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Abstract

Flow Caml is an extension of the Objective Caml language with a type system tracing
information flow. It automatically checks information flow within Flow Caml programs, then
translates them to regular Objective Caml code that can be compiled by the ordinary compiler
to produce secure programs. In this paper, we give a short overview of this system, from a
practical viewpoint.

1 Overview

1.1 Language-based Information Flow Analysis

A computer system generally handles considerable amount of data. It may be directly stored in
memory (e.g. a physical drive) or transit through some network interface or interactive device.
Thus, programs running on the system potentially have access to this information, as inputs—
e.g. the program may read data stored in memory or listen to a network interface—but also as
outputs—e.g. the program may write data to memory (appending new information to existing one
or replacing it) or emit some message on a network interface. Then, they may violate the security
or the integrity of the system by releasing secret information or corrupting sensitive one. That
is the reason why it is mandatory in many situations to control manipulations performed by a
program in order to ensure they fulfill some integrity or security policy.

A common solution is to provide an access control system. Roughly speaking, this consists in
attaching to every fragment of data some access rights that specify who may read and/or write
it; then, only authorized programs are allowed to read or write sensitive information. Such a
mechanism is deployed by most operating systems, including all UNIX variants. However, this
addresses only a part of the problem because it just controls accesses to information but does not
trace the security or integrity laws through computation: for example, a program executed with
privileged rights can read a secret location and copy its contents to a public location. Thus, access
control mechanisms provide some protection but require the programs to which access is granted
to be trusted without any restriction.

Information flow analysis consists in statically analyzing the source code of a program before
its execution, in order to ensure that all the operations it performs respect the security policy of
the system. In short, this requires to trace every information flow performed by the program and
to check it is legal. Such an analysis may be formulated as a type system; this choice presents many
advantages: types may serve as a formal specification language and offer automated verification
of code—provided type inference is available. Moreover, because the analysis may be performed
entirely at compile-time, it has no run-time cost.

Flow Caml is an extension of the Objective Caml language with a type system tracing infor-
mation flow. Its purpose is basically to allow to write real programs and to automatically check
that they obey some security policy. In Flow Caml, usual ML types are annotated with security
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levels chosen in a suitable lattice. Each annotation gives an approximation of the information
which the expression that it describes may convey. Because it has full type inference, the system
verifies, without requiring source code annotations, that every information flow performed by the
analyzed program is legal w.r.t. the security policy specified by the programmer.

1.2 Relating Flow Caml to Objective Caml

Let us briefly discuss the relationship between Flow Caml and Objective Caml [LDG+02b]. First of
all, one may mention that the Flow Caml system—including its type inference engine—is entirely
written in Objective Caml. Although some part of Flow Caml’s source code comes from that of
Objective Caml, the system is distributed as a standalone program—not just a patch on Objective
Caml—because its heart, the type inference engine, totally differs from the original one.

Putting aside these implementation issues which do not really concern the final user, the
most important relationship between Flow Caml and Objective Caml lies in the fact that the
former handles a (large) subset of the language of the latter. Roughly speaking, this means that
a Flow Caml program may also be read as an Objective Caml one. However, the Flow Caml
language is not exactly a subset of the Caml language: because the type system is extended with
some security annotations, the type part has to been extended to deal with them. Flow Caml
handles all the core constructs of the Caml language, including imperative features (references,
mutable values), exceptions (with the slight difference that exception names are no more first
class values), datatypes and pattern matching. It also features most of the module layer of the
language, including functors. However, Flow Caml does not support the object-oriented features
of Objective Caml, nor polymorphic variants and labels. (In fact, the programming language of
Flow Caml is approximately the same as that of the now defunct Caml Special Light.)

For the reason explained above, a Flow Caml program is generally not a valid input for the
Objective Caml compiler. Nevertheless, the Flow Caml compiler outputs legal Objective Caml
code from Flow Caml code. This allows to compile every program written in Flow Caml, using the
byte-code or the native compiler, and running it as for every Objective Caml program. Moreover,
it is possible to easily interface a program written in Flow Caml with Objective Caml code and
hence to benefit from a large amount of existing libraries.

