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Abstract. We are interested in type inference in the presence of struc-
tural subtyping from a pragmatic perspective. This work combines theo-
retical and practical contributions: first, it provides a faithful description
of an efficient algorithm for solving and simplifying constraints; whose
correctness is formally proved. Besides, the framework has been imple-
mented in Objective Caml, yielding a generic type inference engine. Its
efficiency is assessed by a complexity result and a series of experiments
in realistic cases.

1 Introduction

1.1 Subtyping

Subtyping is a key feature of many type systems for programming languages.
Previous works have shown how to integrate it into languages such as the simply
typed λ-calculus, ML or Haskell. It appears as the basis of many object-oriented
languages, e.g. [BM97]; and it allows designing fine-grained type systems for ad-
vanced programming constructs, e.g. [Pot00a]. It is also well suited for extending
standard type systems in order to perform some static analysis, such as detection
of uncaught exceptions [AF97], data [PO95] or information [PS02] flow analyses.

In all cases, subtyping consists of a partial order ≤ on types and a subsump-
tion rule that allows every expression which has some type to be used with any
greater type, as proposed by Mitchell [Mit84] and Cardelli [Car88]. The subtyp-
ing order may reflect a variety of concepts: inclusion of mathematical domains,
class hierarchy in object oriented languages, principals in security analyses, for
instance.

As a consequence, the definition of the subtyping order itself varies. In this
paper, we are interested in the case of structural subtyping, where comparable
types must have the same shape and can only differ by their atomic leaves.
(This contrasts with non-structural subtyping where different type constructors
may be comparable; in particular, a least type ⊥ and a greatest type > may
be supplied. This also differs from atomic subtyping where there is no type
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constructor but only atoms belonging to some poset.) Structural subtyping is of
particular interest when one intends to enrich a unification-based type system,
such as ML’s, with annotations belonging to a poset of atoms. In this case,
the subtyping order may be simply defined by lifting the poset order along the
existing type structure.1 Following the complexity study of Tiuryn [Tiu92] and
Hoang and Mitchell [HM95], we will assume the atomic poset to be a lattice
(our results may be easily extended to the case where it is a disjoint union of
lattices).

1.2 Type inference

Type inference consists in automatically determining the possible types of a
piece of code. First, it allows type errors to be detected at compile time, without
forcing programmers to include type annotations in programs. Second, a variety
of program analyzes may be described as type inference processes.

The first algorithm for type inference with atomic subtyping was proposed by
Mitchell [Mit84,Mit91] and improved for handling structural subtyping by Fuh
and Mishra [FM88,FM89]. However, quoting Hoang and Mitchell [HM95], “it has
seen little if any practical use”, mostly because “it is inefficient and the output,
even for relatively simple input expressions, appears excessively long and cum-
bersome to read”. The theoretical complexity of the problem has been largely
studied. Tiuryn [Tiu92] showed that deciding satisfiability of subtyping con-
straints between atoms is PSPACE-hard in the general case; and in the common
case where the atomic poset is a disjoint union of lattices, it is solvable in linear
time. Hoang and Mitchell [HM95] proved the equivalence of constraint resolu-
tion with typability (in the simply typed λ-calculus with subtyping). Frey [Fre97]
settled completely the complexity of the general case, showing it is PSPACE-
complete. Lastly, Kuncak and Rinard [KR03] recently showed the first order
theory of structural subtyping of non-recursive types to be decidable. Besides,
in an attempt to overcome the practical limitation of the first algorithms, sev-
eral researchers have investigated simplification heuristics in a variety of set-
tings [AF96,TS96,FF97,Pot01]. Rehof [Reh97] also studies this question from a
theoretical viewpoint, proving the existence of minimal typings in atomic sub-
typing and setting an exponential lower bound on their size. Simplification is
useful because it may speed up type inference and make type information more
readable for the user. However, to the best of our knowledge, only a small num-
ber of realistic type inference systems with let-polymorphism and (a flavor of)
subtyping have been published [MW97,Fäh99,Pot00b,Fre98,Kod02].

Structural subtyping has also been studied throughout a series of specific
applications. Among them, one may mention Foster’s work about type quali-

1 Structural subtyping cannot in general be viewed as a particular sub-case of some
non-structural framework. For instance, operations described in [Pot01], are incorrect
if the set of types is not a lattice, e.g. if there is no types ⊥ and >. Moreover,
extending a unification-based type system with a non-structural order is likely to
make typable expressions that are rejected by the original system.
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fiers [FFA99,FTA02] and the introduction of boolean constraints for binding-
time analysis [GSSS01]. Both involve a type system with structural subtyping;
however their type inference algorithm consists, in short, in expanding type
structure and decomposing constraints without performing simplifications until
obtaining a problem which involves only atoms and can be handled by an exter-
nal solver. This contrasts with our approach which emphasizes the interlacing of
resolution and simplification.

Type systems with subtyping associate not only a type to an expression but
also a set of constraints, stating assumptions about the subtype order under
which the typing is valid. Its presence is required by the desire to obtain most
general (i.e. principal) statements which summarize all possible typings for a
given expression, with a type compatibility notion which is not restricted to type
instantiation, but includes all the coercions allowed by the subtyping order.

It is wise to decompose the design of a type synthesizer for a given lan-
guage in two steps, whose implementation is in principle independent (although
their execution is interlaced for efficiency). The first step consists in traversing
the abstract syntax tree and generating types and constraints; this is in general
straightforward but specific to the analysis at hand. The second step requires de-
ciding the satisfiability of the generated constraints, and possibly rewriting them
into a better but equivalent form. This remains independent from the language
or even the type system itself, and relies only on the constraint logic. Hence, it
may be delegated to a generic library taking care of constraint management.

2 Overview

In this paper, we address this question from a pragmatic perspective, our main
objective resides in providing a generic, practical and scalable type inference en-
gine featuring structural subtyping and polymorphism. Firstly, we give a faithful
description of the algorithm and explain the main design choices, motivated by
efficiency. Secondly, because previous works have proved this a delicate task
and correctness of type inference is crucial, we provide a complete, formal proof
of the framework. Lastly, we believe that experience is necessary for designing
efficient techniques and advocating their scalability; so a complete implementa-
tion of the algorithms presented in this paper has been carried out in Objective
Caml [Sim02] and experienced on realistic cases. On our tests, it has shown to
be slower only by a factor of 2 to 3 in comparison with standard unification
(see Section 7 for details). Despite the large amount of work about structural
subtyping in the literature, the faithful description of a complete type inference
engine—which aims at efficiency, has been proved correct and also implemented
apart from any particular application—forms an original contribution of the
current work. We hope this will help such system to be widely used.

Our solving strategy sharply contrasts with some previous works about solv-
ing of subtyping constraints, e.g. [Pot00b], where a transitive closure of sub-
typing constraints is intertwined with decomposition. This yields a cubic-time
algorithm, which cannot be improved because it performs a sort of dynamic tran-
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sitive closure. It is interesting to draw a parallel with Heintze and McAllester’s
algorithm for control flow analysis (CFA) [HM97]. Whereas, in the standard ap-
proach for CFA, a transitive closure is dynamically interlaced with constraint
generation, they propose a framework which first builds a certain graph and
then performs a (demand-driven) closure. This gives a linear-time algorithm
under the hypothesis of bounded-types. Similarly, our strategy for structural
subtyping consists in postponing closure by first expanding the term structure
and decomposing constraints until obtaining an atomic problem, as described
in [FM88,Tiu92]. Although expansion may theoretically introduce a number of
variables exponential in the size of the input constraint, this behavior is rare
and, under the hypothesis of bounded terms, this strategy remains quasi-linear
under the hypothesis of bounded-terms (see section 5.5). This hypothesis may be
discussed [SHO98], but we believe it to be a good approximation for the practical
examples: it captures the intuition that functions generally have limited number
of arguments and order.

However, a simple algorithm performing expansion and decomposition on
inequalities does not scale to the type-checking of real programs: despite the lin-
ear bound, expansion may in practice severely increase the size of the problem,
affecting too much the overhead of the algorithm. To avoid this, we refine the
strategy in several ways. Firstly, in order to deal with expansion and decompo-
sition in an efficient manner, we enrich the original constraint language, which
basically allows expressing a conjunction of inequalities, with new constructions,
named multi-skeletons, that allow taking advantage of the structurality of sub-
typing by re-using techniques found in standard constraint-based unification
frameworks [Rém92]. Roughly speaking, multi-skeletons simultaneously express
standard equalities between terms (written =) as well as equalities between
term structures or shapes (written ≈); hence they allow performing unification
on both. Secondly, in order to reduce as much as possible the number of variables
to be expanded, we introduce several simplifications which must be performed
throughout the expansion process. Lastly, we provide another set of simplifica-
tions which can be realized only at the end of solving. They allow the output
of concise and readable typing information, and are most beneficial in the pres-
ence of let-polymorphism: generalization and instantiation require duplicating
constraints, hence they must be made as compact as possible beforehand.

In addition to standard structural subtyping, our system is also equipped
with less common features. First, it provides rows, which increase the expressive-
ness of the language and are useful for type-and-effect systems, see [AF97,PL00].
Second, we deal with an original form of constraints, referred to as weak inequal-
ities, which allow handling constraints such as guards [PS02] (see Section 3.3).

The remainder of the article is organized as follows. We begin by introducing
the ground model of terms (Section 3) and, then, the first order logic in which
constraints are expressed (Section 4). Section 5 describes the heart of the con-
straint resolution algorithm, and, in Section 6, we incorporate into this process
simplification techniques, as discussed above. Then, in Section ??, we sketch how
to extend the solving algorithm to decide constraint implication. The implemen-
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tation and experimental measures are presented in Section 7. The paper ends
with some discussion about possible extensions.

3 The ground algebra

The ground algebra is a logical model for interpreting constraints and type
schemes. It consists in a set of ground terms and two binary relations: a subtyp-
ing order, ≤, and a “weak inequality”, @.

3.1 Ground terms

Let (A,≤A) be a lattice whose elements, denoted by a, are the atoms. Let C and
L be two denumerable sets of type constructors c and row labels `, respectively.
We let L range over co-finite subsets of L and if ` 6∈ L, `.L stands for {`} ∪ L.
Ground terms and kinds are defined as follows:

t ::= a κ ::= Atom
| c(t, . . . , t) | Type
| {` 7→ t}`∈L | RowL κ

Ground terms include atomic constants a, which have kind Atom. For each type
constructor c, we assume given a signature which is a finite list of kinds; we write
c :: κ1⊗· · ·⊗κn ⇒ Type (the integer n is the arity of c). Then, provided a list of
ground terms τ1, . . . , τn, whose kinds are respectively κ1, . . . , κn, c(τ1, . . . , τn) is a
ground type of kind Type. A row of kind RowL κ is a mapping from labels in L to
terms of kind κ, which is constant but on a finite subset of L. (L is the domain of t
and is denoted by dom(t). We write ∂Lt for the constant row which maps labels in
L to t (we omit L when it may be deduced from the context). In this paper, if t is
a ground term of kind κ, we write ` t : κ. The formal definition of this predicate is
reminded in figure 1; and in the remainder of the paper, we restrict our attention
to well kinded ground terms. We also assume that there exists a type constructor
whose signature has the form Row∗ Atom⊗ · · · ⊗ Row∗ Atom ⇒ Type (otherwise,
the ground algebra contains no type). The height of a term is defined by:

h(a) = 0
h(c(t1, . . . , tn)) = 1 + max{h(ti) | i ∈ J1, nK}
h({` 7→ t`}`∈L) = 1 + max{h(t`) | ` ∈ L}

Because recursive ground terms are not allowed and rows are quasi-constant,
every ground term is of finite height.

