
Information Flow Inference for ML
Vincent Simonet

INRIA Rocquencourt – Projet Cristal

MIMOSA

September 27, 2001

Information flow

account number

%%LLLLLLLLLLLLLLLLLL
bank

applet

<<yyyyyyyyyyy

""EEEEEEEEEEE

order

99rrrrrrrrrrrrrrrrrr

vendor

accountH × orderL→ bankH × vendorL

(∀αβγδ) [α t β ≤ γ, β ≤ δ] accountα × orderβ→ bankγ × vendorδ

MIMOSA September 27, 2001
Information Flow Inference for ML (Vincent Simonet)

1

Non-interference

account number

%%LLLLLLLLLLLLLLLLLL

%%LLLLLLLLLLLLLLLLLL

bank

applet

�&
EEEEEEEEEEE

EEEEEEEEEEE

<<yyyyyyyyyyy

<<yyyyyyyyyyy

order

5=rrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrr

vendor

MIMOSA September 27, 2001
Information Flow Inference for ML (Vincent Simonet)

2

Existing systems

Dennis Volpano et Geoffrey Smith (1997)
Type system on a simple imperative langage. Restricted to the first order
and a finite number of global references.

Nevin Heintze et Jon G. Riecke SLam Calculus (1997)
λ-calculus with references and threads. The typing of mutable cells is not
fine enough. No security property is stated.

Andrew C. Myers JFlow (1999)
Information flow analysis for Java. This sytem is complex and not proven.

Steve Zdancewic et Andrew C. Myers (2001)
Analysis on a low-level language with linear continuations.

MIMOSA September 27, 2001
Information Flow Inference for ML (Vincent Simonet)

3

The ML language

Call-by-value λ-calculus with let-polymorphism

x k fun x→ e

e1 e2 let x = v in e bind x = e1 in e2

with references

ref e e1 := e2 ! e

and exceptions

ε e raise e e1 handle ε x � e2 e1 handle x � e2

MIMOSA September 27, 2001
Information Flow Inference for ML (Vincent Simonet)

4

The ML language

v-normal forms

v ::= x | k | fun x→ e | ε v

e ::= v v | ref v | v := v |! v | raise v | let x = v in e | E[v]

E ::= bind x = [] in e | [] handle ε x � e | [] handle x � e

Any source expression may be rewritten into a v-normal form provided an
evaluation strategy is fixed :

e1 e2 ⇒

{
bind x1 = e1 in (bind x2 = e2 in x1 x2) left to right eval.

bind x2 = e2 in (bind x1 = e1 in x1 x2) right to left eval.

MIMOSA September 27, 2001
Information Flow Inference for ML (Vincent Simonet)

5

Information levels

An information level is associated to each piece of data. Information levels
(which belong to a lattice L) may represent different properties: security,
integrity...

>

:::::::::::::::::::::::

��������������������

�����������������������

secret untrusted

��

...

public

KS

trusted

⊥

�����������������������

���������������������

99999999999999999999999

In the rest of the talk, we fix L = {L ≤ H}.

MIMOSA September 27, 2001
Information Flow Inference for ML (Vincent Simonet)

6

Direct and indirect flow

Direct flow

x := not y

x := (if y then false else true)

Indirect flow

if y then x := false else x := true

x := true; if y then x := false else ()

x := true; (if y then raise A else ()) handle � x := false

A level pc is associated to each point of the program. It tells how much
information the expression may acquire by gaining control; it is a lower
bound on the level of the expression’s effects.

MIMOSA September 27, 2001
Information Flow Inference for ML (Vincent Simonet)

7

Type system

Semi-syntactic approach

(examples in the case of ML)

Logical system Syntactic system

Ground types Type expressions
e.g. int, int→ int... e.g. int, α, α→ α...

Polytypes Schemes
e.g. {t→ t | t type brut} e.g. ∀α.α→ α

We reason with the logical system. The syntactic system is interpreted into
the logical one.

MIMOSA September 27, 2001
Information Flow Inference for ML (Vincent Simonet)

8

Type system

Type algebra

The information levels `, pc belong to the lattice L.

Exceptions are described by rows of alternatives r :

a ::= Abs | Pre pc
r ::= {ε 7→ a}ε∈E

Types are annotated with levels and rows :

t ::= int` | unit | (t pc [r]−−−→ t)` | t ref` | r exn`

MIMOSA September 27, 2001
Information Flow Inference for ML (Vincent Simonet)

9

Type system

Judgements

The type system involves two kinds of judgements:

Judgements on values
Γ ` v : t

Judgements on expressions

pc,Γ ` e : t [r]

MIMOSA September 27, 2001
Information Flow Inference for ML (Vincent Simonet)

10

Type system

Constraints

Subtyping constraints t1 ≤ t2
The subtyping relation extends the order on information levels. E.g.:

int`1 ≤ int`2 ⇔ `1 ≤ `2 Abs ≤ Pre pc

Guards ` C t
Guards allow to mark a type with an information level:

pc C int` ⇔ pc ≤ ` pc C t ref` ⇔ pc ≤ `

Conditional constraints pc ≤Pre a
pc ≤Pre a is a shortcut for a 6= Abs⇒ Pre pc ≤ a.

