆ γ2(Q)

So we want :

sp2
o(γ

2(P), C) ⊆ γ2(sp2(P, C))

22

� � ���
� � 	�
BI2

sp2 	

γ2

��

BI2

γ2

��

op
spo 	
 ⊆ op

We just need to express sp2
o for each command and we will proof the correctness by induction

on the syntax of C. It is almost the same proofs as for the sp’s.
See Appendix C.

23

Chapter 5

Partitioning

5.1 Introduction

In the previous chapter, we have seen a backward and a forward analyzes that could be run on
a program using BI logic.

In this chapter we are interested in using BI as an interface language for modularity with other
analyzes.
We could give with the analyzes of the previous chapters some properties that holds before and

PSfrag replacements

Call

function
BI

BI ′

P

P ′

γP

αP

Figure 5.1: Use BI ’s analysis in a analysis over a domain P

after a piece of program (BI and BI ′ in fig 5.1). And then for an other analysis over a domain P ,
if we give a translation from P into BI ’s formulas (γP in fig) and from BI ’s formulas into P (αP

in fig), we would be able to use the result of BI ’s analysis.

As an example, we have chosen an analysis from chapter 4.2 of [2]. It is an analysis that says
if some pointers can not for sure transitively reach a same location.

In fact this analysis gives a partition that is a set of collections of pointers that may reach a same
location. Since the set of variables of a program is finite, we have represented the partition as a set of
couple of variables that for sure do not reach each other. If in the paper 1 they give {V, W/X, Y, Z}
as a partition for a program with variables in {V, W, X, Y, Z, A}, we will have for our parti-
tion {[V \X], [V \Y], [V \Z], [V \A], [W\X], [W\Y], [W\Z], [W\A], [A\X], [A\Y], [A\Z]} (we natu-
rally have [a\b] ∈ P ⇒ [b\a] ∈ P).

1We describe the partitions domain of the paper as a footnote since we do not use it anymore after this example.
{V,W/X, Y,Z} means that :
- there *may* be a way to “link” V and W
- there is definitelly no way to “link” V or W to any other variable, even if they are not in {X, Y,Z}
- there *may* be a way to “link” X and Y , X and Z or Y and Z
- there are definitely no way to “link” them to any other variable

24

We also have restricted the language over which the analysis is done to match with our work on BI .

In this chapter, we describe the analysis over the partitions, then we give the translation from
Partitions to BI ’s formula, and then for some commands, we prove that the spP ’s formulas are
right.

5.2 Partitions analysis

5.2.1 Commands

E ::= x := nil

| x := y
| x := y.i
| x.i := y

i ::= 1|2

B ::= x= nil

| x= y
| x= y.i
| x.i= y

B′ ::= B
| ¬ B

C ::= E
| new(x) as “x := cons(nil, nil)′′

| C1; C2

| if B′ then C1 else C2

| if B′ then C1

| while B′ do C1

We do not write the operational semantics of the above commands, they are the same as in the
previous chapters.

5.2.2 Partition definition

A partition is a set of [a\b]. [a\b] means that a and b are not pointers that can reach each other
or can be both reach by a same location. If [a\b] is not in the partition, a and b may reach each
other. If [a\b] ∈ P then [b\a] ∈ P .

5.2.3 Strongest Post Conditions

We have spP : Partitions × Commands → Partitions.
Were Partions is the power set of {[a\b] | a, b ∈ V ar} ordered by the inclusion of sets.

The analysis will start with the top partition, ∀a, b a 6= b . [a\b] ∈ P .
Then we express the postconditions for our commands.

spP (P, new(x)) = P \ {[x\z] | ∀z} ∪ {[x\z] | ∀z z 6= x}
spP (P, x := nil) = P \ {[x\z] | ∀z} ∪ {[x\z] | ∀z}
spP (P, x = nil) = spP (P, x := nil)
spP (P, x := y) = P \ {[x\z] | ∀z} ∪ {[x\z] | [y\z] ∈ P}
spP (P, x = y) = spP (P, x.i := y)
spP (P, x := y.i) = P \ {[x\z] | ∀z} ∪ {[x\z] | [y\z] ∈ P, z 6= x}
spP (P, x = y.i) = spP (P, x.i := y)
spP (P, x.i := y) = P \ {[v\w] | ([y\w] 6∈ P ∧ [x\v] 6∈ P)

∨([x\w] 6∈ P ∧ [y\v] 6∈ P)}
spP (P, x.i = y) = spP (P, x.i := y)
spP (P, C1; C2) = spP (spP (P, C1), C2)
spP (P, if B then C1 else C2) = spP (spP (P, B), C1) ∩ spP (P, C2)
spP (P, if ¬ B then C1 else C2) = spP (P, C1) ∩ spP (spP (P, B), C2)
spP (P, if B then C1) = spP (spP (P, B), C1) ∩ P
spP (P, if ¬ B then C1) = spP (P, C1) ∩ spP (P, B)

spP (P, while B do C1) = gfp ⊆
P λX. spP (spP (X, B), C1) ∩ X

spP (P, while ¬ B do C1) = gfp ⊆
P λX. spP (X, C1) ∩ spP (X, B)

spP (P, ¬ B)) = P

Here we give some explaination why the case of new(x) is not the same as the case of x := nil.
It’s just that in our definition of [a\b], we consider that if x does not point to a location (i.e. x

25

is nil or is a number) then [x\x] holds but if x points to a location, which is the case after a
allocation new(x), then [x\x] does not hold.
This can be view in section 5.3.

5.2.4 Weakest Pre Conditions

wlpP (P, B) = spP (P, B)
wlpP (P, new(x)) = P \ {[x\z] | ∀z}
wlpP (P, x := nil) = P \ {[x\z] | ∀z}
wlpP (P, x := y) = P \ {[x\z] | ∀z} or ΩP if ∃z.[x\z] ∈ P ∧ [y\z] 6∈ P
wlpP (P, x := y.i) = P \ {[x\z] | ∀z} or ΩP if ∃z.[x\z] ∈ P ∧ [y\z] 6∈ P
wlpP (P, x.i := y) = P or ΩP if ∃z.[x\z] ∈ P ∧ [y\z] 6∈ P
wlpP (P, C1; C2) = wlpP (wlpP (P, C2), C1)
wlpP (P, if B then C1 else C2) = wlpP (wlpP (P, C1), B) ∩ wlpP (P, C2)
wlpP (P, if ¬ B then C1 else C2) = wlpP (P, C1) ∩ wlpP (wlpP (P, C2), B)
wlpP (P, if B then C1) = wlpP (wlpP (P, C1), B) ∩ P
wlpP (P, if ¬ B then C1) = wlpP (P, C1) ∩ wlpP (P, B)

wlpP (P, while B do C1) = gfp ⊆
Top λX. wlpP (wlpP (X, C1), B) ∩ P

wlpP (P, while ¬ B do C1) = gfp ⊆
Top λX. wlpP (X, C1) ∩ wlpP (P, B)

wpP (P, while B do C1) = lfp ⊇
P λX. wlpP (wlpP (X, C1), B) ∩ X

wpP (P, while ¬ B do C1) = lfp ⊇
P λX. wlpP (X, C1) ∩ wlpP (X, B)

wlpP (P, ¬ B) = P

Where ΩP is a partition error.

5.3 γP : Partitions → BI’s formulas

Preliminary definitions

isloc(x) ≡ ¬(x = nil) ∧ ¬(x = true) ∧ ¬(x = false) ∧ (∃n. n = x + 1)
isinheap(x) ≡ ∃x1, x2. (x ↪→ x1, x2)

isdangling(x) ≡ isloc(x) ∧ ¬isinheap(x)
Nodangling2 ≡ ∀v, v′. (isinheap(v) ∧ (v′ = v.1 ∨ v′ = v.2)) ⇒ ¬ isdangling(v′)

[x\y] as a BI formula

[x\y] ≡ ¬isloc(x) ∨ ¬isloc(y)
∨∃x1, x2, y1, y2.

(x ↪→ x1, x2 ∧ Nodangling2)
∗(y ↪→ y1, y2 ∧ Nodangling2)
∗Nodangling2

Notice that in case x or y reaches a dangling location, we do not have [x\y].

γP :Partitions → BI

γp(P) =
∧

[a\b]∈P

[a\b] ∧ Nodangling2∧ ∧

∀z“∈′′P

¬ isdangling(z)

Since a partition is a finite set of [a\b] we can have this definition.

Notation : ∀z“ ∈′′ P ≡ ∃w.[z\w] ∈ P .

To have some explanations of those definitions, see Appendix D.

26

5.4 αP : BI’s formulas → Partitions

We can not express αP (F) by induction on the syntax of F . So we would have to check whether
F |= Nodangling2∧ ∧

∀z var of the program

¬ isdangling(z), and if so αP (F) = {[a\b] | F |= [a\b]}.

Which means we will have to check whether F |= [a\b] for all pairs of variables.

5.5 Proof of the partition analysis

op

spo

��

BIγ
��

sp

��

� � ���
� � 	�
PartitionsγP

��

γ′

�
�

spP

��

op ⊆ BI |=γ�� Partitions
γP��

γ′

� �

with γ′ = γ ◦ γP .

We prove the analysis by induction on the syntax of the commands.
So we have two ways for each command we can either prove that :

spo(γ
′(P), C) ⊆ γ′(spP (P, C))

or prove that :

γ(sp(γP (P), C)) ⊆ γ′(spP (P, C))

since we already know that :

spo(γ(Q), C) ⊆ γ(sp(Q, C)) .

The partition analysis does not deal with errors, so in fact we only have :

spo(γ
′(P), C) \ {Ωo} ⊆ γ′(spP (P, C))

we do not deal with errors in our proofs.