3.2 Strong subtyping

The set of ground terms is equipped with the partial order ≤ defined in Figure 2,
called subtyping, which relates terms of the same kind. On atoms, it is the order
≤A. Two comparable types must have the same head constructor c; moreover,
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` a : Atom
c :: κ1 ⊗ · · · ⊗ κn ⇒ Type ∀i ` ti : κi

` c(t1, . . . , tn) : Type

∀` ∈ L ` t` : κ

` {` 7→ t`}`∈L : RowL κ

Fig. 1: Kinding ground terms

a ≤A a′

a ≤ a′

∀i vi(c) ∈ {⊕,¯} ⇒ τi ≤ τ ′i
∀i vi(c) ∈ {ª,¯} ⇒ τi ≥ τ ′i
c(τ1, . . . , τn) ≤ c(τ ′1, . . . , τ

′
n)

∀` ∈ L t` ≤ t′`
{` 7→ t`}`∈L ≤ {` 7→ t′`}`∈L

Fig. 2: Subtyping over ground terms

their sub-terms must be related according to the variances of c: for i ranging from
1 to c’s arity, vi(c) is one of ⊕ (covariant), ª (contravariant) or ¯ (invariant).

This subtyping relation is structural : two comparable terms must share the
same structure or skeleton and only their atomic annotations may differ. This
leads us to introduce an equivalence relation ≈ on ground terms, which is nothing
but the symmetric, transitive closure of ≤: t1 ≈ t2 (read: t1 has the same skeleton
as t2) if and only if t1 (≤ ∪ ≥)∗ t2. Equivalence classes are referred to as ground
skeletons and denoted by the meta-variable s. Roughly speaking, two terms have
the same skeleton if they are equal, except within some non-invariant atomic
annotations. In the absence of invariant arguments, skeletons would be identical
to Tiuryn’s shapes [Tiu92].

Lemma 1. Assume t1 ≈ t2 or t1 ≤ t2. Then t1 and t2 have the same kind and
h(t1) = h(t2).

Proof. By induction on the definition of ≤ and ≈.

The height of a ground skeleton is therefore the common height of its ground
terms.

Lemma 2. Let s be a ground skeleton. (s,≤) is a lattice.

Proof. By induction on the height h of skeletons. The base case if that of height
0: (s,≤) is the lattice (A,≤A). We now assume the above property to be verified
by any skeleton whose height is at most h. Let s be a skeleton of height h + 1.
We consider two elements of s, t and t′, and prove that they admit a least upper
bound (and, by symmetry, a greatest lower one).

◦ Case s is a skeleton of types. t is c(t1, . . . , tn) and t′ is c(t′1, . . . , t
′
n) for some

c ∈ C. Because t ≈ t′ then, for every i, ti ≈ t′i. By induction hypothesis, let
ť = c(ť1, . . . , ťn) where ťi = ti t t′i if vi(c) = ⊕, ťi = ti u t′i if vi(c) = ª, and
ťi = ti = t′i if vi(c) = ¯. Consider t′′ = c(t′′1 , . . . , t′′n) such that t ≤ t′′ and t′ ≤ t′′.
By definition of ≤, for every i, ti ≤vi(c) t′′i and t′i ≤vi(c) t′′i . It follows ť ≤ t′′. We
conclude that ť is the least upper bound of t and t′.
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atom
a1 ≤A a2

a1 @ a2

type-left
∀i ∈ l(c) ti @ t′

c(t̄) @ t′

type-right
∀i ∈ r(c) t′ @ ti

t′ @ c(t̄)

row-left
∀` ∈ L t` @ t′

{` 7→ t`}L @ t′

row-right
∀` ∈ L t′ @ t`

t′ @ {` 7→ t`}L

Fig. 3: Weak inequalities

◦ Case s is a skeleton of rows of domain L. Applying the induction hypoth-
esis, we define ť = {` 7→ t(`) t t(`′)}`∈L (because t and t′ are quasi-constant, t′′

is quasi-constant). Similarly to the previous case, we check that ť is the smallest
upper bound of t and t′.

3.3 Weak inequalities

Type systems with structural subtyping may require constraints relating an ar-
bitrary term to an atom, such as “protected types” [ABHR99] or “guards” (C or
J) [PS02]. For instance, in [PS02], a constraint of the form a C t requires the
constant a to be less than or equal to one or several atoms appearing in t, whose
“positions” depend on the particular structure of t: a C inta1 and a C (t1 + t2)a1

are equivalent to a ≤ a1 while a C inta1 × inta2 holds if and only if a ≤ a1 and
a ≤ a2, i.e. a ≤ a1 u a2.

Our framework handles such constraints in an abstract and (as far as possible)
general manner by the weak inequality @ defined in figure 3. @ relates ground
terms of arbitrary kind by decomposing them until atoms are obtained, which
are dealt with by rule atom. The other rules govern decomposition of the left-
hand-side (type-left and row-left) and the right-hand-side (type-right
and row-right) of a weak inequality. On a type constructor c, decomposition
occurs on some of the sub-terms: we assume to non-disjoint subsets of {i | vi(c) =
⊕}, l(c) and r(c). In short, a constraint τ1 @ τ2 is decomposable in a set of
inequalities between some of the atoms appearing in τ1 and some of τ2 which
are given by the respective structure of the two terms.

Although the rules defining @ are not syntax-directed, they are however
equivalences. In other words, all strategies for decomposing a weak inequality
produce the same set of atomic inequalities. For proving this, we define two map-
pings (or destructors) �t and �u from terms two atoms by the following equations:

�t a = a �u a = a
�t c(~τ) = t{ �t τi | i ∈ l(c)} �u c(~τ) = u{ �u τi | i ∈ r(c)}

�t{` 7→ τ`}L = t{ �t τ` | ` ∈ L} �u{` 7→ τ`}L = u{ �u τ` | ` ∈ L}

Then we have the following property.

Lemma 3. τ1 @ τ2 if and only if �t τ1 ≤A �u τ2.

Proof. By induction on the sum of the height of τ1 and τ2.
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Moreover, it is worth noting that, because l(c) and r(c) are non-disjoint and @
matches only covariant sub-terms, it is transitive and t1 @ t2 ≤ t3 or t1 ≤ t2 @ t3
imply t1 @ t3. To conclude with weak inequalities, the following lemma points
out that weak inequalities reduce to strong ones when the structure of terms is
known.

Lemma 4. Let s be a ground skeleton. For every atom a, there exists two unique
ground terms in s, *s ↑ a+ �t and *s ↑ a+ �u such that for all t ∈ s, t @ a is
equivalent to t ≤ *s ↑ a+ �t and a @ t is equivalent to *s ↑ a+ �u ≤ t.

Moreover, *s ↑ ·+ �t and *s ↑ ·+ �u are increasing mappings and, for all atoms
a, *s ↑ a+ �u ≤ *s ↑ a+ �t.

Proof. By induction on the height of skeletons.

A total function from atoms to ground types Π is a morphism if and only if
it is increasing (i.e. a1 ≤A a2 implies Π(a1) ≤ Π(a2)) and its composition with
a destructor is the identity (i.e. �uΠ(a) = �tΠ(a) = a).

4 The syntactic algebra

4.1 The first order logic

Terms and constraints are part of a first order logic interpreted in the ground
algebra of Section 3. For every kind κ, we assume given a distinct denumerable
setVκ of variables of kind κ (let V stand for the union of all the Vκ). Such
variables are denoted by α or β. In the paper, the notation ~α stands for a finite
list of variables α1, . . . , αn. On top of variables, we build two syntactic classes,
terms and hand-sides:

τ ::= α | c(τ, . . . , τ) | (`: τ, τ) φ ::= α | a

Terms include variables, type terms made up of a type constructor and a list
of sub-terms, and row terms. For the latter, Rémy’s [Rém92] syntax is adopted:
the term (`: τ, τ ′) represents the row whose entry at index ` is τ and whose other
entries are given by τ ′. Hand-sides, which are either a variable (of arbitrary
kind) or an atomic constant, shall appear in weak inequalities. We restrict our
attention to well-formed terms and hand-sides, see Fig. 4.

Variables are interpreted in the model by assignments ρ that are total kind-
preserving mappings from variables into ground terms (i.e. if α ∈ Vκ then `
ρ(α) : κ holds); they are straightforwardly extended to terms and hand-sides by
the equations: ρ(c(τ1, . . . , τn)) = c(ρ(τ1), . . . , ρ(τn)), ρ(`: τ, τ ′) = ρ(τ ′)[` 7→ ρ(τ)]
and ρ(a) = a.

Because constructed types and row terms are handled similarly in most of
our development, it is convenient to introduce a common notation for them.
(Indeed, only the unification algorithm described in Section 5.1, through the rule
mutate, requires distinguishing them.) For this purpose, we let a symbol f be
either a type constructor or a row label. If f = c then f(τ1, . . . , τn) stands for the
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Terms

α ∈ Vκ

` α : κ

c :: κ1 ⊗ · · · ⊗ κn ⇒ Type ∀i ` τi : κi

` c(τ1, . . . , τn) : Type

` τ` : κ ` τ : RowL κ

` (`: τ`, τ) : Row`.L κ

Constraints

∀τ ∈ ¯̄τ1 ∪ . . . ∪ ¯̄τn ` τ : κ

` 〈¯̄τ1〉∗ ≈ · · · ≈ 〈¯̄τn〉∗
` α1 : κ ` α2 : κ

` α1 ≤∗ α2

` φ1 @ φ2

Fig. 4: Kinding

∀τ, τ ′ ∈ ¯̄τ1 ∪ . . . ∪ ¯̄τn ρ(τ) ≈ ρ(τ ′)
∀i ∈ J1, nK ∀τ, τ ′ ∈ ¯̄τi ρ(τ) = ρ(τ ′)

ρ ` 〈¯̄τ1〉∗ ≈ · · · ≈ 〈¯̄τn〉∗
ρ(α1) ≤ ρ(α2)

ρ ` α1 ≤∗ α2

ρ(φ1) @ ρ(φ2)

ρ ` φ1 ≤∗ φ2

ρ ` true
ρ ` Γ1 ρ ` Γ2

ρ ` Γ1 ∧ Γ2

ρ′ ` Γ ρ′ = ρ[α 7→ ∗]
ρ ` ∃α.Γ

Fig. 5: Interpretation of constraints

type c(τ1, . . . , τn) and, if f = `, then f(τ1, τ2) stands for the row (`: τ1, τ2). The
notations for variance and weak inequality propagation introduced in Section 3
are extended to symbols accordingly. A small term is a term of height 0 or 1,
i.e. either a variable α or a symbol with variable arguments f(α1, . . . , αn).

The formulas of the first order logic are constraints Γ :

Γ ::= 〈τ = · · · = τ〉ι ≈ · · · ≈ 〈τ = · · · = τ〉ι
| α ≤ι α | φ @ φ | true | false | Γ ∧ Γ | ∃α.Γ

Constraints are interpreted in the ground algebra by a two place predicate · ` ·
whose first argument is an assignment and whose second argument is a con-
straint. It is formally defined by the rules of Fig. 5 (ρ′ = ρ[α 7→ ∗] means that
ρ′ maps α to an arbitrary ground term α and agree with ρ for other variables).

