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This paper presents a type-based information flow analysis for a call-by-value λ-calculus equip-
ped with references, exceptions and let-polymorphism, which we refer to as Core ML. The type
system is constraint-based and has decidable type inference. Its noninterference proof is reason-
ably light-weight, thanks to the use of a number of orthogonal techniques. First, a syntactic
segregation between values and expressions allows a lighter formulation of the type system. Sec-
ond, noninterference is reduced to subject reduction for a nonstandard language extension. Lastly,
a semi-syntactic approach to type soundness allows dealing with constraint-based polymorphism
separately.

Categories and Subject Descriptors: F.3.2 [Logics and Meanings of Programs]: Semantics of
Programming Languages—Operational semantics; Program analysis; F.3.3 [Logics and Mean-
ings of Programs]: Studies of Program Constructs—Control primitives; Functional constructs;
Type structure; D.4.6 [Operating systems]: Security and Protection—Information flow controls

General Terms: Languages, Security, Theory

1. INTRODUCTION

Information flow analysis consists in statically determining how a program’s out-
puts are related to its inputs, i.e. how the former depend, directly or indirectly, on
the latter. This allows establishing secrecy or integrity properties of a program,
i.e. proving that some aspects of its behavior convey no information about those of
its inputs deemed “secret”, or remain independent of those deemed “unreliable”.
These properties are instances of noninterference [Goguen and Meseguer 1982]:
they state the absence of certain dependencies.

Because information flow analysis is complex and error-prone, it must be auto-
mated. During the past few years, several researchers have advocated its formula-
tion as a type system. Then, existing type inference techniques provide automation,
while type signatures provide concise, formal security specifications.

Our interest is in designing, and proving correct, a type-based information flow
analysis for (the kernel of) a realistic, sequential programming language. (In the
presence of concurrency, the termination of a process is observable by other pro-
cesses, creating new ways to leak information and requiring more restrictive type
systems. Hence, it appears reasonable to first experiment with information flow
control in a sequential setting.) To date, most formal results obtained in this
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area concern extremely simplified programming languages. Several papers address
pure λ-calculi [Heintze and Riecke 1998; Abadi et al. 1999; Pottier and Conchon
2000]. Volpano et al. [Volpano et al. 1996; Volpano and Smith 1997b] study a core
imperative programming language, where all variables store integers. Volpano and
Smith [Volpano and Smith 1997a] also study a language equipped with a fatal (non-
catchable) exception, corresponding to failure of arithmetic operations. Banerjee
and Naumann [Banerjee and Naumann 2002] deal with a fragment of Java, which
includes classes and methods. Standing in sharp contrast, Myers [Myers 1999a;
1999b] considers the full Java language, including objects, exceptions, parameter-
ized classes, etc. However, he does not give a formal proof of correctness; indeed,
our formal approach uncovered a couple of flaws in his type system, which are
described in the conference version of this paper [Pottier and Simonet 2002a].

In an attempt to bridge the gap, we consider a call-by-value λ-calculus equipped
with let-polymorphism, products and sums, references, exceptions, and generic
primitive operations. (These last appear only in Section 7.) We refer to it as
Core ML, because of its similarity with Wright and Felleisen’s Core ML [Wright
and Felleisen 1994]. In our version, however, exception names have global scope,
and neither exception names nor exceptions are first-class values. Our calculus is
very close to the core of the functional programming language Caml-Light [Leroy
et al. 1997]. We endow it with a polymorphic, constraint-based type system, called
mlif, which has decidable type inference and guarantees noninterference.

A (monomorphic) treatment of references in a higher-order language can be found
in [Zdancewic and Myers 2001; 2002]. Exceptions have been studied by Myers [My-
ers 1999a; 1999b] for Java. However, Myers’ treatment relies on Java’s explicit,
monomorphic throws clauses, whereas our type system uses a more flexible, poly-
morphic effect analysis, giving rise to issues discussed in Section 10. The combina-
tion of references, exceptions and constrained let-polymorphism, as well as our use
of a standard subject reduction technique to establish noninterference, are novel.
Our use of unannotated product types and our treatment of generic primitive oper-
ations (such as polymorphic equality), which require custom constraint forms, are
also original contributions of this paper.

This paper is a revised and extended version of [Pottier and Simonet 2002a].
The main novelty with respect to the conference version resides in our decision to
make exceptions second-class entities, rather than first-class values. This simplifies
the type system, by allowing several notions to be suppressed; namely, exception
types, alternatives, and conditional constraints. (More explanations are given in
Section 5.4.) Eliminating conditional constraints, in particular, makes it more
straightforward to design an efficient constraint solving procedure, and helps infer
more readable types. We believe that the loss of expressiveness associated with this
design decision remains minimal. Another improvement consists in a more detailed
description of constraint solving, including a correctness proof.

2. OVERVIEW

Type systems are typically used to establish safety properties, i.e. prove that a
certain invariant holds throughout the execution of a program. Type safety is such
a property. However, noninterference [Goguen and Meseguer 1982] requires two
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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independent program runs, given different inputs, to yield the same output. As a
result, its proof is often more delicate.

Abadi et al. [Abadi et al. 1996] devised a labeled operational semantics of the
λ-calculus, where the labels attached to a term indicate how much information
it carries. Executing a program under such a semantics amounts to performing
a dynamic dependency analysis along with the actual computation. Pottier and
Conchon [Pottier and Conchon 2000] later showed how static, type-based depen-
dency analyses could be systematically derived, and proven safe, from such a labeled
semantics.

Unfortunately, in a programming language with side effects, it is possible to leak
information through the absence of a certain effect. Indeed, consider the program
fragment “if x = 1 then y := 1”. If, after executing this statement, y isn’t 1, then x
cannot be 1 either. Thus, in that case, execution transfers information about x to
y, even though no assignment takes place, since the statement y := 1 is skipped. It
appears difficult for a labeled semantics to account for the effect of code that is not
executed; so, the approach must be reconsidered.

Direct noninterference proofs, although straightforward for simple programming
languages [Volpano et al. 1996], become increasingly complex in the presence of
advanced features such as dynamic memory allocation, higher-order functions, and
type polymorphism. A noninterference proof can be viewed as a bisimulation proof.
For this reason, it requires manipulating a large, and often cumbersome, invariant:
see e.g. [Zdancewic and Myers 2001]. To avoid this pitfall, we break our proof down
into several independent steps. First, we define a special-purpose extension of the
language, which allows explicit reasoning about the commonalities and differences
between two arbitrary program configurations, and prove it adequate in a certain
sense. Then, we define a type system for this extended language, and prove that
it enjoys a subject reduction property. Lastly, we show that noninterference for
the base language is a consequence of these results. In other words, we reduce the
initial problem to subject reduction—a safety property—for our special-purpose
language. The bisimulation invariant is thus expressed in the type system itself,
making it easier to reason about.

In keeping with the ML tradition, our type system has let-polymorphism and
type inference. In addition to structure, our types describe effects and security
levels; polymorphism allows writing code that is generic with respect to all three.
Type inference is indispensable, because our types are verbose, and because infor-
mation flow often occurs in unexpected ways. Because we employ subtyping (as
well as other forms of constraints), our type inference system is constraint-based.
Yet, if type generalization, instantiation, and constraint manipulation were part of
the type system from the outset, our subject reduction proof would be significantly
obfuscated. To work around this problem, we adopt a semi-syntactic approach [Pot-
tier 2001], which again consists in breaking down the construction into two steps.
First, we present a system equipped with an extensional form of polymorphism,
whose formal treatment is unintrusive. Then, we build a constraint-based system
in the style of HM(X) [Odersky et al. 1999], which we prove correct with respect
to the former.

We now proceed as follows. We first present the syntax of Core ML (Section 3).
Then, we introduce our extension of Core ML, which we refer to as “Core ML2”, give
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v ::= x | () | k | fix f.λx.e | m | (v, v) | injj v

a ::= v | raise ε v
e ::= a | v v | ref v | v := v | ! v | projj v | v case x Â e e | let x = v in e | E[e]

E ::= bind x = [ ] in e | [ ] handle ε x Â e | [ ] handle e done | [ ] handle e raise | [ ] finally e

Fig. 1. The syntax of Core ML

an operational semantics for both languages at once, and show how they relate to
each other (Section 4). Section 5 introduces mlif0, a type system for Core ML2, and
establishes subject reduction. Combining these results, we obtain a noninterference
property for Core ML (Section 6). In Section 7, we extend the language with
generic primitive operations. Culminating our development, Section 8 presents
mlif, a constraint-based type system which we prove correct with respect to mlif0.
We show that constraint solving is decidable, allowing type inference. Section 9
lists some example programs with their types. Lastly, we discuss a few design
alternatives in Section 10.

3. CORE ML

Let k range over integers; let x, m range over disjoint denumerable sets of program
variables, and memory locations, respectively; let j range over {1, 2}. Let ε range
over a denumerable set E of exception names. Then, values, answers, expressions
and evaluation contexts are defined as in figure 1.

Values include variables, a unit constant, integers, λ-abstractions, memory lo-
cations, pairs, and applications of an injection. An abstraction fix f.λx.e may re-
cursively refer to itself through the program variable f . (This is done merely to
avoid introducing a separate fix-point combinator. We write λx.e when f does
not appear free in e.) Answers represent completed computations; they are either
values or unhandled exceptions of the form raise ε v. An expression is an answer, a
so-called basic expression, a let construct, or another expression enclosed within an
evaluation context.

Basic expressions include function applications, instances of three primitive op-
erations, which allow allocating, updating, and dereferencing memory cells, pair
projections, and sum elimination (case) constructs. They are built out of values,
rather than out of arbitrary sub-expressions. This syntactic restriction, which is
reminiscent of Flanagan et al.’s A-normal forms [Flanagan et al. 1993], offers a
number of advantages. First and foremost, it enables a much lighter formulation of
our type-and-effect system. Indeed, because values have no computational effect, a
basic expression’s components now contribute nothing to its effect. Furthermore,
it allows our system to remain independent of the evaluation strategy, i.e. of the
choice of left-to-right vs. right-to-left evaluation order. User programs, expressed
in a more liberal syntax, must be translated down into our restricted syntax be-
fore they can be analyzed. Different evaluation strategies are then implemented by
different translation schemes. We will come back to this point in section 5.6.

The let construct let x = v in e has the same meaning as the basic expression
(fix f.λx.e) v (where f is not free in e). However, as usual in ML [Wright and
Felleisen 1994], the let keyword directs the type checker to give x polymorphic
type. Following Wright [Wright 1995], we require the binding to contain a value v,
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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rather than an arbitrary sub-expression, so as to avoid unsoundness in the presence
of imperative features. As a result, let constructs do not appear among evaluation
contexts.

Evaluation contexts provide glue to combine expressions and specify their evalua-
tion order. The expression bind x = e1 in e2 evaluates e1, binds x to its value, then
evaluates e2. The bind keyword does not request type generalization; it merely
expresses sequentiality. Our decision of making let and bind separate constructs
emphasizes this distinction. We write e1; e2 for bind x = e1 in e2, where x does not
occur in e2.

The remaining evaluation contexts offer a variety of ways of handling exceptions.
If the expression in the hole reduces to raise ε v, then [ ] handle ε x Â e binds x
to v and evaluates e; otherwise, it has no effect. The context [ ] handle e done
is analogous, but catches every exception, regardless of its name. It does not
bind a variable, because exceptions are not values. The context [ ] handle e raise
also catches every exception, and executes the handler e; then, however, it lets
the answer raise ε v escape, instead of completing normally. Lastly, the context
[ ] finally e always executes e, regardless of the answer produced by the expression
in the hole, before proceeding; it is similar to Lisp’s unwind-protect and Java’s
try-finally constructs.

Why do we provide so many distinct ways of handling exceptions? The expla-
nation lies in our decision to make exceptions second-class entities: an exception
is not a value, so a variable cannot be bound to an exception, and raising an ex-
ception requires its name ε to be statically specified. This design choice will be
motivated in section 5.4. To mitigate the loss in expressiveness, we must provide
enough context forms to cover all common programming idioms.