1.3 How to get the Flow Caml system ?

The Flow Caml system is freely available on the World Wide Web at the following address:

http://cristal.inria.fr/~simonet/soft/flowcaml/

For the time being, only source distribution is available. Compilation requires GNU Make and the
last version of Objective Caml (available at http://caml.inria.fr/). The system should run on
almost every UNIX platform.

1.4 Theoretical background and related work

The type system implemented in the Flow Caml system for tracing information flow has been
developed by François Pottier and Vincent Simonet and is fully presented in [PS02, PS03]. These
papers give a formal presentation of the type algebra and typing rules for the core of the language,
that is Core ML (a λ-calculus with references, exceptions, primitives and let-polymorphism).
They also provide a correctness proof of the type system. That means that the (non-interference)
property that the system is supposed to enforce has been formally stated and verified.

The design of a type inference engine for a system providing both subtyping and polymorphism
formed another part of the work. The form of subtyping present in Flow Caml is generally said
to be structural. Dealing with subtyping constraints in an efficient way requires quite subtle
algorithms; they are presented (and proved correct) in another article [Sim03b]. In fact, the type
inference engine of Flow Caml has been implemented independently of its final use and is also
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distributed as a separate library [Sim02]. Hence, we hope it will be suitable for a variety of
applications.

The last step of the job consisted in integrating the information flow analysis in the Caml
language itself. This requires to extend in some way every programming construct provided by
the language, including datatype definitions, the module system, the implementation/interface
mechanism; in order to obtain an integrated programming environment.

To the best of our knowledge, the only other real size implementation of a language-based
information flow analysis is the Jif system by Myers and al. [MNZZ01], based on the type system
presented in Myers’ thesis [Mye99]. This prototype handles a large subset of the Java language,
which is roughly comparable to that of Flow Caml. Sketching a comparison, one of the main
differences between Flow Caml and Jif is that, going up with the ML tradition, the former features
polymorphism and has a full type inference algorithm, while the latter has monomorphic types and
performs only local type reconstruction, in the Java style. In particular, in Jif programs, methods
arguments must be annotated with their whole type, including the security annotations. On the
other hand, Jif provides an interesting mechanism of dynamic labels which allows performing some
checks at run-time. This has, for the time being, no counterpart in Flow Caml.

2 A taste of Flow Caml

In this section, we give a taste of the Flow Caml language and type system through some small
examples. Some experience with programming in the Caml language (or possibly another func-
tional language based on the ML type system, such as SML or Haskell) is assumed. If the reader
wishes to learn more about basic programming in Caml, we highly recommend the reading of the
first chapter (“The core language”) of Objective Caml’s tutorial [LDG+02a].

Our examples reproduce a session of the interactive toplevel: the user types Flow Caml phrases
(typeset in roman typewriter in this paper), terminated by ;;, in response to the # prompt. The
system type-checks them on the fly and prints the inferred type scheme (typeset in slanted

typewriter).

2.1 Security levels

In Flow Caml, ML types are annotated with security levels for tracing information flow. Consider
this first definition:

let x = 1;;

x : ’a int

It simply binds the identifier x to the integer constant 1. The toplevel answers that this constant
has type ’a int. In Flow Caml, the type constructor int takes one argument, which is a security
level belonging to an arbitrary lattice. These annotations allow the system to trace information
flow. In the above example, the security level is a variable, ’a; as every variable appearing free
in a type, it is implicitly universally quantified. Basically, this means that outside of any context,
the constant 1 may have any security level.

The security level of such a constant may be specified thanks to a simple type constraint.
Assume we receive three integers from different sources named Alice, Bob and Cecil (such sources
are often called principals in the literature):

let x1 : !alice int = 42;;

val x1 : !alice int

let x2 : !bob int = 53;;

val x2 : !bob int

let x3 : !charlie int = 11;;

val x3 : !charlie int
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In Flow Caml, each data source may be symbolized by a constant security level such as !alice,
!bob or !charlie (any alphanumeric identifier preceded by a ! is a suitable constant security level.)
Initially, these security levels are incomparable points in the lattice: this means that the principals
they represent cannot exchange any information. We will further on see how to allow some (see
section 3).

