An extension of HM(X) with bounded existential and universal data-types

(To appear at ICFP’03)

Vincent Simonet

INRIA Rocquencourt — Cristal project
Flow Caml is an extension of the Objective Caml language with a type system tracing information flow. Usual ML types are annotated by security levels, which represent principals (e.g. human beings !alice, !bob, ...). A partial order between these levels specifies legal information flow, hence the type system has subtyping.

```ocaml
type ('a:level) client_info =
  { cash: 'a int;
    send_msg: 'a int -> unit;
    ...
  }
```

Problem: the types !alice client_info and !bob client_info are not comparable.
Odersky and Läufer proposed an extension of ML where data-types declarations may introduce existentially quantified variables:

\[
\text{type } t = \text{K of } \exists \ 'a . \ 'a \ \text{list} \times (\ 'a \rightarrow \text{unit})
\]

This extension preserves type inference: the annotation provided by the introduction and the matching of the constructor \(\text{K} \) are sufficient to guide the type synthetizer.

\[
\begin{align*}
\text{let } v1 &= \text{K ([3; 42; 111], print_int)} \\
\text{let } v2 &= \text{K (["Hello"; "World"], print_string)} \\
\text{let iter } &= \text{function } \text{K (x, f)} \rightarrow \text{List.iter f x}
\end{align*}
\]

Existential type variables cannot escape their scope. The following piece of code is ill-typed:

\[
\text{let open } = \text{function } \text{K (x, _)} \rightarrow x
\]
ML with First-Class Polymorphic Types

Symmetrically, universally quantified type variables can be introduced in data-types declarations [Rémy, 1994]:

```
let apply g = function K (x, f) -> f (g x)
```

is ill typed, but one can write:

```
let apply (L g) = function K (x, f) -> f (g x)
```

(Poor man’s first class polymorphism)
Our work

HM(\(X\)) is a generic constraint-based type inference system with let-polymorphism. It generalizes Hindley-Milner type system.

It is parametrized by the first-order logic \(X\), which is used to express types and constraints relating them. The type inference problem is reduced to solving constraints in the logic.

- We define a conservative extension of \(HM(\!\!X)\) with bounded existential and universal data-types.

- We propose a realistic algorithm for solving constraints in the case of structural subtyping.
The type system
Types and constraints

We assume two distinct sets of existential ε and universal π type constructors.

$$
\tau ::= \alpha, \beta, \ldots \mid \tau \to \tau \mid \varepsilon(\tau) \mid \pi(\tau) \quad \text{(type)}
$$

$$
C, D ::= \tau \leq \tau \mid C \land C \mid \exists \alpha.C \quad \text{(constraint)}
$$

$$
\sigma ::= \forall \vec{\alpha}[C].\tau \quad \text{(scheme)}
$$

Every data-type must be introduced by a declaration:

$$
\varepsilon(\vec{\alpha}) \triangleq \exists \vec{\beta}[D].\tau \quad \pi(\vec{\alpha}) \triangleq \forall \vec{\beta}[D].\tau
$$
Subtyping

The interpretation of the subtyping order between types is left open. However, →, ε and π types must be incomparable and the variances of the existential and universal type constructors must fit their logical interpretation:

\[\varepsilon(\bar{\alpha}_1) \triangleq \exists \bar{\beta}_1[D_1].\tau_1 \quad \varepsilon(\bar{\alpha}_2) \triangleq \exists \bar{\beta}_2[D_2].\tau_2 \]

with \(\bar{\beta}_2 \# \text{fv}(\tau_1) \) imply

\[D_1 \land \varepsilon(\bar{\alpha}_1) \leq \varepsilon(\bar{\alpha}_2) \vDash \exists \bar{\beta}_2.(D_2 \land \tau_1 \leq \tau_2) \]

\[\pi(\bar{\alpha}_1) \triangleq \forall \bar{\beta}_1[D_1].\tau_1 \quad \pi(\bar{\alpha}_2) \triangleq \forall \bar{\beta}_2[D_2].\tau_2 \]

with \(\bar{\beta}_1 \# \text{fv}(\tau_2) \) imply

\[D_2 \land \pi(\bar{\alpha}_1) \leq \pi(\bar{\alpha}_2) \vDash \exists \bar{\beta}_1.(D_1 \land \tau_1 \leq \tau_2) \]

Several instances: unification, non-structural subtyping, structural subtyping.
The language