We do not yet give an operational semantics for Core ML, because we view it as
a fragment of Core ML2, which we define in the next section.

4. CORE ML2

4.1 Presentation

Non-interference requires reasoning about two programs and proving that they
share some sub-terms throughout execution. To make such reasoning easier, we
choose to represent them as a single term of an extended language, called Core
ML2, rather than as a pair of Core ML terms. The extension is as follows:

v ::= . . . | 〈v | v〉 | void
a ::= . . . | 〈a | a〉
e ::= . . . | 〈e | e〉

The Core ML2 term 〈e1 | e2〉 is intended to encode the pair of Core ML terms
(e1, e2). It is important to note that brackets can appear at an arbitrary depth
within a term. For instance, if v is a Core ML value, then 〈v1 | v2〉 v and 〈v1 v | v2 v〉
both encode the pair (v1 v, v2 v). The former, however, is more informative, because
it explicitly records the fact that the application node and its argument v are shared,
while the latter doesn’t. We do not allow nesting 〈· | ·〉 constructs, because that
would not make sense given our intended interpretation; so, the sub-terms of such
a construct must be Core ML terms.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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The correspondence between Core ML and Core ML2 is made explicit by means
of two projection functions b·ci, where i ranges over {1, 2}. These functions satisfy
b〈e1 | e2〉ci = ei and are homomorphisms on other expression forms.

Before giving more definitions, let us give a hint of how Core ML2 allows keeping
track of the differences between two Core ML programs throughout execution. For
instance, let us consider the function λx.0. Clearly, its result does not reveal any
information about its argument, since it is a constant. Indeed, the type system
which we will present in the following claims that this function maps “secret”
inputs to “public” outputs. Now, in order to prove that the type system is correct,
we must establish a noninterference result: for all integers k1 and k2, the programs
e1 = (λx.0) k1 and e2 = (λx.0) k2 yield the same value. To do so, we encode these
two programs into a single Core ML2 term, namely e = (λx.0) 〈k1 | k2〉. Its two
projections are the original Core ML programs: for i ∈ {1, 2}, beci is ei. Note
that the “secret” inputs k1 and k2 appear under brackets in e, while the structure
common to e1 and e2, namely the application of λx.0, is shared—that is, it appears
outside the brackets. According to Core ML2’s operational semantics, which we
will describe further on, the composite term (λx.0) 〈k1 | k2〉 reduces to the Core
ML2 term 0. The fact that this term does not contain any brackets is sufficient to
ensure that its two projections coincide, that is, the original programs e1 and e2

both produce the same result. The noninterference proof developed in this paper
(Theorem 15) is based on the same approach: we will prove that, under appropriate
typing hypotheses, the result of a Core ML2 reduction sequence does not contain
any brackets.

The reduction sequence (λx.0) 〈k1 | k2〉 → 0, which we described above, is ex-
tremely simple. In general, however, reductions in Core ML2 can be much more
complex: several of its reduction rules must lift brackets when they block reduction.
For instance, because the application 〈λx.x | λx.0〉 1 is not a β-redex, it must be
taken care of by a reduction rule other than (β). We introduce a new rule, (lift-app),
which reduces it to 〈(λx.x) 1 | (λx.0) 1〉. Note that this step affects neither projec-
tion, so it has no computational content: by moving brackets, it only keeps track of
information flow. Each side of the new term is now a β-redex, allowing reduction
to proceed: we obtain 〈(λx.x) 1 | (λx.0) 1〉 →? 〈1 | 0〉.

4.2 Stores and configurations

The meaning of memory locations is given by a store µ, i.e. a partial map from
memory locations to values. We write µ[m 7→ v] and µ ⊕ [m 7→ v] for the store
which maps m to v and otherwise agrees with µ; the latter is defined only if m 6∈
dom(µ). We need to keep track of sharing not only between expressions, but also
between stores. However, distinct stores may have distinct domains. To account
for this fact, we introduce a special constant void. By creating bindings of the form
m 7→ 〈v | void〉 and m 7→ 〈void | v〉 in the store, we represent situations where
a memory location m is bound within only one of the two Core ML expressions
encoded by a Core ML2 term.

A configuration e /i µ is a triple of an expression e, a store µ, and an index
i ∈ {•, 1, 2}, whose purpose is explained in Section 4.3. It is stuck if it is irreducible
and e isn’t an answer. It is successful if e is an answer. We write e / µ for e /• µ.
To guarantee that brackets cannot become nested during reduction and that void is
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.



Information Flow Inference for ML · 7

used exclusively in store bindings, as described above, we must introduce a couple
of technical notions, whose definitions one may wish to skip upon first reading. A
configuration e /i µ is well-formed if the following conditions hold:

—e does not contain void; furthermore, if i ∈ {1, 2}, then e is a Core ML expression;
—for every m ∈ dom(µ), µ(m) is of the form v, 〈v | void〉 or 〈void | v〉, where v

does not contain void.

Furthermore, we consider a memory location m to be bound within e and µ accord-
ing to the following rules:

—if µ(m) is of the form 〈v | void〉 (resp. 〈void | v〉), then:
—m is in scope within the left (resp. right) branch of every 〈· | ·〉 construct in µ;
—if i = •, then m is in scope within the left (resp. right) branch of every 〈· | ·〉

construct in e; if i = 1 (resp. i = 2), then m is in scope within e;

—otherwise, m is in scope everywhere within e and µ.

A configuration e /i µ is closed if all occurrences of memory locations in it are
in scope. We restrict our attention to well-formed, closed configurations. (We
let the interested reader check that this subset of configurations is stable under
the reduction rules introduced in Section 4.3.) We identify configurations up to
consistent renamings of memory locations.

The projection functions are extended to stores as follows: bµci maps m to
bµ(m)ci if and only if the latter is defined and isn’t void. Lastly, the projection of
a configuration is defined by be / µci = beci / bµci.
4.3 Semantics

The small-step operational semantics of Core ML2 is given in Figure 2. The first
two groups of reduction rules are those of Core ML, with a few technical twists
explained below. The rules in the third group are specific to Core ML2; they allow
discarding sharing information if reduction cannot otherwise take place. The rules
in the fourth group allow reduction under a context.

The rules are designed so that the image of any reduction step through a pro-
jection function is again a valid reduction step. Reduction may take place out-
side brackets, causing both projections to perform the same reduction step; inside
brackets, letting one projection progress independently, while the other remains
stationary; or lift up the bracket boundary, discarding some sharing information,
while leaving both projections unchanged.

The capture-free substitution of v for x in e, written e[x ⇐ v], is defined in the
usual way, except at 〈· | ·〉 nodes, where we must use an appropriate projection of
v in each branch: 〈e1 | e2〉[x ⇐ v] is 〈e1[x ⇐ bvc1] | e2[x ⇐ bvc2]〉.

Roughly speaking, the rules in the first two groups are applicable under any
context. However, (ref), (assign) and (deref) need a small amount of contextual
information. Indeed, the store must be accessed in a context-dependent manner:
reductions which take place inside a 〈· | ·〉 construct must use or affect only one
projection of the store. The index i carried by configurations is used for this
purpose. Its value is • when dealing with top-level reduction steps; it is made 1
(resp. 2) by rule (bracket) when reducing within the left (resp. right) branch of a
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Basic reductions
(fix f.λx.e) v /i µ → e[x ⇐ v][f ⇐ fix f.λx.e] /i µ (β)

ref v /i µ → m /i µ⊕ [m 7→ newi v] (ref)
m := v /i µ → () /i µ[m 7→ updatei µ(m) v] (assign)

! m /i µ → readi µ(m) /i µ (deref)
projj (v1, v2) /i µ → vj /i µ (proj)

(injj v) case x Â e1 e2 /i µ → ej [x ⇐ v] /i µ (case)

let x = v in e /i µ → e[x ⇐ v] /i µ (let)

Sequencing
bind x = v in e /i µ → e[x ⇐ v] /i µ (bind)

raise ε v handle ε x Â e /i µ → e[x ⇐ v] /i µ (handle)
raise ε v handle e done /i µ → e /i µ (handle-done)
raise ε v handle e raise /i µ → e; raise ε v /i µ (handle-raise)

a finally e /i µ → e; a /i µ (finally)
E[a] /i µ → a /i µ (pop)

if E handles neither bac1 nor bac2

Lifting
〈v1 | v2〉 v / µ → 〈v1 bvc1 | v2 bvc2〉 / µ (lift-app)

〈v1 | v2〉 := v / µ → 〈v1 := bvc1 | v2 := bvc2〉 / µ (lift-assign)
! 〈v1 | v2〉 / µ → 〈 ! v1 | ! v2〉 / µ (lift-deref)

projj 〈v1 | v2〉 /µ → 〈projj v1 | projj v2〉 /µ (lift-proj)

〈v1 | v2〉 case x Â e1 e2 /µ → 〈v1 case x Â be1c1 be2c1 |
v2 case x Â be1c2 be2c2〉 /µ (lift-case)

E[〈a1 | a2〉] / µ → 〈bEc1[a1] | bEc2[a2]〉 / µ (lift-context)
if none of the sequencing rules applies

Reduction under a context
e /i µ → e′ /i µ′

E[e] /i µ → E[e′] /i µ′
(context)

ei /i µ → e′i /i µ′ ej = e′j {i, j} = {1, 2}
〈e1 | e2〉 / µ → 〈e′1 | e′2〉 / µ′

(bracket)

Auxiliary functions

new• v = v update• v v′ = v′ read• v = v
new1 v = 〈v | void〉 update1 v v′ = 〈v′ | bvc2〉 read1 v = bvc1
new2 v = 〈void | v〉 update2 v v′ = 〈bvc1 | v′〉 read2 v = bvc2

Fig. 2. Operational semantics of Core ML2

〈· | ·〉 construct. It is used in the auxiliary functions newi, updatei and readi to
access the store in an appropriate way.

The rules in the second group describe how answers (i.e. values and exceptions)
are handled or propagated by evaluation contexts. We say that E handles a if and
only if E[a] can be reduced via a sequencing rule other than (pop).

The rules in the third group have no computational content: they leave both
projections unchanged. Their purpose is to prevent 〈· | ·〉 constructs from blocking
reduction, which is done by lifting them up, thus causing some sub-terms to be
duplicated, but allowing reduction to proceed independently within each branch.
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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For instance, the left-hand expression in (lift-app) is not a β-redex. In its reduct,
the application node and the sub-term v are duplicated, allowing two β-redexes
to appear. A somewhat analogous rule appears in the semantics of Abadi et al.’s
labeled λ-calculus [Abadi et al. 1996]. To understand the significance of the “lift”
rules, one must bear in mind that the contents of every 〈· | ·〉 construct will be
viewed as “secret”. By causing new sub-terms to become secret during reduction,
these rules actually provide an explicit description of information flow.

The 〈· | ·〉 construct is reminiscent of the fork node introduced by Field and
Teitelbaum to perform incremental reduction of λ-terms [Field and Teitelbaum
1990]. In fact, (lift-app) is one of their reduction rules. However, the details differ;
in particular, we work with terms, whereas Field and Teitelbaum consider graphs,
allowing a redex to be shared between two projections of a term.

Our design attempts to discard as little sharing information as possible; indeed,
replacing all of the “lift” rules with the single rule e → 〈bec1 | bec2〉, while computa-
tionally correct, would cause the type system to view every expression as “secret”.
Yet, the reduction rules of Core ML2 are not canonical: we have imagined a num-
ber of slight variations that work equally well. This is a common defect of purely
syntactic proof techniques. This point should not be taken too seriously: Core ML2

is a technical device, whose sole purpose is to prove a particular type system sound.
One may wonder how general this syntactic approach is. We do not have a definite
answer, although we have used it successfully in different settings [Pottier 2002;
Simonet 2002].

