
Development of
Web Applications
Principles and Practice

Vincent Simonet, 2013-2014
Université Pierre et Marie Curie, Master Informatique, Spécialité STL

Communication

Vincent Simonet, 2013-2014
Université Pierre et Marie Curie, Master Informatique, Spécialité STL

2

Today’s agenda

● HTTP (HyperText Transfer Protocol),
● RPC (Remote Procedure Call),
● REST (Representational State Transfer).

HTTP
Hypertext Transfer Protocol

History

HTTP is the main protocol of the World Wide
Web. It was invented between March 1989 and
December 1990 by Berners-Lee, together with
HTML.

1991: HTTP 0.9
1996: HTTP 1.0 (RFC 1945)
1997: HTTP 1.1 (RFC 2068)
1999: HTTP 1.1 improved (RFC 2616)

http://tools.ietf.org/html/rfc1945
http://tools.ietf.org/html/rfc2068
http://tools.ietf.org/html/rfc2616

Main characteristics

● Application layer protocol,
● Asymmetric (the client submits a request to

the server which answers with a response),
● Stateless,
● Handle caches and proxies.

Request

Structure:
● Command: <method>␣<URI>␣HTTP/<version>
● Headers: <name>:␣<value>
● Empty line
● Body (when applicable)

Example:
GET /foo?id=1&name=bar HTTP/1.1

User-Agent: Mozilla/5.0

Accept: text/html

EOF

URL Universal Resource Locator

scheme://domain[:port]/path[?query_string]
 [#fragment_id]

● Scheme: underliying protocol (e.g. http),
● Host: name or IP address of the server,
● Port: port number of the server,
● Path: path of the resources on the server,
● Query-string: dynamic parameters associated

with the request,
● Fragment identifier: a part or a position within

the overall resource or document.

Most used:
● GET: Retrieves an URI.
● HEAD: Same as GET, but without response body.
● POST: Requests that the server accept the enclosed entity

enclosed as a new subordinate of the resource identified by the
URI.

● OPTIONS: Returns the HTTP methods that the server supports for
the specified URI.

Also used by REST:
● PUT: Requests that the enclosed entity be stored under the

supplied URI.
● DELETE: Deletes the specified resource.
● PATCH: Applies partial modifications to a resource.

Others: CONNECT and TRACE.

Request Methods

Safe request methods should not change the state of the server. They
should be idempotent.

Safe Request Methods

Safe methods Unsafe methods

GET POST

HEAD PUT

OPTIONS DELETE

TRACE TRACE

CONNECT

PATCH

Unsafe Methods

Expected format:
Accept: text/plain

Accept-Language: en-US

Accept-Encoding: gzip, deflate

Cache:
Cache-Control: no-cache

If-Modified-Since: Sat, 29 Oct 1994 19:43:31 GMT

Proxy:
Host: en.wikipedia.org:80

Max-Forwards: 10

Proxy-Authorization: Basic QWxhZGRpbjpvcGVuIH==

Via: 1.0 fred, 1.1 example.com (Apache/1.1)

Request Headers (1/2)

Content:
Content-Length: 348

Content-Type: text/html; charset=utf-8

Content-MD5: Q2hlY2sgSW50ZWdyaXR5IQ==

Meta:
Date: Tue, 15 Nov 1994 08:12:31 GMT

User-Agent: Mozilla/5.0

Referer: http://en.wikipedia.org/wiki/Main_Page

Session:
Cookie: Version=1; Skin=new;

Authorization: Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==

Connection: keep-alive

DNT: 1 (Do Not Track Enabled) [non standard]

Request Headers (2/2)

Structure:
● Command:

HTTP/<version>␣<status>␣<reason>
● Headers: <name>:␣<value>
● Empty line
● Body (when applicable)

Example:
HTTP/1.1 200 OK
Content-Type: text/html; charset=UTF-8

<html>
 ...

Response

Response Status Codes (1/2)

1xx: Informational (Request received, continuing process.)
2xx: Success (The action requested by the client was received,
understood, accepted and processed successfully.)

200: OK
3xx: Redirection (The client must take additional action to
complete the request.)

301: Moved Permanently (use GET)
303: See Other (use GET)
307: Temporary Redirect (use same method)
308: Permanent Redirect (use same method)

Response Status Codes (2/2)

4xx: Client Error (The client seems to have erred.)
400: Bad Request
403: Forbidden
404: Not Found

5xx: Server Error (The server failed to fulfill an apparently valid
request.)