5.5.1 x := nil

spo(γ
′(P), x := nil) = {s′, h′ | ∃s.h. s, h |= (

∧

[a\b]∈P

[a\b] ∧ Nodangling2∧ ∧

∀z“∈′′P

¬ isdangling(z))

∧h′ = h ∧ s′ = s[x 7→ nil]}
γ′(spP (P, x := nil)) = {s′, h′ | s′, h′ |= ∧

[a\b]∈P
a,b6=x

[a\b] ∧ ∧

∀z

[x\z] ∧ Nodangling2∧ ∧

∀z“∈′′P

¬ isdangling(z)}

So we have to prove that if

s, h |=
∧

[a\b]∈P

[a\b] ∧ Nodangling2∧
∧

∀z“∈′′P

¬ isdangling(z)

then

s[x 7→ nil], h |=
∧

[a\b]∈P
a,b6=x

[a\b] ∧
∧

∀z

[x\z] ∧ Nodangling2∧
∧

∀z“∈′′P

¬ isdangling(z)

.

• We have FV ([a\b]) = {a, b} so if s, h |= [a\b] for a, b 6= x then s[x 7→ nil], h |= [a\b].

27

• We have that s[x 7→ nil], h |= ¬isloc(x) so s[x 7→ nil], h |= ∧

∀z

[x\z].

• since s, h |= Nodangling2 we have s[x 7→ nil], h |= Nodangling2

• since s, h |= ∧

∀z“∈′′P

¬ isdangling(z) we have s[x 7→ nil], h |= ∧

∀z“∈′′P

¬ isdangling(z)

5.5.2 new(x)

spo(γ
′(P), new(x)) = {s′, h′ | ∃s.h. s, h |= (

∧

[a\b]∈P

[a\b] ∧ Nodangling2∧ ∧

∀z“∈′′P

¬ isdangling(z))

∧∃l ∈ Loc.l 6∈ dom(h) ∧ h′ = h[l 7→ 〈nil, nil〉] ∧ s′ = s[x 7→ l]}
γ′(spP (P, new(x)) = {s′, h′ | s′, h′ |= ∧

[a\b]∈P
a,b6=x

[a\b] ∧ ∧

∀z, z 6=x

[x\z]

∧Nodangling2∧ ∧

∀z“∈′′P

¬ isdangling(z)}

So we have to prove that if

s, h |=
∧

[a\b]∈P

[a\b] ∧ Nodangling2∧
∧

∀z“∈′′P

¬ isdangling(z)

then ∀l ∈ Loc. l 6∈ dom(h)

s[x 7→ l], h[l 7→ 〈nil, nil〉] |=
∧

[a\b]∈P
a,b6=x

[a\b] ∧
∧

∀z, z 6=x

[x\z] ∧ Nodangling2∧
∧

∀z“∈′′P

¬ isdangling(z)

.

• We have FV ([a\b]) = {a, b} and l 6∈ dom(h) so if s, h |= [a\b] for a, b 6= x then s[x 7→
l], h[l 7→ 〈nil, nil〉] |= [a\b].

• for z 6= x, if s, h |= ¬isloc(z) then s[x 7→ l], h[l 7→ 〈nil, nil〉] |= ¬isloc(z) and s[x 7→
l], h[l 7→ 〈nil, nil〉] |= [x\z]

• for z 6= x, if s, h |= isloc(z)
since s, h |= ¬isdangling(z) ∧ Nodangling2

we have s, h |= ∃z1, z2. z ↪→ z1, z2 ∧ Nodangling2

and then s[x 7→ l], h |= ∃z1, z2. z ↪→ z1, z2 ∧ Nodangling2 (since there are no free variables in
Nodangling2)
we have s[x 7→ l], [l 7→ 〈nil, nil〉] |= ∃x1, x2. x ↪→ x1x2 ∧ Nodangling2

and since s[x 7→ l], ∅ |= Nodangling2 we have
s[x 7→ l], h[l 7→ 〈nil, nil〉] |= [x\z]

• if s, h |= Nodangling2 then s[x 7→ l], h[l 7→ 〈nil, nil〉] |= Nodangling2 since we can lose the
property Nodangling2 only if the heap his reduced or if the cell add have some dangling2
(which is not the case of nil).

• if s, h |= ∧

∀z“∈′′P

¬ isdangling(z) then s[x 7→ l], h[l 7→ 〈nil, nil〉] |= ∧

∀z“∈′′P

¬ isdangling(z)

since we did not reduce the heap and we just added x to the stack to a non dangling location

5.5.3 x := y

spo(γ
′(P), x := y) = {s′, h′ | ∃s.h. s, h |= (

∧

[a\b]∈P

[a\b] ∧ Nodangling2∧ ∧

∀z“∈′′P

¬ isdangling(z))

∧h′ = h ∧ s′ = s[x 7→ s(y)]}
γ′(spP (P, x := y)) = {s′, h′ | s′, h′ |= ∧

[a\b]∈P
a,b6=x

[a\b] ∧ ∧

[y\z]∈P

[x\z] ∧ Nodangling2

∧ ∧

∀z“∈′′P

¬ isdangling(z)}

28

So we have to prove that if

s, h |=
∧

[a\b]∈P

[a\b] ∧ Nodangling2∧
∧

∀z“∈′′P

¬ isdangling(z)

then

s[x 7→ s(y)], h |=
∧

[a\b]∈P
a,b6=x

[a\b] ∧
∧

[y\z]∈P

[x\z] ∧ Nodangling2∧
∧

∀z“∈′′P

¬ isdangling(z)

.

• We have FV ([a\b]) = {a, b} so if s, h |= [a\b] for a, b 6= x then s[x 7→ s(y)], h |= [a\b].

• We have that s, h |= ∧

[y\z]∈P

[y\z]

so we have s[x 7→ s(y)], h |= ∃x′.(
∧

[y\z]∈P

[y\z])[x′/x] ∧ x = y (from BI’s sp)

so we have s[x 7→ s(y)], h |= ∧

[y\z]∈P
z 6=x

[x\z]

• since s, h |= Nodangling2 we have s[x 7→ s(y)], h |= Nodangling2

• since s, h |= ¬ isdangling(y)
we have s[x 7→ s(y)], h |= ¬ isdangling(x)

• since s, h |= ∧

∀z“∈′′P
z 6=x

¬ isdangling(z) we have s[x 7→ s(y)], h |= ∧

∀z“∈′′P
z 6=x

¬ isdangling(z)

5.5.4 x := y.i

spo(γ
′(P), x := y.i) = {s′, h′ | ∃s.h. s, h |= (

∧

[a\b]∈P

[a\b] ∧ Nodangling2∧ ∧

∀z“∈′′P

¬ isdangling(z))

∧h′ = h ∧ s′ = s[x 7→ πi(h(s(y)))]}
γ′(spP (P, x := y.i)) = {s′, h′ | s′, h′ |= ∧

[a\b]∈P
a,b6=x

[a\b] ∧ ∧

[y\z]∈P
z 6=x

[x\z] ∧ Nodangling2

∧ ∧

∀z“∈′′P

¬ isdangling(z)}

So we have to prove that if

s, h |=
∧

[a\b]∈P

[a\b] ∧ Nodangling2∧
∧

∀z“∈′′P

¬ isdangling(z)

then

s[x 7→ πi(h(s(y)))], h |=
∧

[a\b]∈P
a,b6=x

[a\b] ∧
∧

[y\z]∈P

[x\z] ∧ Nodangling2∧
∧

∀z“∈′′P

¬ isdangling(z)

.

• We have FV ([a\b]) = {a, b} so if s, h |= [a\b] for a, b 6= x then s[x 7→ πi(h(s(y)))], h |= [a\b].

• We have that s, h |= ∧

[y\z]∈P
z 6=x

[y\z]

so we have s[x 7→ πi(h(s(y)))], h |= ∃x′.(
∧

[y\z]∈P

[y\z])[x′/x] ∧ x = y.i (from BI’s sp)

so we have s[x 7→ πi(h(s(y)))], h |= ∧

[y\z]∈P
z 6=x

[y\z] ∧ x = y.i

we now want to prove that if s[x 7→ πi(h(s(y)))], h |= [y\z] ∧ x = y.i then s[x 7→
πi(h(s(y)))], h |= [x\z]

29

if s[x 7→ πi(h(s(y)))], h |= ¬isloc(z) then it’s ok
if πi(h(s(y))) 6∈ Loc then it’s ok
otherwise since s[x 7→ πi(h(s(y)))], h |= [y\z] we have
s[x 7→ πi(h(s(y)))], h |= ∃y1, y2, z1, z2. (y ↪→ y1, y2∧Nodangling2)∗(z ↪→ z1, z2∧Nodangling2)∗
Nodangling2

and if s′, h′ |= (y ↪→ y1, y2 ∧ Nodangling2) and yi ∈ Loc then from Nodangling2 we have
that yi ∈ dom(h′) and so s′, h′ |= ∃yi1, yi2. (yi ↪→ yi1, yi2 ∧ Nodangling2)
and then s[x 7→ πi(h(s(y)))], h |= ∃yi1, yi2, z1, z2. (yi ↪→ yi1, yi2 ∧ Nodangling2) ∗ (z ↪→
z1, z2 ∧ Nodangling2) ∗ Nodangling2
and so s[x 7→ πi(h(s(y)))], h |= [x\z]

• since s, h |= Nodangling2 we have s[x 7→ πi(h(s(y)))], h |= Nodangling2

• since s, h |= Nodangling2 we have s[x 7→ πi(h(s(y)))], h |= ¬isdangling(x)

• since s, h |= ∧

∀z“∈′′P
z 6=x

¬ isdangling(z) we have s[x 7→ πi(h(s(y)))], h |= ∧

∀z“∈′′P
z 6=x

¬ isdangling(z)

5.5.5 x.1 := y

spo(γ
′(P), x.1 := y) = {s′, h′ | ∃s.h. s, h |= (

∧

[a\b]∈P

[a\b] ∧ Nodangling2∧ ∧

∀z“∈′′P

¬ isdangling(z))