We extend the λ-calculus with explicit constructs for packing and opening existential and universal values:

\[
e ::= x | \lambda x.e | e e | \text{let } x = e \text{ in } e \quad \text{(expression)}
\]

\[
| \langle e \rangle_\varepsilon | \text{open}_\varepsilon e \text{ with } e
\]

\[
| \langle e \rangle_\pi | \text{open}_\pi e
\]

The (call-by-value) semantics is extended as follows:

\[
\text{open}_\varepsilon \langle v \rangle_\varepsilon \text{ with } (\lambda x.e) \rightarrow (\lambda x.e) v \quad (\varepsilon)
\]

\[
\text{open}_\pi \langle v \rangle_\pi \rightarrow v \quad (\pi)
\]
Standard HM(X) typing rules

\[
\begin{align*}
\text{VAR} & \quad \Gamma(x) = \forall \bar{\alpha}[D].\tau \quad C \vdash D \\
& \quad \frac{}{C, \Gamma \vdash x : \tau}
\end{align*}
\]

\[
\begin{align*}
\text{ABS} & \quad C, \Gamma[x \mapsto \tau'] \vdash e : \tau \\
& \quad \frac{}{C, \Gamma \vdash \lambda x.e : \tau' \rightarrow \tau}
\end{align*}
\]

\[
\begin{align*}
\text{APP} & \quad C, \Gamma \vdash e_1 : \tau' \rightarrow \tau \quad C, \Gamma \vdash e_2 : \tau' \\
& \quad \frac{}{C, \Gamma \vdash e_1 e_2 : \tau}
\end{align*}
\]

\[
\begin{align*}
\text{LET} & \quad C, \Gamma \vdash e_1 : \sigma \quad C, \Gamma[x \mapsto \sigma] \vdash e_2 : \tau \\
& \quad \frac{}{C, \Gamma \vdash \text{let } x = e_1 \text{ in } e_2 : \tau}
\end{align*}
\]

\[
\begin{align*}
\text{GENERALIZE} & \quad C \land D, \Gamma \vdash e : \tau \quad \bar{\alpha} \not\in \text{fv}(C, \Gamma) \\
& \quad \frac{}{C \land \exists \bar{\alpha}.D, \Gamma \vdash e : \forall \bar{\alpha}[D].\tau}
\end{align*}
\]

\[
\begin{align*}
\text{SUB} & \quad C, \Gamma \vdash e : \tau' \quad C \vdash \tau' \leq \tau \\
& \quad \frac{}{C, \Gamma \vdash e : \tau}
\end{align*}
\]

\[
\begin{align*}
\text{HIDE} & \quad C, \Gamma \vdash e : \tau \quad \bar{\alpha} \not\in \text{fv}(\Gamma, \tau) \\
& \quad \frac{}{\exists \bar{\alpha}.C, \Gamma \vdash e : \tau}
\end{align*}
\]
Typing rules for the new constructs

Exist

\[
\begin{align*}
C, \Gamma \vdash e : \tau \\
\varepsilon(\bar{\alpha}) \triangleq \exists \bar{\beta}[D].\tau \\
C \models D
\end{align*}
\]

\[
C, \Gamma \vdash \langle e \rangle_{\varepsilon} : \varepsilon(\bar{\alpha})
\]

OpenExist

\[
\begin{align*}
C, \Gamma \vdash e_1 : \varepsilon(\bar{\alpha}) \\
\varepsilon(\bar{\alpha}) \triangleq \exists \bar{\beta}[D].\tau' \\
C, \Gamma \vdash e_2 : \forall \bar{\beta}[D].\tau' \rightarrow \tau \\
\bar{\beta} \# \text{fv}(\tau)
\end{align*}
\]

\[
C, \Gamma \vdash \text{open}_{\varepsilon} e_1 \text{ with } e_2 : \tau
\]

Poly

\[
\begin{align*}
C, \Gamma \vdash e : \forall \bar{\beta}[D].\tau \\
\pi(\bar{\alpha}) \triangleq \forall \bar{\beta}[D].\tau
\end{align*}
\]

\[
C, \Gamma \vdash \langle e \rangle_{\pi} : \pi(\bar{\alpha})
\]

OpenPoly

\[
\begin{align*}
C, \Gamma \vdash e : \pi(\bar{\alpha}) \\
\pi(\bar{\alpha}) \triangleq \forall \bar{\beta}[D].\tau \\
C \models D
\end{align*}
\]

\[
C, \Gamma \vdash e : \tau
\]
Type safety

An expression e is **well-typed** if $C, \emptyset \vdash e : \tau$ holds for some satisfiable constraint C.