The above bindings are global in the toplevel, hence you can use them in the next expressions
you enter:

x1 + x1;;

- : !alice int

x1 + x2;;

- : [> !alice, !bob] int

x1 * x2 * x3;;

- : [> !alice, !bob, !charlie] int

The first expression contains information about only x1, so its security level is !alice. The sum
x1 + x2 is liable to leak information about x1 and x2. Then, its security level must be greater than
those of x1 and x2: [> !alice, !bob] stands for any level which is greater than !alice and !bob.
This can be read as the “symbolic union” of these two principals. Similarly, the security level of
the last expression must be greater than !alice, !bob and !charlie.

However, some programming experience in Flow Caml shows that using such explicit level
constants is most of the time unnecessary: thanks to ML polymorphism, universally quantified
type schemes are generally expressive enough to describe a piece of code (such as a function) w.r.t.
information flow. In fact, the fundamental use of level constants appears in the interaction with
external channels or principals (e.g. file i/o or networking) and will be discussed in section 3 of
the current tutorial. For the time being, we will only use them in a somewhat artificial way, for
guiding your intuition.

We now define a function which computes the successor of an integer:

let succ = function x -> x + 1;;

val succ : ’a int -> ’a int

Once again, the system automatically computes the most general typing for this definition:
’a int -> ’a int. This type means that the function succ takes as argument one integer of
some level ’a and returns another integer whose security level is exactly the same: indeed the
result of this function carries information about its input. Because its type is polymorphic w.r.t.
the security level of the integer argument, you can apply succ on arguments of different levels:

succ x1;;

- : !alice int

succ x2;;

- : !bob int

This example is sufficient to illustrate that polymorphism on security levels is a prominent feature
for type systems tracing information flow: here, in the absence of polymorphism, one have to write
a specialized version of the function succ for every level it is used with.

It is worth noting that information flow is traced in a somewhat conservative way: in the
underlying security model, there is an information flow from an input to an output as soon as
knowing the latter reveals some information, even incomplete, about the former. Let us for instance
consider the following function which computes the euclidean division of an integer by 2 thanks
to a logical shift.

let half = function x -> x lsr 1;;

val half : ’a int -> ’a int

The inferred scheme for half is exactly the same as that of succ: it reflects that the result produced
by half reveals some information about its input. However, this leak is only partial, because it is,
for instance, not possible to completely retrieve x1 from the result of half x1.
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2.2 An example of data structure: lists

In Flow Caml, the list type constructor has two arguments (while in Objective Caml it has only
one). Thus, in the type (’a, ’b) list, ’a is a type variable which gives the type of the elements
of the list; ’b is a level variable describing the information attached to the structure of the list.
This corresponds for instance to the information leaked by testing whether the list is empty.

let l1 = [1; 2; 3; 4];;

val l1 : (’a int, ’b) list

let l2 = [x1; x2];;

val l2 : ([> !alice; !bob] int, ’b) list

As usual in ML, functions manipulating lists generally perform pattern-matching on their
structure. They are often recursive, but this does not raise any particular difficulty concerning
typing. Here is the function which calculates the length of a list:

let rec length = function
[] -> 0

| _ :: tl -> 1 + length tl

;;

val length: (’a, ’b) list -> ’b int

In this type, the security annotation of the integer produced by the function, ’b, does not depend
on the type of the list’s elements, ’a, but is the same as the level of the input list: the function
reveals information about the structure of the list, but not about its elements. On the contrary,
a function testing whether the integer 0 appears in a list reveals information about both the
structure of the list and its elements, hence its type:

let rec mem0 = function
[] -> false

| hd :: tl -> hd = 0 || mem0 tl

;;

val mem0: (’a int, ’a) list -> ’a bool

The module List of the standard library provides usual functions operating on lists, including
the following examples:

let rec rev_append l1 l2 =

match l1 with
[] -> l2

| hd :: tl -> rev_append tl (hd :: l2)

