
Development of
Web Applications
Principles and Practice

Vincent Simonet, 2013-2014
Université Pierre et Marie Curie, Master Informatique, Spécialité STL

Server
Technologies

Vincent Simonet, 2013-2014
Université Pierre et Marie Curie, Master Informatique, Spécialité STL

3

Today’s agenda

● Tasks of the Web Server,
● Java Servlets,
● Java Server Pages,
● Persistence and Data Storage.

Tasks of the Web
Server

HTTP Server Basics

The web server is a site-independent piece of
software that:
● Handles individual HTTP requests, and
● Generates HTTP responses.

Some common features:
● Virtual hosting,
● Large file support,
● Bandwidth throttling,
● Server-side scripting.

How to manage concurrency?

The HTTP server generally handles HTTP
requests separately. Concurrency /
synchronization is handled at the level of the
database:
● It is used to share information between all

requests,
● It ensures the consistency via the

transaction model.

CGI Common Gateway Interface

The historic method for web server software to
delegate the generation of web content to
executable files.

Introduced in 1993 (www-talk), formalized in
1997 (RFC 3875).

Web Servers like Apache support CGI scripts in
plenty of different languages (Perl, Python,
C++, Java, etc.)

http://tools.ietf.org/html/rfc3875

CGI: Example Script

#!/usr/bin/perl

print "Content-type: text/plain\r\n\r\n";

for my $var (sort keys %ENV) {
 my $value = $ENV{$var};
 $value =~ s/\n/\\n/g;
 $value =~ s/"/\\"/g;
 print qq[$var="$value"\n];
}

CGI: Example output
GATEWAY_INTERFACE="CGI/1.1"
HTTP_ACCEPT="text/html,application/xhtml+xml,application/xml;q=0.9,
/;q=0.8"
HTTP_ACCEPT_CHARSET="ISO-8859-1,utf-8;q=0.7,*;q=0.7"
HTTP_ACCEPT_ENCODING="gzip, deflate"
HTTP_ACCEPT_LANGUAGE="en-us,en;q=0.5"
HTTP_CONNECTION="keep-alive"
HTTP_HOST="example.com"
HTTP_USER_AGENT="Mozilla/5.0 (Windows NT 6.1; WOW64; rv:5.0)
Gecko/20100101 Firefox/5.0"
QUERY_STRING="var1=value1&var2=with%20percent%20encoding"
REMOTE_ADDR="127.0.0.1"
REMOTE_PORT="63555"
REQUEST_METHOD="GET"
REQUEST_URI="/cgi-bin/printenv.pl/foo/bar?var1=value1&var2=with%
20percent%20encoding"
SERVER_NAME="127.0.0.1"
SERVER_PORT="80"
SERVER_PROTOCOL="HTTP/1.1"
SERVER_SOFTWARE="Apache/2.2.19 (Win32) PHP/5.2.17"

CGI limitations and alternatives

In the original CGI approach, a new process is created for
every HTTP request calling the CGI script. This results in a
huge overhead, especially if the script needs to be
interpreted or compiled.
Several approaches are possible for remedying this:
● Extension mechanisms that allows third-party software

to run inside the server itself, such as Apache modules,
● FastCGI allows a single, long-running process to handle

more than one user request while keeping close to the
CGI programming model,

● Simple CGI (SCGI), similar to FastCGI,
● A more integrated model, like Java Servlets.

http://en.wikipedia.org/w/index.php?title=Apache_module&action=edit&redlink=1
http://en.wikipedia.org/wiki/FastCGI
http://en.wikipedia.org/wiki/Simple_Common_Gateway_Interface
http://en.wikipedia.org/wiki/Simple_Common_Gateway_Interface

Java Servlets

Definition

The servlet is a Java class used to extend the
capabilities of a server.
They can respond to any types of requests, but
they are commonly used to extend HTTP
servers.

Created by Sun Microsystems in 1997. Servlet
specification v3.0 released in 2009.

Servlet Container

The component of a web server that interacts
with the servlets. The web container is
responsible for managing the lifecycle of
servlets, mapping a URL to a particular servlet
and ensuring that the requester has the correct
access rights.
The Servlet API, contained in the Java package
hierarchy javax.servlet, defines the
expected interactions of the web container and
a servlet.

Life cycle of a Servlet (1/4)

1. Assume that a user requests to visit a URL.
○ The browser then generates an HTTP request for

this URL.
○ This request is then sent to the appropriate server.

2. The HTTP request is received by the web
server and forwarded to the servlet
container.
○ The container maps this request to a particular

servlet.
○ The servlet is dynamically retrieved and loaded into

the address space of the container.