The type system has standard **subject-reduction** and **progress** theorems.

“Well-typed expressions do not go wrong”
Generating constraints
Outline

We define an algorithm for computing principal typing judgments:

\[(\Gamma \vdash e : \tau) \leadsto C\]

The algorithm must be **correct**: for all \(\Gamma, e\) and \(\tau\),

\[(\Gamma \vdash e : \tau), \Gamma \vdash e : \tau\]

and **complete**: for all \(C, \Gamma, e\) and \(\tau\),

if \(C, \Gamma \vdash e : \tau\) then \(C \models (\Gamma \vdash e : \tau)\).
Generating constraints

Core language

\[(\Gamma \vdash x : \tau) = \exists \alpha. (C \land \tau' \leq \tau)\]

where \(\Gamma(x) = \forall \alpha[C].\tau'\)

\[(\Gamma \vdash \lambda x.e : \tau) = \exists \alpha_1 \alpha_2. ((\Gamma[x \mapsto \alpha_1] \vdash e : \alpha_2) \land \alpha_1 \rightarrow \alpha_2 \leq \tau)\]

\[(\Gamma \vdash e_1 e_2 : \tau) = \exists \alpha. ((\Gamma \vdash e_1 : \alpha \rightarrow \tau) \land (\Gamma \vdash e_2 : \alpha))\]

\[(\Gamma \vdash \text{let } x = e_1 \text{ in } e_2 : \tau) = ((\Gamma[x \mapsto \forall \alpha[C].\alpha] \vdash e_2 : \tau) \land \exists \alpha. C)\]

where \(C = (\Gamma \vdash e_1 : \alpha)\)
Generating constraints

Existential and universal data-types

We introduce a non-standard construct in constraints:

$$\forall \vec{\beta}. D \Rightarrow C$$ interpreted as “ $$\exists \vec{\beta}. D \land \forall \vec{\beta} D \Rightarrow C$$ ”

$$\langle \Gamma \vdash \langle e \rangle_\varepsilon : \tau \rangle = \exists \vec{\alpha}. (\exists \vec{\beta}. (\langle \Gamma \vdash e : \tau' \rangle \land D) \land \varepsilon(\vec{\alpha}) \leq \tau)$$

$$\langle \Gamma \vdash \text{open}_\varepsilon e_1 \text{ with } e_2 : \tau \rangle = \exists \vec{\alpha}. (\langle \Gamma \vdash e_1 : \varepsilon(\vec{\alpha}) \rangle \land \forall \vec{\beta}. D \Rightarrow (\langle \Gamma \vdash e_2 : \tau' \rightarrow \tau \rangle))$$

where $$\varepsilon(\vec{\alpha}) \triangleq \exists \vec{\beta}[D].\tau'$$

$$\langle \Gamma \vdash \text{open}_\pi e : \tau \rangle = \exists \vec{\alpha}. (\langle \Gamma \vdash e : \pi(\vec{\alpha}) \rangle \land \exists \vec{\beta}. (D \land \tau' \leq \tau))$$

$$\langle \Gamma \vdash \langle e \rangle_\pi : \tau \rangle = \exists \vec{\alpha}. (\forall \vec{\beta}. D \Rightarrow (\langle \Gamma \vdash e : \tau' \rangle) \land \pi(\vec{\alpha}) \leq \tau)$$

where $$\pi(\vec{\alpha}) \triangleq \forall \vec{\beta}[D].\tau'$$
Generating constraints

Summary

An expression e is well-typed in $\text{HM}_{\exists\forall}(X)$ in and only if the constraint $
exists \alpha. (\emptyset \vdash e : \alpha)$ is satisfiable in the logic X. This constraint belongs to the following language:

$$C, D ::= \tau \leq \tau \mid C \land C \mid \exists \alpha. C \mid \forall \vec{\beta}. D \triangleright C$$

where every bound $\vec{\beta}. D$ of a universal quantification comes from a data-type declaration.

It remains to provide algorithms that solve these constraints.
Solving constraints: The case of structural subtyping
Overview

We need an algorithm for solving constraints which include a restricted form of universal quantification and implication.

On the one-hand, efficient (polynomial) algorithms that decide top-level implication of constraints ($C_1 \models C_2$, where all free variables are implicitly universally quantified) are known.

On the other hand, Kuncak and Rinard recently showed [LICS 2003] that the first order theory of structural subtyping is decidable, but their algorithm has a non-elementary complexity.