∧h′ = h[s(x) 7→ 〈s(y), π2(h(s(x)))〉] ∧ s′ = s}
γ′(spP (P, x.1 := y)) = {s′, h′ | s′, h′ |= ∧

[a\b]∈P

[a\x]∈P

[b\x]∈P

[a\b] ∧ ∧

[a\b]∈P

[a\y]∈P

[b\y]∈P

[a\b] ∧ ∧

[a\b]∈P

[a\x]∈P

[a\y]∈P

[a\b] ∧ ∧

[a\b]∈P

[b\x]∈P

[b\y]∈P

[a\b]

∧ Nodangling2 ∧ ∧

∀z“∈′′P

¬ isdangling(z)}

So we have to prove that if

s, h |=
∧

[a\b]∈P

[a\b] ∧ Nodangling2∧
∧

∀z“∈′′P

¬ isdangling(z)

then

s, h[s(x) 7→ 〈s(y), π2(h(s(x)))〉] |= ∧

[a\b]∈P

[a\x]∈P

[b\x]∈P

[a\b] ∧ ∧

[a\b]∈P

[a\y]∈P

[b\y]∈P

[a\b] ∧ ∧

[a\b]∈P

[a\x]∈P

[a\y]∈P

[a\b] ∧ ∧

[a\b]∈P

[b\x]∈P

[b\y]∈P

[a\b]

∧ Nodangling2 ∧ ∧

∀z“∈′′P

¬ isdangling(z)

• Here we want to prove that if s, h |= [a\b] ∧ [a\x] ∧ [b\x]
then s, h[s(x) 7→ 〈s(y), π2(h(s(x)))〉] |= [a\b]

Lemma[1] Let us define

P (h1, h2) ≡ h = h1.h2 ∧ s, h1 |= Nodangling2 ∧ l ∈ dom(h1)

|h1| be the cardinal of dom(h1)

If h1 and h′
1 are two heaps such that ∃h2.P (h1, h2) and ∃h2.P (h′

1, h2) hold and |h1| and |h′
1|

are minimals
then

h1 = h′
1

30

Lemma[1]’s proof : Let h1 and h′
1 be two heaps satisfying the hypothesis of the lemma.

Suppose that h1 6= h′
1 ,

1- from the hypothesis’s condition of smallnessity we have that |h1| = |h′
1|

2- from our supposition of h1 6= h′
1, there exist an l′ ∈ dom(h1) such that l′ 6∈ dom(h′

1).

3- Let split h1 in h1 = h10.h11 and split h′
1 in h′

1 = h′
10.h

′
11 such that h10 = h′

10 and
∀l′. l′ ∈ dom(h11) ⇒ l′ 6∈ dom(h′

11) and ∀l′. l′ ∈ dom(h′
11) ⇒ l′ 6∈ dom(h11) .

4- we have from 2- that |h10| < h1| and with also 1- |h′
10| < |h′

1|
5- we have l ∈ dom(h10) since both l ∈ dom(h1) and l ∈ dom(h′

1)

6- since h1 was the smallest in term of size of the domain to satisfy the hypothesis and
from 5- we have that s, h10 6|= Nodangling2

7- since s, h1 |= Nodangling2, with 6- we have ∃l′ ∈ dom(h10), l′′ ∈ dom(h11) and their
exist a value a such that either (l′ 7→ l′′, a) ∈ h10 either (l′ 7→ a, l′′) ∈ h10.

8- from the definition of h11 we have l′′ 6∈ dom(h′
11).

9- from 7- and 3- we have l′′ 6∈ dom(h10)

10- since h10 = h′
10 , l′′ 6∈ dom(h′

10) and so h′′ 6∈ dom(h′
1)

11- from 10- and 7- we have l′′ is dangling2 in h′
1

and so there is a contradiction with the hypothesis. 2.

Let’s go back to what we want to prove :
if s, h |= [a\b] ∧ [a\x] ∧ [b\x]
then s, h[s(x) 7→ 〈s(y), π2(h(s(x)))〉] |= [a\b]

Let AB be s, h |= [a\b], AX be s, h |= [a\x] and BX be s, h |= [b\x] and C be s, h[s(x) 7→
〈s(y), π2(h(s(x)))〉] |= [a\b].

We want AB ∧ AX ∧ BX ⇒ C.

If s, h |= ¬isloc(a) or s, h |= ¬isloc(b) we have directly C true. So from now on we will
be in the case s, h 6|= ¬isloc(a) and s, h 6|= ¬isloc(b). We also have s, h 6|= ¬isloc(x)
otherwise we would not be able to run the command form s, h and the analysis is in case we
can run the programm.

So we can unfold the definitions for AB into

∃va1, va2, vb1, vb2, h1, h2, h3.

– h = h1.h2.h3

– h1(s(a)) = 〈va1, va2〉
– h2(s(b)) = 〈vb1, vb2〉
– s[a1 7→ va1, a2 7→ va2, b1 7→ vb1, [b2 7→ vb2], h1 |= Nodangling2

– s[a1 7→ va1, a2 7→ va2, b1 7→ vb1, [b2 7→ vb2], h2 |= Nodangling2

– s[a1 7→ va1, a2 7→ va2, b1 7→ vb1, [b2 7→ vb2], h3 |= Nodangling2

and simplify it in :
∃h1, h2, h3.

– h = h1.h2.h3

– h1(s(a)) = h(s(a))

– h2(s(b)) = h(s(b))

31

– s, h1 |= Nodangling2

– s, h2 |= Nodangling2

– s, h3 |= Nodangling2

The same way we have AX equivalent to

∃h′
1, h

′
2, h

′
3.

– h = h′
1.h

′
2.h

′
3

– h′
1(s(a)) = h(s(a))

– h′
3(s(x)) = h(s(x))

– s, h′
1 |= Nodangling2

– s, h′
2 |= Nodangling2

– s, h′
3 |= Nodangling2

BX equivalent to

∃h′′
1 , h′′

2 , h′′
3 .

– h = h′′
1 .h′′

2 .h′′
3

– h′′
2(s(b)) = h(s(b))

– h′′
3(s(x)) = h(s(x))

– s, h′′
1 |= Nodangling2

– s, h′′
2 |= Nodangling2

– s, h′′
3 |= Nodangling2

C equivalent to

∃h∗
1, h

∗
2, h

∗
3.

– h[s(x) 7→ 〈s(y), π2(h(s(x)))〉] = h∗
1.h

∗
2.h

∗
3

– h∗
1(s(a)) = h(s(a))

– h∗
3(s(b)) = h(s(b))

– s, h∗
1 |= Nodangling2

– s, h∗
2 |= Nodangling2

– s, h∗
3 |= Nodangling2

Remark, here we can write for example that h′
1(s(a)) = h(s(a)) instead of h′

1(s(a)) =
h[s(x) 7→ 〈s(y), π2(h(s(x)))〉](s(a)) since if [a\x] hold we have s(a) 6= s(x).

Since we have AB, AX and BX we can chose some h1, h2, h3, h
′
1, ... that satisfy the properties.

Let’s take them such that |h1|, |h2|, |h′
1|, |h′

3|, |h′′
2 |, |h′′

3 | are the smallest as possible. From
Lemma [1] we then have h1 = h′

1, h2 = h′′2 and h′
3 = h′′

3 .

Now we have to find the h∗
1, h

∗
2, h

∗
3 that would make C true.

Let split the proof in 3 case :

Case 1 s(y) 6∈ dom(h1) and s(y) 6∈ dom(h2)

Case 2 s(y) 6∈ dom(h1) and s(y) ∈ dom(h2)

Case 3 s(y) ∈ dom(h1) and s(y) 6∈ dom(h2)

32

Case 1 See Fig. 5.2 and Fig. 5.3 We can take :

h∗
1 = h1

h∗
2 = h2

h∗
3 = h3[s(x) 7→ 〈s(y), π2(h(s(x)))〉]

To prove C the only not obvious (almost everything comes from AB) thing in this case is to
prove that s, h∗

3 |= Nodangling2 wich is

s, h3[s(x) 7→ 〈s(y), π2(h(s(x)))〉] |= Nodangling2

From AB we have that s, h3 |= Nodangling2.
So the ¬Nodangling2 could only come from the [s(x) 7→ 〈s(y), π2(h(s(x)))〉] part of the
heap. From AX we have that s(x) 6∈ dom(h1). From BX we have that s(x) 6∈ dom(h′′

2)
which is also s(x) 6∈ dom(h2). So since s(x) ∈ dom(h) (since we can run the command), we
have s(x) ∈ dom(h3). And so the ¬Nodangling2 could only come from the s(y) in [s(x) 7→
〈s(y), π2(h(s(x)))〉]. But since we are in the case where s(y) 6∈ dom(h1) and s(y) 6∈ dom(h2)
we have s(y) ∈ dom(h3) and so we have as expected

s, h∗
3 |= Nodangling2

PSfrag replacements

h1 h2

h3

h′
1

h′
2

h′
3

h′′
1

h′′
2

h′′
3

h∗
1

h∗
2

h∗
3 = h3[s(x) 7→ 〈s(y), π2(h(s(x)))〉]

a b

x y

Figure 5.2: Cas 1

PSfrag replacements

h1 h2

h3

h′
1

h′
2

h′
3

h′′
1

h′′
2

h′′
3

h∗
1

h∗
2

h∗
3 = h3[s(x) 7→ 〈s(y), π2(h(s(x)))〉]

a b

x
y

Figure 5.3: Cas 1 bis

Case 2 See Fig. 5.4 We can take :

h∗
1 = h1

h∗
2 = h′

3.h2[s(x) 7→ 〈s(y), π2(h(s(x)))〉]
h∗

3 = h3\h′
3

To prove that with those h∗
1, h

∗
2, h

∗
3 C hold, the first 3 points are obvious by construction.

s, h∗
1 |= Nodangling2 from AB since h∗

1 = h1.