;;

val rev_append: (’a, ’b) list -> (’a, ’b) list -> (’a, ’b) list

let rev l = rev_append l [];;

val rev: (’a, ’b) list -> (’a, ’b) list

There is naturally nothing magic with lists in Flow Caml, they can be defined as every algebraic
datatype by a type declaration:

type (’a, ’b) list =

[]

| :: of ’a * (’a, ’b) list

# ’b

;;

type (+’a:type, #’b:level) list = [] | (::) of ’a * (’a, ’b) list # ’b
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As in Caml, the definition lists all the possible forms of a value of type (’a, ’b) list: it is either
the constant [] or the constructor :: with two arguments: a head of type ’a and a tail of type
(’a, ’b) list. The fourth line of the declaration, # ’b tells that ’b is the security level attached to
the knowledge of the form of the variant, i.e. whether it is [] or ::. When entering this definition,
the system outputs the signature of the type constructor list, which mentions the kind of the
parameters and their variances: +’a:type means that the first parameter must be a type and is
covariant, #’b:level tells that the second one is a security level which is covariant and guarded (#
is a distinguished form of + which, in short, records ’b to appear in the # ’b clause of the datatype
declaration).

2.3 Subtyping and constraints

We will now show that Flow Caml features a constraint-based type system with subtyping. ML’s
type system (which is the basis of SML, Objective Caml or Haskell) relies on unification; which
means that the only expressible relationship between (type) variables is equality. Unfortunately,
as it will be demonstrated by our next examples, this is not expressive enough to faithfully trace
information flow in many cases, and then type schemes must include constraints between security
levels such as inequalities, which give a directed view of programs.

Let us consider a first example of function whose type scheme comprises an inequality: f1 takes
one integer x as argument and returns a pair formed of its successor and its sum with the global
constant x1 defined above:

let f1 x = (x + 1, x + x1);;

val f1 : ’a int -> ’a int * ’b int

with ’a < ’b

and !alice < ’b

The type scheme returned by the system involves two level variables, ’a and ’b. The first one, ’a,
is the security level of the function’s argument. Naturally, it is also that of the first component
of the pair returned by the function. The second integer returned by the function is labeled
by the variable ’b. This security level is related to ’a by the first inequality appearing after the
keyword with: ’a < ’b tells us that ’b must be greater than or equal to ’a (note that the character <
output by your terminal stands, in Flow Caml, for the mathematical symbol ≤). In what concerns
information flow, this inequality reflects the fact that the integer labeled by ’b depends on the one
labeled ’a; in other words that there is a flow from the latter to the former. The other constraint,
!alice < ’b constrains ’b to be greater than or equal to the constant !alice. It says that there is
a possible flow from data (namely x1) coming from the external source symbolized by the constant
!alice (the principal Alice) to the second output of the function.

Now, we can apply this function on different integers:

f1 0;;

- : ’a int * !alice int

f1 x1;;

- : !alice int * !alice int

f1 x2;;

- : !alice int * [> !alice, !bob] int

From a type-theoretic point of view, the type scheme inferred for f1 means that this func-
tion has every instance of ’a int -> ’a int * ’b int which satisfies the inequalities ’a < ’b and
!alice < ’b as type. This statement cannot be expressed so precisely in a unification-based type
system. Indeed, in such a framework, every < must be read as =, i.e. the variables ’a and ’b must
be unified with the constant !alice. Thus we would obtain the following judgment:

val f1 : !alice int -> !alice int * !alice int
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which is much more restrictive than the previous one: here, the function f1 cannot accept as
argument an integer whose level is not known to be less than or equal to !alice, e.g. x2. The same
observation can be made with the following function, f2, which takes three integer arguments and
computes the sums of each pair of them:

let f2 x y z =

(x + y, y + z, x + z)

;;

val f2 : ’a int -> ’b int -> ’c int -> ’d int * ’e int * ’f int

with ’a < ’d, ’f

and ’b < ’d, ’e

and ’c < ’e, ’f

The obtained type scheme involves three constraints; each of them relates one argument of the
function to two of its outputs. For instance, the constraint ’a < ’d, ’f (which is a shorthand
for ’a < ’d and ’a < ’f) traces the information flow from the first argument, x to the first and
third components of the result, x + y and x + z respectively. The two following constraints deal
similarly with the second and third arguments of the function, respectively. When one applies
the function on the three constants x1, x2 and x3, the constraints allow to compute the respective
levels of the produced integer:

f2 x1 x2 x3;;

- : [> !alice, !bob] int * [> !bob, !charlie] int * [> !alice, !charlie] int

2.4 Imperative features

Though all the examples given so far in this tutorial are in a “purely functional” style, Flow Caml
also provides full imperatives features. This includes mutable data structures such as references
and arrays, records with mutable fields, usual while and for loops, as well as exceptions.