We strike a compromise between expressiveness and efficiency:

• thanks to the “weak” interpretation of $\forall \bar{\beta}.D \triangleright C$ which implies $\exists \bar{\beta}.D$,

• by restricting the form of the quantification bounds in every construct $\forall \bar{\beta}.D \triangleright C$.
A model of structural subtyping

Let a variance ν be one of \oplus (covariant), \ominus (contravariant) and \odot (invariant).

We assume given a set of symbols φ. Every symbol has a fixed arity $a(\varphi)$ and a signature $\text{sig}(\varphi) = [\nu_1, \ldots, \nu_{a(\varphi)}]$. Then ground types are defined by:

$$t ::= \varphi(t_1, \ldots, t_{a(\varphi)}) \quad \text{(ground type)}$$

Symbols of arity 0 are ground atoms: we suppose they are partially ordered by the lattice order \leq_0. Then, subtyping is defined by:

$$\begin{align*}
\varphi &\leq_0 \varphi' \\
\text{sig}(\varphi) & = [\nu_1, \ldots, \nu_n] \quad \forall i \ t_i \leq_t \nu_i t'_i \\
\varphi(t_1, \ldots, t_n) & \leq \varphi(t'_1, \ldots, t'_n)
\end{align*}$$
Shapes

In structural subtyping, two comparable types must have the same shape. We define the relation $t \approx t'$ (read: t has the same shape as t') by:

$$
\begin{align*}
\varphi(t_1, \ldots, t_n) &\approx \varphi(t'_1, \ldots, t'_n) \\
\Rightarrow \quad \text{sig}(\varphi) &\approx [\nu_1, \ldots, \nu_n] \\
\forall i \quad t_i &\approx \nu_i t_i'
\end{align*}
$$

\approx is the reflexive, symmetric, transitive closure of \leq. Its equivalence classes are lattices.
Expansion and decomposition

In structural subtyping, the two following equivalence rules hold:

Expansion: \[\varphi(\bar{\tau}) \leq \alpha \equiv \exists \bar{\alpha}.(\varphi(\bar{\alpha}) = \alpha \land \varphi(\bar{\tau}) \leq \varphi(\bar{\alpha})) \]

\[\equiv \exists \langle \varphi(\bar{\alpha}) = \alpha \rangle.(\varphi(\bar{\tau}) \leq \varphi(\bar{\alpha})) \]

Decomposition: \[\text{sig}(\varphi) = [\nu_1, \ldots, \nu_n] \]

\[\varphi(\tau_1, \ldots, \tau_n) \leq \varphi(\tau'_1, \ldots, \tau'_n) \equiv \tau_1 \leq \nu_1 \tau'_1 \land \cdots \land \tau_n \leq \nu_n \tau'_n \]

Our algorithm consists in rewriting the input constraint into a solved form:

\[
\begin{align*}
\eta & ::= \varphi \mid \alpha & \text{(atom)} \\
R & ::= \emptyset \mid \eta \leq \eta \land R \mid \eta \approx \eta \land R & \text{(multiset of atomic constraints)} \\
S & ::= R \mid \exists \langle \phi(\bar{\alpha}) = \alpha \rangle.S & \text{(solved form)}
\end{align*}
\]

(In \(\exists \langle \phi(\bar{\alpha}) = \alpha \rangle.S \), we require \(\alpha \not\in \text{fv}(S) \)).

By orienting the two above rules from left to right, we obtain an algorithm which rewrites any conjunction of inequalities into a solved form. It remains to eliminate quantifiers.
Eliminating existential quantifiers

Goal: \(\exists \beta. S \leadsto S' \)

\(\exists \beta. [\cdot] \) commutes with \(\exists \langle \phi(\bar{\alpha}) = \alpha \rangle. [\cdot] \)

\(\exists \beta. \exists \langle \phi(\bar{\alpha}) = \alpha \rangle S \leadsto \exists \langle \phi(\bar{\alpha}) = \alpha \rangle \exists \beta. S \) if \(\alpha \neq \beta \) (and \(\beta \notin \bar{\alpha} \))

\(\exists \alpha. \exists \langle \phi(\bar{\alpha}) = \alpha \rangle S \leadsto \exists \bar{\alpha}. S \)

\(\exists \beta. [\cdot] \) can be eliminated when it reaches the multiset of atomic inequalities

\[\exists \beta. R \leadsto \{ \eta_1 \diamond \eta_2 \mid \eta_1 \diamond \eta_2 \in R \ \text{and} \ \eta_1, \eta_2 \neq \beta \} \]

\[\cup \{ \eta_1 \diamond_{1\diamond} \eta_2 \mid \eta_1 \diamond_1 \beta \in R \ \text{and} \ \beta \diamond_2 \eta_2 \in R \} \]

where \(\diamond \) ranges over \(\approx, \leq \) and \(\geq \).
Restricting universal quantification bounds

We consider a constraint $\forall \vec{\beta}. D \triangleright C$.

