
I Groupe de travail Cristal

Vendredi 12 avril 2002

Fine-grained Information Flow Analysis
for a λ-calculus with Sum Types

Vincent Simonet

INRIA Rocquencourt — Projet Cristal

(To appear at CSFW’15)



I Information Flow Analysis 2

Type Based Information Flow Analysis

Information flow analysis is concerned with statically determining the
dependencies between the inputs and outputs of a program. It allows
establishing instances of a non-interference property that may address secrecy
and integrity issues.

Types seem to be most suitable for static analysis of information flow:

• They may serve as specification language,

• They offer automated verification of code (if type inference is available),

• Such an analysis has no run-time cost.

• Non-interference results are easy to state in a type based framework.
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Annotated types

In these systems, types are annotated with security levels chosen in a lattice,
e.g. L = {Pub ≤ Sec}.
Type constructors for base values (e.g. integers or enumerated constants)
typically carry one security level representing all of the information attached
to the value. Such an approximation may be too restrictive:

let t = if x then (if y then A else B)
else (if z then A else D)

let u = t case [A,B 7→ 1 | D 7→ 0]
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Basic analysis of sums
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Towards a more accurate analysis of sums
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λ+: a λ-calculus with sum types

e ::= expression

| k (integer constant)

| x (program variable)

| λx.e (abstraction)

| e e (application)

| (e, e) (pair construction)

| πj e (pair projection, j ∈ {1, 2})
| c e (sum construction)

| c̄ e (sum destruction)

| e case [h | . . . | h] (sum case)

h ::= C : x 7→ e case handler

c ∈ C constructor

C ⊆ C constructor set
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Semantics of λ+

(λx.e1) e2 → e1[x ⇐ e2] (β)
πj (e1, e2) → ej (proj)

c̄ (c e) → e (destr)
(c e) case [. . . | Cj : xj 7→ ej | . . .] → ej[xj ⇐ c e] if c ∈ Cj (case)

E[e] → E[e′] if e → e′ (context)

We choose a call-by-name evaluation strategy :

E ::= [ ] e | πj [ ] | c̄ [ ] | [ ] case ~h
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Introducing brackets

Establishing a non-interference result requires reasoning about two expressions
and exhibiting a bisimulation between their executions.

Thus, we design a technical extension of λ+ which allows to reason about
two expressions that share some sub-terms throughout a reduction :

e ::= . . . | 〈e | e〉

(We do not allow nesting 〈· | ·〉 constructs.)
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Encoding two λ+ terms in a λ2
+ one

(λx.x) 0

VVVVVVVVVVVVVVVV

(λx.x) 1

hhhhhhhhhhhhhhhh

J·|·K
²²

(λx.x) 〈0 | 1〉

b·c1

\\

b·c2

BB

〈(λx.x) 0 | (λx.x) 1〉

Brackets encode the differences between two programs, i.e. their “secret”
parts. The reduction rules provide an explicit description of information flow,
and must be made as precise as possible.
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Semantics of λ2
+: a first attempt

In λ2
+ semantics, each language construct is dealt with by two rules :

• A standard one, “identical” to that of λ+,

• A lift one that moves brackets when they block reduction.

(λx.e1) e2 → e1[x ⇐ e2] (β)
〈e1 | e2〉 e → 〈e1 bec1 | e2 bec2〉 (lift-β)

(c e) case [. . . | Cj : xj 7→ ej | . . .] → ej[xj ⇐ c e] if c ∈ Cj (case)

〈e1 | e2〉 case ~h → 〈e1 case b~hc1 (lift-case)

| e2 case b~hc2〉
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Semantics of λ2
+:

more accurate treatment of case

With the previous semantics, an expression of the form 〈c e1 | c e2〉 (or even
〈c1 e1 | c2 e2〉 with c1 and c2 in the same Cj) cannot be matched without
applying (lift-case). We refine the semantics as follows:

e case [. . . | Cj : xj 7→ ej | . . .] → ej[xj ⇐ e] if e ↓ Cj (case)

〈e1 | e2〉 case ~h → 〈e1 case b~hc1 otherwise (lift-case)

| e2 case b~hc2〉

The auxiliary predicate e ↓ C (read: e matches C) is defined by:

c ∈ C

c e ↓ C

c1 ∈ C c2 ∈ C

〈c1 e1 | c2 e2〉 ↓ C
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Simulation

Correctness

If e → e′ then

{bec1 →= be′c1
bec2 →= be′c2

(λ2
+) (λ+)

Completeness

If

{
e1 →∗ n1

e2 →∗ n2
then Je1 | e2K→∗ n

(λ+) (λ2
+)
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Base type system

t ::= int | t → t | t× t | r type

a ::= Abs | Pre t alternative

r ::= {c 7→ a}c∈C row

A row r is a family of alternatives a indexed by constructors c. It indicates
for every constructor c if the given expression may (Pre t) or may not (Abs)
produce a value whose head constructor is c.