Life cycle of a Servlet (2/4)

3. The container invokes the init() method of
the servlet.
○ This method is invoked only when the servlet is first

loaded into memory.
○ It is possible to pass initialization parameters to the

servlet so that it may configure itself.
4. The container invokes the service() method

of the servlet.
○ This method is called to process the HTTP request.
○ The servlet may read data that has been provided in

the HTTP request.
○ The servlet may generate an HTTP response.

Life cycle of a Servlet (3/4)

5. The servlet remains in the container's
address space and is available to process
any other HTTP requests received from
clients.
○ The service() method is called for each HTTP

request.
6. The container may, at some point, decide to

unload the servlet from its memory.
○ The algorithms by which this decision is made are

specific to each container.

Life cycle of a Servlet (4/4)

○
8. The container calls the servlet's destroy()

method to relinquish any resources such as
file handles that are allocated for the servlet;
important data may be saved to a persistent
store.

9. The memory allocated for the servlet and its
objects can then be garbage collected.

HttpServlet Interface
public abstract class HttpServlet extends
GenericServlet {
 public HttpServlet();

 protected void doGet(HttpServletRequest req,
 HttpServletResponse resp)
 throws ServletException, IOException;

 // Similar methods doHead, doPost, doPut,
 // doDelete, doOptions and doTrace

 protected void service(HttpServletRequest req,
 HttpServletResponse resp)
 throws ServletException, IOException;
}

Source file

http://svn.apache.org/repos/asf/tomcat/tc7.0.x/trunk/java/javax/servlet/http/HttpServlet.java
http://svn.apache.org/repos/asf/tomcat/tc7.0.x/trunk/java/javax/servlet/http/HttpServlet.java

HttpServletRequest Interface
public interface HttpServletRequest extends ServletRequest {

 public Cookie[] getCookies();

 public String getHeader(String name);

 public String getParameter(String name);

 public BufferedReader getReader() throws IOException;

 public Collection<Part> getParts() throws IOException,

 IllegalStateException, ServletException;

 ...

}

Source file

http://svn.apache.org/repos/asf/tomcat/tc7.0.x/trunk/java/javax/servlet/http/HttpServletRequest.java
http://svn.apache.org/repos/asf/tomcat/tc7.0.x/trunk/java/javax/servlet/http/HttpServletRequest.java

HttpServletResponse Interface
public interface HttpServletResponse extends ServletResponse {

 public void addCookie(Cookie cookie);

 public String encodeURL(String url);

 public void sendError(int sc, String msg) throws IOException;

 public void sendRedirect(String location) throws IOException;

 public void setHeader(String name, String value);

 public void setStatus(int sc);

 public void setContentType(String type);

 public ServletOutputStream getOutputStream()

 throws IOException;

 public PrintWriter getWriter() throws IOException;

 ...

}

Source file

http://svn.apache.org/repos/asf/tomcat/tc7.0.x/trunk/java/javax/servlet/http/HttpServletResponse.java
http://svn.apache.org/repos/asf/tomcat/tc7.0.x/trunk/java/javax/servlet/http/HttpServletResponse.java

Servlet Example
public class ExampServlet extends HttpServlet {
 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();

 out.println("<title>Example</title><body>");
 out.println("<h2>Button Clicked</h2>");
 String DATA = request.getParameter("DATA");
 if(DATA != null){
 out.println(DATA);
 } else {
 out.println("No text entered.");
 }
 out.println("<p>Return to home");
 out.close();
 }
}

Asynchronous Processing

In regular Java Servlets, the processing of a
request blocks the execution of the server
thread. This is not efficient even if the server is
multi-threaded.
Asynchronous Java Servlets allow to call
external threads/services without blocking the
server thread.
See tutorial.

http://docs.oracle.com/javaee/7/tutorial/doc/servlets012.htm

Synchronous vs Asynchronous

1 1

Request #1 Response
#1

1

Server thread

External service

Request #2

2 2

Response #2

2

Synchronous Servlet

1 1

Request #1 Response
#1

1

Server thread

External service

Request #2

2 2

Response #2

2

Asynchronous Servlet

Filters

A filter is a reusable piece of code that modifies
or adapt requests or responses of a servlet.

Examples:
● Authentication,
● Logging and auditing,
● Image conversion,
● Data compression,
● Encryption,
● Caching, etc.

Filters (cont.)

Servlet

Fi
lte

r #
1

Fi
lte

r #
n

...

Request

Fi
lte

r #
1

Fi
lte

r #
m

...

Response

Sessions

Sessions allow storing information on server
side between several requests (despite the
stateless nature of the HTTP protocol).
A session can be tracked either:
● by a cookie (sent by the server in a

response, and returned by the browser at
every request), or

● by URL rewriting (adding a session ID at the
end of every URL).