- Existential quantifiers in D can be fused with the universal one:
 $\forall \vec{\beta}. (\exists \vec{\alpha}. D) \triangleright C \equiv \forall \vec{\beta} \vec{\alpha}. D \triangleright C$

- Type constructors in D can be eliminated by expansion and decomposition, e.g.
 $\forall \beta. (\beta \leq \alpha_1 \rightarrow \alpha_2) \triangleright C \equiv \forall \beta_1 \beta_2. (\alpha_1 \leq \beta_1 \land \beta_2 \leq \alpha_2) \triangleright C[\beta_1 \rightarrow \beta_2/\beta]$

Thus, we may assume that D is a conjunction of inequalities involving atoms.
Solving constraints: The case of structural subtyping

Restricting universal quantification bounds

Consider a constraint $\forall \bar{\beta}. D \triangleright C$ and a variable $\beta \in \bar{\beta}$. Three situations may arise:

- β has no external bound in D, i.e. is only related to variables of $\bar{\beta}$. In this case, C cannot constrain its shape. For instance $\forall \beta. \text{true} \triangleright \beta \leq \alpha_1 \rightarrow \alpha_2$ is not satisfiable.

- β has one lower and/or upper bound(s) in D.

$$\forall \beta. (\beta \leq \alpha) \triangleright (\beta \leq \alpha_1' \rightarrow \alpha_2')$$

$$\equiv \exists \langle \alpha_1 \rightarrow \alpha_2 = \alpha \rangle. (\forall \beta. (\beta \leq \alpha_1 \rightarrow \alpha_2) \triangleright (\beta \leq \alpha_1' \rightarrow \alpha_2'))$$

$$\equiv \exists \langle \alpha_1 \rightarrow \alpha_2 = \alpha \rangle. (\forall \beta_1/\beta_2. (\alpha_1 \leq \beta_1 \land \beta_2 \leq \alpha_2) \triangleright (\alpha_1' \leq \beta_1 \land \beta_2 \leq \alpha_2'))$$

$$\equiv \exists \langle \alpha_1 \rightarrow \alpha_2 = \alpha \rangle. (\alpha_1' \leq \alpha_1 \land \alpha_2 \leq \alpha_2')$$

[...]

Restricting universal quantification bounds

• \(\beta \) has several lower or upper bounds in \(D \).

\[
\forall \beta. (\beta \leq \alpha_1 \land \beta \leq \alpha_2) \triangleright (\beta \leq \alpha) \\
\equiv \forall \beta. (\beta \leq \alpha_1 \sqcap \alpha_2) \triangleright (\beta \leq \alpha) \\
\equiv \alpha_1 \sqcap \alpha_2 \leq \alpha
\]

We exclude this third case.

Some examples of allowed quantification bounds:

(1) \(\forall \beta_1 \beta_2 \beta_3. (\beta_1 \leq \beta_2 \leq \beta_3) \triangleright \cdots \)

(2) \(\forall \beta_1 \beta_2. (\alpha_1 \leq \beta_1 \leq \alpha_2 \land \alpha_1 \leq \beta_2 \leq \alpha_2) \triangleright \cdots \)

(3) \(\forall \beta_1 \beta_2. (\varphi_1 \leq \beta_1 \leq \beta_2 \leq \varphi_2) \triangleright \cdots \)
Eliminating universal quantifiers

Goal: $\forall \bar{\beta}. D \triangleright S \rightsquigarrow S'$

$\forall \bar{\beta}. D \triangleright \emptyset$ commutes with $\exists \langle \phi(\bar{\alpha}) = \alpha \rangle. \emptyset$

$\forall \bar{\beta}. D \triangleright (\exists \langle \phi(\bar{\alpha}) = \alpha \rangle. S) \rightsquigarrow \exists \langle \phi(\bar{\alpha}) = \alpha \rangle. (\forall \bar{\beta}. D[\phi(\bar{\alpha})/\alpha] \triangleright S') \quad \alpha \notin \bar{\beta}$