Subtyping (≤) is defined by the following axioms:

ª → ⊕ ⊕×⊕ {c 7→ ⊕} Abs ≤ Pre ∗ Pre⊕

We denote by r|C the row r′ such that r′(c) =

{
r(c) if c ∈ C

Abs otherwise
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Base type system : typing rules

Int
Γ ` k : int

Var
Γ ` x : Γ(x)

Abs
Γ[x 7→ t′] ` e : t

Γ ` λx.e : t′ → t

App
Γ ` e1 : t′ → t Γ ` e2 : t′

Γ ` e1 e2 : t

Pair
Γ ` e1 : t1 Γ ` e2 : t2

Γ ` (e1, e2) : t1 × t2

Proj
Γ ` e : t1 × t2

Γ ` πj e : tj

Inj
Γ ` e : t

Γ ` c e : (c : Pre t; ∂Abs)

Destr
Γ ` e : (c : Pre t; ∂Abs)

Γ ` c̄ e : t

Case
Γ ` e : r r ≤ (C1 ∪ . . . ∪ Cn : ∗; ∂Abs)

(∀ 1 ≤ j ≤ n) Γ[xj 7→ r|Cj
] ` ej : t

Γ ` e case [C1 : x1 7→ e1 | . . . | Cn : xn 7→ en] : t

Sub
Γ ` e : t′ t′ ≤ t

Γ ` e : t
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Simple annotated type system

` ∈ L information level

t ::= int` | t → t | t× t | r` type

The auxiliary predicate ` C t holds if ` guards t :

` ≤ `′

` C int`
′

` C t

` C t′ → t

` C t1 ` C t2

` C t1 × t2

` ≤ `′ ` C r

` C r`′
∀c, r(c) = Pre t⇒ ` C t

` C r
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Annotated typing rules

Int
Γ ` k : int`

Inj
Γ ` e : t

Γ ` c e : (c : Pre t; ∂Abs)`

Destr
Γ ` e : (c : Pre t; ∂Abs)`

Γ ` c̄ e : t

Case
Γ ` e : r` r ≤ (C1 ∪ . . . ∪ Cn : ∗; ∂Abs)

(∀ 1 ≤ j ≤ n) Γ[xj 7→ r|Cj
] ` ej : t ` C t

Γ ` e case [C1 : x1 7→ e1 | . . . | Cn : xn 7→ en] : t

Other rules remain unchanged.
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Typing brackets

The Bracket rule ensures that the type of every bracket expression is
guarded by a “secret” level :

Bracket
Γ ` e1 : t Γ ` e2 : t Sec C t

Γ ` 〈e1 | e2〉 : t
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Back to the example

if y then A else B :
(A,B : Pre ; ∂Abs)y

if z then A else D :
(A,D : Pre ; ∂Abs)z

let t = if x then (if y then A else B)
else (if z then A else D) : (A,B, D : Pre ; ∂Abs)x,y,z

let u = t case [A,B 7→ 1 | D 7→ 0] : intx,y,z
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Fine-grained sum types (1)

In our fine-grained analysis, sum types are not annotated by a simple level
but by a matrix of levels.

A matrix q is a family of information levels ` indexed by unordered pairs of
distinct constructors c1 · c2 :

q ::= {c1 · c2 7→ `} matrix
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Fine-grained sum types (2)

Sum types consist of a row and a matrix:

q ::= {c1 · c2 7→ `} matrix

t ::= int` | t → t | t× t | rq type

• r(c) indicates if the given expression may (Pre t) or may not (Abs) produce
a value whose head constructor is c.

• q(c1 · c2) gives an approximation of the level of information leaked by
observing that the expression produces a result whose head constructor is
c1 rather than c2.