We now give some explanations about the different forms of constraints and
their interpretation. First, 〈¯̄τ1〉ι1 ≈ · · · ≈ 〈¯̄τn〉ιn is a multi-skeleton. It is a multi-
set of multi-equations ¯̄τ1, . . . , ¯̄τn each of which is decorated with a boolean flag
ι1, . . . , ιn. A multi-equation ¯̄τi is a multi-set of terms written τi,1 = · · · = τi,ni .
All terms appearing in a multi-skeleton must have the same kind. The flags
carried by multi-equations have no logical meaning; they are just needed by
one step of constraint solving to store some termination-related data. Such a
multi-skeleton is interpreted as follows: it requires that all the terms appearing
in the multi-skeleton belong to a single ground skeleton and, moreover, that all
terms of each multi-equation have the same interpretation. In this paper, a multi-
skeleton is denoted by the meta-variable ≈

τ , or ≈
α when it is known to contain only
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true ∧ Γ ≡ Γ Γ1 ∧ Γ2 ≡ Γ2 ∧ Γ1 (Γ1 ∧ Γ2) ∧ Γ3 ≡ Γ1 ∧ (Γ2 ∧ Γ3)

∃α.Γ ≡ ∃β.Γ [α/β] (if β 6∈ fv(Γ )) ∃α.(Γ1 ∧ Γ2) ≡ (∃α.Γ1) ∧ Γ2 (if α 6∈ fv(Γ2))

Fig. 6: Constraint equivalence

variables. If ≈τ is 〈¯̄τ1〉ι1 ≈ · · · ≈ 〈¯̄τn〉ιn then 〈¯̄τ〉ι ≈ ≈
τ stands for the multi-skeleton

〈¯̄τ〉ι ≈ 〈¯̄τ1〉ι1 ≈ · · · ≈ 〈¯̄τn〉ιn . We adopt similar notations for multi-equations and
we write τ1 ≈ τ2 and τ1 = τ2 for 〈τ1〉0 ≈ 〈τ2〉0 and 〈τ1 = τ2〉0, respectively.

A strong inequality α1 ≤ι α2 involves a pair of variables of the same kind
and a boolean flag (which has the same use as those carried by multi-equations)
interpreted in the ground algebra by the subtyping order ≤. A weak inequality
φ1 @ φ2 consists of a pair of hand-sides. Atomic constants, which are not part
of the terms grammar, can be encoded by these constraints: the atom a may be
represented in the syntactic algebra by a “fresh” variable α of kind Atom and
the pair of constraints a @ α and α @ a.

Other constructs allow conjunction and existential quantification of con-
straints. The latter allows the introduction of intermediate variables, by the type
checker during the constraint generation or by the solver itself for the purpose
of resolution.

One may argue that the constraint language is not minimal. Indeed, multi-
equations and multi-skeletons may be encoded using strong inequalities: on may
prove that τ1 ≈ τ2 and τ1 = τ2 are respectively equivalent to ∃β.[β ≤ τ1 ∧ β ≤ τ2]
and τ1 ≤ τ2 ∧ τ2 ≤ τ1. However, such an encoding is not practical, because
multi-skeletons and multi-equations allow much more efficient representation and
manipulation of constraints: they allow to benefit of the efficiency of unification-
based algorithms, throughout the solving process. Indeed, in most applications,
the client of the solver generates inequalities, while multi-skeletons belong only to
the solver’s internal representation of constraints and are introduced throughout
the solving process. There is another slight redundancy in the logic: if α1 and
α2 are two variables of kind Atom, the constraints α1 ≤ α2 and α1 @ α2 are
equivalent. By convention, in the remainder of the paper, any occurrence of the
former must be read as an instance of the latter.

In the following, we restrict our attention to well-formed constraints (see
Fig. 4). We consider constraints modulo the equivalence relation ≡ introduced
in Fig. 6 (fv(Γ ) denotes the set of free variables in Γ , Γ [τ/α] stands for the
constraint obtained from Γ by replacing every free occurrence of α by τ). This
equivalence expresses the commutativity and the associativity of ∧; and allows
α-conversion and scope-extrusion of existential quantifications. A constraint is
∃-free if it is a conjunction of multi-skeletons and inequalities. In the following,
we write Γ

.= ∃~α.Γ ′ if and only if ∃~α.Γ ′ is a representative of Γ such that Γ ′

is ∃-free. Every constraint admits such a representation. In the following, we
will often consider a constraint (class) Γ and choose one of its representative
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member, eventually satisfying some condition. For the sake of mathematical
rigor, one have to prove that every consideration made about the constraint
is independent of the previous choice. However, we will often omit this check,
because it is generally systematical and technical.

Given an ∃-free constraint Γ , we let the predicate τ ≈ τ ′ ∈ Γ (resp. τ =
τ ′ ∈ Γ ) hold if and only if τ and τ ′ appear in the same multi-skeleton (resp.
multi-equation) in Γ . Similarly, we write α1 ≤ α2 ∈ Γ if a constraint α1 ≤ι α2

appears within Γ , and ¯̄α1 ≤ ¯̄α2 ∈ Γ if α1 ≤ α2 ∈ Γ for some α1 in ¯̄α1 and α2 in
¯̄α2. The corresponding notations are also adopted for @.

Let Γ1 and Γ2 be two constraints. Γ1 implies Γ2 (we write: Γ1 |= Γ2) if
and only if every assignment which satisfies Γ1 also satisfies Γ2. Γ1 and Γ2 are
equivalent (Γ1 ' Γ2) if Γ1 |= Γ2 and Γ2 |= Γ1.

4.2 Schemes

A (type) scheme σ is a triple of a set of quantifiers ~α, a constraint Γ and a body
τ , written ∀~α[Γ ].τ . The variables in ~α are bound in σ; and schemes are considered
equal modulo α-conversion. The kind of a scheme is that of its body. Given an
assignment ρ setting the interpretation of free variables, a scheme denotes a set
of ground terms, which is obtained by applying all solutions of the constraint to
the body:

JσKρ = ↑{ρ′(τ) | ρ′ ` Γ and ρ′
V\~α= ρ}

The upward-closure operator (written ↑) reflects the subsumption rule equipping
systems with subtyping: any program of type t may be given a super-type t′.

A scheme σ1 is more general than σ2 if and only if it represents a larger
set of ground terms under any context: σ1 4 σ2 holds if and only if for every
assignment ρ, Jσ2Kρ ⊆ Jσ1Kρ. We write σ1 ' σ2 if σ1 and σ2 are equivalent, i.e.
σ2 4 σ1 and σ1 4 σ2.

Lemma 5. Let σ1 = ∀~α[Γ1].τ and σ2 = ∀~α[Γ2].τ be two schemes. If Γ1 |= Γ2

then σ2 4 σ1.

Proof. Let ρ be an arbitrary assignment, and t ∈ Jσ1Kρ. There exists ρ′ satisfying

Γ1 such that ρ′
V\~α= ρ and ρ′(τ) ≤ t. Because Γ1 |= Γ2, ρ′ satisfies Γ2 too. Then

ρ′(τ) ∈ Jσ2Kρ, and we conclude that t ∈ Jσ2Kρ.

5 Solving constraints

We are done introducing terms and constraints. We do not present an instance
of this logic dedicated to a particular program analysis, or specify how schemes
are associated to programs: this is merely out of the topic of this paper, several
examples can be found in the literature, e.g. [PS02].

We now describe an algorithm to decide whether a scheme has an instance,
and so determine whether a program is well-typed. For efficiency, the algorithm
must also simplify the scheme at hand, by reducing the size of the constraint.
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generate≤

α ≤1 β

α ≤0 β ∧ α ≈ β
Ã

fuse≈

〈α = ¯̄τ〉ι ≈ ≈
τ ∧ 〈α = ¯̄τ ′〉ι′ ≈ ≈

τ
′

〈α = ¯̄τ = ¯̄τ ′〉ι∨ι′ ≈ ≈
τ ≈ ≈

τ
′ Ã

fuse=

〈α = ¯̄τ〉ι ≈ 〈α = ¯̄τ ′〉ι′ ≈ ≈
τ

〈α = ¯̄τ = ¯̄τ ′〉ι∨ι′ ≈ ≈
τ

Ã

decompose≈

〈¯̄τ = f(~α)〉1 ≈ 〈¯̄τ ′ = f(~β)〉1 ≈ ≈
τ

〈¯̄τ = f(~α)〉1 ≈ 〈¯̄τ ′ = f(~β)〉0 ≈ ≈
τ ∧i αi ≈vi(f) βi

Ã

decompose=

〈¯̄τ = f(~α) = f(~β)〉ι ≈ ≈
τ

〈¯̄τ = f(~α)〉ι ≈ ≈
τ ∧i αi = βi

Ã

mutate
≈
τ ≈ 〈¯̄τ = `b: τb, τ

′〉ι
∃αα′.[≈τ ≈ 〈¯̄τ = `a: τa, α′〉1 ∧ 〈α′ = `b: τb, α〉1 ∧ 〈τ ′ = `a: τa, α〉1]

Ã (if `a ∈ Roots(¯̄τ,
≈
τ )

and `a <L `b)

generalize
≈
τ [τ/α]

∃α.[
≈
τ ∧ 〈α = τ〉1]

Ã (if α ∈ fv(
≈
τ )\Terms(

≈
τ )\ fv(τ) and τ 6∈ V)

Fig. 7: Unification (rewriting system Ωu)

Naturally, solving must be interlaced with simplifications, so that the former
benefits from the latter. However, for the sake of clarity, we divide our presenta-
tion in two parts. The first one handles a single constraint which is rewritten into
an equivalent one whose satisfiability can be immediately decided. The second
part consists in a series of simplification techniques which consider the constraint
in its context, i.e. a scheme. They are described in Section 6 and intended to be
integrated throughout the solving process, as we will explain.

The algorithm for solving constraints is made of several steps; some of them
are formalized as rewriting systems. A rewriting system Ω consists in a reduction
relation, −Ω→, defined by a set of rules of the form

Γ o
i |

Γi

Γ ′i
Ã

Then −Ω→ is the smallest congruence (w.r.t. ∧ and ∃) such that, for all i,
Γ o

i ∧ Γi −Ω→ Γ o
i ∧ Γ ′i . Ω is sound if it preserves the semantics of constraints,

i.e. Γ −Ω→ Γ ′ implies Γ ' Γ ′. It terminates on Γ if it has no infinite derivation
whose origin is Γ . We write Γ −Ω³ Γ ′ if and only if Γ −Ω→∗ Γ ′ and Γ ′ is an
normal form for −Ω→.

Rewriting systems are convenient to describe algorithms in a concise and
precise manner, and to reason about them. Moreover, they allow abstracting
away from some details of an implementation, such as an evaluation strategy
specifying the order in which rules have to be applied.