$\forall \alpha \bar{\beta}. D \triangleright (\exists \langle \phi(\bar{\alpha}) = \alpha \rangle. S) \rightsquigarrow \forall \alpha \bar{\beta}. D[\phi(\bar{\alpha})/\alpha] \triangleright S$ \quad α bounded

$\forall \alpha \bar{\beta}. D \triangleright (\exists \langle \phi(\bar{\alpha}) = \alpha \rangle. S) \rightsquigarrow \text{failure}$ \quad α unbounded

$\forall \bar{\beta}. D \triangleright \emptyset$ can be eliminated when it reaches the multiset

$\forall \bar{\beta}. D \triangleright R \rightarrow (\exists \bar{\beta}. D)$

$\cup \{ \text{ub}_{\bar{\beta}. D}(\eta_1) \leq \text{lb}_{\bar{\beta}. D}(\eta_2) \mid \eta_1 \leq \eta_2 \in R \setminus D^* \}$

$\cup \{ \text{sh}_{\bar{\beta}. D}(\eta_1) \approx \text{sh}_{\bar{\beta}. D}(\eta_2) \mid \eta_1 \approx \eta_2 \in R \setminus D^* \}$

$\text{ub}_{\bar{\beta}. D}(\eta)$ is the upper bound of η under $\forall \bar{\beta}. D \triangleright \cdots$

$\text{lb}_{\bar{\beta}. D}(\eta)$ is the lower bound of η under $\forall \bar{\beta}. D \triangleright \cdots$

$\text{sh}_{\bar{\beta}. D}(\eta)$ is the shape of η under $\forall \bar{\beta}. D \triangleright \cdots$
Summary

Our algorithm rewrites an arbitrary constraint into a solved form.

\[C \leadsto S \]

A solved form is satisfiable if and only if its multiset is satisfiable.

\[
\begin{align*}
\eta & ::= \varphi \mid \alpha & \text{(atom)} \\
R & ::= \emptyset \mid \eta \leq \eta \land R \mid \eta \approx \eta \land R & \text{(multiset of atomic constraints)} \\
S & ::= R \mid \exists \langle \phi(\bar{\alpha}) = \alpha \rangle.S & \text{(solved form)}
\end{align*}
\]
Introduction
The type system
Generating constraints
Solving constraints: The case of structural subtyping

Examples
The bank example

In the lattice of security levels, we have one security level for every client (\(\text{!alice}, \text{!bob}, \ldots \)). We let \(\text{!clients} \) be their least upper bound.

```ocaml
type client_info = Exists 'a with 'a < !clients .
{ cash: 'a int;
  send_msg: 'a int -> unit;
  ...
}
```
The bank example (2)

The function `send_balances` iterates over a list of clients and sends to each of them a message indicating their current balance:

```ocaml
let rec send_balances = function
  | [] -> []
  | { cash = x; send_msg = send } :: tl ->
    send x; send_balances tl
```

De-sugaring this example in the syntax of the current talk, we realize that the function which corresponds to the second case of the pattern matching

\[\lambda x, \text{send}, \text{tl}.(\text{send} \; x; \text{send_balances} \; \text{tl}) \]

must have the type scheme

\[\forall \alpha[\alpha \leq \text{!clients}]. \alpha \text{ int} \to (\alpha \text{ int} \to \text{unit}) \to \text{client_info list} \to \text{unit} \]
The function `illegal_flow` tries to send information about one client to another client:

```ocaml
let illegal_flow = function
    { cash = x1 } :: { send_msg = f2 } :: _ -> f2 x1
| _ -> ()
```

Typing this piece of code yields the constraint

$$\forall \beta_1 \beta_2. (\beta_1 \sqcup \beta_2 \leq \text{!clients}) \triangleright (\beta_1 \leq \beta_2)$$

which is not satisfiable.
The function **total** computes the total balance of the bank from the clients file:

 let rec total = function
 [] -> 0
 | { cash = x } :: tl -> x + total tl

It receives the type scheme

 client_info list → !clients int
Future work

- We intend to extend our generic type inference engine for structural subtyping, Dalton, in order to handle the new construct.

- Then, it will be possible to extend the Flow Caml system with existential and universal data-types.

- We study the possibility to make security levels also values of the Flow Caml language: this would allow to perform some dynamic tests (whose correctness must be verified statically) on existentially quantified variables when opening data-structures.
Possible work

• Giving a faithful description of the solving algorithm which describes the simplification techniques used in the implementation.

• Studying constraints resolution for other forms of subtyping.

• Introducing subtyping in more powerful extensions of ML with first order polymorphism (PolyML, MLF, ...).