Then q(C) = t{q(c·c′) | c ∈ C, c′ 6∈ C} is an approximation of information
leaked by testing wether the expression matches C.
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Fine-grained guards

We will use constraints of the form

[`1, . . . , `n] P [t1, . . . , tn] ≤ t

to record potential information flow at a point of the program where the
execution path may take one of n possible branches, depending on the result
of (a series of) tests.

• The security level `j describes the information revealed by the test which
guards the jth branch,

• tj is the type of the jth branch’s result.

• t is the type of the whole expression.
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Fine-grained guards (2)

[`1, . . . , `n] P [int`
′
1, . . . , int`

′
n] ≤ int` requires `1 t . . . t `n ≤ `:

`′1 ≤ ` · · · `′n ≤ ` `1 t . . . t `n ≤ `

[`1, . . . , `n] P [int`
′
1, . . . , int`

′
n] ≤ int`

P is propagated on the result type of → and the component types of ×:

t′ ≤ t′1 · · · t′ ≤ t′n [`1, . . . , `n] P [t1, . . . , tn] ≤ t

[`1, . . . , `n] P [t′1 → t1, . . . , t
′
n → tn] ≤ t′ → t

[`1, . . . , `n] P [t1, . . . , tn] ≤ t [`1, . . . , `n] P [t′1, . . . , t
′
n] ≤ t′

[`1, . . . , `n] P [t1 × t′1, . . . , tn × t′n] ≤ t× t′
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Fine-grained guards (3)

[`1, . . . , `n] P [r1, . . . , rn] ≤ r q1 ≤ q · · · qn ≤ q
∀j1 6= j2, c1 6= c2, (rj1(c1) = Pre ∗ ∧ rj2(c2) = Pre ∗) ⇒ `j1 t `j2 ≤ q(c1 · c2)

[`1, . . . , `n] P [r1
q1, . . . rn

qn] ≤ rq

If two branches j1 and j2 of the program may produce different constructors
c1 and c2, then observing that the program’s result is c1 and not c2 is liable
to leak information (`j1 t `j2) about the tests guarding the branches j1 and
j2.
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Typing the case construct

Case
Γ ` e : rq

r ≤ (C1 ∪ . . . ∪ Cn : ∗; ∂Abs)
∀ 1 ≤ j ≤ n, Γ[xj 7→ (rq)|Cj

] ` ej : tj
[q(C1), . . . , q(Cn)] P [t1, . . . , tn] ≤ t

Γ ` e case [C1 : x1 7→ e1 | . . . | Cn : xn 7→ en] : t

Reminder:

• (rq)|Cj
is the restriction of the type rq to Cj

• q(Cj) = t{q(c · c′) | c ∈ Cj, c
′ 6∈ Cj} is an approximation of the

information leaked by testing wether the expression matches Cj.
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Back to the example

if y then A else B :
(A,B : Pre ; ∂Abs)(A·B:y;∂⊥)

if z then A else D :
(A,D : Pre ; ∂Abs)(A·D:z;∂⊥)

let t = if x then (if y then A else B)
else (if z then A else D) :

(A,B, D : Pre ; ∂Abs)(A·B:x,y; A·D:x,z; B·D:x; ∂⊥)

let u = t case [A,B 7→ 1 | D 7→ 0] : intx,z
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Non-interference

Let us consider an expression e of type intPub with a “hole” x marked Sec:

(x 7→ t) ` e : intPub [Sec,Sec] C [t1, t2] ≤ t

Non-interference

If

{` e1 : t1
` e2 : t2

and

{
e[x ⇐ e1] →∗ k1

e[x ⇐ e2] →∗ k2
then k1 = k2

In words : the result of e’s evaluation does not depend on the input value
inserted in the hole.
The theorem still applies with a call-by-value semantics.
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Sketch of the proof

λ+ λ2
+

(x : Sec) ` e : intPub

e[x ← e1] →∗ k1

e[x ← e2] →∗ k2
Completeness of

λ2
+ semantics

Bracket
//

Non-interference

²²Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â

` e[x ⇐ 〈e1 | e2〉] : intPub

e[x ⇐ 〈e1 | e2〉] →∗ n

Subject
reduction

²²

` n : intPub

Bracket

²²

k1 = k2 bnc1 = bnc2
Correctness of
λ2

+ semantics

oo
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Why use brackets rather than holes ?

Several previous works uses some kind of holes to represent secret parts of
expressions during reduction. However, such an approach does not allow to
design accurate semantics rules for case construct :

¤ case [. . . | Cj : xj 7→ ej | . . .] →
{

¤ (lift-case)
ej[x ⇐ ¤] (case)

?