Unfortunately, in a programming language equipped with side effects, it is possible to leak
information in indirect ways. Let us consider the following pieces of code:

r := not y

r := if y then false else true

if y then r := false else r := true

r := true; if y then r := false

All of them are semantically equivalent: they update the content of the reference r, storing in it
the negation of the boolean y. Hence, this produces some information flow from y to r. However,
depending on the cases, it is of a different nature. In the two first examples, the flow is said to
be direct : a value depending from y is computed and then stored in r; this is very similar to
what we have encountered up to now. On the contrary, in the last two expressions, the value in
every right-hand-side of the := operator does not involve y: it is even given explicitly in the source
code. However, the reference’s update is performed in a branch of the program whose execution
is conditioned by the value of y. In this situation, we say there is an indirect flow form y to r.
The last example calls for an additional comment: in the case where the boolean y is false, the
reference r is never updated in a context conditioned by y. However, the information flow from
the latter to the former still exists: it is indeed possible to leak information through the absence
of a certain effect. (This last example shows that it would be very difficult to detect information
flow at run time.)

References In Flow Caml, the type constructor for references, ref, has two arguments: the first
one is the type of the value stored in the reference; and the second one is a security level which
describes how much information is attached to the identity of the reference, in other words its
memory address. Let us now illustrate how information flow with mutable structures is traced by
some examples of Flow Caml code. We first define a reference r1 whose content is declared to be
an integer of levels !alice:
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let r1 : (!alice int, ’a) ref = ref 0

val r1 : (!alice int, ’a) ref

In the above example, the content of reference r1 has type !alice int. This means it may
receive any integer whose security level is less than or equal to !alice, i.e. an integer Alice is
allowed to read. The integer x1 has level !alice. Hence it can legally be stored in r1:

r1 := x1;;

- : unit

This expression only produces a side-effect, so it has type unit. Because there is only one value of
this type, the constant (), the value of a unit expression yields no information. As a result, the
unit type constructor does not carry any security annotation. On the contrary, the integer x2 has
been declared with the level !bob. Because information flow from !bob to !alice is not allowed
(see section 3), assigning it to r1 raises a typing error:

r1 := x2;;

This expression generates the following information flow(s):

from !bob to !alice

which are not legal.

Similarly, the reference r1 can be updated in a context whose execution depends on x1 but not x2:

if x1 = 0 then r1 := 0 else r1 := 42;;

- : unit

if x2 = 0 then r1 := 0 else r1 := 42;;

This expression generates the following information flow(s):

from !bob to !alice

which are not legal.

Lastly, reading the content of r1 naturally yields an integer of level !alice:

!r1;;

- : !alice int

Let us explain in a few words how the type system is able to trace indirect information flow in
the above examples. Flow Caml associates to every context of an expression (i.e. every point of
the program) a security level telling how much information the given sub-expression gains when
it is executed. (In the literature, this security level is generally written pc, in reference to program
counter.) Basically, each time a conditional construct is traversed, this level is augmented with
the annotation of the condition, as illustrated in this example:

if (* any expression of type !alice bool *) then
... (* this branch is type-checked at level !alice *)

else
if (* any expression of type !bob bool *) then

... (* this branch is type-checked at level [> !alice, !bob] *)

else
... (* this branch is type-checked at level [> !alice, !bob] *)

Moreover, when some data is written in a reference, the system constrains the level of its content
to be greater than or equal to the security level attached to the context, reflecting the fact that,
because of the update, the content of the reference is liable to carry information about all the
tests traversed to reach this point of the program.