MIMOSA September 27, 2001
Information Flow Inference for ML (Vincent Simonet)

11

Type system

Subtyping and polymorphism

Subtyping and polymorphism act in orthogonal ways:

Subtyping Allows increasing the level of any piece of data (e.g.
considering a public piece of data as secret):

Γ ` v : t t ≤ t′

Γ ` v : t′

Polymorphism Required for applying the same function to inputs with
different levels:

let succ = fun x→ (x+ 1)

MIMOSA September 27, 2001
Information Flow Inference for ML (Vincent Simonet)

12

Type system

References

Ref

Γ ` v : t pc C t

pc,Γ ` ref v : t ref` [r]

Deref

Γ ` v : t′ ref` t′ ≤ t ` C t

pc,Γ ` ! e : t [r]

Assign

Γ ` e1 : t ref` Γ ` e2 : t ` C t pc C t

pc,Γ ` e1 := e2 : unit [r]

The content of a reference must have a level greater than (or equal to)

• the pc of the point where the reference is created,

• the pc of each point where its content is likely to be modified.

MIMOSA September 27, 2001
Information Flow Inference for ML (Vincent Simonet)

13

Type system

Exceptions

Raise

Γ ` v : typexn(ε)
pc,Γ ` raise (ε v) : ∗ [ε : Pre pc; ∂Abs]

Handle

pc,Γ ` e1 : t [ε : Pre pc′; r1]
pc t pc′,Γ[x 7→ typexn(ε)] ` e2 : t [ε : a2; r2] pc′ C t

pc,Γ ` e1 handle ε x � e2 : t [ε : a2; r1 t r2]

MIMOSA September 27, 2001
Information Flow Inference for ML (Vincent Simonet)

14

Non-interference

Let us consider an expression e of type intL with a “hole” x marked H:

(x 7→ t) ` e : intL H C t

Non-interference

If

{
` v1 : t
` v2 : t and

{
e[x⇐ v1]→∗ v′1
e[x⇐ v2]→∗ v′2

then v′1 = v′2

The result of e’s evaluation does not depend on the input value inserted in
the hole.

MIMOSA September 27, 2001
Information Flow Inference for ML (Vincent Simonet)

15

Non-interference proof

1. Define a particular extension of the language allowing to reason about
the common points and the differences of two programs.

2. Prove that the type system for the extended language satisfies subject
reduction.

3. Show that non-interference for the initial language is a consequence of
subject reduction.

MIMOSA September 27, 2001
Information Flow Inference for ML (Vincent Simonet)

16

Non-interference proof

Shared calculus

The shared calculus allows to reason about two expressions and proving
that they share some sub-terms throughout reduction.

Syntax

v ::= . . . | 〈v | v〉 e ::= . . . | 〈e | e〉

We restrict our attention to expressions where 〈· | ·〉 are not nested.

MIMOSA September 27, 2001
Information Flow Inference for ML (Vincent Simonet)

17

Non-interference proof

Encoding

A shared expression encodes two expressions of the source calculus:

if true then 0 else 1

YYYYYYYYYYYYYYYYYYYYYYYYYYYYY

YYYYYYYYYYYYYYYYYYYYYYYYYYYYY
if false then 0 else 1

eeeeeeeeeeeeeeeeeeeeeeeeeee

eeeeeeeeeeeeeeeeeeeeeeeeeee

J·|·K
��

if 〈true | false〉 then 0 else 1

Two projections b·c1 and b·c2 allow to recover original expressions:

if 〈true | false〉 then 0 else 1
b·c1

gggggg

ow ggggggggg
ggggggggg b·c2

XXX XXX

'/XXXXXXX
XXXXXXX

if true then 0 else 1 if false then 0 else 1

MIMOSA September 27, 2001
Information Flow Inference for ML (Vincent Simonet)

18

Non-interference proof

Reducing the shared calculus

Reduction rules for the shared calculus are derived from the source calculus
ones. When 〈· | ·〉 constructs block reduction, they have to be lifted.

Example:

(fun x→ e) v → e[x⇐ v] (β)

〈v1 | v2〉 v → 〈v1 bvc1 | v2 bvc2〉 (lift-app)

MIMOSA September 27, 2001
Information Flow Inference for ML (Vincent Simonet)

19

Non-interference proof

Simulation

Soundness

If e→ e′ then

{
bec1 →= be′c1
bec2 →= be′c2

(shared calculus) (source calculus)

Completeness

If

{
e1 →∗ v1

e2 →∗ v2
then Je1 | e2K→∗ Jv1 | v2K

(source calculus) (shared calculus)

MIMOSA September 27, 2001
Information Flow Inference for ML (Vincent Simonet)

20

Non-interference proof

Typing 〈. . . | . . .〉

Bracket

Γ ` v1 : t Γ ` v2 : t H C t

Γ ` 〈v1 | v2〉 : t

A value whose type is intH may be an integer k or a bracket 〈k1 | k2〉.

A value whose type is intL must be a simple integer k.