4.4 Relating Core ML2 to Core ML

We now show that Core ML2 is an appropriate tool to reason simultaneously about
the execution of two Core ML programs. This is expressed by two properties. First,
as explained above, the image of a valid reduction through projection remains a
valid reduction. Conversely, if both projections of a term can be reduced to a
successful configuration, then so can the term itself.

Lemma 1. Let i ∈ {1, 2}. If e /i µ → e′ /i µ′, then e / bµci → e′ / bµ′ci.
Proof. By inspection of (ref), (assign) and (deref).

Lemma 2 (Soundness). Let i ∈ {1, 2}. If e/µ → e′/µ′, then be/µci → be′/µ′ci.
Proof. By inspection of the reduction rules and by Lemma 1.

Lemma 3. If e / µ is stuck, then be / µci is stuck for some i ∈ {1, 2}.
Proof. By induction on the structure of e.
◦ Cases e = v, e = ref v, e = (let x = v in e′), e = raise ε v. e / µ is not stuck.
◦ Case e = v1 v2. Because neither (β) nor (lift-app) is applicable, v1 cannot be

of the form 〈v11 | v12〉 or fix f.λx.e′. As a result, for any i ∈ {1, 2}, bv1ci cannot be
of the form fix f.λx.e′. It follows that be / µci is stuck.
◦ Cases e = (v1 := v2), e = ! v, e = projj v, e = v case x Â e1 e2 are similar to

the previous case.
◦ Case e = E[e1]. e1 /µ must be irreducible, otherwise, by (context), e /µ would

be reducible. Let us temporarily assume that e1 is an answer a. Then, E does not
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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handle a, otherwise E[a] would be reducible via one of the sequencing rules. If a
were of the form 〈a1 | a2〉, then clearly E[a] would be reducible via either one of the
sequencing rules or (lift-context). So, a must be of the form v or raise ε v, which,
considering that E does not handle a, implies that E handles neither bac1 nor bac2.
As a result, (pop) must be applicable, a contradiction.

So, e1 is not an answer, which implies that e1/µ is stuck. By induction hypothesis,
be1 / µci is stuck, for some i ∈ {1, 2}. By inspection of the reduction rules, so is
F [be1ci]/bµci, for any Core ML evaluation context F ; in particular, so is bE[e1]ci /
bµci, which is be / µci.
◦ Case e = 〈e1 | e2〉. Assume e /µ is stuck. By (bracket), both e1 /1 µ and e2 /2 µ

are irreducible. Because e isn’t an answer, there exists i ∈ {1, 2} such that ei isn’t
an answer. As a result, ei /i µ is stuck. It follows that ei / bµci is stuck as well.

Lemma 4 (Completeness). Assume be/µci →? ai/µ′i for all i ∈ {1, 2}. Then,
there exists a configuration a / µ′ such that e / µ →? a / µ′.

Proof. To begin, let us establish that e /µ does not admit an infinite reduction
sequence. We first notice that no infinite reduction sequence can consist exclusively
of instances of the “lift” reduction rules. (Indeed, each of these rules moves some
〈· | ·〉 constructor strictly closer to the term’s root.) Furthermore, these are the
only rules which leave both projections of a configuration unchanged. In light of
this remark, if e / µ admits an infinite reduction sequence, then Lemma 2 yields
an infinite reduction sequence out of be / µci, for some i ∈ {1, 2}. However, this is
impossible, because both be /µc1 and be /µc2 can be reduced to normal forms, and
the semantics of the Core ML fragment is deterministic.

So, e / µ reduces to an irreducible configuration. Let us temporarily assume that
it is stuck. Then, by Lemma 3, at least one of its projections is stuck, which implies,
by Lemma 2, that be / µci reduces to a stuck configuration, for some i ∈ {1, 2}—a
contradiction. Thus, e / µ reduces to a successful configuration.

Our completeness result requires both projections to converge; it is not applicable
if one of them diverges. Indeed, define e as bind x = 〈Ω | 0〉 in 0, where Ω is a
nonterminating expression. Its right projection is bind x = 0 in 0, which reduces
to 0; yet, e cannot be reduced to any term whose right projection is 0, because e
only reduces to itself. Such a formulation of completeness will naturally lead us to
establish a weak noninterference result, whereby two programs can be guaranteed
to yield the same result only if they both terminate. We do not aim at a strong
noninterference result, because it would make little sense to plug information leaks
related to termination without attacking timing leaks in general. Furthermore, such
a result might require a much more restrictive type system.

In essence, the completeness lemma guarantees that we have provided enough
“lift” rules to allow reducing all meaningful Core ML2 expressions. In the next
section, each of these rules will add one case to our subject reduction proof, forcing
us to ensure that our type system accounts for all possible kinds of information
flow.

5. TYPING CORE ML2

We now give a type system, called mlif0, for Core ML2. It is a ground type system:
it has no type variables and deals with polymorphism in a simple, abstract way. As
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a result, it does not describe an algorithm; we address this issue in Section 8.
Throughout the paper, every occurrence of ∗ stands for a distinct anonymous

meta-variable of appropriate kind.

5.1 Types

Let (L,≤) be a lattice whose elements, denoted by ` and pc, represent security
levels. (Following Denning [Denning 1982], we typically use the meta-variable pc,
rather than `, when considering information obtained by observing the value of
the “program counter”.) We write ⊥ and > for L’s least and greatest elements,
respectively. Types and rows are then defined as follows:

t ::= unit | int` | (t pc [r]−−−→ t)` | t ref` | t× t | (t + t)`

r ::= {ε 7→ pc}ε∈E

These are the types of ML’s type system, decorated with extra security annotations.
A row r is an infinite, quasi-constant family of security levels, indexed by E . (A
family is quasi-constant if all but a finite number of its entries are equal.) We write
(ε : pc; r) for the row whose element at index ε is pc and whose other elements are
given by the sub-row r, which is indexed by E \ {ε}. We write ∂pc for the constant
row which maps every exception name to pc. We write t r for tε∈E r(ε).

The type int` describes integer expressions whose value may reflect information
of security level `.

Function types carry several security annotations. The annotation ` represents
information about the function’s identity. When the function is applied, part of
this information may be reflected in its result or in other aspects of its behavior
(i.e. in its effect); as a result, their security level will be made ` or greater. The
annotation pc tells how much information is associated with the knowledge that
this function gains control. To avoid leaking this information, the function will
be allowed to write into memory cells, or to raise exceptions, only at level pc or
greater. In other words, the annotation pc represents a lower bound on the level
of the function’s effects. The annotations ` and pc are standard, and can be found
(under different names) e.g. in Heintze and Riecke’s work [Heintze and Riecke 1998].
We correct a slight oversight on their part, however, by noticing that pc can be made
contravariant, rather than invariant (see Section 5.2). In Section 10, we will suggest
merging the annotations ` and pc; we keep them distinct in the bulk of the paper.

In addition, every function type carries an effect [ r ]. For every exception name ε,
the security level r(ε) indicates how much information is gained by observing that
the function raises an exception named ε. Following Myers [Myers 1999a; 1999b],
we associate a distinct security level with every exception name, so as to obtain
better precision. Our rows are closely related to Myers’ sets of path labels X; see
Section 10 for more details. The reader may notice that rows do not record the
type of exception arguments. Indeed, as in ML, we make exceptions monomorphic
by assuming given a fixed mapping typexn from exception names to types. This
decision makes function types much more compact.

Reference types carry one annotation `, which represents information about the
reference’s identity, i.e. about its address. Information about its contents is found
within the parameter t.
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int⊕ (ª ª [⊕]−−−−→ ⊕)⊕ ¯ ref⊕ ⊕×⊕ (⊕+ ⊕)⊕ {ε 7→ ⊕}ε∈E

Fig. 3. Subtyping

` C unit
` ≤ `′

` C int`
′

` ≤ `′

` C (∗ ∗ [∗]−−−→ ∗)`′
` ≤ `′

` C ∗ ref`
′

` C t1 ` C t2

` C t1 × t2

` ≤ `′

` C (∗+ ∗)`′

Fig. 4. Guards

Because there is only one value of type unit, the value of a unit expression yields no
information whatsoever. As a result, it would be superfluous for the unit type con-
structor to carry a security level. Similarly, product types carry no security anno-
tation, because, in the absence of a physical equality operator such as Caml-Light’s
==, all of the information carried by a tuple is in fact carried by its components.
Thus, we break the convention, established in a number of previous papers [Heintze
and Riecke 1998; Pottier and Conchon 2000], that all types should be of the form
∗`. This design decision, which we expect to help reduce verbosity, has implications
on constraint solving, as explained in Section 5.2.

Sum types carry a security annotation `, which reflects how much information
the tag carries, i.e. how much information is obtained by determining whether the
value was built using a left or right injection.

5.2 Subtyping and guards

We equip types and rows with a subtyping relation ≤, which extends the partial
order (L,≤). It is defined by the axioms in Figure 3. The axiom int⊕ is a compact
version of the assertion int`1 ≤ int`2 ⇐⇒ `1 ≤ `2. In other words, it states that
int’s parameter is covariant. The other axioms are to be understood similarly; ⊕,
ª and ¯ represent covariant, contravariant and invariant parameters, respectively.
The last axiom extends subtyping to rows, point-wise and covariantly. The use
of subtyping in information flow control is ubiquitous [Bell and LaPadula 1975;
Denning 1982; Volpano and Smith 1997b; Heintze and Riecke 1998] and appears
essential, because it allows building a directed view of the program’s information
flow graph, yielding better precision than a unification-based analysis.

Figure 4 defines the binary predicate C, which relates a security level and a type.
In short, the assertion ` C t (read: ` guards t) requires t to have security level `
or greater, and is used to record a potential information flow. This is similar to
Abadi et al.’s “t is protected at level `” [Abadi et al. 1999]. In systems where every
type constructor carries a security annotation [Heintze and Riecke 1998; Pottier
and Conchon 2000], C would be syntactic sugar for ≤. Indeed, every instance of
it would then be of the form ` C ∗`′ and equivalent to ` ≤ `′. Here, the situation
is more complex, because unit and product types carry no annotation. As a result,
C constraints must receive a treatment of their own during constraint solving; see
Section 8.5.

For any given ` and t, there exists a (minimal) supertype t′ of t such that ` C t′

holds. Thus, the presence of ` C t among a typing rule’s premises usually cannot
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irremediably prevent the application of that rule: the premise can be satisfied by
first promoting t to t′ using the subtyping rule. One exception is e-Assign (see
Figure 6), where t cannot be promoted to a supertype because it appears as an
invariant argument to the ref type constructor.

The predicate C interacts nicely with subtyping:

Lemma 5. If `′ ≤ ` and ` C t and t ≤ t′ then `′ C t′.

Proof. ` C t is equivalent to ` ≤ level (t), for an appropriate function level,
whose defining clauses include level (unit) = > and level (t1 × t2) = level (t1) u
level (t2). Furthermore, level is covariant in its argument. The result follows.

5.3 Typing judgements

A polytype s is a nonempty set of types. By abuse of notation, a type t may be
viewed as a polytype {t}. A polytype environment Γ is a partial mapping from
program variables to polytypes. A memory environment M is a partial mapping
from memory locations to types.

We distinguish two forms of typing judgements: one deals with values only, the
other with arbitrary expressions. Because values are normal forms, they have no
side effects, so the first judgement form is quite simple:

Γ,M ` v : t

(We write Γ,M ` v : s if and only if Γ,M ` v : t holds for all t ∈ s.) On the other
hand, expressions do produce side effects, so the second judgement form is more
elaborate:

pc,Γ,M ` e : t [ r ]

The assumption pc again tells how much information is associated with the knowl-
edge that e is evaluated; it is a lower bound on the level of its effects. It is stan-
dard [Volpano and Smith 1997b; Heintze and Riecke 1998]. The row r tells how
much information one obtains by observing exceptions escape out of e.

Two extra judgement forms are employed to reason about stores: M ` µ and
configurations: Γ ` e/i µ : t [ r ]. These are analogous to those found in e.g. [Pottier
2001]. We omit Γ and M in a judgement when they are empty.