s, h∗
2 |= Nodangling2 in the same as for the prove in the Case 1 that s, h∗

3 |= Nodangling2

: from AX we have s, h′
3 |= Nodangling2, from AB we have s, h2 |= Nodangling2 so the

¬Nodangling2 could only come from [s(x) 7→ 〈s(y), π2(h(s(x)))〉], and since s(x) ∈ dom(h′
3)

the only dangling could be s(y). But we are in the case where s(y) ∈ dom(h2) and so we
have as expected

s, h∗
2 |= Nodangling2

33

PSfrag replacements

h1 h2

h3

h′
1

h′
2

h′
3

h′′
1

h′′
2

h′′
3

h∗
1

h∗
2 = h′

3.h2[s(x) 7→ 〈s(y), π2(h(s(x)))〉]

h∗
3 = h3\h′

3

a b

x

y

Figure 5.4: Cas 2

Now we still have to prove that s, h∗
3 |= Nodangling2. We have h3 = h∗

3.h
′
3, from AB we

have s, h3 |= Nodangling2, from AX we have s, h′
3 |= Nodangling2, so if we would have

s, h∗
3 |= ¬Nodangling2 , there would be a location l ∈ dom(h∗

3) such that h(l) = 〈v1, v2〉 with
v1 ∈ dom(h′

3) or v2 ∈ dom(h′
3). But from AX we know that s, h′

2 |= Nodangling2 and which
is s, h′′

2 .h∗
3 |= Nodangling2, but h′

3 = h′′
3 so if vi ∈ dom(h′

3) we have vi 6∈ dom(h′′
2) and so we

would have s, h′′
2 .h∗

3 6|= Nodangling2.

Case 3 See Fig. 5.5 It’s the same case as Case 2 with a and b exchanged. We can take :

h∗
1 = h′

3.h1[s(x) 7→ 〈s(y), π2(h(s(x)))〉]
h∗

2 = h2

h∗
3 = h3\h′

3

PSfrag replacements

h1 h2

h3

h′
1

h′
2

h′
3

h′′
1

h′′
2

h′′
3

h∗
1 = h′

3.h1[s(x) 7→ 〈s(y), π2(h(s(x)))〉]
h∗

2 = h2

h∗
3 = h3\h′

3

a b

x

y

Figure 5.5: Cas 3

• Here we want to prove that if s, h |= [a\b] ∧ [a\y] ∧ [b\y]
same kind of proof as above

• Here we want to prove that if s, h |= [a\b] ∧ [a\x] ∧ [a\y]
same kind of proof as above

• Here we want to prove that if s, h |= [a\b] ∧ [b\x] ∧ [b\y]
same kind of proof as above.

• since s, h |= ¬ isdangling(y) ∧ Nodangling2

we have s, h[s(x) 7→ 〈s(y), π2(h(s(x)))〉] |= Nodangling2

• if s, h |= ¬ isdangling(z)
we have s, h[s(x) 7→ 〈s(y), π2(h(s(x)))〉] |= ¬ isdangling(z)
so we have s, h[s(x) 7→ 〈s(y), π2(h(s(x)))〉] |= ∧

∀z“∈′′P

¬ isdangling(z)

34

5.5.6 C1; C2

We prove that spo(γ
′(P), C1; C2) ⊆ γ′(spP (P, C1; C2)) by induction on the size of the command.

spo(γ
′(P), C1; C2) = spo(spo(γ

′(P), C1), C2) definition
⊆ spo(γ

′(spP (P, C1)), C2) induction hypothesis
⊆ γ′(spP (spP (P, C1)), C2)) induction hypothesis
= γ′(spP (P, C1; C2)) definition

5.5.7 if B then C1 else C2

First notice some lemmas :

• [1] if P1 ⊆ P2 then γ′(P1) ⊇ γ′(P2)

• spP (P, B) ⊆ P

So we have that : γ′(P) ⊆ γ′(spP (P, B))
and so :

[3] γ′(P) ∩ γ(B = true) ⊆ γ ′(spP (P, B)).
We have :

• [4] if ∆1 ⊆ ∆2 then spo(∆1) ⊆ spo(∆2)

We will prove that :

spo(γ
′(P), if B then C1 else C2) ⊆ γ′(spP (P, if B then C1 else C2))

by induction on the size of the command:

γ′(spP (P, i B t C1 e C2)) = γ′(spP (spP (P, B), C1) ∩ spP (P, C2)) def. of spP

⊇ γ′(spP (spP (P, B), C1)) ∪ gamma′(spP (P, C2)) [1]
⊇ spo(γ

′(spP (P, B)), C1) ∪ spo(γ
′(P), C2) ind. hyp.

⊇ spo(γ
′(P) ∩ γ(B = true), C1) ∪ spo(γ

′(P) ∩ γ(B = false), C2) [3] [4]
= spo(γ

′(P), if B then C1 else C2) def. of spo

5.5.8 if ¬ B then C1 else C2

We can just notice that :

spP (P, if ¬ B then C1 else C2) = spP (P, if B then C2 else C1)

and that
spo(∆, if ¬ B then C1 else C2) = spo(∆, if B then C2 else C1)

and then then with the proof of :

spo(γ
′(P), if B then C2 else C1) ⊆ γ′(spP (P, if B then C2 else C1))

we have

spo(γ
′(P), if ¬ B then C1 else C2) ⊆ γ′(spP (P, if ¬ B then C1 else C2))

5.5.9 if B then C1

This can be treated as a sub-case of if B then C1 else C2 with skip as C2.
skip is not in our language, but we can define it with spo(∆, skip) = ∆ and extend spP with
spP (P, skip) = P .
We then have spo(γ

′(P), skip) = γ′(spP (P, skip)) and so spo(γ
′(P), skip) ⊆ γ′(spP (P, skip)) as

needed.

35

5.5.10 if ¬ B then C1

Same prove as the if B then C1’s one.

5.5.11 while B do C1

If we suppose that we have [1]:

lfp⊆
γ′(P)λX. γ′(Q){γ′(X) → X} ⊆ γ′(gfp ⊆

P λX. Q)

. We can prove that

spo(γ
′(P), while B do C1) ⊆ γ′(spP (P, while B do C1))

by induction on the size of the command.

γ′(spP (P, w B d C1)) = γ′(gfp⊆P λX. (spP (X, if B then C1) ∩ X)) def of spP

⊇ lfp⊆
γ′(P)λX. γ′(spP (X, if B then C1)){γ′(X) → X} ∪ X [1]

⊇ lfp⊆
γ′(P)λX. spo(γ

′(X), if B then C1) ∪ X ind hyp

⊇ (lfp γ′(P)
⊆

λX. spo(γ
′(X), if B then C1) ∪ X) ∩ γ(B = false)

= spo(γ
′(P), w B d C1) def of spo

So we have as expected

spo(γ
′(P), while B do C1) ⊆ γ′(spP (P, while B do C1))

Lemma [1] If lfp⊆
γ′(P)λX. γ′(Q){γ′(X) → X} and gfp ⊆

P λX. Q exists then

lfp⊆
γ′(P)λX. γ′(Q){γ′(X) → X} ⊆ γ′(gfp ⊆

P λX. Q)

with {A → B} the syntactical substitution

Lemma’s proof : let’s define U = gfp ⊆
P λX. Q and F = λX. γ′(Q){γ′(X) → X}

U is a fixpoint of λX. Q,

so U ≡ Q{X → U}
then γ′(U) = γ′(Q{X → U})

= γ′(Q){γ′(X) → γ′(U)}
= γ′(Q){γ′(X) → X}{X → γ′(U)}
= F (γ′(U))

and so γ′(U) is a fixpoint of F and then γ ′(U) ⊇ lfp F .2.

To have our proof finished, we should prove that for our use of lemma [1], the fixpoints exist.
In our case Q = spP (X, if B then C1) ∩ X , so λX. Q is monotonic since spP is monotonic, and
since the partition domain is a complete lattice (since it is sets over a finite domain), by Tarski’s

fixpoint theorem we have gfp ⊆
P λX. Q exists.

It remains to prove that the other fixpoint exists. If we add a top to the domain of the sets of
memory, we have a complete lattice, and then we should just prove that the function
λX. γ′(spP (X, if B then C1)){γ′(X) → X} ∪ X is monotonic.

To finish, we should prove that

γ′(spP (X, if B then C1)){γ′(X) → X} ∪ X

is equal to
γ′(spP (X, if B then C1) ∩ X){γ′(X) → X}

which is obvious since γ ′(A ∩ B) = γ′(A) ∪ γ′(B).

36

5.5.12 while ¬ B do C1

Proved the same way as for while B do C1.

5.5.13 wlp’s proofs

Not proved yet.

5.6 Remarks

Those definitions do not work for other version of BI where the locations are integers because
of the way we have defined isloc. But the partition analysis is not defined for such a programming
language.

Yang has defined some similar definitions like allocated(x), noDangling(x) and noDanglingR

in his Ph.D. dissertation that are almost like isinheap(x), isdangling(x) and Nodangling2 (he
did not work with the integer version either).

37

Chapter 6

Conclusion

We are interested in BI-logic since it allows to work only in the part of the memory that is used
by the program and the Frame Axiom let us do modular reasoning.

In chapter 4, we have given strongest post-conditions that could be used for a forward static
analysis. We did not find forward analysis with BI in the literature.

In chapter 5, we have used BI as an interface for an other analysis. In the future, we would like
to do it for different analyzes and in particular to abstract BI-logic into escape- and shape-analyzes.

Acknowledgment
Je remercie Radhia Cousot qui m’a accueillie dans son équipe ainsi que Patrick Cousot pour

leurs conseils.
Je remercie mes camarades de bureau Charles, Damien et Francesco pour leurs conseils. Je

remercie particulièrement Charles et Bruno pour leurs corrections lors de la rédaction de ce rap-
port.