5.1 Unification
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Expansion (rewriting system Ωe)

expand

〈 ¯̄α〉 ≈ 〈¯̄τ = f(~β)〉 ≈ ≈
τ
′

∃~α.[〈 ¯̄α = f(~α)〉 ≈ 〈¯̄τ = f(~β)〉 ≈ ≈
τ
′ ∧i βi ≈vi(f) αi]

Ã

exp-fuse≈

〈α = ¯̄τ〉 ≈ ≈
τ ∧ 〈α = ¯̄α〉 ≈ ≈

α

〈α = ¯̄τ = ¯̄α〉 ≈ ≈
τ ≈ ≈

α
Ã

exp-fuse=

〈α = ¯̄τ〉 ≈ 〈α = ¯̄α〉 ≈ ≈
τ

〈α = ¯̄τ = ¯̄α〉 ≈ ≈
τ

Ã

Decomposition (rewriting system Ωd)

α = f(~α)

β = f(~β)
|
decompose≤

α ≤ β

∧i αi ≤vi(f) βi

Ã α = f(~α) |
decomposel

α @ φ

∧i∈l(f) αi @ φ
Ã α = f(~α) |

decomposer

φ @ α

∧i∈r(f) φ @ αi

Ã

Fig. 8: Expansion and decomposition (rewriting system Ωed)

The first step of the solving algorithm is made of two interlaced unification
processes: one for skeletons (multi-skeletons) and the other for terms (multi-
equations). Each of them is to some extent similar to unification in equational
theories [Rém92]. They are described by the rewriting system of figure 7, that
intends to rewrite the input constraint into an equivalent one Γ

.= ∃~α.Γ ′ which
is unified. We now explain the properties which define unified constraints and
how the rules make the constraint at hand satisfying them.

First and foremost, reflecting the inclusion of ≤ in ≈, (1) strong inequalities
must be propagated to skeletons: if α ≤ β ∈ Γ ′ then α and β must have the same
skeleton, and α ≈ β ∈ Γ ′ must hold. This is realized by generate≤, which
generates a multi-skeleton from every strong inequality. As a side-effect, the flag
carried by the inequality decreases from 1 to 0 preventing multiple applications
of the rule on the same constraint. Then, (2) the multi-equations of a unified
constraint must be fused, i.e. every variable can appear at most in one of them.
This is made possible by the transitivity of ≈ and = : rule fuse≈ merges two
multi-skeletons which have a common variable and then fuse= operates on pairs
of multi-equations within a multi-skeleton.

Furthermore, constraints involving non-variable terms must be propagated
to sub-terms. This concerns (3) multi-skeletons that must be decomposed : two
non-variable terms in the same multi-skeleton must have the same root symbol
and if f(~α) ≈ f(~β) ∈ Γ ′ then, for all i, αi ≈vi(f) βi ∈ Γ ′. An application of
decompose≈ propagates same-skeleton constraints between two non-variable
terms with the same head symbol to their sub-terms. This is recorded by chang-
ing the flag of one of the two multi-equations from 1 to 0: once again, this
prevents successive applications of the rule on the same pair of terms. (In this
rule, αi ≈vi(f) βi stands for αi = βi if vi(f) = ¯ and αi ≈ βi otherwise.
Furthermore, Γ ∧i αi ≈vi(f) βi where i ranges from 1 to n is a shorthand
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for Γ ∧ α1 ≈v1(f) β1 ∧ · · · ∧ αn ≈vn(f) βn.) Decomposition also occurs for
multi-equations: in a unified constraint, (4) every multi-equation must involve
at most one non-variable term. This is enforced thanks to decompose=, which
is similar decompose≈; however, one of the two terms may be removed here,
which is sufficient to ensure termination. Besides, when a multi-equation con-
tains two row terms with different labels, it is necessary to permute one of them
by a mutation (rule mutate) in order to be able to apply decompose≈ or
decompose=. (Roots(¯̄τ) stands for the set of symbols f such that f(~τ) ∈ ¯̄τ for
some ~τ .) In the purpose of orienting the permutation of labels, mutate assumes
an arbitrary well-founded order ≤L on labels. Lastly, (5) a unified constraint
can involve only small terms. Thus, generalize replaces a deep occurrence of a
non-variable term τ in a multi-skeleton by a fresh variable α and adds the con-
straint α = τ . This allows in particular decomposition to apply to small terms
only and prevents duplicating structure. (Terms(≈τ) stands for the set of top-level
terms of ≈τ .)

Unification may fail if rewriting produces a constraint where two different
type constructors appear as roots in the same multi-skeleton. Such a constraint
is said to be a unification error and is not satisfiable. A constraint which satisfies
the conditions (1) to (5) above and is not a unification error is unified.

As explained above the flags carried by multi-equations and inequalities are
used in this step of the solving process in order to ensure termination. Indeed,
the algorithm preserve the following invariant on the constraint Γ

.= ∃~α.Γ ′ it
manipulates:

(1) for every multi-skeleton 〈¯̄τ〉0 ≈ ≈
τ in Γ ′, there exists a term f(~α) in ¯̄τ and a

term f ′(~α′) in one of ≈τ ’s multi-equations flagged 1 such that, either f ′ <L f
or f = f ′ and for every i, αi ≈vi(f) α′i ∈ Γ ′.

(2) for every strong inequality α ≤ι β in Γ ′, either ι is 1 or α ≈ β ∈ Γ ′.

Any constraint which satisfies the above properties is said to be well-skeletonized.
Obviously, any input constraint is assumed to be well-skeletonized; but, this is
not restrictive because it may be enforced by setting all flags to 1.

Lemma 6 (Soundness). The rewriting system Ωu is sound.

Proof. By inspection of rules of Figure 7 and the definitions of Section 3.

Lemma 7 (Termination). The rewriting system Ωu terminates.

Proof. A label is said to be apparent in a constraint if it appears in at least
one of its terms. All rules of Ωu preserve the set of apparent labels, i.e. they do
not cause new labels to appear. We measure the occurrence (`: τ1, τ2) of a row
label in constraints, by its weight : the pair (L, `) where L is the codomain of τ2.
Weights are ordered by the lexicographical product of ⊇ and ≤L, which does
not admit any infinite strictly decreasing chain with a bounded set of apparent
labels.

Let us now measure a constraint by the following quantities, ordered lexico-
graphically:



Type inference with structural subtyping 15

(1) The number of strong inequalities carrying the flag 1,
(2) The multi-set of labels weights in the constraint,
(3) The number of type constructors in the constraint,
(4) The sum of heights of terms (including sub-terms) in the constraint,
(5) The number of multi-equations carrying the flag 1,
(6) The number of multi-equations.

Rule generate≤ decreases (1) by switching the flag of an inequality from 1
to 0. All other rules do not deal with inequalities, so they keep (1) unchanged.
Rules fuse≈, fuse= and decompose≈ do not affect the terms appearing in the
constraint, so they keep (2), (3) and (4) unchanged. Moreover fuse≈ and fuse=

may not increase (5) (it decreases if both merged multi-equations are flagged 1)
and must decrease (6). decompose≈ always decreases (5). Rule decompose=

removes exactly one symbol of the constraint; hence reducing either (2) or (3).
Rule mutate replaces an occurrence of a row term of weight (L, `b) by three
strictly inferior ones: (L, `a), (`b.L, `b) and (`a.L, `a). It therefore decreases (2).
Lastly, rule generalize may not increase (2) or (3) and decreases (4).

Because the order on measures has no infinite strictly decreasing chain with
a finite number of apparent labels (as the lexicographical product of orders that
satisfy the same property), we conclude that the rewriting system terminates.

The following lemma states that the rewriting system Ωu preserves well-
skeletonization throughout computation.

Lemma 8. Assume Γ is a well-skeletonized constraint. If Γ −Ωu→ Γ ′ then Γ ′

is well-skeletonized too.

Proof. By inspection of rules of Figure 7.

Lemma 9 (Completeness). Assume Γ is a well-skeletonized constraint. If Γ
is Ωu-normal then either Γ is unified or it is an unification error.

Proof. Let us consider Γ
.= ∃~α.Γ ′ a well-skeletonized constraint which is not a

unification error. We now check that if Γ is Ωu-normal then it satisfies the five
properties defining unified constraints.

Because fuse≈ does not apply, every variable appears in at most one multi-
skeleton. Moreover, because fuse= does not apply, every variable appears in at
most one multi-equation, hence (2). Because generalize does not apply, every
term occurring in one of Γ ′’s multi-skeletons is small; (5) follows. Because Γ
is not an unification error, two type constructors cannot appear in the same
multi-skeleton, and because mutate does not apply and ≤L is a total order,
two different row labels cannot occur in the same multi-skeleton. Besides, as-
sume f(α1, . . . , αn) ≈ f(β1, . . . , βn) ∈ Γ ′. By Lemma 8, Γ ′ is well-skeletonized.
Because decompose≈ does not apply, Γ ′ cannot contain any multi-skeleton
of the form 〈f(α1, . . . , αn) = ∗〉1 ≈ 〈f(α′1, . . . , α

′
n) = ∗〉1 ≈ ∗. It follows that

αi ≈vf (i) βi ∈ Γ ′ holds for all i. This yields (3). Two terms appearing in the
same multi-equation of Γ ′ must be of the form f(α1, . . . , αn) and f(α′1, . . . , α

′
n).

Because decompose=, this cannot arise, hence we have (4). Lastly, because Γ
is well-skeletonized and generate≤ does not apply, we have (1).
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Theorem 1 (Unification). Assume Γ is a well-skeletonized constraint. Then
Ωu terminates on Γ . If Γ −Ωu³ Γ ′ then Γ ′ is equivalent to Γ and either unified
or erroneous.

Proof. By Lemmas 6, 7 and 9.

This theorem states the soundness and the completeness of the unification
algorithm. Because flags carried by multi-equations are no longer used by the
following steps of the algorithm, we omit them in the remainder of the paper.

In our implementation [Sim02], unification is performed during constraint
construction by the type checker. This allows unification errors to be detected
immediately; thus they may be reported by the same techniques than those
used in unification-based systems. What is more, only unified constraints may be
stored in the solver: indeed, every multi-skeleton or multi-equation is represented
by a single node. Multi-equations carry a pointer to the multi-skeleton they
belong to, so that fusing can be performed efficiently by union-find. Moreover,
every node has pointers to its “sub-nodes”, if any; which allow decomposition.
Lastly, inequalities are stored as the edges of a graph between nodes.

5.2 Occur-check

Because recursive terms are not valid solutions for constraints in the model, one
must ensure that the multi-skeletons of a constraint do not require cyclic term
structures. This verification is commonly referred to as the occur-check. Let us
consider an ∃-free constraint Γ . We define the sub-term relation ≺Γ between
variables as the smallest binary relation such that: if α ≈ τ ∈ Γ (for some non-
variable term τ), then β ≺Γ α holds for every variable β which is in the same
multi-skeleton that a variable appearing within τ .

(For the purpose of formulating the invariant preserved by the rewriting sys-
tem Ωed (Section 5.3), we also define ≺∗Γ the smallest binary relation containing
≺Γ and such that β′ ≈ β ∈ Γ , β ≺∗Γ α and α ≈ α′ ∈ Γ imply β′ ≺∗Γ α′. Let us
remark that if Γ is unified then ≺∗Γ and ≺Γ coincide.)

Lemma 10. Let Γ be an ∃-free constraint. If β ≺Γ α then for all ρ ` Γ we
have either h(ρ(β)) < h(ρ(α)) or α and β are row variables, h(ρ(β)) ≤ h(ρ(α))
and dom(ρ(β)) ⊂ dom(ρ(α)).