HttpSession

The class HttpSession provides a high-level
interface built on top of cookies or URL-
rewriting.

You can get the HttpSession object associated
with a request using request.getSession
(true)

Example of session
public class SessionCount extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 HttpSession session = request.getSession(true);
 response.setContentType("text/text");
 PrintWriter out = response.getWriter();
 Integer count = new Integer(0);;
 if (session.isNew()) {
 out.println("Welcome, Newcomer");
 } else {
 out.println("Welcome Back");
 Integer previousCount =
 (Integer) session.getValue("count");
 if (oldAccessCount != null) {
 count =
 new Integer(previousCount.intValue() + 1);
 }
 }
 session.putValue("count", count);
 out.println("Counter: " + count.toString());
 }

Common issues with sessions

● Threading,
● Distribution,
● Sharing on client side.

Apache Tomcat

Open Source Web Server and Servlet
Container, implementing the Java Servlet and
the JSP specifications.
Main components:
● Catalina: Servlet Container,
● Coyote: HTTP connector,
● Jasper: JSP engine,
● Cluster: load balancing.
Version 3 (first) in 1999, version 7 (last) in
2011.

Web application

A web application is a set of Servlet classes
and possibly other resources which are packed
into a .war file, and served by a servlet
container.

The overall definition of the web application is
contained in a web.xml file.

web.xml
<web-app xmlns="..."
 xmlns:xsi="..."
 xsi:schemaLocation="..."
 version="3.0"
 metadata-complete="true">
 <servlet>
 <servlet-name>MyServlet</servlet-name>
 <servlet-class>example.MyServlet</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>MyServlet</servlet-name>
 <url-pattern>/my</url-pattern>
 </servlet-mapping>
</web-app>

JSP
Java Server Pages

Definition

A technology that helps software developers
create dynamically generated web pages
based on HTML, XML, or other document
types.

Similar to PHP, but using Java and a servlet
container.

JSP are converted into Servlet at runtime (and
hence require a servlet container to run).

Example of JSP code
<html>
 <head></head>
 <body>

 <jsp:include page="header.jsp" >
 <jsp:param name="title"
 value="Example" />
 </jsp:include>

 <p>Counting to three:</p>
 <% for (int i=1; i<4; i++) { %>
 <p>This number is <%= i %>.</p>
 <% } %>
 <p>OK.</p>

 </body>

</html>

JSP Tag Extension API

JSP:
<%@ taglib uri="/WEB-INF/taglib.tld"
 prefix="mytaglib" %>

<mytaglib:hello name="Bob">

 You're welcome :)

</mytaglib:hello>

JSP Tag Extension API

TLD:
<tag>
 <name>hello</name>
 <tagclass>HelloTag</tagclass>
 <bodycontent>JSP</bodycontent>
 <attribute>
 <name>name</name>
 </attribute>
</tag>

JSP Tag Extension API

JAVA:
public class HelloTag extends TagSupport {
 private String name = null;
 public void setName (String string) {
 this.name = string;
 }

 public int doStartTag() throws JspException {
 pageContext.getOut().println(
 "Hello " + this.name + " !");
 return EVAL_BODY_INCLUDE;
 }
}

Persistence and
Data Storage:
Relational Databases

What is persistence?

Most web applications need to store
information between sessions. This information
should be stored on server side, so that it can
be retrieved from different clients.

The database is the common memory of a web
application. This is also the main
synchronization point!

The most common solution:
Relational databases

A relational database is a set of tables,
consisting of fixed columns (the fields) and an
arbitrary number of rows (the entries).

Relational database (cont.)
The database typically brings:
● Tables,
● Primary and foreign keys, indexing,
● Query language (SQL),
● Transactions,

Examples of relational database management systems
(RDBMS): MySQL, HSQLDB, etc.

When using a relational database in a web application,
one has to be careful about:
● The indexing of fields used as keys,
● The complexity of queries.

The problem...

Relational
database

Object
model

The solution?

Relational
database

Object
model

Object-relational
mapping

Object-relational mapping

First idea: one row of the table == one object

int id string name date
birthdate

42 Bob 2013-01-01

class Person {
 int id;
 String name;
 Date birthdate;
}

Table Persons

Typical issues

● Type mismatches between programming
languages,

● How to find the row from the object, and
vice-versa?

● How to keep the object and the row in sync?
● How to represent collections?
● How to share sub-objects?
● How to represent inheritance?

How to find the row from the object,
and vice-versa?

Use primary keys

int id string name date
birthdate

42 Bob 2013-01-01

class Person {
 int id;
 String name;
 Date birthdate;
}

Table Persons

How to keep the object and the row
in sync?