Even though the security lattice (L,≤) is arbitrary, we wish to establish a tem-
porary dichotomy between “low” and “high” security levels. (This distinction will
be eliminated in Section 6.) In the present section, we assume H is a fixed, upward-
closed subset of L, and view levels inside (resp. outside) H as “high” (resp. “low”).
Because noninterference is about two expressions that differ only in “high”-level
sub-terms, our type system will require expressions of the form 〈e1 | e2〉, which we
use to encode the differences between two Core ML expressions, to have “high”-
security result and side effects. (See v-Bracket and e-Bracket in Figures 5
and 6.) This will be our only use of H in this section.

5.4 Typing rules

We now comment on the typing rules, given in Figures 5 and 6. v-Unit and v-Int
assign base types to constants. v-Void allows typing values of the form 〈v | void〉 or
〈void | v〉 by pretending void has the same type as v. v-Loc and v-Var assign types
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v-Unit
Γ, M ` () : unit

v-Int
Γ, M ` k : int∗

v-Void
Γ, M ` void : ∗

v-Loc
Γ, M ` m : M(m) ref∗

v-Var
t ∈ Γ(x)

Γ, M ` x : t

v-Abs

pc, Γ[x 7→ t′][f 7→ (t′
pc [r]−−−−→ t)`], M ` e : t [ r ]

Γ, M ` fix f.λx.e : (t′
pc [r]−−−−→ t)`

v-Pair
Γ, M ` v1 : t1 Γ, M ` v2 : t2

Γ, M ` (v1, v2) : t1 × t2

v-Inj
Γ, M ` v : t

Γ, M ` injj v : (t +j ∗)∗

v-Bracket
Γ, M ` v1 : t Γ, M ` v2 : t

pc′ ∈ H pc′ C t

Γ, M ` 〈v1 | v2〉 : t

v-Sub
Γ, M ` v : t′ t′ ≤ t

Γ, M ` v : t

Fig. 5. The type system mlif0 (values)

to memory locations and to variables by looking up the appropriate environment.
Note that Γ(x) is a polytype, of which v-Var selects an arbitrary instance. As
usual in type-and-effect systems, v-Abs records, on top of the → type constructor,
information about the function’s side effects. v-Pair is entirely standard. In v-Inj,
(t1 +j t2)` stands for (tj + ti)`, where i and j are 1 and 2, not necessarily in that
order, i.e. {i, j} = {1, 2}. v-Bracket requires the components of a 〈· | ·〉 construct
to have a common type, which must have “high” security level, i.e. be guarded by
some (arbitrary) element of H. v-Sub is standard.

e-Value allows viewing a value as an expression, and reflects the fact that values
have no side effect.

e-Raise’s premise checks that the exception’s argument v has an appropriate
type, as determined by the fixed mapping typexn and the exception name ε. Its
conclusion ensures that the expression’s effect is a row that maps ε to pc. In
conjunction with e-Bind, e-Handle, e-HandleDone and e-HandleRaise, this
guarantees that any code fragment which observes this exception must run at level
pc or greater.

e-App governs function application. The security level pc, which is an assumption
in the conclusion, appears on top of the → type constructor in the premise. It
represents information that flows from caller to callee, as a result of the invocation
itself. Furthermore, because a function’s side effects may reveal information about
its identity, their level must equal or exceed the function’s own security level, namely
`. As a result of these remarks, the function’s body must be typechecked at level
pc t `. Lastly, the function’s result, too, may reveal information about its identity,
so we require its type to be guarded by `.

e-Ref and e-Assign require pc C t to ensure that pc is indeed a lower bound
on the security level of the memory cell that is written. e-Assign and e-Deref
require ` C t to reflect the fact that writing or reading a cell may indirectly reveal
information about its identity.

In e-Proj, both pc and r are unconstrained, because pair projection has no side
effect. In e-Case, the branch ej , by being executed, gains information about the
sum’s tag, whose security level is `. As a result, it must be typechecked under the
stricter security assumption pct `, and its result type t must be guarded by `. This
rule is a straightforward generalization of the treatment of if constructs in previous
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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e-Value
Γ, M ` v : t

∗, Γ, M ` v : t [∗ ]

e-Raise
Γ, M ` v : typexn(ε)

pc, Γ, M ` raise ε v : ∗ [ ε : pc; ∗ ]

e-App
Γ, M ` v1 : (t′

pct` [r]−−−−−→ t)`

Γ, M ` v2 : t′ ` C t

pc, Γ, M ` v1 v2 : t [ r ]

e-Ref
Γ, M ` v : t pc C t

pc, Γ, M ` ref v : t ref∗ [∗ ]

e-Assign
Γ, M ` v1 : t ref` Γ, M ` v2 : t pc t ` C t

pc, Γ, M ` v1 := v2 : unit [∗ ]

e-Deref
Γ, M ` v : t′ ref` t′ ≤ t ` C t

pc, Γ, M ` ! v : t [∗ ]

e-Proj
Γ, M ` v : t1 × t2

∗, Γ, M ` projj v : tj [∗ ]

e-Case
Γ, M ` v : (t1 + t2)` ∀j ∈ {1, 2} pc t `, Γ[x 7→ tj ], M ` ej : t [ r ] ` C t

pc, Γ, M ` v case x Â e1 e2 : t [ r ]

e-Let
Γ, M ` v : s pc, Γ[x 7→ s], M ` e : t [ r ]

pc, Γ, M ` let x = v in e : t [ r ]

e-Bind
pc, Γ, M ` e1 : t′ [ r1 ]

pc t (t r1), Γ[x 7→ t′], M ` e2 : t [ r2 ]

pc, Γ, M ` bind x = e1 in e2 : t [ r1 t r2 ]

e-Handle
pc, Γ, M ` e1 : t [ ε : pcε; r ]

pc t pcε, Γ[x 7→ typexn(ε)], M ` e2 : t [ ε : pc′; r ] pcε C t

pc, Γ, M ` e1 handle ε x Â e2 : t [ ε : pc′; r ]

e-HandleDone
pc, Γ, M ` e1 : t [ r1 ]

pc t (t r1), Γ, M ` e2 : t [ r2 ] (t r1) C t

pc, Γ, M ` e1 handle e2 done : t [ r2 ]

e-HandleRaise
pc, Γ, M ` e1 : t [ r ]

pc t (t r), Γ, M ` e2 : ∗ [∂⊥ ]

pc, Γ, M ` e1 handle e2 raise : t [ r ]

e-Finally
pc, Γ, M ` e1 : t [ r ]

pc, Γ, M ` e2 : ∗ [∂⊥ ]

pc, Γ, M ` e1 finally e2 : t [ r ]

e-Bracket
pc t pc′, Γ, M ` e1 : t [ r ] pc t pc′, Γ, M ` e2 : t [ r ]

pc′ ∈ H (pc′ C t) ∨ (e1⇑) ∨ (e2⇑)

pc, Γ, M ` 〈e1 | e2〉 : t [ r ]

e-Sub
pc, Γ, M ` e : t′ [ r′ ] t′ ≤ t r′ ≤ r

pc, Γ, M ` e : t [ r ]

Store
dom(M) = dom(µ)

∀m ∈ dom(µ) M ` µ(m) : M(m)

M ` µ

Conf
pc, Γ, M ` e : t [ r ] M ` µ

Γ ` e / µ : t [ r ]

Fig. 6. The type system mlif0 (expressions and configurations)
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information flow analyses for imperative languages [Denning 1982; Volpano and
Smith 1997b].

Because let only binds values, e-Let is nearly as simple as in ML. Note that v
can be given a polytype s, allowing x to be used at different types within e.

In a binding construct bind x = e1 in e2, the expression e2 observes, if it receives
control, that no exception was raised by e1. To account for this information channel,
e-Bind typechecks e2 at a security level augmented with t r1, the combined level of
all exceptions which e1 can potentially raise. This is a conservative approximation,
which works well in the common case where e1 is statically known never to raise
exceptions; see Section 10 for more details.

Like e-Bind, e-Handle typechecks e2 at an increased security level, reflecting
the fact that, by gaining control, e2 observes that e1 raised an exception named ε.
The increment is exactly pcε, the security level associated with ε in e1’s effect, so the
analysis is, in this case, quite accurate. Because the result of the handle construct
may also allow determining whether the handler was executed, we require pcε C t.
e-HandleDone is analogous; however, because this construct allows observing any
exception, regardless of its name, we again use t r1 as a conservative approximation
of how much information is gained. Myers [Myers 1999a; 1999b] performs the same
approximation. Like e-HandleDone, e-HandleRaise typechecks the handler e2

at an increased level. e-Finally, on the other hand, typechecks e1 and e2 at the
same level pc. Indeed, because e2’s invocation must occur, regardless of the answer
produced by e1, no information is associated with it.

Both e-HandleRaise and e-Finally require e2 not to leak any information
through exceptions. (This is done by requiring its effect to be the constant row
∂⊥.) This design choice may seem restrictive, but we believe it strikes a good
balance between expressiveness and simplicity. In the conference version of this
paper [Pottier and Simonet 2002a; 2002b], we presented more general versions of
these rules, whereby e2 was allowed to raise arbitrary exceptions. This, however,
required adding a third premise, of the form t r2 ≤ u r1, reflecting the fact that, if
an exception raised by e1 escapes, then e2 must have completed successfully. This
additional premise involved a form of conditional constraint, making constraint
solving more intricate and yielding more complex inferred types, which is why we
propose simpler versions of these rules here.

In e-HandleRaise, the effect of the whole expression, namely r, is exactly
e1’s effect, because it is known that any informative exception that escapes out
of e1 handle e2 raise was originally raised by e1. (By “informative” exception, we
mean one whose security level is strictly greater than ⊥.) This is more precise
than we could hope to achieve if this idiom was emulated in a language with first-
class exceptions, by writing, say, e1 handle x Â (e2; raise x). Indeed, in the
type system given in the conference version of this paper [Pottier and Simonet
2002a], the sub-expression raise x would be typechecked at an increased security
level pct(t r). As a result, every exception ε liable to escape out of e1 would be re-
raised at level t r, instead of its original level r(ε), which would defeat the purpose
of discriminating between exception names. This explains why, in this paper, we
rely solely on special-purpose constructs, such as handle− raise, and abandon first-
class exceptions. (Again, in the conference paper, e-Raise involved a conditional
constraint, which is no longer necessary here, because every raise form explicitly
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specifies an exception name ε.)
As explained earlier, e-Bracket requires both components of a 〈· | ·〉 expression

to have a common type, and demands that its side effects and its result be of
“high” security level, i.e. guarded by an arbitrary pc′ ∈ H. The fourth premise,
however, is slightly more general than that of v-Bracket. By definition, the
auxiliary predicate e⇑ holds if and only if the Core ML expression e is of the form
raise ε v or bind x = raise ε v in e′ or raise ε v handle e′ raise or e′; raise ε v. This
syntactic criterion, which is preserved by substitution and by reduction, ensures
that e cannot reduce to a value, that is, e must diverge or reduce to a raise form.
There is no way, in the syntax of typing judgements, to express the knowledge
that the expression at hand cannot possibly return a value; yet, the ability to
keep track of such knowledge is needed, in a small number of places, for subject
reduction to hold. The use of the predicate ·⇑ in e-Bracket’s last premise can be
viewed as a cheap way of affording this expressiveness. In short, e-Bracket’s last
premise requires t to have a “high” security level, unless it is known that one of the
expressions at hand will never produce a value. This is in accordance with the fact
that our noninterference result, to be given in Section 6, requires both expressions
to produce values.

Rules e-Sub, Store and Conf are standard.

5.5 Subject reduction

We now give a subject reduction proof for Core ML2.

Lemma 6 (Weakening). pc′ ≤ pc and pc, Γ,M ` e : t [ r ] imply pc′, Γ,M `
e : t [ r ].