Some additional difficulty arises when one defines a function performing side-effects: because
the body of a function is executed at the point of the program where it is applied—and not the
one where it is defined—it must be type-checked at the level of the former rather than the latter.
For this purpose, functions types carry a security level which is a lower bound on the effects of the
function and an upper bound on the contexts where it can be applied (in the previous examples,
there was no constraint on this bound, so it was omitted by the system for the sake of readability).
For instance, consider a function which sets the content of r1 to false:
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let reset_r1 () =

r1 := false

;;

val reset_r1 : unit -{!alice ||}-> unit

This function can only be executed in a context whose level is less than or equal to !alice. This is
reflected by the annotation !alice printed “inside” the arrow symbol of the above type. In many
cases, it is a variable related to (parts of) the type of the function’s argument:

let reset r =

r := false

;;

val reset : (’a bool, ’a) ref -{’a ||}-> unit

The function reset takes a reference as argument and sets its content to false. The type
system constrains the level of the content of the reference to be equal to or greater than (1)
the level attached to the reference’s identity and (2) the level attached to the context where the
function is applied. We now re-implement the function calculating the length of a list, length, in
imperative style:

let length’ list =

let counter = ref 0 in
let rec loop = function

[] -> ()

| _ :: tl ->

incr counter;

loop tl

in
loop list;

!counter

;;

val length’ : (’a, ’b) list -{’b ||}-> ’b int

The obtained scheme appears more restrictive than length’s type:

val length: (’a, ’b) list -> ’b int

Indeed, with length’, the result’s security level must be greater than or equal to the function’s pc
parameter. However, the difference is only superficial; it can be checked that both types in fact
have the same expressive power. To conclude this overview of references, let us mention that the
ref type is a case of record datatype with a single mutable field, as in Objective Caml:

type (=’a:type, #’b:level) ref = { mutable contents : ’a } # ’b;;

Exceptions We now briefly explain how Flow Caml deals with exceptions. For the programmer,
exceptions are a powerful mechanism for signaling and handling exceptional conditions. As in
Objective Caml, exceptions names are declared with the exception construct and signaled with
the raise operator:

exception X;;

exception X

exception Y;;

exception Y

raise X;;

- : ’a
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However, the exception machinery provided by Flow Caml is slightly restricted in comparison
with that of Objective Caml, mostly because exceptions are not first class values. Basically, an
exception name (such as X in the above example) is not a value, and hence cannot be bound to
a variable or passed as argument to a function (while in Objective Caml, it is a legal value of
type exn). Similarly, in Objective Caml, raise is a regular function which accepts an arbitrary
argument (of type exn), but, in Flow Caml, it is a built-in construct which requires the name of
the raised exception to be statically specified. Although it should theoretically be possible to deal
with exceptions as first class citizens in Flow Caml [PS02], we believe our design choice to be a
good balance between expressiveness and simplicity: having first class exceptions would generate
complex typings (which involve conditional constraints), whereas, according to our experience,
the use of exceptions as values in real programs seems to be rather limited. To mitigate the
loss in expressiveness and provide alternatives for the most common usages of exceptions as first
class values made in Caml programs, Flow Caml provides two additional constructs for handling
exceptions: try ... finally and try ... reraise.

The exceptions that an expression is likely to raise are traced in Flow Caml’s type system using
a row. A row is a mapping from exception names to security levels: for every exception name,
it tells how much information is leaked if the related expression effectively raises an exception of
this name. Because the set of exception names is open (in the sense that the programmer can
incrementally define an arbitrary number of them), rows must range over all potentially definable
exceptions names; hence they are infinite objects. So, in order to allow denoting them in a finite
concrete syntax, Flow Caml uses row variables and adopts Rémy’s row syntax. For instance, the
(row) expression X: ’a; Y: ’b; ’c stands for the row which maps the exception name X to ’a, Y to
’b and whose other entries are given by ’c. Here, ’a and ’b are levels while ’c is a row variable of
domain {X, Y}: it stands for a row ranging over all exception names except X and Y. The order in
which fields appear is not significant: the above row is equal to Y: ’b; X: ’a; ’c. For the sake of
conciseness, when it prints a type scheme, Flow Caml omits unconstrained universally quantified
row variables: for instance, A: ’a; Y: ’b stands for A: ’a; Y: ’b; ’c where ’c is a fresh row
variable.

