
headache

Vincent Simonet

November, 2002

1 Overview

It is a common usage to put at the beginning of source code files a short header giving, for instance, some
copyright informations. headache is a simple and lightweight tool for managing easily these headers. Among
its functionalities, one may mention:

• Headers must generally be generated as comments in source code files. headache deals with different
files types and generates for each of them headers in an appropriate format.

• Headers automatically detects existing headers and removes them. Thus, you can use it to update
headers in a set of files.

headache is distributed under the terms of the GNU General Public License. See file LICENSE of the
distribution for more information.

2 Compilation and installation

Building headache requires Objective Caml (version 3.06 or up, available at http://caml.inria.fr/) and
GNU Make.

Instructions

1. Configure the system. From the source directory, do:

./configure

This generates the Makefile in the source directory. The software is installed by default in /usr/local/bin.
This path is customizable thanks to the --bindir option.

2. Build the executable. From the source directory, do:

make

This builds an executable named headache.

3. In order to install it in the directory specified during configuration, as a superuser, do:

make install

3 Usage

Let us illustrate the use of this tool with a small example. Assume you have a small project mixing C and
Caml code consisting in three files foo.c, bar.ml and bar.mli’, and you want to equip them with some
header. First of all, write a header file, i.e. a plain text file including the information headers must mention.
An example of such a file is given in figure 1. In the following, we assume this file is named myheader and
is in the same directory as source files.
Then, in order to generate headers, just run the command:

1

Headache
Automatic generation of files headers

Vincent Simonet, Projet Cristal, INRIA Rocquencourt

Copyright 2002
Institut National de Recherche en Informatique et en Automatique.
All rights reserved. This file is distributed under the terms of
the GNU Library General Public License.

Vincent.Simonet@inria.fr http://cristal.inria.fr/~simonet/

Figure 1: An example of header file

headache -h myheader foo.c bar.ml bar.mli

Each file is equipped with an header including the text given in the header file myheader, surrounded by
some extra characters depending on its format making it a comment (e.g. (* and *) in .ml files). If you
update informations in the header file myheader, you simply need to re-run the above command to update
headers in source code files: existing ones are automatically removed.
Similarly, running:

headache -r foo.c bar.ml bar.mli

removes any existing in files foo.c, bar.ml and bar.mli. Files which do not have a header are kept
unchanged.

4 Configuration file

File types and format of header may be specified by a configuration file. By default, the default builtin
configuration file given in figure 2 is used. You can also use your own configuration file thanks to the -c
option:

headache -c myconfig -h myheader foo.c bar.ml bar.mli

In order to write your own configuration, you can follow the example given in figure 2. A configuration file
consists in a list of entries separated by the character |. Each of them is made of two parts separated by an
->:

• The first one is a regular expression. (Regular expression are enclosed within double quotes and have
the same syntax as in Gnu Emacs.) headache determines file types according to file basenames; thus,
each file is dealt with using the first line its name matches.

• The second one describes the format of headers for files of this type. It consists of the name of a model
(e.g. frame), possibly followed by a list of arguments. Arguments are named: open:"(*" means that
the value of the argument open is (*.

headache currently supports three models:

• frame. With this model, headers are generated in a frame. This model requires three arguments: open
and close (the opening and closing sequences for comments) and line (the character used to make the
horizontal lines of the frame). Two optional arguments may be used margin (a string printed between
the left and right side of the frame and the border, by default two spaces) and width (the width of the
inside of the frame, default is 68).

• lines. Headers are typeset between two lines. Three arguments must be provided: open and close
(the opening and closing sequences for comments), line (the character used to make the horizontal
lines). Three optional arguments are allowd: begin (a string typeset at the beginning of each line, by
default two spaces), last (a string typeset at the beginning of the last line) and width (the width of
the lines, default is 70).

2

Objective Caml source
".*\\.ml[il]?" -> frame open:"(*" line:"*" close:"*)"

| ".*\\.mly" -> frame open:"/*" line:"*" close:"*/"
C source
| ".*\\.[ch]" -> frame open:"/*" line:"*" close:"*/"
Misc
| ".*Makefile.*" -> frame open:"#" line:"#" close:"#"
| ".*README.*" -> frame open:"*" line:"*" close:"*"
| ".*LICENSE.*" -> frame open:"*" line:"*" close:"*"

Figure 2: The default builtin configuration file

• no. This model generates no header and has no argument.

It is possible to change the default builtin configuration file at compile time. For this, just edit the file
config_builtin present in the source distribution before building the software.

3