Proof. Assume τ is a non-variable sub-term involving the variable β and ap-
pearing in the same multi-skeleton as α. Because ρ ` Γ , ρ(τ) ≈ ρ(α) holds.
If τ = (`1 : ∗, . . . , `n : ∗, β) (for some n ≥ 1) then h(ρ(β)) ≤ h(ρ(α)) and
dom(β) ⊂ dom(α). Otherwise h(ρ(β)) < h(ρ(α)). Conclude by Lemma 1.

Theorem 2 (Occur-check). If Γ
.= ∃~α.Γ ′ is satisfiable then ≺Γ ′ is acyclic.

Proof. Let ρ′ be an assignment which satisfies Γ ′. Assume ≺Γ ′ has a cycle and
apply Lemma 10 along it. This yields, for every variable α of the cycle, either
h(ρ′(α)) < h(ρ′(α)) or dom(ρ′(α)) ⊂ dom(ρ′(α)). Hence the contradiction.
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A constraint Γ
.= ∃~α.Γ ′ satisfies the occur-check if and only if ≺Γ ′ is acyclic.

A variable α is terminal in Γ ′ if it is minimal for ≺Γ ′ , i.e. there is no β such
that β ≺Γ ′ α. These are variables about the structure of whose Γ tells nothing.
In particular, variables of kind Atom and variables that do not appear in the
constraint are terminal. A term is said to be terminal if and only if it is a
terminal variable.

Practically, the occur-check may be performed in linear time applying by
standard graph algorithms. It is worth noting that, because unification termi-
nates even in the presence of cyclic structures, it is not necessary to perform an
occur-check every time two terms are unified; a single invocation at the end is
sufficient and more efficient.

5.3 Expansion and decomposition

Let us first illustrate this step by an example: consider the multi-skeleton 〈α〉 ≈
〈β = c(β1, . . . , βn)〉. Every solution of this constraint maps α to a c type; hence
we can expand α and rewrite the constraint as ∃~α.[〈α = c(α1, . . . , αn)〉 ≈ 〈β =
c(β1, . . . , βn)〉]. Besides, taking advantage of the previous expansion, it is possible
to decompose the inequality α ≤ β as a series of inequalities relating the sub-
variables according to c’s variances, i.e. α1 ≤v1(c) β1 ∧ · · · ∧ αn ≤vn(c) βn.

Formally, a variable α is expanded in an ∃-free constraint Γ if there exists
a non-variable term τ such that α = τ ∈ Γ holds. It is decomposed if it does
not appear in any of Γ ’s inequalities. We say Γ is expanded down to α if and
only if every variable β such that α ≺+

Γ β is expanded. A constraint Γ
.= ∃~α.Γ ′

is expanded if and only if Γ ′ is expanded down to all its terminal variables.
We adopt the same terminology for decomposition. A unified, expanded and
decomposed constraint which satisfies the occur-check is reduced.

The rewriting system Ωed (Figure 8) rewrites a unified constraint which sat-
isfies the occur-check into an equivalent reduced one. Rule expand performs
the expansion of a non-terminal variable. Fresh variables are introduced as ar-
guments of the symbol, with the appropriate ≈ and = constraints. These are
merged with existing multi-skeletons by rules exp-fuse≈ and exp-fuse=, re-
spectively (which are particular cases of fuse≈ and fuse=), allowing the con-
straint to remain unified. Strong inequalities are decomposed by decompose≤.
In this rule, αi ≤vi(f) βi stands for αi ≤ βi (resp. βi ≤ αi) if vi(c) = ⊕ (resp.
ª). In the case where vi(c) = ¯, it must be read as the constraint true, which is
sufficient because the equation αi = βi has already been generated during unifi-
cation by generate≤ and decompose≈. Weak inequalities are decomposed by
decomposel and decomposer. (In the premises of these three rules, α = f(~α)
is a shorthand for 〈α = ∗ = f(~α)〉∗ ≈ ∗.)

Termination of expansion and decomposition relies on the the occur-check;
that is the reason why we did not allow recursive types in the model. As an
implementation strategy, it is wise to expand and decompose multi-skeletons by
considering them in the topological order exposed by the occur-check; so that
fresh variables and inequalities are generated only within skeletons that have not
yet been dealt with.
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We now address the correction proof of expansion and decomposition. A
constraint Γ

.= ∃~α.Γ ′ satisfies the pre-occur-check if the relation ≺∗Γ ′ is acyclic.

Lemma 11 (Soundness). The rewriting system Ωed is sound, preserves the
pre-occur-check and does not introduce unification errors.

Proof. By inspection of rules of Figure 7 and the definitions of Section 3.

Lemma 12 (Termination). The rewriting system Ωed terminates on every
input which satisfies the occur-check.

Proof. Because the rewriting system Ωed preserves the pre-occur-check (Lemma
11), we restrict our attention in this proof to constraints which satisfy it.

Let us consider a constraint Γ
.= ∃~α.Γ ′. The height of a variable in Γ ′ is the

integer max{n | ∃α1 · · ·αn αn ≺∗Γ ′ · · · ≺∗Γ ′ α1 ≺∗Γ ′ α}. All variables appearing in
the same multi-equation in Γ ′ have the same height, so we define the height of a
multi-equation as the height of its variables. Similarly, let the height of α1 ≤ α2

be the common height of α1 and α2 an the height of φ1 @ φ2 the sum of the
heights of φ1 and φ2 (by convention, the height of a constant hand-side is 0).

We now measure a constraint by the lexicographical product of the following
quantities:

(1) The multi-set of the heights of its multi-equations containing only variables,
(2) The multi-set of the heights of its inequalities.

Rule expand inserts a non-variable term in a multi-equation which contain
only variables and adds only multi-equations of lesser height, so it decreases (1).
exp-fuse≈ and exp-fuse= remove one multi-equation containing only variables
and do not affect the height of other ones, so they also reduce (1). Lastly, rules
decompose≤, decomposel and decomposer replace an inequality with several
ones of lesser height, so they decrease (2) and do not affect (1).

Because the order on measures is well-founded, we conclude that Ωed termi-
nates on every input which satisfies the occur-check.

Lemma 13 (Completeness). Assume Γ1 is unified. If Γ1 −Ωed³ Γ2 then Γ2

is reduced.

Proof. By Lemma 11, Γ2 satisfies the occur-check and is not an unification error.
We say that a multi-equation is trivial if it contains only variables. By in-

specting rules of Figure 8, one check that Ωed preserves the properties (1) and
(3) to (5) of unified constraints, and the following: (2’) Every variable appears in
at most one non-trivial multi-equation. Then Γ2 satisfies these properties, and
because it is Ωed-normal, we conclude that Γ2 is unified.

Let Γ2
.= ∃~α2.Γ

′
2. Because Γ2 is unified, for every variable α, there exists at

most one non-variable term τ such that α = τ ∈ Γ ′2. Moreover, it appears in
at most one multi-equation. If α is non-terminal, it must appear in one multi-
equation and because expand does not apply, this multi-equation must contain
a non-variable term.

Lastly, because none of decompose≤, decomposel and decomposer apply,
each of Γ2’s inequalities involve only terminal variables.
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Theorem 3 (Expansion and decomposition). Let Γ be a unified constraint
which satisfies the occur-check. Ωed terminates on Γ . If Γ −Ωed³ Γ ′ then Γ ′ is
equivalent to Γ and reduced.

Proof. By Lemmas 12, 11 and 13.

A constraint is atomic if and only if all its terms are terminal. Given a reduced
constraint Γ we define its atomic part as the constraint bΓ c obtained from Γ by
removing all multi-skeletons which contain non-variable terms.

We now assume that Γ is ∃-free and let ρ be an assignment. We define its
extension along Γ , written dρeΓ by:

dρeΓ (α) =

{
ρ(α) if α is terminal in Γ

f(dρeΓ (α1), . . . , dρeΓ (αn)) if α = f(α1, . . . , αn) ∈ Γ

Because Γ is reduced, these equations properly define an assignment dρeΓ : for
every non-terminal variable α, there exists a unique term τ = f(α1, . . . , αn) such
that α = τ ∈ Γ ; for all i, αi ≺Γ α; and ≺Γ is well-founded.

Lemma 14. Let Γ be an ∃-free reduced constraint. If ρ ` bΓ c then dρeΓ ` Γ .

Proof. Let ρ′ = dρeΓ . Because ρ ` bΓ c and, for every terminal variable α,
ρ(α) = ρ′(α), ρ′ satisfies every elementary constraint of Γ that involves terminal
variables only. Moreover, because Γ is expanded and decomposed, only multi-
skeletons in Γ may include non-terminal variables. Then, it is sufficient to prove
that for all non-terminal (small) terms τ and τ ′, τ ≈ τ ′ ∈ Γ (resp. τ = τ ′ ∈
Γ ) implies ρ′(τ) ≈ ρ′(τ ′) (resp. ρ′(τ) = ρ′(τ ′)). We proceed by well-founded
induction on ≺Γ .

◦ Case f(α1, . . . , αn) ≈ f(β1, . . . , βn) ∈ Γ . Because Γ is unified, for all i, we
have αi ≈ βi ∈ Γ . Conclude by induction hypothesis.

◦ Case α ≈ f(β1, . . . , βn) ∈ Γ . Because Γ is expanded, we may consider f(α1, . . . , αn)
such that α = f(α1, . . . , αn) ∈ Γ . Because Γ is unified, for all i, we have
αi ≈ βi ∈ Γ . Conclude by induction hypothesis.

◦ Case α ≈ β ∈ Γ . Because Γ is expanded, we may consider f(α1, . . . , αn)
and f ′(β1, . . . , βn′) such that α = f(α1, . . . , αn) ∈ Γ and β = f ′(β1, . . . , βn′) ∈
Γ . Because Γ is not an unification error, f = f ′ and n = n′. Because Γ is unified,
for all i, we have αi ≈ βi ∈ Γ . Conclude by induction hypothesis.

◦ Case α = β ∈ Γ . Because Γ is reduced, there exist a unique small term
f(α1, . . . , αn) such that α = f(α1, . . . , αn) ∈ Γ and β = f(α1, . . . , αn) ∈ Γ
hold. By definition, ρ′(α) = ρ′(β) = f(ρ′(α1), . . . , ρ′(αn)).

◦ Case α = τ ∈ Γ . Because Γ is reduced, τ has the form f(α1, . . . , αn). By
definition, ρ′(α) = f(ρ′(α1), . . . , ρ′(αn)). Hence ρ′(α) = ρ′(τ).

◦ Case τ = τ ′ ∈ Γ . Because Γ is expanded, τ = τ ′ must hold.

Theorem 4. If Γ is reduced, then the satisfiability of Γ and bΓ c are equivalent.
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α1 = α2 ∈ Γ or α1 ≤ α2 ∈ Γ

Γ |≈ α1 ≤ α2

φ1 @ φ2 ∈ Γ

Γ |≈ φ1 @ φ2

Γ |≈ α1 ≤ α2

Γ |≈ α2 ≤ α3

Γ |≈ α1 ≤ α3

Γ |≈ φ1 @ φ2

Γ |≈ φ2 @ φ3

Γ |≈ φ1 @ φ3

Γ |≈ φ1 @ α2

Γ |≈ α2 ≤ α3

Γ |≈ φ1 @ β3

Γ |≈ α1 ≤ α2

Γ |≈ α2 @ φ3

Γ |≈ α1 @ φ3

Fig. 9: Syntactic implication

Proof. Because Γ |= bΓ c, if Γ is satisfiable then bΓ c is satisfiable too. Conversely,
if bΓ c is satisfiable, by Lemma 14, Γ is satisfiable too.