Because exceptions constitute an observable form of result for functions, they must be taken
in account in their types. Let us for instance define a simple function which raises the exception
X:

let raise_X () =

raise X

;;

val raise_X : unit -{’a | X: ’a |}-> ’b

The second annotation appearing on the arrow is a row describing the exceptions that the function
is likely to raise when it is called (once again, every function we have defined up to now did not
raise exceptions, so rows were omitted in arrows types printed by the system). Here, X: ’a, tells
that the given function may raise an exception of name X: catching this exception leaks information
about the context where the function is called, so the security level associated to X is constrained
to be at least that of the context where the function is applied (which appears as usual in first
place in the arrow). In the following example,

let raise_X’ y =

if y then raise X

;;

val raise_X’ : ’a bool -{’a | X: ’a |}-> unit

catching the exception X gives information about both the context where raise_X’ has been applied
and the boolean argument given to the function. Thus, the annotation associated to the entry
X in the row of this function must be greater than or equal to the security levels of both. When
a function is liable to raise exceptions of different names, its row mentions one entry for each of
them:
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let raise_X_or_Y x y =

if x then raise X;

if y then raise Y

;;

val raise_X_or_y : ’a bool -> ’b bool -{’a | X: ’a; Y: ’b |}-> unit

with ’a < ’b

The type scheme inferred by the system distinguishes one security level for each exception name:
handling X yields information only about the first argument, x; while handling Y about both.

Let us now define a function which takes an integer as argument, raises X if it is zero and
returns false otherwise:

let test_zero x =

if x = 0 then raise X;

false

;;

val test_zero: ’a int -> {’a | X: ’a |}-> ’b bool

The inferred type schemes states that the boolean returned by the function does not depend on
its argument. Indeed, if the function effectively produces a value, it is invariably false. However,
this function can reveal information about its argument through its effect. This is reflected by
the security level associated to the exception X in its type: it must be greater than or equal to the
levels of the context where the function is applied and the integer argument. Exceptions can be
trapped with the try ... with construct.

try
test_zero x1

with
X -> true

;;

- : !alice bool

In this example, test_zero x1 is liable to raise an exception X with the level !alice, which will
be catched by the handler try ... with X ->. Thus, the value produced by the whole construct
must be guarded by the level of the handled exception, i.e. !alice.

Lastly, many functions in the standard library raise an exception when they cannot complete
normally. For instance, the integer division yields Division_by_zero when its second argument is
zero, as reflected by its type:

val ( / ) : ’a int -> ’b int -{’c | Division_by_zero: ’c |}-> ’a int

with ’b < ’c, ’a

It is noticeable that there is no relationship between the level of the first argument and that of
the exception Division_by_zero. This reflects that this operator does not need to match its first
argument before raising the exception.

This puts an end to this short guided tour of Flow Caml. By lack of space, we naturally
omit many features of the language, among whose one may mention pattern-matching, datatypes
declarations and the module layer.

3 Writing programs in Flow Caml

A whole Flow Caml program may be viewed as a process that receives information from one or
several sources, performs some computation and sends its results to one or several receivers. Then,
the final purpose of the Flow Caml type system is to check that every information flow from a
source to a receiver generated by the execution is legal w.r.t. the security policy of the system. In
this section, we discuss how such external entities are modeled in Flow Caml and how the desired
security policy may be specified by the programmer.
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In the literature, holders of information are generally referred to as principals (from the pro-
gram’s viewpoint, each of them can be a source, a receiver or both). Depending on the context,
principals may stand for a variety of concepts: (groups of) human beings, security classes (e.g. pub-
lic or secret), subsets of the system’s memory, communication channels through some peripheral
or network interface. However Flow Caml is not concerned with the real existence of such entities,
and provides a general and uniform manner to deal with them: in its type system, principals are
represented by constant security levels. In the previous examples, Alice, Bob and Charlie were
examples of principals and represented by the security levels !alice, !bob and !charlie, respec-
tively. However, they remained relatively abstract, because we just declared a series of values to
have these levels—thanks to some type constraint—but we did not say how a program can really
interact with them.