500: Internal server error.
501: Not implemented.
503: Service Unavailable.

(The above list includes only the most common codes for each category.)

Content:
Content-Type: text/html; charset=utf-8

Content-Encoding: gzip

Content-Language: da

Content-Length: 348

Content-Location: /index.html

Cache:
Cache-Control: no-cache

ETag: "737060cd8c284d8af7ad3082f209582d"

Expires: Thu, 01 Dec 1994 16:00:00 GMT

Last-Modified: Tue, 15 Nov 1994 12:45:26 +0000

Response Headers (1/2)

Proxy:
Age: 12

Via: 1.0 fred, 1.1 example.com (Apache/1.1)

Meta:
Allow: GET, HEAD

Date: Tue, 15 Nov 1994 08:12:31 GMT

Location: http://www.w3.org/pub/WWW/People.html

Retry-After: 120

Server: Apache/2.4.1 (Unix)

Session:
Set-Cookie: UserID=X; Max-Age=3600; Version=1

Connection: keep-alive

DNT: 1 (Do Not Track Enabled) [non standard]

Response Headers (2/2)

RPC
Remote Procedure Call

Definition

A remote procedure call (RPC) is an inter-
process communication that allows a
computer program to cause a subroutine or
procedure to execute in another address
space (commonly on another computer on a
shared network) without the programmer
explicitly coding the details for this remote
interaction.

Principle
General principle: a server provides a service which
● can be called from a client,
● may take parameters,
● may return a value.

This usually comes with:
● A service (or service provider) directory,
● A typed interface for every service, specific or not to a

programming language,
● An integration to one or several programming languages (remote

call ~ function call)
Purposes:
● Distributed programming,
● Inter-process communication,
● Web services.

RPC: Sequence of Events

1. The client calls the client stub. The call is a local procedure
call, with parameters pushed on to the stack in the normal
way.

2. The client stub packs the parameters into a message and
makes a system call to send the message. Packing the
parameters is called marshalling.

3. The client's local operating system sends the message from
the client machine to the server machine.

4. The local operating system on the server machine passes
the incoming packets to the server stub.

5. The server stub unpacks the parameters from the message.
Unpacking the parameters is called unmarshalling.

6. Finally, the server stub calls the server procedure. The reply
traces the same steps in the reverse direction.

RPC: Code generation

Difficulties

In practice, a Remote Procedure Call is very
similar to a normal function call, but:
● Information transfer is asynchronous,
● Error may happen in the information transfer,
● Data is copied,
● Communication can be costly,
● Security issues.

Main Choices

● Service description:
○ Description languages (IDL, XML, etc.),
○ Source code annotations (e.g. in Java),
○ No service description (reflexivity).

● Serialization:
○ Binary vs text,
○ How to manage pointers/functions?
○ Security (authentication, confidentiality, etc.)
○ Versioning.

● Transport:
○ Synchronous (e.g. HTTP) or asynchronous (e.g.

SMTP)

History

1976: Description of the RPC principle in RFC 707
1981: Courier, by Xerox (first commercial
application)
1986: RPC/XDR by Sun (RFC 1057) for NFS
1997: Java RMI
1998: XML-RPC (Dave Winer, Microsoft)
1998: SOAP
2001: WSDL & UDDI
2005: JSON-RPC

http://tools.ietf.org/html/rfc707
http://tools.ietf.org/html/rfc707
http://docs.oracle.com/javase/7/docs/platform/rmi/spec/rmiTOC.html

XML-RPC

● The client sends an HTTP request to the
server. The request body is an XML
document specifying a single call to a
method (method name + parameters).

● The server replies with a response whose
body contains an XML document.

● Structured values can be encoded in the
XML documents.

XML-RPC: Request example
<?xml version="1.0"?>
<methodCall>
 <methodName>example.getResult</methodName>
 <params>
 <param>
 <value><int>40</int></value>
 </param>
 <param>
 <value>
 <array>
 <data>
 <value><i4>1404</i4></value>
 <value><string>...</string></value>
 <value><i4>1</i4></value>
 </data>
 </array>
 </value>
 </param>
 </params>
</methodCall>

XML-RPC: Response example
<?xml version="1.0"?>
<methodResponse>
 <params>
 <param>
 <value><string>Result value</string></value>
 </param>
 </params>
</methodResponse>

JSON-RPC

● The same, but replacing XML by JSON.
● Became popular as JSON is easy to handle

in JavaScript.