This theorem shows that the satisfiability of a reduced constraint is equivalent
to that of its atomic part. As a consequence, it is now sufficient to provide an
algorithm for solving atomic constraints, which we do in the following subsection.

5.4 Solving atomic constraints

The algorithm for solving a ∃-free atomic constraint Γ consists in checking that,
in the graph defined by Γ ’s inequalities, there is no path between two constants
a1 and a2 such that a1 6≤A a2. Paths are formally defined by the predicates
Γ |≈ · @ · and Γ |≈ · ≤ · introduced in Figure 9 and may be checked in linear
time.

For the purpose of proving the correctness of this algorithm, we states a few
auxiliary definitions and lemmas. First and foremost, we prove the existence of a
morphism Π0, which will be useful for defining particular solutions of constraints.

Lemma 15 (Morphism). There exists a morphism Π0.

Proof. Let c0 be a type constructor of signature Rowk1 Atom⊗ · · ·⊗Rowkn Atom ⇒
Type (we supposed the existence of such a constructor in Section 3.1). For every
atom a, we define Π0(a) = c0(∂k1a1, . . . , ∂

knan) where ai is a if i ∈ l(c0)∪ r(c0)
and⊥ otherwise. Because for l(c0)∪r(c0) is a non-empty subset of {i | vi(c) = ⊕},
we check that Π0 is a morphism.

We define the lower and upper bounds of a variable in Γ by: lbΓ (α) = t{a |
Γ |≈ a @ α} and ubΓ (α) = u{a | Γ |≈ α @ a}. If λ is a total mapping from
variables to atoms, we extend λ to hand-sides by λ(a) = a. Given Π ranging
from atoms to types, we also define an assignment [λ/Π] by:

[λ/Π](α) =

{
∂nλ(α) if ` α : Rown Atom

∂nΠ(λ(α)) if ` α : Rown Type

Lemma 16. Let Γ be a ∃-free and atomic constraint. If Γ |≈ α1 ≤ α2 (resp.
Γ |≈ φ1 @ φ2) then Γ |= α1 ≤ α2 (resp. Γ |= φ1 @ φ2).
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Proof. By induction on the derivation of Γ |≈ α1 ≤ α2 (resp. Γ |≈ φ1 @ φ2).

Lemma 17. Let Γ be a ∃-free and atomic constraint. For all variable α, Γ |=
lbΓ (α) @ α and Γ |= α @ ubΓ (α).

Proof. By Lemma 16.

Lemma 18. Let Γ be an ∃-free atomic constraint and λ be lbΓ or ubΓ . If for
all a1, a2, Γ |≈ a1 @ a2 implies a1 ≤A a2, then for all Γ |≈ φ1 @ φ2 (resp.
Γ |≈ α1 ≤ α2), λ(φ1) ≤A λ(φ2) (resp. λ(α1) ≤A λ(α2)) holds.

Proof. Let us assume λ = lbΓ (the case λ = ubΓ is symmetrical).
◦ Case Γ |≈ a1 @ a2. By hypothesis, a1 ≤A a2 holds.
◦ Case Γ |≈ a @ α. By the definition of lbΓ , this implies a ≤A lbΓ (α).
◦ Case Γ |≈ α @ a. If Γ |≈ a′ @ α then, applying the weak transitivity rule,

we obtain Γ |≈ a′ @ a. By hypothesis, this yields a′ ≤A a. We conclude that
lbΓ (α) ≤A a.

◦ Case Γ |≈ α1 @ α2 or Γ |≈ α1 ≤ α2. If Γ |≈ a @ α1 then, applying one of
Figure 9’s transitivity rules, Γ |≈ a @ α2. It follows that lbΓ (α1) ≤A lbΓ (α2).

Lemma 19. Let Γ be an ∃-free atomic constraint. If Γ |≈ φ1 @ φ2 (resp. Γ |≈
α1 ≤ α2) implies λ(φ1) ≤A λ(φ2) (resp. λ(α1) ≤A λ(α2)) and Π is a morphism
then [λ/Π] ` Γ .

Proof. Let ρ = [λ/Π]. By inspection of the definition of [λ/Π], we check that
if α1 and α2 have the same kind then ρ(α1) ≈ ρ(α2) holds. Besides, for every
variable α, �t ρ(α) = �u ρ(α) = λ(α).

If α1 ≈ α2 ∈ Γ then ρ(α1) ≈ ρ(α2). If α1 = α2 ∈ Γ then Γ |≈ α1 ≤ α2 and
Γ |≈ α2 ≤ α1. This yields λ(α1) = λ(α2) and hence ρ(α1) = ρ(α2). Lastly, if
φ1 @ φ2 ∈ Γ then λ(φ1) ≤A λ(φ2) and ρ(φ1) @ ρ(φ2). Similarly, if α1 ≤ α2 ∈ Γ
then λ(α1) ≤A λ(α2) and ρ(α1) ≤ ρ(α2).

The following theorem states the criterion of satisfiability of atomic constraints
involved by our algorithm.

Theorem 5. Let Γ
.= ∃~α.Γ ′ be an atomic constraint. Γ is satisfiable if and only

if for all atoms a1 and a2, Γ ′ |≈ a1 @ a2 implies a1 ≤A a2.

Proof. Γ is satisfiable if and only if Γ ′ is satisfiable. By Lemma 16, Γ ′ |≈ a1 @ a2

implies Γ ′ |= a1 @ a2. We conclude that if a1 6≤A a2 then Γ is not satisfiable.
We now assume that for every atoms a1 and a2, Γ ′ |≈ a1 @ a2 implies

a1 ≤A a2. By Lemma 18, if Γ ′ |≈ φ1 @ φ2 (resp. Γ ′ |≈ α1 ≤ α2) then lbΓ ′(φ1) ≤A
lbΓ ′(φ2) (resp. lbΓ ′(α1) ≤A lbΓ ′(α2)). Then, by Assumption 15 and lemma 19,
[lbΓ ′ /Π0] ` Γ ′.
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5.5 Complexity analysis

We now informally discuss the theoretical complexity of the solving algorithm,
i.e. the four steps described in Section 5.1 to 5.4. The input of the algorithm,
a constraint Γ , is measured as its size n which is the sum of the sizes of all
the involved terms, which is generally proportional to the size of the studied
program. As we have explained, we make the hypothesis that the height of
terms is bounded: we let h be the length of the longest chain (w.r.t. ≺Γ ) found
by occur-check and a the maximal arity of constructors. For the sake of simplicity,
we exclude rows of our study, whose analysis is more delicate [Pot03].

The first step of the algorithm is the combination of two unification algo-
rithms, one applying on multi-skeletons and the other on multi-equations, which
may be—in the absence of row terms—performed separately. Hence, using a
union-find algorithm, it requires time O(nα(n)) (where α is related to an inverse
of Ackermann’s function) [Tar75]. Occur-check is equivalent to a topological or-
dering of the graph of multi-skeletons, so it is linear in their number, which
is O(n). Then, under the hypothesis of bounded-terms, expansion generates at
most ah new variables for each variable in the input problem, and, the decom-
position of an inequality is similarly bounded. So, these two steps cost O(ahn).
Lastly, checking paths in the atomic graph can be done in linear time by a topo-
logical walk, provided that lattice operations on atoms (i.e. ≤, t and u) can be
computed in constant time.

6 Simplifying constraints and type schemes

We are done in describing the corpus of the solving algorithm. We now have to
introduce throughout this process a series of heuristics whose purpose is to reduce
the size of the problem at hand, and hence improve the efficiency of solving.
Simplification is a subtle problem: it must be correct (i.e. the result must be
equivalent to the input) as well as efficient in computation time and effective in
constraint size reduction. Following our pragmatic motivation, we do not address
here the question of optimality or completeness of simplification. Instead, we
present a series of techniques which we have experienced to be effective: finely
combined into the solving algorithm, they allow to notably improve its efficiency.

The most critical part of solving is expansion, which is likely to introduce a
lot of new variables. As we have explained, expansion is performed one multi-
skeleton at a time, in the order found by the occur-check. So, in attempt to
minimize its possible impact, we will apply those of our techniques that are local
to a multi-skeleton (Section 6.1 and 6.3) just before its variables are expanded,
in order to reduce the number of variables to be introduced. A second group of
simplifications (Section 6.4 and 6.5) needs to consider the whole graph of atomic
constraints. As a result, they are performed only once, at the end of solving.
Their purpose is to overcome another costly part of type inference in presence of
let-polymorphism: generalization and instantiation require duplicating schemes,
hence they must be made as compact as possible. They also allow obtaining
human-readable typing information.
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Basically, there are two ways to reduce the size of schemes. The first one
(featured in Sections 6.1, 6.3 and 6.5) consists in identifying variables. Formally,
this consists in replacing inequalities by multi-equations, which is effective since
dealing with the latter is much more efficient than with the former. The second
one (Section 6.4) removes intermediate variables which are no longer useful for
the final result (e.g. because they are unreachable).

In this section, we restrict our attention to schemes whose constraint is ∃-free.
(This is not restrictive because ∀~α[∃~β.Γ ].τ can be rewritten into ∀~α~β[Γ ].τ .)

6.1 Collapsing cycles

Cycle detection allows replacing a cycle of inequalities by a multi-equation in
a constraint. A cycle consists in a list of multi-equations ¯̄α0, . . . , ¯̄αn such that
¯̄α1 ≤ ¯̄α2 ∈ Γ, . . . , ¯̄αn ≤ ¯̄α1 ∈ Γ . Clearly, any solution ρ for Γ satisfies ρ( ¯̄α1) =
· · · = ρ( ¯̄αn). Thus, the multi-equations ¯̄α0, . . . , ¯̄αn can be fused

In [FFSA98], Fähndrich et al. proposed a partial on-line cycle detection al-
gorithm, which permits to collapse cycles incrementally at the same time as
inequalities are generated by some closure algorithm. However, in the current
paper, all the variables in a cycle of a unified constraint must belong to the
same multi-skeleton. This allows considering each multi-skeleton separately—
before its expansion—and thus using a standard graph algorithm for detecting
cycles in linear time, which is more efficient.

6.2 Polarities

The remaining simplification techniques need to consider the constraint at hand
in its context, i.e. a whole scheme describing a (piece of) program. Indeed, this
allows distinguishing the type variables which represent an “input” of the pro-
gram from those which stand for an “output”: the former are referred to as
negative while the latter are positive. Because we remain abstract from the pro-
gramming language and the type system itself, these notions are only given by
the variances of type constructors: roughly speaking, one may say that a co-
variant argument describes an output while a contravariant one stands for an
input. (This is reflected by the variances commonly attributed to the → type
constructor in λ-calculus or ML.) Because non-positive variables are not related
to the output produced by the program, we are not interested with their lower
bounds. Similarly, the upper bounds of non-negative variables do not matter.