3.1 The example of the standard input and output

Concrete examples of external communication channels for a program consist in its standard input
and output. Both can be viewed as principals and we therefore decide to represent them by the
two security levels !stdin and !stdout, respectively. A program can interact with them using the
usual functions of the standard library. For instance, print_int outputs an integer on the standard
output:

print_int;;

- : !stdout int -{!stdout ||}-> unit

Because the integer provided as argument is sent to the standard output, its security level must
be less than or equal to !stdout. To print the integer 1, one writes:

print_int 1;;

- : unit

The literal constant 1 has type ’a int for every ’a; hence one can instantiate ’a < !stdout and the
call to the function is possible. However, printing the integer x1 (which comes from the principal
Alice and hence has the security level !alice) is not, in the current security policy, legal:

print_int x1;;

This expression generates the following information flow(s):

from !alice to !stdout

which are not legal.

Indeed, this piece of code generates a flow from Alice to the standard output and hence requires
the inequality !alice < !stdout. This is not satisfied in the default security policy which is the
empty one: it never allows any communication from one principal to another. However, it can be
refined using declarations introduced by the keyword flow:

flow !alice < !stdout;;

This makes the security level !alice less than or equal to !stdout. In other words, this allows
information flow from the principal represented by !alice to that of !stdout (the standard output).
These declarations are naturally “transitive”. For instance, if one declares:

flow !bob < !alice;;

then Bob is allowed to send information to Alice, but also, by transitivity, to the standard output:

print_int x2;;

- : unit

It is worth noting that the constant security levels are global as well as the declarations that
relates them. This is natural because the principals and the security policy they represent are so.
However, for convenience, the interactive toplevel allows the programmer to refine the security
policy incrementally. This is always safe because a piece of code that is legal in some security
policy is still allowed in another one where more information flows are possible.
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3.2 Modeling principals

Real programs are liable to communicate with external entities throughout other channels than
the simple standard input and output, e.g. the file system, network interfaces or display devices.
However, the Flow Caml library does not provide functions allowing such communications: an-
alyzing these low-level operations with its type system would not yield any relevant information
about their behavior w.r.t. the security policy, because fine-grained considerations are in general
mandatory to prove they are safe. Then, the interaction with external entities must be modeled
in Flow Caml at a higher level.

That is the reason why a program written and verified with the Flow Caml system must
generally be divided in two parts. The purpose of the first one is to provide a high level model of
the external principals considered by the program. This should consist in one or several functions
for interacting with them, which are implemented in one or several regular Caml modules, using
for instance the standard i/o stuff, the Unix library or some graphical toolkit. This part of the
code cannot be verified by the Flow Caml system: the programmer must supply itself an interface
for these “high level” functions which specifies their behavior w.r.t. the security policy. The second
part consists in the body of the program, which interacts with the outside world only with the
model of principals provided by the previous modules. This part can be written and type-checked
in Flow Caml, which automates its verification.

3.3 Future work

We plan to extend the Flow Caml system with existential and universal datatypes, in the style
of Odersky and Laüfer [OL92]. Indeed, we observed that, because of the presence of security
annotations, many programs require to aggregate values of different types, as it is illustrated by
the following example. Assume we are modeling the security policy of a bank, where every client
stands for a distinct principal. The information concerning each client can be stored in a record,
which may be defined as follows:

type ’a client_info = {
cash: ’a int;
send_message: ’a channel;
...

}

This definition is identical to that we would have in Caml, with the difference that the record type
client_info must carry one parameter which is the security level of the client. This security
level also appears in the record components types: the field cash stores the current balance of the
client’s account, hence it has the type of an integer labeled by the client’s security level. Similarly,
send_message is an output channel which allows sending numeric messages to the given client.
The bank’s security policy naturally requires that each client can only receive information about
its personal situation, so information sent in the channel send_message must have (at most) the
security level ’a. In Caml, all records storing information about clients would have the same
unannotated type, client_info, so it would be possible to store the clients file in some data
structure, such as a list of type client_info list. On the contrary, in Flow Caml, records
corresponding to distinct clients have incompatible types, because their annotations differ. As
a consequence, the clients file forms a heterogeneous set of records which is not representable.
Making the client’s security level existentially quantified in the declaration is an elegant solution
to overcome this problem: because it no longer appears as argument of the type client_info, it
is again possible to give to all client records the same type and build a list of them.

For this purpose, we recently designed an extension of the HM(X) framework with such existen-
tial (and at the same time universal) types [Sim03a] and proposed a type inference algorithm for
the case of subtyping featured by Flow Caml. This remains to be implemented and experimented
with.
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