
Development of
Web Applications
Principles and Practice

Vincent Simonet, 2013-2014
Université Pierre et Marie Curie, Master Informatique, Spécialité STL

Architecture of
Web Applications

Vincent Simonet, 2013-2014
Université Pierre et Marie Curie, Master Informatique, Spécialité STL

1

Objectives of the course

● Have an overall knowledge of the principles
and technologies for the development of
web applications.

● Practice by developing one complete web
application.

Objectives of the course

The challenge: There is a multitude of technologies
for developing web applications.

The solution: Explain principles, give an overview of
the market, and focus on one example: Java Servlets.

Why Java Servlets?
● Widely used,
● Java,
● Basic mechanisms remain visible,
● Cloud hosting is possible.

Contents

1. Architecture of web applications
2. Communication
3. Server Technologies
4. Client Technologies
5. Web Development Frameworks
6. Practical Aspects
7. Project Presentations

Prerequisites

● Java programming,
● Basics in HTML and CSS,
● Basics in JavaScript.

If you're not familiar with these technologies,
follow the tutorials referenced in the lecture
notes.

Evaluation

● Continuous evaluation: 50% (surprise tests!)
● Project: 50%

Missing a test without acceptable justification
= 0

References and Further Reading

Books:
● A few general books (see the list in the

lecture notes),
● A multitude a technology-specific books!

The best documentation is probably on the
web! (and free :) See in the lecture notes
(especially Wikipedia).

Contact information

vincent.simonet@vtst.net

http://www.normalesup.org/
~simonet/teaching/upmc-master

mailto:vincent.simonet@vtst.net
mailto:vincent.simonet@vtst.net
http://www.normalesup.org/~simonet/teaching/upmc-master
http://www.normalesup.org/~simonet/teaching/upmc-master
http://www.normalesup.org/~simonet/teaching/upmc-master
http://www.normalesup.org/~simonet/teaching/upmc-master

Web
applications?

Client/server: a software definition

Servers (a.k.a. services or daemons) execute
by waiting for requests from client programs to
arrive, and then processing those requests.

Client programs might be applications used by
human beings, or they could be servers that
need to make their own requests.

Client/server: a hardware definition

Client/server Peer-to-peer

What is a web application?

It is a client/server application that uses a web
browser as its client program, and performs an
interactive service by connecting with servers
over the Internet (or Intranet).
A web site simply delivers content from static
files. A web application presents dynamically
tailored content based on request parameters,
tracked user behaviors, and security
considerations.

Examples of web applications

Benefits

● Easy to deploy and upgrade,
● Cross-platform compatibility,
● Limited resources on client side,
● Interoperability.

Drawbacks

● Limitations on user interface compared to
natve Graphical User Interface,

● Compatibility issues with some web browser,
● Require a network connection,
● The user does not own the software.

A Brief History

Key dates

1993: Mosaic browser, CGI
1995: PHP 1.0
1996: JavaScript 1.0
1999: Web Application, Java Servlet (server)
2005: AJAX
2008: HTML5 first public working draft
2014?: HTML5 specification

(User) client vs (remote) server

● 70s: Light user terminals, everything is done
by the server.

● 80s/90s: Personal computers. Everything
happens on client side.

● 90s/2000s: Light client (web browser), all
logic in server.

● 2000s: Logic is back in the client ("Web
2.0").

● 2010s: Mobile applications.

Overall
Architecture

Typical architecture of a web
application

Web
Browser

Web Server
(front-end)

Back-end

Persistent
data store

HTTP(S)

Web browser

● Mainly user interface,
● Short term state (in general),
● May implement some logic, especially for

fast response time (but untrusted),
● Communicate with the web server using

HTTP(S),
● Executing HTML, CSS and JavaScript code.

Web server (front-end)

● Answers to HTTP(S) requests from the web
clients,

● Stateless,
● Reads and writes data in a persistent data

store,
● Performs most of the business logic,
● Consists in a general of a server/container

(Apache, Tomcat) and a framework (PHP,
Java Servlets, etc.) running business logic.

Data store

● The state of the web application,
● Historically a (My)SQL database, some more

recent evolutions,
● The synchronisation point.

Back-end

● All what needs to be done in the server, but
which is not triggered by a client request.

Typical architecture of a web
application

Web
Browser

Web Server
(front-end)

Back-end

Persistent
data store

HTTP(S)

HTML CSS JavaScript

Apache

Tomcat

Java Servlet

XML-RPC
SOAP
WSDL
REST