For this purpose, we assign polarities [FM89,TS96,Pot01] to variables in a
scheme σ = ∀~α[Γ ].τ : we write σ ` α : + (resp. σ ` α : −) if α is positive
(resp. negative) in σ. (The same variable can simultaneously be both.) Regarding
variances of symbols, polarities are extended to terms by the following rule

∀i vi(f) ∈ {⊕,¯} ⇒ σ ` τi : + ∀i vi(f) ∈ {ª,¯} ⇒ σ ` τi : −
σ ` f(τ1, . . . , τn) : +
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and its symmetric counterpart for proving σ ` f(τ1, . . . , τn) : −. Then, σ ` · : +
and σ ` · : − are defined as the smallest predicates such that:

σ ` τ : +
α 6∈ ~α

σ ` α : ±
σ ` α : + α = τ ′ ∈ Γ

σ ` τ ′ : +
σ ` α : − α = τ ′ ∈ Γ

σ ` τ ′ : −

The first rule reflects the fact that the body describes the result produced by the
associated piece of code, hence it is positive. The second rule makes every free
variable bipolar, because it is likely to be related to any other piece of code. The
last two rules propagate polarities throughout the structure of terms. Polarities
can be computed by a simple propagation during expansion.

Given two assignments ρ1, ρ2 and a scheme σ, we write ρ1 ≤[σ] ρ2 if and only
if σ1 ` α : + (resp. σ1 ` α : −) implies ρ1(α) ≤ ρ2(α) (resp. ρ2(α) ≤ ρ1(α))

Lemma 20 (Scheme comparison). Let σ1 = ∀~α[Γ1].τ and σ2 = ∀~α[Γ2].τ be
two schemes. If for all ρ2 ` Γ2 there exists ρ1 ` Γ1 such that ρ1 ≤[σ] ρ2 then
σ1 4 σ2.

Proof. Let ρ be an arbitrary assignment. We consider t ∈ Jσ2Kρ. There exists

ρ2 satisfying Γ2 such that ρ2
V\~α= ρ and ρ2(τ) ≤ t. By hypothesis, there exists

ρ1 ` Γ1 such that ρ1(τ) ≤ ρ2(τ) and, for all α ∈ ~α, ρ1(α) = ρ2(α). This yields
t ∈ Jσ2Kρ. We conclude that, for all ρ, Jσ2Kρ ⊆ Jσ1Kρ.

6.3 Reducing chains

Constraint generation yields a large number of chains of inequalities: because
subsumption is allowed at any point in a program, the type synthesizer usually
generates inequalities for all of them; but many are not really used by the pro-
gram at hand. Chains reduction intends to detect and remove these intermediate
variables and constraints, as proposed by Eifrig et al [EST95] and, by Aiken and
Fähndrich [AF96] in the setting of set constraints. Here, we adapt their proposal
to the case of structural subtyping.

We say that ¯̄τ is the unique predecessor of ¯̄α in ∀~α[Γ ].τ if and only if ¯̄τ ≤
¯̄α ∈ Γ and it is the only inequality involving ¯̄α as right-hand-side. Symmetrically,
we define unique successors. The following theorem states that a non-positive
(resp. non-negative) multi-equation may be fused with its unique successor (resp.
predecessor).

Theorem 6 (Chains). Let σ = ∀~α[Γ ∧ 〈 ¯̄α〉 ≈ 〈¯̄τ〉 ≈ ≈
τ ].τ be a unified scheme,

satisfying the occur-check, expanded and decomposed down to ¯̄α. If ¯̄α is non-
positive (resp. non-negative) and ¯̄τ is its unique successor (resp. predecessor)
then σ is equivalent to ∀~α[Γ ∧ 〈 ¯̄α = ¯̄τ〉 ≈ ≈

τ ].τ .

Proof. We address the case of a non-negative multi-equation which has a unique
predecessor; the other one is symmetric. Let Γ1 = Γ ∧ 〈 ¯̄α〉 ≈ 〈¯̄τ〉 ≈ ≈

τ and
Γ2 = Γ ∧ 〈 ¯̄α = ¯̄τ〉 ≈ ≈

τ . We have Γ2 |= Γ1, and hence ∀~α[Γ1].τ 4 ∀~α[Γ2].τ .
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We now consider ρ1 ` Γ1. Let V be the set of variables which are “above” ¯̄α
in Γ , namely {β | ∃α ∈ ¯̄α α ≺+

Γ β}. We define the assignment ρ2 by:

ρ2(β) =





f(ρ2(β1), . . . , ρ2(βn)) if β ∈ V with β = f(β1, . . . , βn) ∈ Γ

ρ1(¯̄τ) if β ∈ ¯̄α
ρ1(β) otherwise

By hypothesis, ¯̄τ ≤ ¯̄α ∈ Γ . Then ρ1 ` Γ yields ρ1(¯̄τ) ≤ ρ1( ¯̄α) and, hence,
ρ2( ¯̄α) ≤ ρ1( ¯̄α). Γ1 is expanded down to ¯̄α. So, by induction on ≺Γ , and because
¯̄α is not negative, we establish that ρ2 ≤[σ] ρ1.

We now check that ρ2 is a solution for Γ2. Assume τ1 ≈ τ2 ∈ Γ2. We have
τ1 ≈ τ2 ∈ Γ1 and hence ρ1(τ1) ≈ ρ1(τ2). Because ρ2 ≤[σ] ρ1, this yields ρ2(τ1) ≈
ρ2(τ2). Similarly, suppose τ1 = τ2 ∈ Γ2. If τ1 = τ2 ∈ Γ1, ρ2(τ1) = ρ2(τ2) follows
because Γ1 is unified and expanded down to ¯̄α. If τ1 = τ2 6∈ Γ1 then one of τ1

and τ2 belongs to ¯̄α and the other to ¯̄τ , what yields ρ2(τ1) = ρ1(¯̄τ) = ρ2(τ2).
We now consider β1 ≤ β2 ∈ Γ2. We have β1 ≤ β2 ∈ Γ1 and ρ1(β1) ≤ ρ1(β2).

If β2 belongs to ¯̄α then β1 is in ¯̄τ and ρ2(β1) = ρ2(β2). Otherwise, because Γ is
expanded and decomposed down to ¯̄α, β1 and β2 are not in V . Thus ρ2(β2) =
ρ1(β2) and ρ2(β1) ≤ ρ1(β1). This yields ρ2(β1) ≤ ρ2(β2). The case φ1 @ φ2 ∈ Γ ′

is similar.
Then, we have ρ2 ≤[σ] ρ1 and ρ2 ` Γ2. By Lemma 20, we conclude ∀~α[Γ2].τ 4

∀~α[Γ1].τ .

6.4 Polarized garbage collection

Computing the scheme which describes a piece of code typically yields a large
number of variables. Many of them are useful only during intermediate steps of
the type generation, but are no longer essential once it is over. Garbage collection
is designed to keep only polar variables in the scheme at hand, and paths from
variables which are related to some input of the program (i.e. negative ones) to
those which are related to some output (i.e. positive ones). Indeed, it rewrites
the input constraint into a closed one such that: (1) every variable appearing
in a multi-skeleton is polar, (2) for every inequality α1 ≤ α2 or α1 @ α2, α1 is
negative and α2 is positive, (3) only positive (resp. negative) variables may have
a constant lower (resp. upper) bound, which—if it exists—is unique. This idea
has been introduced by Trifonov and Smith [TS96] in the case of non-structural
subtyping.

Let σ = ∀~α[Γ ].τ be a scheme with Γ reduced and satisfiable. A multi-equation
is said to be polar if it contains a variable which is negative or positive. Then,
GC (σ) is ∀~α[Γ ′].τ where Γ ′ is the conjunction of the following constraints:

– 〈¯̄τ1〉 ≈ · · · ≈ 〈¯̄τn〉, for all ¯̄τ1, . . . , ¯̄τn which are the polar multi-equations of
one of Γ ’s multi-skeletons,

– α ≤ β, for all α and β such that Γ |≈ α ≤ β and σ ` α : − and σ ` β : +,
– α @ β, for all α and β such that Γ |≈ α @ β and σ ` α : − and σ ` β : +,
– lbΓ α @ α, for all α such that σ ` α : + and lbΓ α 6= ⊥
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– α @ ubΓ α, for all α such that σ ` α : − and ubΓ α 6= >

Theorem 7 (Garbage collection). GC (σ) is equivalent to σ.

Proof. Let σ = ∀~α[Γ ].τ and GC (σ) = ∀~α[Γ ′].τ . By Lemmas 16 and 17, Γ |= Γ ′

holds. This yields GC (σ) 4 σ. Let ρ′ be an assignment which satisfies Γ ′.
For every variable α, we consider the set of positive or negative variables β

such that α ≈ β ∈ Γ . All these variables must be interpreted by ρ′ within the
same ground skeleton. So, we define ⊥(α) the bottom element of this ground
skeleton. (In the case where the previous set is empty, we arbitrarily choose
⊥(α) = Π0(⊥).) Let us also introduce

spred(α) = {β | Γ |≈ β ≤ α and σ ` β : −}
wpred(α) = {β | Γ |≈ β @ α and σ ` β : −}

Then we let ρ(α) be the union of t{ρ′(β) | β ∈ spred(α)} and *⊥(α) ↑ t{ �t ρ′(β) |
β ∈ wpred(α}+ �u and *⊥(α) ↑ lbΓ (α)+ �u.

We now check that ρ ` bΓ c. If α1 ≈ α2 ∈ bΓ c then, because Γ is unified,
⊥(α1) = ⊥(α2). This yields ρ(α1) ≈ ρ(α2). Similarly, if α1 = α2 ∈ bΓ c then
⊥(α1) = ⊥(α2), spred(α1) = spred(α2), wpred(α1) = wpred(α2) and lbΓ (α1) =
lbΓ (α2). ρ(α1) = ρ(α2) follows. If α1 ≤ α2 ∈ bΓ c then ⊥(α1) = ⊥(α2),
spred(α1) ⊆ spred(α2), wpred(α1) ⊆ wpred(α2) and lbΓ (α1) ≤A lbΓ (α2).
Again, this yields ρ(α1) ≤ ρ(α2). Lastly, consider φ1 @ φ2 ∈ bΓ c.

◦ Case φ1 = a1 and φ2 = a2. Because Γ is satisfiable, by Theorem 5, a1 ≤A
a2 must hold.

◦ Case φ1 = a1 and φ2 = α2. We have a1 ≤ lbΓ (α2), which yields, by Lemma 4,
a1 @ *⊥(α2) ↑ lbΓ (α2)+ �u. a1 @ ρ(α2) follows.

◦ Case φ1 = α1 and φ2 = a2. Because Γ is satisfiable, by Theorem 5 and
Lemma 17, lbΓ (α1) ≤A a2. Moreover, for every β ∈ spred(α1) ∪ wpred(α1),
Γ ′ |≈ β @ a2 and ρ′(β) @ a2 holds. We conclude that ρ(α1) @ a2.

◦ Case φ1 = α1 and φ2 = α2. We have lbΓ (α1) ≤A lbΓ (α2), spred(α1) ∪
wpred(α1) ⊆ wpred(α2). This yields ρ(α1) @ ρ(α2).

We conclude that ρ ` bΓ c.
We now prove that ρ ≤[σ] ρ′. If α is a negative variable then α ∈ spred(α).

This yields ρ′(α) ≤ ρ(α). We now assume that α is a positive variable. For
every variable β in spred(α) (resp. wpred(α)), β ≤ α ∈ Γ ′ (resp. β @ α ∈ Γ ′),
which implies ρ′(β) ≤ ρ′(α) (resp. ρ′(β) @ ρ′(α)). Moreover, if lbΓ (α) 6= ⊥ then
lbΓ (α) @ α ∈ Γ ′. Thus, lbΓ (α) @ ρ′(α). We conclude that ρ(α) ≤ ρ′(α).