38

Appendix A

Frame axiom’s explanation

{P}C{Q}
{P ∗ R}C{Q ∗ R} ModifiesOnly(C) ∩ FV (R) = ∅

ModifiesOnly(C) : set of variables appearing to the left of := in C and not dereferenced.

Formal proof Yang and O’Hearn gave a formal proof of the Frame Axiom in [8].

Here I am just trying to give an “intuition” of why this restrictions ModifiesOnly(C)∩FV (R) = ∅.

Why this restriction is needed ?

{(y ↪→ 1, 2)}x := y{(y ↪→ 1, 2)} true
{(y ↪→ 1, 2) ∗ (x ↪→ 3, 4)}x := y{(y ↪→ 1, 2) ∗ (x ↪→ 3, 4)} false

Why this restriction is enough ?

• no need of a x from x.i
because then P is necessary of the form of (x 7→ x1, x2) ∗ P ′ for C to executable
and then if x is in R and R intersects with P and P ∗ R is never satisfied and it’s OK.

• no need of a y from x := y because
if y is not a pointer it will be only modified by a y := ... and then it will appear in the
restriction
if y is a pointer, it can not be modified by a x := ... and then to be modified by a x.i := ...
it implies that we already had the P of the shape of (y 7→ x1, x2) ∗ P ′ and we can conclude
like the previous case

• Why can’t we modify a variable not mentioned in C but in P ? Because we do not have
E.i.j or E.i = E′.j

39

Appendix B

sp’s proofs

B.1 x := E

spo(γ(P), x := E) = {s′, h′ | ∃s, h. s, h |= P ∧ h′ = h ∧ s′ = s[x 7→ [[E]]s]}
γ(sp(P, x := E)) = {s′, h′ | s′, h′ |= ∃x′. P [x/x] ∧ x = E[x′/x]}

= {s′, h′ | ∃v ((∃s1, h1

∧ s1, h1 |= P
∧ h1 = h′

∧ s1 = s′[x′ 7→ v][x 7→ v])
∧ (∃s2, h2

∧ h2 = h′

∧ s′(x) = [[E]]s2

∧ s2 = s′[x′ 7→ v][x 7→ v])))}

We can prove the inclusion by taking v = s(x) if x ∈ dom(s) and any value otherwise, s1, h1 =
s2, h2 = s[x′ 7→ v][x 7→ v], h.

We could also prove the inclusion in the other way by taking s, h = s′[x 7→ v], h′.

B.2 x := E.i

spo(γ(P), x := E.i) = {s′, h′ | ∃s, h. s, h |= P ∧ h′ = h ∧ [[E]]s ∈ Loc ∧ (∃v. v = πi(h([[E]]s)) ∧ s′ = s[x 7→ v])}
γ(sp(P, x := E.i)) = {s′, h′ | s′, h′ |= ∃x′. P [x′/x] ∧ x = (E[x′/x]).i}

= {s′, h′ | ∃v2 ((∃s1, h1

∧ s1, h1 |= P
∧ h1 = h′

∧ s1 = s′[x′ 7→ v2][x 7→ v2])
∧ (∃s2, h2

∧ h2 = h′

∧ s′(x) = πi(h2([[E]]s2))
∧ s2 = s′[x′ 7→ v2][x 7→ v2])))}

We can prove the inclusion by taking v2 = s(x) if x ∈ dom(s) and any value otherwise, s1, h1 =
s2, h2 = s[x′ 7→ v2][x 7→ v2], h.

We could also prove the inclusion in the other way by taking s, h = s′[x 7→ v2], h
′.

B.3 E1.i := E2

Not typed yet.

B.4 x := cons(E1, E2)

Not typed yet.

40

B.5 dispose(E)

Not typed yet.

B.6 C1; C2

We prove that spo(γ(P), C1; C2) ⊆ γ(sp(P, C1; C2)) by induction on the size of the command.

spo(γ(P), C1; C2) = spo(spo(γ(P), C1), C2) definition
⊆ spo(γ(sp(P, C1)), C2) induction hypothesis
⊆ γ(sp((sp(P, C1)), C2)) induction hypothesis
= γ(sp(P, C1; C2)) definition

B.7 if E then C1 else C2

C = if E then C1 else C2

spo(γ(P), C) = {s′, h′ | ∃s, h. s, h |= P ∧ (([[E]]s = True ∧ s′, h′ ∈ spo({s, h}, C1))
∨([[E]]s = False ∧ s′, h′ ∈ spo({s, h}, C2)))}

= {s′, h′ | ∃s, h. ((s, h |= P ∧E = true ∧ s′, h′ ∈ spo({s, h}, C1))
∨(s, h |= P ∧E = false ∧ s′, h′ ∈ spo({s, h}, C2)))}

= spo(γ(P ∧ E = true), C1) ∪ spo(γ(P ∧ E = false), C2)
γ(sp(P,C)) = {s′, h′ | s′, h′ |= (sp(P ∧ E = true, C1)

∨sp(P ∧ E = false, C2))}
= {s′, h′ | s′, h′ |= sp(P ∧ E = true, C1)}

∪{s′, h′ | s′, h′ |= sp(P ∧ E = false, C2)}
= γ(sp(P ∧ E = true, C1)) ∪ γ(sp(P ∧ E = false, C2))

We prove by induction in the size of the command.

B.8 if E then C1

C = if E then C1

spo(γ(P), C) = {s′, h′ | ∃s, h. s, h |= P ∧ (([[E]]s = True ∧ s′, h′ ∈ spo({s, h}, C1))
∨([[E]]s = False ∧ s′, h′ = s, h))}

= {s′, h′ | ∃s, h. ((s, h |= P ∧E = true ∧ s′, h′ ∈ spo({s, h}, C1))
∨(s, h |= P ∧E = false ∧ s′, h′ = s, h))}

= spo(γ(P ∧ E = true), C1) ∪ γ(P ∧ E = false)
γ(sp(P, C)) = {s′, h′ | ∃s, h. s, h |= (sp(P ∧ E = true, C1)

∨(P ∧ E = false))}
= {s′, h′ | s′, h′ |= sp(P ∧ E = true, C1)}

∪{s′, h′ | s′, h′ |= P ∧ E = false}
= γ(sp(P ∧ E = true, C1)) ∪ γ(P ∧ E = false)

We prove by induction in the size of the command.

41

B.9 while E do C1

Lemma If lfp
|=
P λX. Q and lfp ⊆

γ(P)λX. γ(Q){γ(X) → X} exists then

γ(lfp
|=
P λX. Q) ⊇ lfp ⊆

γ(P)λX. γ(Q){γ(X) → X}

with {A → B} the syntactical substitution

Lemma’s proof : let’s define U = lfp
|=
P λX. Q and F = λX. γ(Q){γ(X) → X}

U is a fixpoint of λX. Q,

so U ≡ Q{X → U}
then γ(U) = γ(Q{X → U})

= γ(Q){γ(X) → γ(U)}
= γ(Q){γ(X) → X}{X → γ(U)}
= F (γ(U))

and so γ(U) is a fixpoint of F and then γ(U) ⊇ lfp F .2

spo(γ(P), w E d C1) = (lfp ⊆
γ(P)λX. {s′, h′ | ∃s, h. s, h ∈ X∧ (([[E]]s = True ∧ s′, h′ ∈ spo({s, h}, C1))

∨(s′, h′ = s, h))})
∩{s′, h′ | [[E]]s′ = false}

= (lfp ⊆
γ(P)λX. {s′, h′ | ∃s, h. s, h ∈ X∧ [[E]]s = True ∧ s′, h′ ∈ spo({s, h}, C1)}

∪X)
∩ γ(E = false)

= (lfp ⊆
γ(P)λX. spo(X ∩ γ(E = false), C1) ∪ X)

∩ γ(E = false)

γ(sp(P,w E d C1)) = γ(lfp
|=
P λX. (sp(X ∧ E = true, C1) ∨ X)

∧(E = false))

= γ(lfp
|=
P λX. (sp(X ∧ E = true, C1) ∨ X))

∩ γ(E = false)

So by induction on the size of the command and by the lemma we have that if the lfp s exist,
spo(γ(P), while E do C1) ⊆ γ(sp(P, while E do C1)).

And if the lfp does not exist, γ(sp(P, while E do C1)) = γ(E = false) in which
spo(γ(P), while E do C1) is included since the ∩ and so we have spo(γ(P), while E do C1) ⊆
γ(sp(P, while E do C1)).

42

Appendix C

sp2’s proofs

C.1 x := E

sp2
o(γ

2(P), x := E) = {m′ | ∃m. m |=2 P∧ ((m′ = Ωo∧ (m = Ωo

∨(m = s, h ∧ m |=2 ¬(E = E))))
∨(m′ = s′, h′ ∧ m = s, h

∧ h′ = h ∧ s′ = s[x 7→ [[E]]s]))}
= {m′ | ∃m. m |=2 P∧ (m′ = Ωo∧ (m = Ωo

∨(m = s, h ∧ m |=2 ¬(E = E))))}
∪{m′ | ∃m. m |=2 P∧ (m′ = s′, h′∧ m = s, h

∧ h′ = h ∧ (∃v. v = [[E]]s ∧ s′ = s[x 7→ v]))}
γ2(sp2(P, x := E)) = {m′ | m′ |=2 ((Err∧ (P

∨(∃2m. (P ∧ ¬(E = E)))))
∨(∃x′. P [x′/x] ∧ x = (E[x′/x])))}

= {m′ | m′ |=2 (Err∧ (P
∨(∃2m. (P ∧ ¬(E = E)))))}

∪{m′ | m′ |=2 ∃x′. P [x′/x] ∧ x = (E[x′/x]))}
= {m′ | ∃m. m |=2 P∧ (m′ = Ωo∧ (m = Ωo

∨(m = s, h ∧ m |=2 ¬(E = E))))}
∪{m′ | m′ = s′, h′∧ ∃v ((∃m1. m1 = s1, h1

∧ m1 |=2 P
∧ h1 = h′

∧ s1 = s′[x′ 7→ v][x 7→ v])
∧ (∃m2. m2 = s2, h2

∧ h2 = h′

∧ s′(x) = [[E]]s2

∧ s2 = s′[x′ 7→ v][x 7→ v])))}

Remarque that we write ¬(E = E) as a condition for E not to be defined.
We have the red parts equals (error cases).
So we need to prove that the blue part of sp2

o(γ
2(P), x := E) is included in the blue part of

γ2(sp2(P, x := E)). We can prove it by taking v = s(x) if x ∈ dom(s) and any value otherwise,
m1 = m2 = s[x′ 7→ v][x 7→ v], h.