Each hole would need to be annotated by something like its type.
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About weak non-interference

Our non-interference theorem is a weak result : it requires both expressions
e[x ⇐ e1] and e[x ⇐ e2] to converge.

This is made necessary by the fine-grained analysis: it is able to ignore some
test conditions. Consider for instance:

e = e′ case [A : 7→ D | B : 7→ D]

(where e′ has type e′ type (A,B : Pre ∗; ∂Abs)∗). The type system statically
detects that the result of e’s evaluation does not depend on e′, although e’s
termination does. For example, e′ may be defined as:

e′ = Ω case [A : 7→ B | B : 7→ A]
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Examples

let test_A = function
A _ -> true

| _ -> false

rq → boolq({A})

let rotate = function
A -> B

| B -> D
| D -> A

(A : α; B : β; D : δ; ∂Abs)(A·B:δ′;A·D:β′;B·D:α′;∂⊥)

→ (A : δ; B : α; D : β; ∂Abs)(A·B:β′;A·D:α′;B·D:δ′;∂⊥)
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Examples (2)

let f x y z =
if x then (if y then A else B)

else (if z then A else D)

boolα → boolβ → boolδ → (A,B, D : Pre ; ∗)(A·B:αtβ;A·D:αtδ;B·D:α;∗)

let g = function
A | B -> true

| D -> false

(A,B, D : Pre ; ∂Abs)(A·D,B·D:α;∗) → boolα

let h x y z = g (f x y z)

boolα → boolβ → boolδ → boolαtδ
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Examples (3)

let f x y z =
if x then (if y then A else B)

else (if z then A else D)

boolα → boolβ → boolδ → (A,B, D : Pre ; ∗)(A·B:αtβ;A·D:αtδ;B·D:α;∗)

let f x y z =
if x then (if y then (fun _ -> A) else (fun _ -> B))

else (if z then (fun _ -> A) else (fun _ -> D))

boolα → boolβ → boolδ → (∗ → (A,B, D : Pre ; ∗)(A·B:αtβ;A·D:αtδ;B·D:α;∗))
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λE: a λ-calculus with exceptions

v ::= x | k | (v, v) | λx.e value

| ε v (exception)

e ::= v | v v | πj v expression

| raise v (raising an exception)

| E[e]

E ::= evaluation context

| bind x = [ ] in e (sequential binding)

| [ ] handle ε x Â e (handling one exception)

| [ ] handle x Â e (handling all exceptions)
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Encoding exceptions into sums

We now assume that constructors c of λ+ are exactly the same as exception
names ε in λE , with an additional one: η.

We introduce a simple encoding of λE into λCBV
+ . It consists in translating

every expression e of λE into an expression JeK of λ+ such that :

• If e evaluates to a value v without raising an exception then JeK evaluates
to a value of the form η ∗ in λCBV

+ .

• If e raises an exception ε then JeK evaluates to a value ε ∗ in λCBV
+ .
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Typing exceptions

This encoding allows deriving a type system tracing information flows in λE
from that of λ+.

t ::= int` | t× t | t → rq

a ::= Abs | Pre t
r ::= {c 7→ a}
q ::= {c1 · c2 7→ `}

Judgements about values: Γ ` v : t
Judgements about expressions: Γ ° e : rq

We obtain rules for exceptions similar to those of sums.
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Encoding existing systems

Previous type systems tracing information flows in language equipped with
exceptions [Myers 99, Pottier and Simonet 02] may be encoded as a restriction
of this new one.
These systems have been designed in a direct manner and are relatively
ad-hoc. They involve a simple vector v (instead of a matrix) giving only one
information level for each available exception.

Each entry of the vector correspond in our system to the union of one line
(or one column) of the matrix:

v(c) = q({c}) = t{q(c · c′) | c′ 6= c}
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Conclusion

Because of the structure of security annotations involving matrices of levels,
an implementation of this framework is likely to produce very verbose type
schemes. Thus, it seems difficult to use it as the basis of a generic secure
programming language. Nevertheless:

• From a theoretical point of view, it allows a better understanding of ad-hoc
previous works on exceptions. To some extent, it may explain their design
choices.

• From a practical point of view, it might be of interest for automated
analysis of very sensitive part of programs (relatively to information flow)
for which standard systems remain too approximative. More experience in
this area is however required before going further.