MIMOSA September 27, 2001
Information Flow Inference for ML (Vincent Simonet)

21

Non-interference proof

Subject reduction and non-interference

Let us consider (x 7→ t) ` e : intL with H C t.

Subject-reduction
If ` e′ : intL and e′ →∗ v′ then ` v′ : intL

↑ |
e′ = e[x⇐ v] v′ = k

| ↓

Non-interference (shared calculus)
If ` v : t and e[x⇐ v]→∗ v′ then bv′c1 = bv′c2

MIMOSA September 27, 2001
Information Flow Inference for ML (Vincent Simonet)

22

Non-interference proof

Non-interference

Let us consider (x 7→ t) ` e : intL with H C t.

Non-interference (shared calculus)
If ` v : t and e[x⇐ v]→∗ v′ then bv′c1 = bv′c2

↑ |
v = 〈v1 | v2〉 v′ = Jv1 | v2K

| ↓

Non-interference (source calculus)

If

{
` v1 : t
` v2 : t and

{
e[x⇐ v1]→∗ v′1
e[x⇐ v2]→∗ v′2

then v′1 = v′2

MIMOSA September 27, 2001
Information Flow Inference for ML (Vincent Simonet)

23

Extending the language

One can extend the studied language in order to

Increase its expressiveness Adding sums, products. A general case for
primitive operations of real languages (arithmetic operations, comparisons,
hashing...)

Have a better typing of some idioms

e1 finally e2 ↪→ bind x = (e1 handle y � e2; raise y) in e2; x

e1 handle x � e2 reraise ↪→ e1 handle x � (e2; raise x)

Our approach allows to deal with such extensions in a simple way: one just
needs to extend the subject reduction proof with the new reduction rules.

MIMOSA September 27, 2001
Information Flow Inference for ML (Vincent Simonet)

24

Extending the language

Primitive operations

Γ ` v1 : int` Γ ` v2 : int`

pc,Γ ` v1 + v2 : int` [∂Abs]

Γ ` v1 : t Γ ` v2 : t t J `

pc,Γ ` v1 = v2 : bool` [∂Abs]

Γ ` v : t t J `

pc,Γ ` hash v : int` [∂Abs]

A new form of constraints t J `
t J ` constrains all information levels in t and its sub-terms to be less than
(or equal to) `.

MIMOSA September 27, 2001
Information Flow Inference for ML (Vincent Simonet)

25

Extending the language

Products

t ::= . . . | t1 × t2

Products carry no security annotations because, in the absence of a physical
equality operator, all of the information carried by a tuple is in fact carried
by its components:

` C t1 × t2 ⇔ ` C t1 ∧ ` C t2
t1 × t2 J ` ⇔ t1 J ` ∧ t2 J `

MIMOSA September 27, 2001
Information Flow Inference for ML (Vincent Simonet)

26

Towards an extension of the Caml compiler

The studied language allows us to consider the whole Caml language
(excepted the threads library).

We are currently implementing a prototype. It will require to solve several
problems due to the use of a type system with subtyping:

• Efficiency of the inference algorithm

• Readability of the inferred types

• Clarity of error messages

• ...

MIMOSA September 27, 2001
Information Flow Inference for ML (Vincent Simonet)

27

Towards an extension of the Caml compiler

Type inference

An inference algorithm is divided into two distinct parts.

A set of inference rules It may be derivated from typing rules in a
quasi-systematic way.

Ref

Γ ` v : t pc C t

pc,Γ ` ref v : t ref` [r]

Inf-Ref

Γ, C ` v : α

π,Γ, C ∪ {β = α refλ, π C α} ` ref v : β [ρ]

A solver Type schemes involve constraint sets. It is necessary to test their
satisfiability and to simplify them.

MIMOSA September 27, 2001
Information Flow Inference for ML (Vincent Simonet)

28

Towards an extension of the Caml compiler

Example: lists

type (’a, ’b) list = <’b>
| []
| (::) of ’a * (’a, ’b) list

let rec length = function
| [] -> 0
| _ :: l -> 1 + length l

∀[α ≤ β]. ∗ listα −→ intβ

MIMOSA September 27, 2001
Information Flow Inference for ML (Vincent Simonet)

29

Towards an extension of the Caml compiler

Example: lists (2)

let rec iter f = function
| [] -> ()
| x :: l -> f x; iter f l

∀[δ ≤ ∂γ].(α
γ [δ]−−−→ ∗)γ −→ α listγ

γ [δ]−−−→ unit

let rec iter2 f = fun
| [] [] -> ()
| (x1 :: l1) (x2 :: l2) -> f x1 x2; iter2 f l1 l2
| _ _ -> raise X

∀[ε ≤ ζ; Pre γ ≤ ζ; δ ≤ ∂γ].

(α
γ [X:ε;δ]−−−−−→ β

γ [X:ε;δ]−−−−−→ ∗)γ −→ α listγ −→ β listγ
γ [X:ζ;δ]−−−−−−→ unit

MIMOSA September 27, 2001
Information Flow Inference for ML (Vincent Simonet)

30