Proof. By induction on the derivation of pc,Γ,M ` e : t [ r ]. By monotonicity
of t, contravariance of → with respect to its pc parameter, rule v-Sub, Lemma 5,
and the induction hypothesis, it is easy to check that every premise remains valid
when pc decreases. The result follows.

Lemma 7 (Projection). Let i ∈ {1, 2}. If Γ,M ` v : t then Γ,M ` bvci : t. If
pc,Γ,M ` e : t [ r ] then pc,Γ,M ` beci : t [ r ].

Proof. By induction on the input derivation. The only case of interest is that
of e-Bracket, where the expression at hand is 〈e1 | e2〉. Then, one of the first
two premises is pc t pc′, Γ,M ` ei : t [ r ]. Lemma 6 yields pc, Γ,M ` ei : t [ r ], as
required.

Lemma 8 (Guard). If Γ,M ` 〈v1 | v2〉 : t then there exists pc′ ∈ H s.t. pc′ C t.

Proof. Thanks to Lemma 5, we may assume, w.l.o.g., that the derivation of
Γ,M ` 〈v1 | v2〉 : t does not end with an instance of v-Sub. Thus, it must end with
an instance of v-Bracket, among whose premises we find pc′ C t and pc′ ∈ H.

Lemma 9 (Store access). Let i be in {•, 1, 2}. Assume Γ,M ` v : t and
Γ,M ` v′ : t. Then, Γ,M ` readi v : t holds. Moreover, if i ∈ {1, 2}, assume
there exists some pc′ ∈ H such that pc′ C t. Then, Γ,M ` newi v : t and Γ,M `
updatei v v′ : t hold.

Proof. By definition of the functions new, update and read (Figure 2), by
Lemma 7, by v-Void and v-Bracket.
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Lemma 10 (Substitution). Assume M ` v : s. Then, Γ[x 7→ s],M ` v′ : t
implies Γ,M ` v′[x ⇐ v] : t. Also, pc, Γ[x 7→ s], M ` e : t [ r ] implies pc,Γ,M `
e[x ⇐ v] : t [ r ].

Proof. Both statements are proved simultaneously, by induction.
◦ Case v-Var. If v′ is x, then the premise is t ∈ s. Thus, the hypothesis M ` v : s

implies M ` v : t, and, a fortiori, Γ,M ` v : t. Considering v′[x ⇐ v] = v,
this was the goal. If, on the other hand, v′ isn’t x, then the result stems from
Γ[x 7→ s](v′) = Γ(v′) and v′[x ⇐ v] = v′.
◦ Case v-Abs. Then, the premise must be of the form pc′, Γ[x 7→ s][y 7→ t′][f 7→

tf ],M ` e′ : t′′ [ r′ ]. Because typing judgements are stable under α-conversion, we
will assume, w.l.o.g., that x, f and y are distinct. Then, Γ[x 7→ s][y 7→ t′][f 7→ tf ]
coincides with Γ[y 7→ t′][f 7→ tf ][x 7→ s]. We conclude by applying the induction
hypothesis, followed by an instance of v-Abs.
◦ Case v-Bracket. The first premise is of the form Γ[x 7→ s],M ` v′1 : t. By

Lemma 7, the hypothesis M ` v : s implies M ` bvc1 : s. Thus, by induction
hypothesis, Γ,M ` v′1[x ⇐ bvc1] : t holds. The second premise is dealt with
similarly. By v-Bracket, we obtain Γ,M ` 〈v′1[x ⇐ bvc1] | v′2[x ⇐ bvc2]〉 : t,
which, considering our definition of substitution (Section 4.3), was our goal.
◦ Case e-Bracket. Similar to the case of v-Bracket. We use the fact that ·⇑

is preserved by substitution, i.e. e⇑ implies e[x ⇐ v]⇑.
The other cases are immediate or analogous to one of those above.

Lemma 11 (Value). pc,M ` v : t [ r ] implies M ` v : t.

Proof. By induction on the proof of pc,M ` v : t [ r ].
◦ Case e-Value. Immediate.
◦ Case e-Sub. The result follows from the induction hypothesis and v-Sub.
◦ Case e-Bracket. The predicate ·⇑ is never true of a value, so pc′ C t must

hold. The result follows from the induction hypothesis and v-Bracket.

Lemma 12 (Subject reduction). Let e /i µ → e′ /i µ′. Assume pc, M ` e :
t [ r ] and M ` µ. If i ∈ {1, 2}, assume pc ∈ H. Then, there exists a memory
environment M ′, which extends M , such that pc,M ′ ` e′ : t [ r ] and M ′ ` µ′.

Proof. By induction on the derivation of e /i µ → e′ /i µ′. We assume, w.l.o.g.,
that the derivation of pc,M ` e : t [ r ] does not end with an instance of e-Sub.
As a result, it must end with an instance of the single syntax-directed rule that
matches e’s structure.
◦ Case (β). e is (fix f.λx.e0) v. Let θ stand for (t′

pct` [r]−−−−−→ t)`. In e-App’s
premises, we have M ` fix f.λx.e0 : θ and M ` v : t′. The former’s derivation
must end with an instance of v-Abs, followed by a number of instances of v-Sub.
Because → is contravariant (resp. covariant) in its first and second (resp. third
and fourth) parameters, applying Lemma 6 and e-Sub to v-Abs’s premise yields
pc, (x 7→ t′′; f 7→ θ′), M ` e0 : t [ r ], for some t′′ and θ′ such that t′ ≤ t′′ and
θ ≤ θ′. By v-Sub, M ` v : t′′ and M ` fix f.λx.e0 : θ′ hold. Then, Lemma 10
yields pc, M ` e0[x ⇐ v][f ⇐ fix f.λx.e0] : t [ r ].
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◦ Case (ref). e is ref v, e′ is m and µ′ is µ ⊕ [m 7→ newi v]. e-Ref’s premises
are M ` v : t′ and pc C t′, provided t = t′ ref∗. By Lemma 9, these imply
M ` newi v : t′. Define M ′ = M [m 7→ t′]. According to Store, M ` µ implies
dom(M) = dom(µ). Because µ ⊕ [m 7→ newi v] is defined, m isn’t a member of
dom(µ). So, M ′ extends M . Because M ′(m) = t′, v-Loc and e-Value yield
pc,M ′ ` e′ : t [ r ]. Lastly, M ` µ and M ` newi v : t′ entail M ′ ` µ′.
◦ Case (assign). e is m := v and e′ is (). e-Assign’s premises are M ` m :

t′ ref∗ and M ` v : t′ and pc C t′. Furthermore, t must be unit, which implies
pc,M ` e′ : t [ r ]. By v-Loc, v-Sub and by invariance of the ref type constructor,
M ` m : t′ ref∗ implies M(m) = t′. Thus, M ` µ entails M ` µ(m) : t′. By
Lemma 9, we have M ` updatei µ(m) v : t′, which yields M ` µ′.
◦ Case (deref). e is ! m. e-Deref’s first two premises are M ` m : t′ ref∗ and

t′ ≤ t. As above, the former entails M ` µ(m) : t′. By Lemma 9, M ` readi µ(m) :
t′ follows. Conclude with v-Sub and e-Value.
◦ Case (proj). e is projj (v1, v2) and e′ is vj . e-Proj’s premise is M ` (v1, v2) :

t1 × t2, where tj is t. According to v-Pair and v-Sub, this implies M ` vj : tj .
◦ Case (case). e is (injj v) case x Â e1 e2 and e′ is ej [x ⇐ v]. e-Case’s first

premise is M ` injj v : (t1 + t2)`. According to v-Inj and v-Sub, this implies
M ` v : tj . This allows applying Lemma 10 to e-Case’s second premise, yielding
pc t `,M ` ej [x ⇐ v] : t [ r ]. The result follows by Lemma 6.
◦ Case (let). By e-Let and Lemma 10.
◦ Case (bind). e is bind x = v in e2 and e′ is e2[x ⇐ v]. e-Bind’s premises are

pc,M ` v : t′ [ r1 ] and pc t (t r1), (x 7→ t′), M ` e2 : t [ r2 ], where r2 ≤ r. By
Lemma 11, the former implies M ` v : t′. By Lemma 6, the latter implies pc, (x 7→
t′),M ` e2 : t [ r2 ]. By Lemma 10 and e-Sub, we obtain pc,M ` e2[x ⇐ v] : t [ r ].
◦ Case (handle). e is raise ε v handle ε x Â e2 and e′ is e2[x ⇐ v]. e-Handle’s

first two premises are of the form pc,M ` raise ε v : t [∗ ] and pc t ∗, (x 7→
typexn(ε)),M ` e2 : t [ r ]. According to e-Sub and e-Raise, the former implies
M ` v : typexn(ε). By Lemmas 10 and 6, this yields pc,M ` e2[x ⇐ v] : t [ r ].
◦ Case (handle-done). e is a handle e2 done and e′ is e2. e-HandleDone’s

second premise is pc t ∗,M ` e2 : t [ r ]. Lemma 6 yields pc,M ` e2 : t [ r ].
◦ Cases (handle-raise), (finally). e is of the form a handle e2 raise or a finally e2,

while e′ is (e2; a). e-HandleRaise or e-Finally’s first premise is pc,M ` a :
t [ r ]. Its second premise, modulo an application of Lemma 6, is pc, M ` e2 :
∗ [∂⊥ ]. Given the identities pct (t(∂⊥)) = pct⊥ = pc and rt (∂⊥) = r, e-Bind
yields pc, M ` (e2; a) : t [ r ].
◦ Case (pop). e is E[a] and e′ is a. Several sub-cases arise.
Sub-case E = bind x = [ ] in e2. e-Bind’s first premise is pc,M ` a : t′ [ r1 ],

where r1 ≤ r. Because E does not handle a, a must be of the form raise ε v or
〈raise ε1 v1 | raise ε2 v2〉. So, this judgement must be a consequence of e-Raise,
e-Bracket and e-Sub. A derivation of identical shape can be built to establish
pc,M ` a : t [ r1 ]. (In the case of e-Bracket, the fourth premise is satisfied,
though its first disjunct may be false, because the other two hold.) The result
follows by e-Sub.

Sub-case E = [ ] handle ε x Â e2. e-Handle’s first premise is pc,M ` a : t [ε :
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∗; r′ ]. a must be of the form v or raise ε′ v or 〈v1 | raise ε2 v2〉 or 〈raise ε1 v1 | v2〉
or 〈raise ε1 v1 | raise ε2 v2〉, where ε′, ε1 and ε2 are distinct from ε. As a result, a
derivation of identical shape can be built to establish pc,M ` a : t [ε : pc′; r′ ], that
is, pc,M ` a : t [ r ].

Sub-case E = [ ] handle e2 done. e-HandleDone’s first premise is of the form
pc,M ` a : t [∗ ]. Because a must be a value, Lemma 11 and e-Value yield
pc,M ` a : t [ r ].

Sub-case E = [ ] handle e2 raise. e-HandleRaise’s first premise is the goal.

◦ Case (lift-app). e is 〈v1 | v2〉 v. Let θ stand for (t′
pct` [r]−−−−−→ t)`. e-App’s

premises are M ` 〈v1 | v2〉 : θ and M ` v : t′ and ` C t. Lemma 7 yields M ` vi : θ
and M ` bvci : t′, for i ∈ {1, 2}. Then, e-App yields pc t `,M ` vi bvci : t [ r ].
Furthermore, applying Lemma 8 to the first premise above and recalling that H is
upward-closed yields ` ∈ H. Because ` C t, e-Bracket is applicable and yields
pc,M ` e′ : t [ r ].

◦ Case (lift-assign). e is 〈v1 | v2〉 := v. e-Assign’s premises are M ` 〈v1 | v2〉 :
t′ ref` and M ` v : t′ and pc t ` C t′. As above, applying Lemma 7 and building
new instances of e-Assign, we obtain pc t `,M ` vi := bvci : t [ r ], for i ∈ {1, 2}.
Similarly, Lemma 8 allows establishing ` ∈ H. The result follows by e-Bracket.