By Lemma 14, we obtain dρeΓ ` Γ and, by induction on ≺Γ , we check that
dρeΓ ≤[σ] ρ′

It is worth noting that, once garbage collection is performed, a scheme in-
volves only polar variables. Hence, using a suitable substitution, it may be rewrit-
ten in a body giving the whole term structure, and a constraint (consisting in a
conjunction of ≈, ≤ and @) relating variables of the body, without any intermedi-
ate one. This form is most suitable for giving human-readable type information.
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6.5 Minimization

This simplification intends to reduce the number of distinct variables or terms in
a constraint by detecting some equivalences. It is called minimization because
it is similar to that of an automaton (which detects equivalent states). Once
constraints have been decomposed, it may be performed here in two steps: a first
one detecting equivalent terminal variables and a second one of hash-consing.

Let σ = ∀~α[Γ ].τ be a unified scheme. Two terminal multi-equations ¯̄α1 and
¯̄α2 of the same multi-skeleton are equivalent in σ (we write ¯̄α1 ∼σ ¯̄α2) if

– either they are non-positive and have the same successors (i.e. {β | ¯̄α1 ≤ β ∈
Γ} = {β | ¯̄α2 ≤ β ∈ Γ} and {φ | ¯̄α1 @ φ ∈ Γ} = {φ | ¯̄α2 @ φ ∈ Γ}),

– or they are non-negative and have the same predecessors (i.e. {β | β ≤ ¯̄α1 ∈
Γ} = {β | β ≤ ¯̄α2 ∈ Γ} and {φ | φ @ ¯̄α1 ∈ Γ} = {φ | φ @ ¯̄α2 ∈ Γ}).

Minimization consists in fusing every pair of equivalent multi-equations. So, we
define M(σ) = ∀~α[Γ ∧ { ¯̄α1 = ¯̄α2 | ¯̄α1 ∼σ ¯̄α2}].τ .

Theorem 8 (Minimization). Let σ be a reduced and closed scheme. M(σ) is
equivalent to σ.

Proof. In this proof, we write α1 ∼σ α2 if and only if ¯̄α1 ∼σ ¯̄α2 holds for some
¯̄α1 and ¯̄α2 such that α1 in ¯̄α1 and α2 in ¯̄α2. Let σ = ∀~α[Γ ].τ and M(σ) =
∀~α[Γ ′].τ . By construction, Γ ′ |= Γ ; this yields σ 4 M(σ). Let us now consider
an assignment ρ which satisfies Γ . Because β ∼σ α implies ρ(β) ≈ ρ(α), thanks
to Lemma 2, we may define ρ′ by:

ρ′(α) =





t{ρ(β) | β ∼σ α} if α is negative non-positive
u{ρ(β) | β ∼σ α} if α is positive non-negative
ρ(α) otherwise

We now check that ρ′ ` Γ ′. By construction, for every α, ρ(α) ≈ ρ′(β). If
α ≈ β ∈ Γ ′ then α ≈ β ∈ Γ . Because ρ ` Γ , this yields ρ(α) ≈ ρ(β) and
ρ′(α) ≈ ρ′(β).

Assume α1 = α2 ∈ Γ ′. If α1 = α2 ∈ Γ then α1 and α2 have the same
polarities (in σ) and for every β, α1 ∼σ β is equivalent to α2 ∼σ β. This yields
ρ′(α1) = ρ′(α2). Otherwise, if α1 = α2 6∈ Γ , then α1 ∼σ α2 holds. Then α1 and
α2 are either two positive non-negative variables or two negative non-positive
variables. In both cases, because ∼σ is transitive, this yields ρ′(α1) = ρ′(α2).

Assume α1 ≤ α2 ∈ Γ ′. By definition, α1 ≤ α2 ∈ Γ holds too and, by
hypothesis, ρ(α1) ≤ ρ(α2), σ ` α1 : − and σ ` α2 : +. Then we have ρ′(α1) =
t{ρ(β) | β ∼σ α1} and ρ′(α2) = u{ρ(β) | β ∼σ α2} (even if there are also
respectively positive or negative). Moreover, if β1 ∼σ α1 and β2 ∼σ α2 then
β1 ≤ β2 ∈ Γ and ρ(β1) ≤ ρ(β2). We conclude that ρ′(α1) ≤ ρ′(α2).

The case of weak inequalities is similar.

Hash-consing aims at propagating the equivalence found by minimization
between terminal variables to non-terminal ones: it unifies non-terminal skeletons
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α1 ≈ β1 · · · αn ≈ βn |
hash≈

〈¯̄τ = f(α1, . . . , αn)〉ι ≈ ≈
τ 〈¯̄τ ′ = f(β1, . . . , βn)〉ι ≈ ≈

τ
′

〈¯̄τ = f(α1, . . . , αn)〉ι ≈ ≈
τ ≈ 〈¯̄τ ′ = f(β1, . . . , βn)〉ι ≈ ≈

τ
′Ã

α1 = β1 · · · αn = βn |
hash=

〈¯̄τ = f(α1, . . . , αn)〉ι ≈ 〈¯̄τ ′ = f(β1, . . . , βn)〉ι′ ≈ ≈
τ

〈¯̄τ = f(α1, . . . , αn) = ¯̄τ ′ = f(β1, . . . , βn)〉ι∨ι′ ≈ ≈
τ
Ã

Fig. 10: Hash-consing (rewriting system Ωh)

or variables which share the same sub-terms, as performed by the rewriting
system Ωh described by the two rules in Figure 10: the first one intends to fuse
multi-skeletons and the second one aims at merging multi-equations within each
multi-skeleton. However, this does not improve readability of the terms printed
by the solver (because they are generally displayed without exhibiting sharing
between internal nodes) and, according to our experiments (see Section 7), it
has only a little impact on the practical efficiency.

Theorem 9 (Hash-consing). The rewriting system Ωh is sound and termi-
nates.

Proof. We measure a constraint according to (1) its number of multi-skeletons
and (2) its number of multi-equations. Rule hash≈ fuses two multi-skeletons,
so it decreases (1) and keeps (2) unchanged. Rule hash= merges two multi-
equations belonging to the same multi-skeleton, reducing (2) without affecting
(1). We conclude that the rewriting system Ωh terminates.

7 Implementation and experiments

The Dalton library [Sim02] is a real-size implementation in Objective Caml of
the algorithms described in the current paper. In this library, the constraint
solver comes as a functor parametrized by a series of modules describing the
client’s type system. Hence, we hope it will be a suitable type inference engine
for a variety of applications.

We have experimented with this toolkit in two prototypes. First, we designed
an implementation of the Caml Light compiler that is modular w.r.t. the type
system and the constraints solver used for type inference. We equipped this
prototype with two engines:

– A standard unification-based solver, which implements the same type system
as Caml Light,

– An instance of the Dalton library, which features an extension of the previous
type system with structural subtyping, where each type constructor carry
an extra atomic annotation belonging to some arbitrary lattice.
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Caml Light Flow Caml
library compiler library

A.s.t. nodes 14002 22996 13123

1. Type inference1

Unification 0.346 s 0.954 s
Structural subtyping (Dalton) 0.966 s 2.213 s n.a.
ratio 2.79 2.31

2. Statistics about Dalton2

Multi-equations 30345 65946 73328
Collapsing cycles 501 (2%) 1381 (2%) 1764 (2%)

Chain reduction 9135 (30%) 15967 (24%) 17239 (24%)

Garbage collection 15288 (50%) 31215 (47%) 18460 (25%)

Minimization 424 (1%) 644 (1%) 815 (1%)

Expanded variables3 948 (3%) 1424 (2%) 1840 (3%)

(9% of n.t.) (8% of n.t.) (14% of n.t.)
1 Benchmarks realized on a Pentium III 1 GHz (average of 100 runs)
2 Percentages relative to the total number of multi-equations
3 The 2nd percentage is relative to the number of non-terminal multi-eq. considered by expansion

Table 1. Experimental measures

This second type system has no interest for itself, but is a good representative—
in terms of constraints resolution—of real ones featuring structural subtyping
in the purpose of performing some static analysis on programs, such as a data
or information flow analysis. We ran them on several sets of source code files,
including the Caml Light compiler and its standard library; the resulting mea-
sures appear in the first two columns of Table 1. To compare our framework
with standard unification, we measure the computation time of the typing phase
of compilation: on our tests, Dalton appears to be slower than unification only
by a factor comprised between 2 to 3. Such measures must be interpreted care-
fully. However, unification is recognized to be efficient and is widely used; so
we believe them to be a point assessing the practicality and the scalability of
our framework. Besides, we used our solver as the type inference engine of Flow
Caml [Sim03], an information flow analyzer for the Caml language. The measures
obtained during the analysis of its library appear in the last column of Table 1.

These experiments also provide information about the behavior of the solving
algorithm and the efficiency of simplification techniques. We measured the total
number of multi-equations generated throughout type generation and constraints
solving, and of those which are collected by one of the simplification techniques
(either by fusing with another multi-equation or by garbage collection). Chain
reduction appears as a key optimization, since it approximatively eliminates
one quarter of multi-equations—that are variables—before expansion. The di-
rect contribution of collapsing cycles is ten times less; however, we observed
that skipping this simplification affects chain reduction. Hence, expansion be-
comes marginal: the number of variables that are expanded represents only a few
percents of the total number of multi-equations, and about a tenth of the non-
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terminal multi-equations considered by expansion. Simplifying before expansion
is crucial: if we modify our implementation by postponing chain reduction af-
ter expansion, the number of expanded variables grow by a factor around 20.
Lastly, our measures show that the contribution of garbage collection is compa-
rable to that of chain reduction; minimization has less impact on the size of the
constraints but appears crucial for readability.

8 Discussion

Our implementation handles polymorphism in a manner inspired by Trifonov
and Smith [TS96], where all type schemes are closed, i.e. have no free type
variables, but contain a local environment. Hence their meaning does not depend
on any external assumption. The interest lies in the fact that generalization and
instantiation simply consist in making fresh copies of schemes. This approach
turns out to be reasonable in practice, mostly because, thanks to simplification,
the size of copied structures is limited. However, it should also be possible to
deal with polymorphism in a more standard way, by using numeric ranks for
distinguishing generalizable variables [Rém92]. This would require making copies
of constraints fragments, which yields more complicated machinery. However, in
both approaches, we are still faced with the problem of constraints duplication.
This is largely similar to the difficulty encountered in ML, whose practical impact
is limited. Furthermore, this question has been studied for the setting of a flow
analysis in [FRD00].

Several possible extensions of the system may be mentioned. An interesting
question lies in the introduction of recursive terms. This should mostly require to
adapt expansion which relies on the finiteness of the term structure. The expres-
siveness of weak inequalities may also be extended in two ways. First, it might
be interesting for some applications to have several weak inequalities equipped
with different decomposition rules. It should be straightforward to extend our al-
gorithms by labeling the @ symbol and providing appropriate transitivity rules.
Besides, in this paper, @ is only allowed to consider covariant arguments of
type constructors. However, in [PS02], the combination of polymorphic equality
and mutable cells requires weak inequalities to be decomposed on invariant argu-
ments too. Such an extension requires introducing weak inequalities on skeletons.
This is experimentally handled by our implementation.
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