We could also prove the inclusion in the other way by taking m = s′[x 7→ v], h′.

43

C.2 x := E.i

sp2
o(γ

2(P), x := E.i) = {m′ | ∃m. m |=2 P∧ ((m′ = Ωo∧ (m = Ωo

∨(m = s, h
∧ m |=2 ¬(∃x1, x2. E ↪→ x1, x2))))

∨(m′ = s′, h′ ∧ m = s, h
∧ h′ = h
∧ [[E]]s ∈ Loc
∧ (∃v. v = πi(h([[E]]s)) ∧ s′ = s[x 7→ v])))}

= {m′ | ∃m. m |=2 P∧ (m′ = Ωo∧ (m = Ωo

∨(m = s, h
∧ m |=2 ¬(∃x1, x2. E ↪→ x1, x2))))}

∪{m′ | ∃m. m |=2 P∧ (m′ = s′, h′∧ m = s, h
∧ h′ = h
∧ [[E]]s ∈ Loc
∧ (∃v. v = πi(h([[E]]s)) ∧ s′ = s[x 7→ v]))}

γ2(sp2(P, x := E)) = {m′ | m′ |=2 ((Err∧ (P
∨(∃2m. (P ∧ ¬(∃x1, x2. E ↪→ x1, x2)))))

∨(∃x′. P [x′/x] ∧ x = (E[x′/x]).i))}
= {m′ | m′ |=2 (Err∧ (P

∨(∃2m. (P ∧ ¬(∃x1, x2. E ↪→ x1, x2)))))}
∪{m′ | m′ |=2 ∃x′. P [x′/x] ∧ x = (E[x′/x]).i)}

= {m′ | ∃m. m |=2 P∧ (m′ = Ωo∧ (m = Ωo

∨(m = s, h
∧ m |=2 ¬(∃x1, x2. E ↪→ x1, x2))))}

∪{m′ | m′ = s′, h′∧ ∃v2 ((∃m1. m1 = s1, h1

∧ m1 |=2 P
∧ h1 = h′

∧ s1 = s′[x′ 7→ v2][x 7→ v2])
∧ (∃m2. m2 = s2, h2

∧ h2 = h′

∧ s′(x) = πi(h2([[E]]s2))
∧ s2 = s′[x′ 7→ v2][x 7→ v2])))}

We have the red parts equals (error cases).
So we need to prove that the blue part of sp2

o(γ
2(P), x := E) is included in the blue part of

γ2(sp2(P, x := E)). We can prove it by taking v2 = s(x) if x ∈ dom(s) and any value otherwise,
m1 = m2 = s[x′ 7→ v2][x 7→ v2], h.

We could also prove the inclusion in the other way by taking m = s′[x 7→ v2], h
′.

44

C.3 E1.i := E2

Not typed yet.

C.4 x := cons(E1, E2)

Not typed yet.

C.5 dispose(E)

Not typed yet.

C.6 C1; C2

We prove that sp2
o(γ

2(P), C1; C2) ⊆ γ2(sp2(P, C1; C2)) by induction on the size of the command.

sp2
o(γ

2(P), C1; C2) = sp2
o(sp

2
o(γ

2(P), C1), C2) definition
⊆ sp2

o(γ
2(sp2(P, C1)), C2) induction hypothesis

⊆ γ2(sp2((sp2(P, C1)), C2)) induction hypothesis
= γ2(sp2(P, C1; C2)) definition

45

C.7 if E then C1 else C2

C = if E then C1 else C2

sp2
o(γ

2(P), C) = {m′ | ∃m. m |=2 P ∧((m′ = Ωo∧ (m = Ωo

∨(m = s, h
∧ m |=2 ¬(E = E))))

∨(m = s, h ∧[[E]]s = True
∧m′ ∈ sp2

o(m, C1))
∨(m = s, h ∧[[E]]s = False

∧m′ ∈ sp2
o(m, C2)))}

= {m′ | ∃m. ((m |=2 P ∧(m′ = Ωo∧ (m = Ωo

∨(m = s, h
∧ m |=2 ¬(E = E)))))

∨(m |=2 P ∧ m = s, h ∧[[E]]s = True
∧m′ ∈ sp2

o(m,C1))
∨(m |=2 P ∧ m = s, h ∧[[E]]s = False

∧m′ ∈ sp2
o(m,C2)))}

= {m′ | ∃m. ((m |=2 P ∧(m′ = Ωo∧ (m = Ωo

∨(m = s, h
∧ m |=2 ¬(E = E)))))

∨(m |=2 P ∧ E = true ∧ m′ ∈ sp2
o(m,C1))

∨(m |=2 P ∧ E = false ∧ m′ ∈ sp2
o(m,C2)))}

γ2(sp2(P, C)) = {m′ | m′ |=2 ((Err∧ (P∨
(∃2m. (P ∧ ¬(E = E)))))

∨sp2(P ∧ E = true, C1)
∨sp2(P ∧ E = false, C2))}

= {m′ | (∃m. m |=2 P ∧(m′ = Ωo∧ (m = Ωo

∨(m = s, h
∧ m |=2 ¬(E = E)))))

∨m′ |=2 sp2(P ∧ E = true, C1)
∨m′ |=2 sp2(P ∧ E = false, C2))}

= {m′ | (∃m. m |=2 P ∧(m′ = Ωo∧ (m = Ωo

∨(m = s, h
∧ m |=2 ¬(E = E)))))}

∪ γ2(sp2(P ∧ E = true, C1))

∪ γ2(sp2(P ∧ E = false, C2))

We prove by “color” cases and for blue and green by induction in the size of the command.
If m′ is in sp2

o(γ
2(P), if E then C1 else C2), then there is a m such that :

- we are in the red case, then m′ is in γ2(sp2(P, if E then C1 else C2)) by his red set.
- we are in the blue case then m′ ∈ sp2

o(γ
2(P ∧ E = true), C1), then by induction hypothesis m′

is in the blue set of γ2(sp2(P, if E then C1 else C2))
- we are in the green case then m′ ∈ sp2

o(γ
2(P ∧E = false), C1), then by induction hypothesis m′

is in the green set of γ2(sp2(P, if E then C1 else C2))

We can conclude that sp2
o(γ

2(P), if E then C1 else C2) ⊆ γ2(sp2(P, if E then C1 else C2))

46

C.8 if E then C1

C = if E then C1

sp2
o(γ

2(P), C) = {m′ | ∃m. m |=2 P ∧((m′ = Ωo∧ (m = Ωo

∨(m = s, h
∧ m |=2 ¬(E = E))))

∨(m = s, h ∧[[E]]s = True
∧m′ ∈ sp2

o(m, C1))
∨(m = s, h ∧[[E]]s = False

∧m′ = m))}
= {m′ | ∃m. ((m |=2 P ∧(m′ = Ωo∧ (m = Ωo

∨(m = s, h
∧ m |=2 ¬(E = E)))))

∨(m |=2 P ∧ m = s, h ∧[[E]]s = True
∧m′ ∈ sp2

o(m,C1))
∨(m |=2 P ∧ m = s, h ∧[[E]]s = False

∧m′ = m))}
= {m′ | ∃m. ((m |=2 P ∧(m′ = Ωo∧ (m = Ωo

∨(m = s, h
∧ m |=2 ¬(E = E)))))

∨(m |=2 P ∧ E = true ∧ m′ ∈ sp2
o(m, C1))

∨(m |=2 P ∧ E = false ∧ m′ = m))}
γ2(sp2(P, C)) = {m′ | m′ |=2 ((Err∧ (P∨

(∃2m. (P ∧ ¬(E = E)))))
∨sp2(P ∧ E = true, C1)
∨P ∧ E = false))}

= {m′ | (∃m. m |=2 P ∧(m′ = Ωo∧ (m = Ωo

∨(m = s, h
∧ m |=2 ¬(E = E)))))

∨m′ |=2 sp2(P ∧ E = true, C1)
∨m′ |=2 (P ∧ E = false))}

= {m′ | (∃m. m |=2 P ∧(m′ = Ωo∧ (m = Ωo

∨(m = s, h
∧ m |=2 ¬(E = E)))))}

∪ γ2(sp2(P ∧ E = true, C1))
∪ γ2(P ∧ E = false)

We prove by “color” cases and for blue and green by induction in the size of the command.
If m′ is in sp2

o(γ
2(P), if E then C1), then there is a m such that :

- we are in the red case, then m′ is in γ2(sp2(P, if E then C1)) by his red set.
- we are in the blue case then m′ ∈ sp2

o(γ
2(P ∧ E = true), C1), then by induction hypothesis m′

is in the blue set of γ2(sp2(P, if E then C1))
- we are in the green case then m′ ∈ γ2(P ∧ E = false) and then m′ is in the green set of
γ2(sp2(P, if E then C1))

We can conclude that sp2
o(γ

2(P), if E then C1) ⊆ γ2(sp2(P, if E then C1))

47

C.9 while E do C1

Lemma If lfp
|=2

P λX. Q and lfp ⊆
γ2(P)λX. γ2(Q){γ(X) → X} exists then

γ2(lfp
|=2

P λX. Q) ⊇ lfp ⊆
γ2(P)λX. γ2(Q){γ(X) → X}

with {A → B} the syntactical substitution

Lemma’s proof : let’s define U = lfp
|=2

P λX. Q and F = λX. γ2(Q){γ(X) → X}

U is a fixpoint of λX. Q,

so U ≡2 Q{X → U}
then γ2(U) = γ2(Q{X → U})

= γ2(Q){γ2(X) → γ2(U)}
= γ2(Q){γ2(X) → X}{X → γ2(U)}
= F (γ2(U))

and so γ2(U) is a fixpoint of F and then γ2(U) ⊇ lfp F .2

sp2
o(γ

2(P), w E d C1) = (lfp ⊆

γ2(P)
λX. {m′ | ∃m. m ∈ X∧ (((m′ = Ωo∧ (m = Ωo

∨(m = s, h
∧ m |=2 ¬(E = E))))

∨(m = s, h ∧[[E]]s = True
∧m′ ∈ sp2

o(m, C1))
∨(m′ = m)

∩{m′ | (m′ |=2 E = false) ∨m′ = Ωo}

γ2(sp2(P, w E d C1)) = γ2(lfp
|=2

P λX. ((Err∧ (X
∨(∃2m.X ∧ ¬(E = E))))

∨sp2(X ∧ E = true, C1)
∨X)

∧(E = false ∨ Err))

So by the lemma we have that if the lfp s exist,
sp2

o(γ
2(P), while E do C1) ⊆ γ2(sp2(P, while E do C1)).