Example of JSON-RPC
Request:
{"jsonrpc": "2.0",

 "method": "subtract",

 "params": {"subtrahend": 23, "minuend": 42},

 "id": 3}

Response:
{"jsonrpc": "2.0",

 "result": 19,

 "id": 3}

Error response:
{"jsonrpc": "2.0",

 "error": {"code": -32601, "message": "..."},

 "id": 10}

SOAP / WSDL / UDDI

SOAP Simple Object Access Protocol

SOAP provides a basic messaging framework
upon which web services can be built.

It has three major characteristics:
● Extensibility (e.g. adding security features),
● Neutrality (can be used over any transport

protocol),
● Independance (allows for any programming

model).

SOAP Message Format

A SOAP message is an XML document containing the
following elements:
● Envelope: Identifies the XML document as a SOAP

message (required).
● Header: Contains header information (optional).
● Body: Contains call and response information

(required).
● Fault: Provides information about errors that occurred

while processing the message (optional).

SOAP Transport Methods

HTTP
HTTPS
SMTP (not really used)

Example of SOAP request
(over HTTP)
POST /InStock HTTP/1.1

Host: www.example.org

Content-Type: application/soap+xml; charset=utf-8

<?xml version="1.0"?>

<soap:Envelope xmlns:soap="...">

 <soap:Body xmlns:m="...">

 <m:GetStockPrice>

 <m:StockName>IBM</m:StockName>

 </m:GetStockPrice>

 </soap:Body>

</soap:Envelope>

Example of SOAP response
(over HTTP)
HTTP/1.1 200 OK

Content-Type: application/soap+xml; charset=utf-8

<?xml version="1.0"?>

<soap:Envelope xmlns:soap="...">

 <soap:Body xmlns:m="...">

 <m:GetStockPriceResponse>

 <m:Price>34.5</m:Price>

 </m:GetStockPriceResponse>

 </soap:Body>

</soap:Envelope>

Comparison to JSON/XML

● SOAP is capable of representing general graph
structures, not just tree structures, of objects.

● SOAP messages can be sent to multiple recipients.
● SOAP has the ability to encrypt parts of the message so

that some recipients but not others can see those parts.
(This ability is standardised in XML too but not JSON).

● SOAP has guaranteed message delivery - if a
connection is severed, it will try to re-send the message.

● Naturally this all comes at a cost of increased
complexity.

WSDL Web Services Description Language

WSDL is an XML-based interface description
language that is used for describing the
functionality offered by a web service.

A WSDL description of a web service (WSDL
file) provides a machine-readable description of
how the service can be called, what parameters
it expects, and what data structures it returns.

WSDL is often used in combination with SOAP.

WSDL objects

WSDL objects
● Service: Contains a set of system functions that are exposed to the

protocols.
● Endpoint: Defines the address or connection point to the service.

Typically a simple URL.
● Binding: Specifies the interface and defines the SOAP binding

style (RPC/Document) and transport (SOAP Protocol). It also
defines the operations.

● Interface: Defines a service, the operations that can be performed,
and the messages that are used to perform the operation.

● Operation: Defines the SOAP actions and the way the message is
encoded, for example, "literal". Like a method or function in a
traditional programming language.

● Type: Describes the data. The XML Schema language (XSD) is
used.

WSDL example
<message name="GetStockPriceRequest">

 <part name="StockName" type="xs:string"/>

</message>

<message name="GetStockPriceResponse">

 <part name="Price" type="xs:double"/>

</message>

<portType name="GetStockPrices">

 <operation name="GetStockPrice">

 <input message="GetStockPriceRequest"/>

 <output message="GetStockPriceResponse"/>

 </operation>

</portType>

WSDL example: SOAP binding
<binding type="glossaryTerms" name="b1">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation>
 <soap:operation
 soapAction="http://example.com/GetStockPrice"/>

<input><soap:body use="literal"/></input>
 <output><soap:body use="literal"/></output>
 </operation>
</binding>

UDDI Universal Description Discovery & Integration

UDDI is a platform-independent, XML-based
registry by which businesses worldwide can list
themselves on the Internet, and a mechanism
to register and locate web service applications.