◦ Case (lift-deref). e is ! 〈v1 | v2〉. e-Deref’s premises are M ` 〈v1 | v2〉 : t′ ref`

and t′ ≤ t and ` C t. As above, applying Lemma 7 and building new instances
of e-Deref, we obtain pc t `,M ` ! vi : t [ r ], for i ∈ {1, 2}. Similarly, Lemma 8
yields ` ∈ H. Lastly, by e-Bracket, we obtain pc, M ` 〈 ! v1 | ! v2〉 : t [ r ].

◦ Case (lift-proj). e is projj 〈v1 | v2〉. e-Proj’s premise is M ` 〈v1 | v2〉 : t1× t2,
where tj is t. By Lemma 8, there exists pc′ ∈ H such that pc′ C t1 × t2, which
implies, in particular, pc′ C tj . Furthermore, by Lemma 7, we have M ` vi : t1×t2,
for all i ∈ {1, 2}. By e-Proj, this implies pc t pc′,M ` projj vi : tj [ r ]. Lastly, by
e-Bracket, we obtain pc,M ` 〈projj v1 | projj v2〉 : tj [ r ].

◦ Case (lift-case). e is 〈v1 | v2〉 case x Â e1 e2. Lemma 8, applied to e-Case’s
first premise, yields ` ∈ H. By applying Lemma 7 to e-Case’s first two premises
and re-building new instances of e-Case, we obtain pc t `,M ` vi case x Â
be1ci be2ci : t [ r ], for all i ∈ {1, 2}. e-Case’s third premise is ` C t, which
allows applying e-Bracket, yielding the goal.

◦ Case (lift-context). e is E[〈a1 | a2〉]. If E is a bind context, then, because
e cannot be reduced by (bind), 〈a1 | a2〉 cannot be a value. If, on the other
hand, E is a handle context, then, because (pop) isn’t applicable, E must handle
a1 or a2. In either case, we conclude that aj is of the form raise ε v, for some j ∈
{1, 2}. Now, e’s typing derivation must end with an instance of e-Bind, e-Handle,
e-HandleDone or e-HandleRaise, whose first premise is of the form pc,M `
〈a1 | a2〉 : t′ [ r1 ]. Because 〈a1 | a2〉 isn’t a value, this must be a consequence of
e-Sub and e-Bracket, which yields pc t `, M ` ai : t′ [ r1 ], for some ` ∈ H and
for all i ∈ {1, 2}. In particular, taking i = j and according to e-Sub and e-Raise,
this implies ` ≤ r1(ε), whence ` ≤ t r1. Thus, the security assumption in e-Bind,
e-Handle, e-HandleDone or e-HandleRaise’s second premise is greater than
or equal to `. As a result, by applying Lemma 7 to that premise, then building new
instances of e-Bind, e-Handle, e-HandleDone or e-HandleRaise, we obtain
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pc t `,M ` bEci[ai] : t [ r ], for all i ∈ {1, 2}. There remains to apply e-Bracket.
If E is a bind or handle− raise context, then bEcj [aj ]⇑ holds. If, on the other
hand, E is some other handle context, then ` C t holds, according to e-Handle
or e-HandleDone’s third premise. In either case, e-Bracket’s fourth premise
holds.
◦ Case (bracket). e is 〈e1 | e2〉 and e′ is 〈e′1 | e′2〉. We have ei /i µ → e′i /i µ′

and ej = e′j , where {i, j} = {1, 2}. Because 〈e1 | e2〉 isn’t a value, its typing
derivation must end with an instance of e-Bracket, whose first two premises are
pct pc′,M ` ei : t [ r ] and pct pc′,M ` ej : t [ r ]. Because pc′ ∈ H, the induction
hypothesis is applicable, yielding a memory environment M ′, which extends M ,
such that pc t pc′,M ′ ` e′i : t [ r ] and M ′ ` µ′. Because M ′ extends M , the
judgement pctpc′,M ′ ` ej : t [ r ] holds as well. The result follows by e-Bracket,
whose fourth premise is preserved because ·⇑ is preserved by reduction, i.e. for all
i ∈ {1, 2}, ei⇑ implies e′i⇑.
◦ Case (context). e is E[e0] and e′ is E[e′0], where e0 /i µ → e′0 /i µ

′. Applying the
induction hypothesis to e-Bind, e-Handle, e-HandleDone, e-HandleRaise or
e-Finally’s first premise yields a version of it with M and e0 replaced with M ′ and
e′0, where M ′ extends M and M ′ ` µ′ holds. Because M extends M ′, the second
premise remains valid when the former is replaced with the latter. Build a new
instance of e-Bind, e-Handle, e-HandleDone, e-HandleRaise or e-Finally
to conclude.

The previous lemma entails the following, more abstract statement:

Theorem 13 (Subject reduction). If ` e /µ : t [ r ] and e /µ → e′ /µ′ then
` e′ /µ′ : t [ r ].

Proof. By Conf and Lemma 12.

We do not give a progress statement (i.e. “no well-typed configuration is stuck”)
because it is unrelated to our concerns; that is, it would be of no use in the nonin-
terference proof. If desired, progress for Core ML can be established via a straight-
forward case analysis.

5.6 On evaluation order

As explained in Section 3, our restricted syntax is fully explicit about evaluation
order. In practice, it is possible to allow a more permissive syntax, provided some
evaluation strategy is fixed. For instance, if left-to-right evaluation order is chosen,
then e1 e2 (the application of an expression to another expression) is syntactic sugar
for bind x1 = e1 in bind x2 = e2 in x1 x2. This gives rise to the following derived
typing rule:

pc, Γ,M ` e1 : (t′
pct`t(t r1)t(t r2) [r]−−−−−−−−−−−−−−→ t)` [ r1 ]

pc t (t r1),Γ,M ` e2 : t′ [ r2 ] ` C t

pc, Γ, M ` e1 e2 : t [ r t r1 t r2 ]

Conversely, under a right-to-left evaluation strategy, the application e1 e2 is encoded
as bind x2 = e2 in bind x1 = e1 in x1 x2, yielding another derived rule, that differs
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in the security assumptions of the premises:

pc t (t r2), Γ,M ` e1 : (t′
pct`t(t r1)t(t r2) [r]−−−−−−−−−−−−−−→ t)` [ r1 ]

pc,Γ,M ` e2 : t′ [ r2 ] ` C t

pc, Γ, M ` e1 e2 : t [ r t r1 t r2 ]

In either case, the expression that is evaluated last is typechecked at an increased
security level, reflecting the fact that, if it receives control, then the other expression
must have completed normally.

Some variants of ML, such as Caml-Light [Leroy et al. 1997] and Objective
Caml [Leroy et al. 2002], leave the evaluation order unspecified. It is possible
to give a conservative typing rule which is safe with respect to both left-to-right
and right-to-left evaluation orders. Such a rule typechecks ei under pc t (t rj), for
all {i, j} = {1, 2}. However, there is a catch. Let us assume that ei (resp. ej)
potentially raises an exception εi (resp. εj). Then, because e-Raise annotates
every exception with the current pc, and because pc can only increase within sub-
expressions, we must have t ri ≤ rj(εj) and t rj ≤ ri(εi). Of course, by definition,
we also have rj(εj) ≤ t rj and ri(εi) ≤ t ri. As a result, all four inequalities must
be equalities. In other words, if both ei and ej are liable to raise at least one
exception, then all exceptions in ri and rj must receive the same security level.
Thus, under-specifying the evaluation order causes an important loss of precision
in our analysis. Caml-Light’s current implementation uses a right-to-left evaluation
strategy; for our purposes, this should be made part of its specification.

6. NON-INTERFERENCE

In this section, we omit pc and r in typing judgements when they are unspecified,
i.e. when they could be written ∗.

From here on, the set H is no longer fixed. We introduce it explicitly when
needed, writing `H instead of ` in Core ML2 typing judgements. (This is not
necessary for the judgements that involve Core ML expressions, because H is used
only in v-Bracket and e-Bracket.) We write e →? a if there exists a store µ
such that e /∅→? a /µ, where ∅ is the empty store.

Our type system assigns “high” security levels (i.e. levels in H) to values of the
form 〈v1 | v2〉. By subject reduction, any expression which may reduce to such a
value must also carry a “high” annotation. Conversely, no expression with a “low”
annotation can produce such a value, as stated, in the particular case of integers,
by the following lemma:

Lemma 14. Let H be an upward-closed subset of L. Let ` 6∈ H. If `H e : int`

and e →? v then bvc1 = bvc2.
Proof. By Theorem 13, by Conf and Lemma 11, there exists a memory en-

vironment M such that M `H v : int` holds. A value of type int∗ must be of
the form k or 〈k1 | k2〉. If the latter, then, by v-Bracket, there exists pc′ ∈ H
such that pc′ ≤ `, which implies ` ∈ H, a contradiction. Thus, we must have
v = k = bvc1 = bvc2.

We can now use the correspondence between Core ML and Core ML2 established
in Section 4.4 to reformulate this result in a Core ML setting:
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Theorem 15 (Non-interference). Choose `, h ∈ L such that h 6≤ `. Let
h C t. Assume (x 7→ t) ` e : int`, where e is a Core ML expression. If, for all
i ∈ {1, 2}, ` vi : t and e[x ⇐ vi] →? v′i hold, then v′1 = v′2.

Proof. Let H be the upward closure of {h}. Define v = 〈v1 | v2〉. By
v-Bracket, `H v : t holds. Lemma 10 yields `H e[x ⇐ v] : int`. Now, be[x ⇐ v]ci
is e[x ⇐ vi], which, by hypothesis, reduces to v′i. According to Lemma 4, there
exists an answer a such that e[x ⇐ v] →? a. Then, Lemma 2 yields baci = v′i for
all i ∈ {1, 2}, which implies that a is a value. Lastly, h 6≤ ` yields ` 6∈ H. The result
follows by Lemma 14.

In words, h and ` are security levels such that information flow from h to ` is
disallowed by the security lattice. Assuming the hole x in the expression e has a
“high”-level type t, e admits the “low”-level type int`. Then, no matter which value
(of type t) is placed in the hole, e will compute the same value (that is, if it does
produce a value at all). Because both programs are assumed to terminate, this is a
weak noninterference statement; see the discussion in Section 4.4. For simplicity, we
have restricted our attention to the case of integer results, which may be compared
using equality. It would be possible to give a more general statement, expressed in
terms of a notion of observational equivalence, as a corollary of Theorem 15. As
another corollary, one may allow several holes, instead of the single hole x. This
essentially amounts to specializing Theorem 15 to the case where t is a tuple type.

7. GENERIC PRIMITIVE OPERATIONS

Practical programming languages usually provide many primitive operations, such
as integer arithmetic operators. Some languages, such as Caml-Light [Leroy et al.
1997], Objective Caml [Leroy et al. 2002] or SML [Milner et al. 1997], provide
generic (i.e. polymorphic) comparison, hashing or marshalling functions. In the
following, we present a way of assigning types to such generic primitive operations,
without knowledge of their semantics, i.e. by considering them as “black boxes”
which potentially use all of the information content of their arguments.

7.1 Semantics

Let o range over a set of operation names, and extend the syntax of expressions as
follows:

e ::= . . . | o v

We assume that the semantics of every operation o is given as a partial function JoK
which maps closed Core ML configurations v / µ to closed Core ML answers. As
a result, operations may access the store and raise exceptions; however, we do not
allow them to modify the store. For simplicity, we only consider unary operations;
multiple arguments must be passed in a tuple.

Let accessibility with respect to a (Core ML) store µ be the smallest transitive
relation between (Core ML) values such that, for every value v, every sub-term
of v that is not found under a λ-abstraction is accessible through v and, for every
memory location m, µ(m) is accessible through m. If v′ is accessible through v with
respect to µ, we also say that v′ is accessible through v / µ. If no λ-abstraction is
accessible through v /µ, then let µv be the restriction of µ to the memory locations
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unit J `
`′ ≤ `

int`
′ J `

t J ` `′ ≤ `

t ref`
′ J `

t1 J ` t2 J `

t1 × t2 J `

`′ ≤ ` t1 J ` t2 J `

(t1 + t2)`′ J `

Fig. 7. Collecting security annotations

accessible through v / µ, and let |v / µ| stand for v / µv. In words, when |v / µ| is
defined, it represents the whole data structure accessible through v within the store
µ. Below, we use this notion to force operations to access data only through v.
This prevents them from being stateful, e.g. by maintaining a pointer to a private,
mutable data structure, and is necessary for our typing rule to be sound.