And if the lfp does not exist, γ2(sp2(P, while E do C1)) = γ2(E = false ∨ Err) in which
sp2

o(γ
2(P), while E do C1) is included since the ∩ and so we have sp2

o(γ
2(P), while E do C1) ⊆

γ2(sp2(P, while E do C1)).

48

Appendix D

Why this definition of [x\y]

D.1 Definition 1 : recursive

[x\y] ≡ ¬isloc(x) ∨ ¬isloc(y)
∨∃x1, x2, y1, y2.

(x ↪→ x1, x2) ∗ (y ↪→ y1, y2)
∧[x1\y] ∧ [x2\y] ∧ [x\y1] ∧ [x\y2]

This is obviously right.

But it does not allow to make proofs if we have cycles.

For example, to prove that :

[

x 7→ lx
y 7→ ly

]

,

[

lx 7→ lx, lx
ly 7→ ly, ly

]

|= [x\y]

We should prove that (among other things):

















x 7→ lx
y 7→ ly
x1 7→ lx
x2 7→ lx
y1 7→ ly
y2 7→ ly

















,

[

lx 7→ lx, lx
ly 7→ ly, ly

]

|= [x1\y]

and so on. So we would never end.

D.2 Definition 2

The idea here is that if two pointers can not reach a same location after several dereferencing, then
we could split the memory into two pieces that can not reach each other and that each one have
one of those pointers. Since BI have some connective ∗ that somehow split the memory, we would
like to use it. But in BI we have dangling pointers (some variables in the heap are assigned to
locations that are not in the heap domain), and specially ∗ do not split all the memory but only
the heap and so it create dangling pointers.

So we could try to split the memory and say that there are no new dangling pointers:

[x\y] ≡ ¬isloc(x) ∨ ¬isloc(y)
∨∃x1, x2, y1, y2.

(x ↪→ x1, x2 ∧ Nodangling2) ∗ (y ↪→ y1, y2 ∧ Nodangling2)

49

But it is a wrong definition.
For example, to prove that :

[

x 7→ lx
y 7→ ly

]

,

[

lx 7→ lx, lx
ly 7→ ly, ly

]

|= [x\y]

We should prove that (among other things):
















x 7→ lx
y 7→ ly
x1 7→ lx
x2 7→ lx
y1 7→ ly
y2 7→ ly

















,
[

lx 7→ lx, lx
]

|= x ↪→ x1, x2 ∧ Nodangling2

which is wrong since here we have y as a new dangling pointer, however [x\y] was holding.

D.3 Definition 3

Here we can see that they are two kind of dangling locations, the ones mentioned in the stack, and
the ones mentioned in the heap. We call those last ones the dangling2.

For example, in :

[

x 7→ lx
y 7→ ly

]

,
[

lx 7→ 1, lz
]

ly is a simple dangling location, while lz is a dangling2 location.

So our third definition will be :

[x\y] ≡ ¬isloc(x) ∨ ¬isloc(y)
∨∃x1, x2, y1, y2.

(x ↪→ x1, x2 ∧ Nodangling2) ∗ (y ↪→ y1, y2 ∧ Nodangling2)

So for example, to prove that :
[

x 7→ lx
y 7→ ly

]

,

[

lx 7→ lx, ly
ly 7→ ly, ly

]

|= [x\y]

we will have to prove that








x 7→ lx
y 7→ ly
x1 7→ lx
x2 7→ ly









,
[

lx 7→ lx, ly
]

|= x ↪→ x1, x2 ∧ Nodangling2

we have x ↪→ x1, x2 holding but not Nodangling2, since ly is a new dangling2 location, so as
expected we did not had [x\y].

But we still have a problem .
For example, if we want to prove that

[

x 7→ lx
y 7→ ly

]

,

[

lx 7→ lx, lz
ly 7→ ly, lz

]

|= [x\y]

we will have to prove that








x 7→ lx
y 7→ ly
x1 7→ lx
x2 7→ lz









,
[

lx 7→ lx, lz
]

|= x ↪→ x1, x2 ∧ Nodangling2

50

which holds since lz the only dangling2 pointer was already dangling

and we would also have to prove that








x 7→ lx
y 7→ ly
y1 7→ ly
y2 7→ lz









,
[

ly 7→ ly, lz
]

|= y ↪→ y1, y2 ∧ Nodangling2

which holds for the same reason.

So we would conclude that [x\y] which is obviously not right.

D.4 Definition 4

So our next definition will be not to allow any dangling2.

[x\y] ≡ ¬isloc(x) ∨ ¬isloc(y)
∨∃x1, x2, y1, y2.

(x ↪→ x1, x2 ∧ Nodangling2) ∗ (y ↪→ y1, y2 ∧ Nodangling2)

But with this definition :
[

x 7→ lx
y 7→ ly

]

,

[

lx 7→ 1, 2
ly 7→ 3, 4lz 7→ lw, lw

]

|= ¬[x\y]

[x\y] will not hold since to prove it we will either have to prove that :








x 7→ lx
y 7→ ly
x1 7→ 1
x2 7→ 2









,
[

lx 7→ 1, 2lz 7→ lw, lw
]

|= x ↪→ x1, x2 ∧ Nodangling2

which does not hold because of lw
or either have to prove that:









x 7→ lx
y 7→ ly
y1 7→ 3
y2 7→ 4









,
[

ly 7→ 3, 4lz 7→ lw, lw
]

|= x ↪→ x1, x2 ∧ Nodangling2

which does not hold because of lw.
where we could want to say that :

[

x 7→ lx
y 7→ ly

]

,

[

lx 7→ 1, 2
ly 7→ 3, 4lz 7→ lw, lw

]

|= [x\y]

D.5 Definition 5

So our definition will split the memory (heap), into 3 piece, two for x and y with no dangling2 and
one for the rest.

[x\y] ≡ ¬isloc(x) ∨ ¬isloc(y)
∨∃x1, x2, y1, y2.

(x ↪→ x1, x2 ∧ Nodangling2) ∗ (y ↪→ y1, y2 ∧ Nodangling2) ∗ Nodangling2

And it will be ok for the previous example.
Remark : we need the Nodangling2 to hold also for the “rest” of the heap since otherwise, x

and y could not be able to reach each other but some other pointer might be able to reach both of
them.

51

D.6 A step to γP

Now that we got a definition of [x\y] that seems to works (it would be great to prove that the 5th
definition implies the first one, but with the way the first one is written, we have nothing decreasing
and so we can not prove anything), we have to define γP .

Since P is a set of [a\b], the first thing we thought to do was just,

γP (P) =
∧

[a\b]∈P

[a\b]

.
But if we look at spP (P, x = new(x)), we have ∀z. [x\z], which can obviously not be right with

our definition. For example if before the execution of x = new(x), we had y reaching a dangling2
pointer, the execution will not have changed it, and y will still be reaching a dangling2 pointer,
and we would not have [x\y].

So we have change the γP into:

γp(P) =
∧

[a\b]∈P

[a\b] ∧ Nodangling2∧ ∧

∀z“∈′′P

¬ isdangling(z)

which says that we only work on memory with no dangling and dangling2 pointers, which is
conserved after all our commands executions.

52

Appendix E

Substitutions formulas

E.1 [[E{E ′/x}]]s = [[E]]s[x 7→ [[E ′]]s] if [[E ′]]s exists

• [[x{E′/x}]]s = [[E′]]s = [[x]]s[x 7→ [[E′]]s]

• [[y{E′/x}]] = [[y]]s = [[y]]s[x 7→ [[E ′]]s]

• [[true{E′/x}]] = [[true]]s = true = [[true]]s[x 7→ [[E ′]]s]

• [[false{E′/x}]] = [[false]]s = false = [[false]]s[x 7→ [[E ′]]s]

• [[42{E′/x}]] = [[42]]s = 42 = [[42]]s[x 7→ [[E ′]]s]

• [[(E1 op E2){E′/x}]] = [[E1{E′/x} op E2{E′/x}]]s = [[E1{E′/x}]]s op [[E2{E′/x}]]s =
[[E1]]s[x 7→ [[E′]]s] op [[E2]]s[x 7→ [[E′]]s] = [[E1 op E2]]s[x 7→ [[E′]]s]

E.2 Proof that P [E/x] ≡ P{E/x}
Remember is(E′) ≡ E′ = E′ so s, h |= is(E′) iff [[E′]]s exists.

In this section we prove that the formula P [E ′/x] is not add to the BI syntax and it is just a
shortcut for P{E′/x} ∧ is(E′).

Recall that s, h |= P [E′/x] iff s[x 7→ [[E′]]s], h |= P .