Most commonly found inside companies, where
they are used to dynamically bind client
systems to implementations

UDDI Structure

● White pages: businesses directory (name,
contact, etc.).

● Yellow pages: classification of services and
businesses based on standard taxonomies.

● Green pages: how to access the services.

REST
Representational State Transfer

What is REST?

A style of architecture for client/server protocol.

In REST, requests and responses are built around the
transfer of representations of resources. A resource can
be essentially any coherent and meaningful concept that
may be addressed. A representation of a resource is
typically a document that captures the current or intended
state of a resource.

Introduced and defined in 2000 by Roy Fielding in his
doctoral dissertation.

REST constraints (1/2)

● Client/Server. A uniform interface separates clients
from servers, which have different concerns. E.g.
clients are not concerned by storage while servers
are not concerned with the user interface.

● Stateless. No client context being stored on the
server between requests. Each request from any
client contains all of the information necessary to
service the request, and session state is held in the
client.

● Cacheable. Clients can cache responses. Responses
must therefore, implicitly or explicitly, define
themselves as cacheable, or not.

REST constraints (2/2)

● Layered system. A client cannot ordinarily tell
whether it is connected directly to the end server, or
to an intermediary along the way.

● Code on demand (optional). Servers can
temporarily extend or customize the functionality of a
client by the transfer of executable code.

● Uniform interface. The uniform interface between
clients and servers, discussed on next slide, simplifies
and decouples the architecture, which enables each
part to evolve independently.

A service fulfilling these constraints is said to be
RESTful.

REST Uniform Interface

● Identification of resources. Individual resources are
identified in requests, for example using URIs.

● Manipulation of resources through
representations, which are conceptually separate
from the resources.

● Self-descriptive messages. Each message includes
enough information to describe how to process the
message.

● Hypermedia as the engine of application state.
Clients make state transitions only through actions
that are dynamically identified within hypermedia by
the server.

RESTful Web API

A RESTful Web API (or RESTful Web Service)
is an API implemented using REST principles
and HTTP. It is a collection of resources with
four defined aspects:
● the base URI for the web API,
● the Internet media type of the data

supported by the web API,
● the set of operations supported by the web

API using HTTP methods,
● The API must be hypertext driven.

Example 1: Google Maps API
http://maps.googleapis.com/maps/api/geocode/json?
address=4+Place+Jussieu+Paris&sensor=false

{
 "results" : [
 {
 "address_components" : [...],
 "formatted_address" : "4 Place Jussieu,
Université Pierre et Marie Curie, Université
Jussieu, 75005 Paris, France",
 "geometry" : {
 "location" : {
 "lat" : 48.8464111,
 "lng" : 2.3548468
 },
 ...

http://maps.googleapis.com/maps/api/geocode/json?address=4+Place+Jussieu+Paris&sensor=false
http://maps.googleapis.com/maps/api/geocode/json?address=4+Place+Jussieu+Paris&sensor=false
http://maps.googleapis.com/maps/api/geocode/json?address=4+Place+Jussieu+Paris&sensor=false

Example 2: Google Drive API

GET https://.../drive/v2/files/fileId
POST https://.../upload/drive/v2/files
PUT https://.../upload/drive/v2/files/fileId
DELETE https://.../drive/v2/files/fileId
POST https://.../drive/v2/files/fileId/copy

(... == www.googleapis.com)

RESTful API in practice

Four operations (CRUD), implemented by four
HTTP methods:
● Create (POST),
● Read (GET),
● Update (PUT),
● Delete (DELETE).
Failure/Success: HTTP status code.

Resources are identified by URI, and
represented in XML, JSON, YAML, ...

RSDL RESTful Service Description Language

This is similar to WSDL, for RESTful Web APIs.

Interaction Model:
● SOAP: exchanges

○ The server keeps data about the session,
○ Messages contain only what they express.

● REST: independent operations
○ Stateless server,
○ Messages must carry context.

Usages:
● SOAP: Transactional services,
● REST: Data or document exchanges.

Services vs Resources

Versioning

A practical issue which has to be handled in
both approaches.
In a client/server application, it is usually not
posssible to deploy evolutions on all servers
and all clients at the same time.

Two main approaches:
● Ensuring backward compatibility,
● Including version numbers in requests.