The semantics of Core ML2 is extended as follows:

o v /i µ → JoK(|v / bµci|) /i µ (op)
if i ∈ {1, 2}

o v / µ → JoK(|bv / µc1|) / µ (op•)
if |bv / µc1| = |bv / µc2|

o v /µ → 〈o bvc1 | o bvc2〉 /µ (lift-op)
if |bv / µc1| 6= |bv / µc2|

(op) and (op•) are the basic reduction rules associated with primitive operations. It
would be possible to merge them in a single rule, but we believe this formulation is
somewhat clearer. (op) accesses the store through its projection bµci, as done e.g.
by (deref) in Section 4.3. As explained above, the semantic function JoK is applied
to |v /bµci|, rather than v /bµci, which makes it impossible for the operation to use
any data but that accessible through v itself. The rule is inapplicable if |v / bµci| is
undefined, i.e. if a λ-abstraction is accessible through v. Indeed, it is illegal to apply
a generic primitive operation to a data structure that contains a λ-abstraction; our
typing rule will prevent this situation from arising.

(op) applies only when i ∈ {1, 2}, i.e. when performing reduction under brackets.
When i is •, i.e. when reducing outside brackets, exactly one of (op•) and (lift-op)
applies. If the argument to o is the same under both projections, then (op•) is
applicable, and performs a shared reduction step. Otherwise, (lift-op) applies, and
introduces brackets at the top level, so as to allow reduction via (op). We let the
reader check that the results of Section 4.4 are preserved by this extension.

7.2 Typing

We introduce a two-place predicate J, which relates a type and a security level, and
whose definition appears in Figure 7. In short, t J ` holds if and only if all of the
security annotations which appear within t, including its sub-terms, are less than or
equal to `. It also requires t to have no function type as a sub-term. This definition
mimics the behavior of generic primitive operations, such as Caml-Light’s generic
comparison or hashing operations, which traverse data structures recursively, and
fail upon encountering a closure. The predicate J enjoys the following property:

Lemma 16. Assume `H v / µ : t and t J `. If a sub-term of the form 〈v1 | v2〉
is accessible through v / µ, with v1 6= v2, then ` ∈ H.

Proof. By induction on the path that leads to 〈v1 | v2〉.
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◦ Case v is 〈v1 | v2〉. Then, `H v / µ : t implies pc C t, for some pc ∈ H. By
Lemma 7, both v1 and v2 have type t; so, considering that these values differ, t
cannot be built solely out of products and unit. (Types that are built solely out of
products and unit are inhabited by a single value.) In that case, pc C t and t J `
imply pc ≤ `, whence ` ∈ H.
◦ Case v is (v′1, v′2), and 〈v1 | v2〉 is accessible through v′j /µ, for some j ∈ {1, 2}.

Then, we must have `H v′j / µ : tj , where t = t1× t2, and tj J `. The result follows
by induction hypothesis.
◦ Case v is injj v′, and 〈v1 | v2〉 is accessible through v′ / µ, for some j ∈ {1, 2}.

Then, we must have `H v′ / µ : t′, where t = (t′ +j ∗)∗, and t′ J `. The result
follows by induction hypothesis.
◦ Case v is m, and 〈v1 | v2〉 is accessible through µ(m) / µ. Then, we must have

`H µ(m) / µ : t′, where t = t′ ref∗ and t′ J `. The result follows by induction
hypothesis.

We wish to give a typing rule for primitive operations that is independent of
their semantics. To achieve this, we will assume that every primitive operation
comes with a typing rule which is sufficient to ensure type safety in the usual sense,
and we will show how to refine it with information flow analysis in mind. In the
following, R denotes a finite set of exception names. We write R : pc for the row
which maps ε to pc if ε ∈ R and to ⊥ otherwise. For every operation o, we assume
a ternary relation typeof (o) such that, if (t′, t, R) ∈ typeof (o), then M ` v : t′ and
M ` µ imply pc,M ` JoK(|v / µ|) : t [R : pc ] for all pc ∈ L. Roughly speaking, this
amounts to assuming subject reduction for (op) and (op•). Then, we augment the
type system with the following rule:

e-Primitive
Γ,M ` v : t′ (t′, t, R) ∈ typeof (o)

t′ J ` ` C t

pc,Γ,M ` o v : t [R : pc t ` ]

e-Primitive requires the security level of the result type t to dominate all of the
security levels which appear in the argument type t′. Indeed, because nothing
is known about the semantics of o, no better approximation can be given: the
result may depend on any value accessible through v within the current store. Any
exception that is liable to be raised by o is marked similarly.

In short, given a typing rule for o that does not know about security, encoded
by the ternary relation typeof (o), our approach produces a refined version, which
guarantees noninterference, regardless of o’s semantics. Of course, we must check
that the new reduction rules satisfy subject reduction under the extended type
system. This is done by adding new cases to the proof of Lemma 12, as follows:
◦ Case (op). According to Conf and e-Primitive, we have (t′, t, R) ∈ typeof (o)

and M ` v : t′ and M ` µ. The latter implies M ` bµci. According to our
assumption about typeof (·), this implies pc, M ` JoK(|v / bµci|) : t [R : pc ]. The
result follows by e-Sub and Conf.
◦ Case (op•). Analogous; the rule’s side-condition is unused.
◦ Case (lift-op). Because |bv / µc1| and |bv / µc2| differ, a sub-term of the form

〈v1 | v2〉, where v1 6= v2, must be accessible through v / µ. According to Conf and
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e-Primitive, we may then apply Lemma 16, yielding ` ∈ H. Applying Lemma 7
and building a new instance of e-Primitive, we obtain pc t `,M ` o bvci : t [R :
pc t ` ] for all i ∈ {1, 2}. Recalling ` C t, we conclude with e-Bracket.

7.3 Applications

Let us now illustrate the use of this general mechanism. We give typing rules for sev-
eral concrete primitive operations and prove that they are instances of e-Primitive.

To begin, let us consider a binary integer arithmetic operation, such as addition.
The meaning of addition is, of course, given by J+K((k1, k2) / µ) = k1 + k2. Its
treatment is in fact quite simple, because it is monomorphic: it maps a pair of
integers to an integer. For this reason, it would be easy to deal with it directly.
Nevertheless, let us proceed. Define typeof (+) by setting (int∗ × int∗, int∗,∅) ∈
typeof (+). We let the reader check that this definition satisfies the requirement
stated in Section 7.2. Then, e-Primitive may be specialized as follows:

e-Add
Γ,M ` v : int` × int`

∗,Γ,M ` + v : int` [∗ ]

This rule effectively makes the sum’s security the least upper bound of the operands’
levels. Most operations on primitive data can be dealt with in a similar manner.
In some cases, a direct treatment is preferable; in the case of division, for instance,
an exception is raised only if the second argument is zero, so the security level
associated with the exception should be that of the second argument alone, not the
union of both arguments’ levels, as we would obtain by specializing e-Primitive.

The treatment of Caml-Light’s generic (i.e. polymorphic) comparison operators
is more interesting, and is the true motivation for developing our generic approach.
Let bool` stand for (unit + unit)`. Define typeof (=) by setting (t × t, bool∗,∅) ∈
typeof (=) for every type t. We do not define J=K, because that would require a
somewhat lengthy co-inductive definition, which is irrelevant here; let us simply say
that it always produces a Boolean value, so the requirement stated in Section 7.2
is satisfied. Then, specializing e-Primitive yields

Γ,M ` v : t× t t J `

∗,Γ,M ` = v : bool` [∗ ]

All of Caml-Light’s generic comparison operators (namely, =, <>, <, >) can be dealt
with in the same manner. (One exception is physical equality ==, which cannot be
defined in our framework, since only mutable values have addresses in our semantics.
Anyway, it would be difficult to give it a precise type, since products do not carry a
security annotation.) Because these operators traverse data structures recursively,
the result of a comparison may reveal information about any sub-term. The premise
t J ` reflects this fact by requiring ` to dominate all security annotations which
appear in t.

Lastly, generic hashing and marshalling operations can be dealt with similarly,
yielding the following typing rules:

Γ,M ` v : t t J `

∗,Γ,M ` hash v : int` [∗ ]

Γ,M ` v : t t J `

∗,Γ,M ` marshal v : int` [∗ ]
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By contrast, in Myers’ Java-based framework [Myers 1999a; 1999b], hashing is done
by having every class override the standard hashCode method, which is declared in
class Object with signature int{this} hashCode (). A re-implementation of hashCode
by a sub-class of Object must also satisfy this signature. As a result, it may only rely
on fields labeled this. The parametric class Vector[L], for instance, must compute
a hash code in a way that does not depend upon the vector’s length or contents,
because their label is L. Of course, this severely limits hashCode’s usefulness.

8. A CONSTRAINT-BASED TYPE SYSTEM

We now give a more algorithmic presentation of our type system, called mlif. It
differs from mlif0 mainly by introducing variables, constraints, and using them to
form universally quantified, constrained type schemes, in the style of HM(X) [Oder-
sky et al. 1999]. Like HM(X), it has principal types and decidable type inference.
Because the construction is not the central topic of this paper, we will describe it
only succinctly. For more details about the proof of correspondence between mlif0

and mlif, the reader is referred to [Pottier 2001]. For information about deriving
a set of type inference rules from the typing rules given in this section, see [Oder-
sky et al. 1999; Sulzmann et al. 1999; Sulzmann 2000]. In this section, we will
concentrate mainly on constraint solving, because C and J constraints are new.

8.1 Types and constraints

In mlif, the grammar of types, rows and levels is extended with type, row and level
variables, written β, γ and δ, respectively. We write α for a variable of arbitrary
kind. Furthermore, Rémy’s [Rémy 1993] row syntax is introduced, turning rows
into finite lists of bindings from exception names to levels, terminated with a row
variable or with a uniform row ∂λ.

τ ::= β | unit | intλ | (τ π [ρ]−−−→ τ)λ | τ refλ | τ × τ | (τ + τ)λ

ρ ::= γ | (ε : λ; ρ) | ∂λ
λ, π ::= δ | `

(λ and π are level meta-variables, just as ` and pc were ground level meta-variables.)
The variable-free types (resp. rows, levels) of mlif are isomorphic to the types
(resp. rows, levels) of mlif0; we identify them and refer to them as ground. Then,
constraints are defined as follows:

C ::= true | false | C ∧ C | ∃α.C
| τ ≤ τ | ρ ≤ ρ | λ ≤ λ
| λ C τ | τ J λ

The constraint forms on the first line are standard [Odersky et al. 1999]. Those on
the second line are subtyping constraints. We will use τ1 = τ2 as syntactic sugar for
τ1 ≤ τ2 ∧ τ2 ≤ τ1. The third line lists custom constraint forms, which correspond to
the notions developed in Sections 5 and 7. We will say that a constraint C involves
types (resp. rows, resp. levels) if it is of the form τ ≤ τ , λ C τ or τ J λ (resp.
ρ ≤ ρ, resp. λ ≤ λ). We omit the sorting rules necessary to ensure that terms and
constraints which contain rows are well-formed; see [Rémy 1993]. Let us simply
recall that these rules associate a cofinite subset of E , written dom(ρ) and called
the domain of ρ, with every row ρ.
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Let a ground assignment φ map every variable α to a ground type, row or level,
according to its kind. The meaning of terms and constraints under an assignment
φ is defined in the obvious way; we write φ ` C if and only if φ satisfies C. A
constraint C is satisfiable if and only if there exists an assignment φ such that
φ ` C. We write C ° C ′ (read: C entails C ′) if and only if every assignment φ
which satisfies C satisfies C ′ as well. We write C ≡ C ′ if and only if satisfiability
of C and satisfiability of C ′ are equivalent.