Use set/get methods
update method

class Track {

 String title;

}

How to represent collections?
class Album {

 String title;

 Collection<Track> tracks;

}

int id string title

42 Album 1

43 Album 2

Table Album

int id string title int album

101 Track 1 42

102 Track 2 42

103 Track 3 42

104 Track 1 43

Table Track

How to represent collections? (cont)

int id string title

42 Album 1

43 Album 2

Table Album

int id string title

101 Track 1

102 Track 2

103 Track 3

Table Track

int album int track

42 101

42 102

42 103

43 101

Table Album2Track

How to represent inheritance?

Several techniques:
● Separate tables,
● Table inheritance,
● Unique table with discriminant.

Relational database: Java

● JDBC (Java DataBase Connectivity):
○ The Servlet code uses the JDBC API to access the

contents of the database,
○ The JDBC driver takes care of translating the API

calls into SQL requests for the RDBMS.
● Hibernate:

○ Mapping from Java classes to database tables,
○ Data query and retrieval facilities (HQL).

Hibernate: example of Java class
public class Person {
 private int id, age;
 private String name;

 public Person() {}
 public Person(String name, int age) {
 this.name = name;
 this.age = age;
 }
 public int getId() { return id; }
 public void setId(int id) { this.id = id; }
 public String getName() { return firstName; }
 public void setName(String name) { ... }
 public int getAge() { return age; }
 public int setAge(int age) { this.age = age; }
}

Hibernate: create table

create table PERSON (
 id INT NOT NULL auto_increment,
 name VARCHAR(20) default NULL,
 age INT default NULL,
 PRIMARY KEY (id)
);

Hibernate: example of mapping file
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE hibernate-mapping PUBLIC ...>

<hibernate-mapping>
 <class name="Person" table="PERSON">
 <meta attribute="class-description">...</meta>
 <id name="id" type="int" column="id">
 <generator class="native"/>
 </id>
 <property name="name" column="name"
 type="string"/>
 <property name="age" column="age" type="int"/>
 </class>
</hibernate-mapping>

Persistence and
Data Storage:
NoSQL Databases

NoSQL

A cover name for database technologies which
use less constrained consistency models than
traditional relational databases.

NoSQL databases are often highly optimized
key–value stores.

Example: MongoDB.

MongoDB

Document-oriented database system.
Free and open source software.
First developed in 2007, shift to open source in
2009.
Adopted by a number of major websites
including eBay, Foursquare and SourceForge.

MongoDB: Document-Oriented (1/2)

A MongoDB database is a set of collections
(which stand for tables in relational DB), consisting
of documents (which stand for records).

The data schema is flexible:
● documents in the same collection do not need

to have the same set of fields or structure, and
● common fields in a collection’s documents may

hold different types of data.

Atomicity is guaranteed at the level of the
document.

MongoDB: Document-Oriented (2/2)

MongoDB documents are JSON objects, which are
represented in a binary form called "BSON".

The advantages of using documents are:
● Documents correspond to native data types in

many programming language.
● Embedded documents reduce need for joins.
● Dynamic schema supports polymorphism.

Document-oriented database encourage storing information
in a de-normalized way, in order to avoid multiple lookups.

MongoDB: (De-)normalization

De-normalized:
{id: 42,
 title: "album 1",
 tracks: [
 {id: 101,
 title: "track 1"},
 {id: 102,
 title: "track 2"},
 {id: 103,
 title: "track 3"}
]
}

Normalized:
{id: 42,
 title: "album 1",

 tracks: [101, 102, 103]}

{id: 101,
 title: "track 1"},

{id: 102,
 title: "track 2"}

{id: 103,
 title: "track 3"}

MongoDB: Index (1/2)

Indexes are special data structures that store a
small portion of the collection’s data set in an
easy to traverse form.

The index stores the value of a specific field or
set of fields, ordered by the value of the field.

All MongoDB collections have an index on the
_id field that exists by default.

MongoDB: Index (2/2)

MongoDB: Replication (1/2)

Replication provides redundancy and increases
data availability. With multiple copies of data on
different database servers, replication protects
a database from the loss of a single server.
In some cases, replication can be used to
increase read capacity. Clients have the ability
to send read and write operations to different
servers. Copies can also be maintained at
different locations.

MongoDB: Replication (2/2)

MongoDB: Sharding (1/2)

Sharding allows users to
partition a collection within a
database to distribute the
collection’s documents across
a number of MongoDB
instances or shards.
The shard key determines
how data is distributed among
shards. Selecting the proper
shard key has significant
implications for performance.

MongoDB: Sharding (2/2)
Range-based sharding:

Hash-based sharding:

MongoDB: Map-Reduce