By induction on the size of the proposition P :

• s, h |= (E1 = E2){E′/x} ∧ is(E′)
iff s, h |= E1{E′/x} = E2{E′/x} ∧ is(E′)
iff [[E1{E′/x}]]s = [[E2{E′/x}]]s and [[E′]]s exists
iff [[E1]]s[x 7→ [[E′]]s] = [[E2]]s[x 7→ [[E′]]s]
iff s[x 7→ [[E′]]s], h |= E1 = E2

iff s, h |= (E1 = E2)[E
′/x]

• s, h |= (E 7→ E1, E2){E′/x} ∧ is(E′)
iff s, h |= E{E′/x} 7→ E1{E′/x}, E2{E′/x} ∧ is(E′)
iff dom(h) = {[[E{E′/x}]]s} and h([[E{E′/x}]]s) = 〈[[E1{E′/x}]]s, [[E2{E′/x}]]s〉
and [[E′]]s exists
iff dom(h) = {[[E]]s[x 7→ [[E ′]]s]}
and h([[E]]s[x 7→ [[E′]]s]) = 〈[[E1]]s[x 7→ [[E′]]s], [[E2]]s[x 7→ [[E′]]s]〉
iff s[x 7→ [[E′]]s], h |= E 7→ E1, E2

iff s, h |= (E 7→ E1, E2)[E
′/x]

53

• s, h |= false{E ′/x} ∧ is(E′)
iff s, h |= false∧ is(E ′)
iff s[x 7→ [[E′]]s], h |= false

iff s, h |= false[E′/x]

• s, h |= (P ⇒ Q){E′/x} ∧ is(E′)
iff s, h |= (P{E′/x} ⇒ Q{E′/x}) ∧ is(E′)
iff [[E′]]s exists and If s, h |= P{E ′/x} then s, h |= Q{E′/x}
iff [[E′]]s exists and If s[x 7→ [[E′]]s], h |= P then s[x 7→ [[E′]]s], h |= Q
iff s[x 7→ [[E′]]s], h |= P ⇒ Q
iff s, h |= (P ⇒ Q)[E′/x]

• s, h |= (∃x. P){E′/x} ∧ is(E′)
iff s, h |= (∃x. P) ∧ is(E′)
iff ∃v.s[x 7→ v], h |= P and [[E′]]s exists
iff ∃v.s[x 7→ [[E′]]s][x 7→ v], h |= P and [[E′]]s exists
iff s[x 7→ [[E′]]s], h |= ∃x. P
iff s, h |= (∃x. P)[E′/x]

• s, h |= (∃y. P){E′/x} ∧ is(E′) with x 6= y
iff s, h |= (∃y. P{E′/x}) ∧ is(E′)
iff ∃v.s[y 7→ v], h |= P{E′/x} and [[E′]]s exists
iff ∃v.s[y 7→ v][x 7→ [[E′]]s], h |= P and [[E′]]s exists
iff ∃v.s[x 7→ [[E′]]s][y 7→ v], h |= P and [[E′]]s exists
iff s[x 7→ [[E′]]s], h |= ∃y. P
iff s, h |= (∃y. P)[E′/x]

• s, h |= emp{E′/x} ∧ is(E′)
iff s, h |= emp ∧ is(E′)
iff s[x 7→ [[E′]]s], h |= emp

iff s, h |= emp[E′/x]

• s, h |= (P ∗ Q){E′/x} ∧ is(E′)
iff s, h |= (P{E′/x} ∗ Q{E′/x}) ∧ is(E′)
iff ∃h0, h1. h0]h1, h0.h1 = h, s, h0 |= P{E′/x} and s, h1 |= Q{E′/x} and [[E′]]s exists
iff ∃h0, h1. h0]h1, h0.h1 = h, s[x 7→ [[E′]]s], h0 |= P and s[x 7→ [[E′]]s], h1 |= Q and [[E′]]s exists
iff s[x 7→ [[E′]]s], h |= (P ∗ Q)
iff s, h |= (P ∗ Q)[E′/x]

• s, h |= (P{E′/x} →∗Q{E′/x}) ∧ is(E′)
iff ∀h′. if h′]h and s, h′ |= P{E′/x} then s, h.h′ |= Q{E′/x} and [[E′]]s exists
iff ∀h′. if h′]h and s[x 7→ [[E′]]s], h′ |= P then s[x 7→ [[E′]]s], h.h′ |= Q and [[E′]]s exists
iff s[x 7→ [[E′]]s], h |= P →∗Q
iff s, h |= (P →∗Q)[E′/x]

E.3 Proof that y = E[E ′/x] ≡ y = (E{E ′/x}) ∧ is(E ′)

In this section we prove that the formula y = E[E ′/x] is not add to the BI syntax and it is just
a shortcut for y = (E{E ′/x}) ∧ is(E′).

Recall that s, h |= y = E[E ′/x] iff s(y) = [[E]]s[x 7→ [[E′]]s].

• s, h |= y = E{E′/x} ∧ is(E′)
iff [[y]]s = [[E{E′/x}]]s and [[E′]]s exists
iff s(y) = [[E{E′/x}]]s and [[E′]]s exists
iff s(y) = [[E]]s[x 7→ [[E′]]s] by E.1
iff s, h |= y = E[E′/x]

54

E.4 Proof that y = E[E ′/x].i ≡ y = (E{E ′/x}).i ∧ is(E ′)

In this section we prove that the formula y = E[E ′/x].i is not add to the BI syntax and it is
just a shortcut for y = (E{E ′/x}).i ∧ is(E′).

Actually, y = E.i is not a BI’s formula, but we write it as a shortcut for the formula ∃x1, x2. (E ↪→
x1, x2) ∧ (y = xi).

Recall that s, h |= y = E[E ′/x] iff s(y) = πi(h([[E]]s[x 7→ [[E2]]s])).

• s, h |= y = (E{E′/x}).i ∧ is(E′)
iff s, h |= ∃x1, x2. ((E{E′/x}) ↪→ x1, x2) ∧ (y = xi) ∧ is(E′)
iff ∃v1, v2. s[x1 7→ v1][x2 7→ v2], h |= ((E{E′/x}) ↪→ x1, x2) ∧ (y = xi) and [[E′]]s exists
iff ∃v1, v2. s[x1 7→ v1][x2 7→ v2], h |= ((E{E′/x}) ↪→ x1, x2) and s[x1 7→ v1][x2 7→ v2], h |= y =
xi and [[E′]]s exists
iff ∃v1, v2. s[x1 7→ v1][x2 7→ v2], h |= (E ↪→ x1, x2){E′/x}) and s(y) = vi and [[E′]]s exists
iff ∃v1, v2. s[x1 7→ v1][x2 7→ v2][x 7→ [[E′]]s], h |= (E ↪→ x1, x2)) and s(y) = vi, by E.2
iff ∃v1, v2. h([[E]]s[x1 7→ v1][x2 7→ v2][x 7→ [[E′]]s]) = 〈v1, v2〉 and s(y) = vi

iff ∃v1, v2. h([[E]]s[x 7→ [[E′]]s]) = 〈v1, v2〉 and s(y) = vi

iff s(y) = πi(h([[E]]s[x 7→ [[E′]]s]))
iff s, h |= y = E[E′/x].i

E.5 Proof that y 7→ E1[E
′/x], E2[E

′/x] ≡ y 7→ E1{E ′/x}, E2{E ′/x}∧
is(E ′)

In this section we prove that the formula y 7→ E1[E
′/x], E2[E

′/x] is not add to the BI syntax
and it is just a shortcut for y 7→ E1{E′/x}, E2{E′/x} ∧ is(E′).

Recall that s, h |= y 7→ E1[E
′/x], E2[E

′/x] iff dom(h) = {s(y)} and h(s(y)) = 〈[[E1]]s[x 7→
[[E′]]s], [[E2]]s[x 7→ [[E′]]s]〉.

• s, h |= y 7→ E1{E′/x}, E2{E′/x} ∧ is(E′)
iff dom(h) = {s(y)} and h(s(y)) = 〈[[E1{E′/x}]]s, [[E2{E′/x}]]s〉 and [[E′]]s exists
iff dom(h) = {s(y)} and h(s(y)) = 〈[[E1]]s[x 7→ [[E′]]s], [[E2]]s[x 7→ [[E′]]s]〉, by E.1
iff s, h |= y 7→ E1[E

′/x], E2[E
′/x]

55

Bibliography

[1] Cristiano Calcagno, Hongseok Yang, and Peter W. O’Hearn. Computability and complexity
results for a spatial assertion language for data structures. Lecture Notes in Computer Science,
2245:108–??, 2001.

[2] P. Cousot and R. Cousot. Static determination of dynamic properties of generalized type unions.
In ACM Symposium on Language Design for Reliable Software, Raleigh, North Calorina, ACM
SIGPLAN Notices 12(3):77–94, 1977.

[3] D. Galmiche and D. Méry. Connection-based proof search in propositional BI logic. In Int.
Conference on Automated Deduction, CADE’02, Copenhagen, Danemark, July 2002.

[4] Samin S. Ishtiaq and Peter W. O’Hearn. BI as an assertion language for mutable data structures.
In POPL’01, pages 14–26, 2001.

[5] P. W. O’Hearn and D. J. Pym. The logic of bunched implications. In Bulletin of Symbolic
Logic, June 1999.

[6] Peter O’Hearn, John Reynolds, and Hongseok Yang. Local reasoning about programs that alter
data structures. In LNCS 2142 c©Springer-Verlag, editor, Proceedings of CSL’01, pages 1–19,
Paris, 2001.

[7] John Reynolds. Separation logic : A logic for shared mutable data structures. In LICS’02,
Copenhagen, Denmark, July 22-25 2002.

[8] Hongseok Yang and Peter W. O’Hearn. A semantic basis for local reasoning. In Proceedings of
FOSSACS’02, 2002.

56