Let a type scheme be a triple of a set of quantifiers ᾱ, a constraint C and a
type τ ; we write σ = ∀ᾱ[C].τ . The variables in ᾱ are bound in σ; type schemes
are considered equal modulo α-conversion. By abuse of notation, a type τ may be
viewed as a type scheme ∀∅[true].τ . An environment Γ is a partial mapping from
program variables to type schemes.

8.2 Typing rules

The typing rules for mlif are given in Figures 8 and 9. They look very similar to
those of mlif0; let us briefly discuss the differences. We restrict our attention to
source expressions, i.e. Core ML expressions which do not contain memory loca-
tions; this is enough for our purposes. Thus, typing judgements no longer contain
a memory environment M . Every judgement begins with a constraint C which
represents an assumption about its free variables; for the judgement to be valid,
C must be satisfiable. (We omit C when it is true.) Constrained type schemes
are introduced by e-Let, which performs generalization, and eliminated by v-Var,
which performs instantiation. For the sake of conciseness, some rules use the binary
operator t on levels and on rows, as well as the unary operator t on rows, as if
they were part of our term syntax. We let the reader check that these notations
can be de-sugared into extra meta-variables and constraints. In particular, every
term of the form t ρ may be replaced with a fresh level variable δ, together with
the constraint ρ ≤ ∂δ.

8.3 Non-interference

We prove the following statement by induction on type derivations, along the lines
of [Pottier 2001].

Lemma 17 (Soundness). Assume C, π, Γ ` e : τ [ρ ]. Let φ be an arbitrary
ground assignment which satisfies C. Then, φ(π), φ(Γ),∅ ` e : φ(τ) [φ(ρ) ] holds
in mlif0.

(We do not define φ(Γ) here; see [Pottier 2001].) In particular, every ground typing
judgement in mlif is also a valid judgement in mlif0. This allows us to lift our
noninterference result to mlif. That is, the statement of Theorem 15 remains valid
if (x 7→ t) ` e : int` and ` vi : t are read as mlif typing judgements.

8.4 Type inference

It is easy to check that there exists a type inference algorithm which computes
principal types for mlif. Sulzmann [Sulzmann 2000] shows how to derive a set of
type inference rules from a set of typing rules similar to ours. The main point that
remains to be settled is whether constraint solving is decidable.
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v-Unit
C, Γ ` () : unit

v-Int
C, Γ ` k : int∗

v-Var
Γ(x) = ∀ᾱ[D].τ C 
 ∃ᾱ.D

C ∧ D, Γ ` x : τ

v-Abs

C, π, Γ[x 7→ τ ′][f 7→ (τ ′
π [ρ]−−−→ τ)λ] ` e : τ [ρ ]

C, Γ ` fix f.λx.e : (τ ′
π [ρ]−−−→ τ)λ

v-Pair
C, Γ ` v1 : τ1 C, Γ ` v2 : τ2

C, Γ ` (v1, v2) : τ1 × τ2

v-Inj
C, Γ ` v : τ

C, Γ ` injj v : (τ +j ∗)∗

v-Sub
C, Γ ` v : τ ′ C 
 τ ′ ≤ τ

C, Γ ` v : τ

Fig. 8. The type system mlif (values)

e-Value
C, Γ ` v : τ

C, ∗, Γ ` v : τ [∗ ]

e-Raise
C, Γ ` v : typexn(ε)

C, π, Γ ` raise ε v : ∗ [ε : π; ∗ ]

e-App

C, Γ ` v1 : (τ ′
πtλ [ρ]−−−−−→ τ)λ

C, Γ ` v2 : τ ′ C 
 λ C τ

C, π, Γ ` v1 v2 : τ [ρ ]

e-Ref
C, Γ ` v : τ C 
 π C τ

C, π, Γ ` ref v : τ ref∗ [∗ ]

e-Assign
C, Γ ` v1 : τ refλ C, Γ ` v2 : τ C 
 π t λ C τ

C, π, Γ ` v1 := v2 : unit [∗ ]

e-Deref
C, Γ ` v : τ ′ refλ C 
 τ ′ ≤ τ C 
 λ C τ

C, π, Γ ` ! v : τ [∗ ]

e-Proj
C, Γ ` v : τ1 × τ2

C, ∗, Γ ` projj v : τj [∗ ]

e-Case
C, Γ ` v : (τ1 + τ2)λ ∀j ∈ {1, 2} C, π t λ, Γ[x 7→ τj ] ` ej : τ [ρ ] C 
 λ C τ

C, π, Γ ` v case x Â e1 e2 : τ [ρ ]

e-Let
C ∧ D, Γ ` v : τ ′ ᾱ ∩ fv(C, Γ) = ?

C, π, Γ[x 7→ ∀ᾱ[D].τ ′] ` e : τ [ρ ]

C ∧ ∃ᾱ.D, π, Γ ` let x = v in e : τ [ρ ]

e-Bind
C, π, Γ ` e1 : τ ′ [ρ1 ]

C, π t (t ρ1), Γ[x 7→ τ ′] ` e2 : τ [ρ2 ]

C, π, Γ ` bind x = e1 in e2 : τ [ρ1 t ρ2 ]

e-Handle
C, π, Γ ` e1 : τ [ ε : πε; ρ ] C, π t πε, Γ[x 7→ typexn(ε)] ` e2 : τ [ ε : π′; ρ ] C 
 πε C τ

C, π, Γ ` e1 handle ε x Â e2 : τ [ ε : π′; ρ ]

e-HandleDone
C, π, Γ ` e1 : τ [ρ1 ]

C, π t (t ρ1), Γ ` e2 : τ [ρ2 ] C 
 t ρ1 C τ

C, π, Γ ` e1 handle e2 done : τ [ρ2 ]

e-HandleRaise
C, π, Γ ` e1 : τ [ρ ]

C, π t (t ρ), Γ ` e2 : ∗ [∂⊥ ]

C, π, Γ ` e1 handle e2 raise : τ [ρ ]

e-Finally
C, π, Γ ` e1 : τ [ρ ]

C, π, Γ ` e2 : ∗ [∂⊥ ]

C, π, Γ ` e1 finally e2 : τ [ρ ]

e-Sub
C, π, Γ ` e : τ ′ [ρ′ ] C 
 τ ′ ≤ τ C 
 ρ′ ≤ ρ

C, π, Γ ` e : τ [ρ ]

Fig. 9. The type system mlif (expressions)
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τ ≈C τ
τ1 ≈C τ2

τ2 ≈C τ1

τ1 ≈C τ2 τ2 ≈C τ3

τ1 ≈C τ3

τ1 ≤ τ2 A C

τ1 ≈C τ2

(τ ′1
∗ [∗]−−−→ τ1)∗ ≈C (τ ′2

∗ [∗]−−−→ τ2)∗

τ ′1 ≈C τ ′2 τ1 ≈C τ2

τ1 ref∗ ≈C τ2 ref∗

τ1 ≈C τ2

τ1 × τ ′1 ≈C τ2 × τ ′2
τ1 ≈C τ2 τ ′1 ≈C τ ′2

(τ1 + τ ′1)∗ ≈C (τ2 + τ ′2)∗

τ1 ≈C τ2 τ ′1 ≈C τ ′2

Fig. 10. Structural equivalence induced by a constraint

8.5 Constraint solving

Our subtyping relation is structural (a.k.a. atomic); that is, two ground types which
are in the subtyping relation must have the same structure, and may differ only
in their security annotations. Constraint solving for atomic subtyping is decidable
and well understood [Rehof 1997]. The introduction of rows is essentially orthogo-
nal to other constraint solving issues [Fähndrich 1999; Pottier 2000]. There mainly
remains to show that the the custom constraint forms employed by mlif preserve
the decidability of constraint solving. In the following, we do so by giving a sim-
ple algorithm that determines whether a constraint is satisfiable. We do not aim
at efficiency, because that would require more advanced rewriting strategies and
constraint simplification techniques, which we will study in a later paper.

By α-conversion and scope extrusion, any constraint C can be written ∃ᾱ.C ′,
where C ′ does not employ existential quantification. Moreover, the constraint C is
satisfiable if and only if C ′ is satisfiable. Thus, from here on, we will consider solely
constraints that do not make use of existential quantitication. As a result, every
constraint C can be viewed as a conjunction c1 ∧ . . . ∧ cn, where every elementary
constraint ci is of the form true, false, · ≤ ·, · C · or · J ·. We identify such
conjunctions modulo permutations and repetitions of elementary constraints. We
write C ′ A C (read: C ′ appears in C) if and only if C = ∗ ∧ C ′.

Because ground types are finite, our algorithm must perform an occur check in
order to verify that the constraint at hand does not impose a cycle on type structure.
For this purpose, given a constraint C, we introduce an equivalence relation ≈C

between types, defined in Figure 10. The rightmost rule in the figure states that
any two types which are related by a subtyping constraint should be structurally
equivalent; the next rules propagate structural equivalence from terms to sub-terms.
Let us write τ1 ≺ τ if and only if τ1 is a strict subterm of τ . Then, we define the
domination relation induced by C as follows: τ1 ≺C τ holds if and only if there
exist τ ′1 and τ ′ such that τ1 ≈C τ ′1 and τ ′1 ≺ τ ′ and τ ′ ≈C τ . Let ≺+

C denote the
transitive closure of ≺C . A constraint C satisfies the occur check if and only if
there exists no type τ such that τ ≺+

C τ .

Lemma 18 (Occur check). If C fails the occur check, then C is not satisfiable.

Proof. Define the height of a ground type by h((t′
∗ [∗]−−−→ t)∗) = h(t × t′) =

h((t + t′)∗) = 1 + max(h(t), h(t′)), h(t ref∗) = 1 + h(t) and h(unit) = h(int∗) = 0.
If φ ` C, then τ ≈C τ ′ implies h(φ(τ)) = h(φ(τ ′)) and τ ≺ τ ′ implies φ(τ) < φ(τ ′).
Thus, τ ≺+

C τ implies h(τ) < h(τ). The result follows.
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Types

intλ1 ≤ intλ2 � λ1 ≤ λ2

(τ ′1
π1 [ρ1]−−−−−→ τ1)λ1 ≤ (τ ′2

π2 [ρ2]−−−−−→ τ2)λ2 � τ ′2 ≤ τ ′1 ∧ π2 ≤ π1 ∧ ρ1 ≤ ρ2 ∧ τ1 ≤ τ2 ∧ λ1 ≤ λ2

τ1 refλ1 ≤ τ2 refλ2 � τ1 = τ2 ∧ λ1 ≤ λ2

τ1 × τ ′1 ≤ τ2 × τ ′2 � τ1 ≤ τ2 ∧ τ ′1 ≤ τ ′2
(τ1 + τ ′1)λ1 ≤ (τ2 + τ ′2)λ2 � τ1 ≤ τ2 ∧ τ ′1 ≤ τ ′2 ∧ λ1 ≤ λ2

Rows
(ε : λ1; ρ1) ≤ (ε : λ2; ρ2) � λ1 ≤ λ2 ∧ ρ1 ≤ ρ2

(ε : λ; ρ) ≤ ∂λ′ � λ ≤ λ′ ∧ ρ ≤ ∂λ′

∂λ′ ≤ (ε : λ; ρ) � λ′ ≤ λ ∧ ∂λ′ ≤ ρ
∂λ1 ≤ γ1 ≤ · · · ≤ γn ≤ ∂λ2 � λ1 ≤ λ2

Guards

λ′ C intλ � λ′ ≤ λ

λ′ C (∗ ∗ [∗]−−−→ ∗)λ � λ′ ≤ λ

λ′ C ∗ refλ � λ′ ≤ λ
λ′ C τ1 × τ2 � λ′ C τ1 ∧ λ′ C τ2

λ′ C (∗+ ∗)λ � λ′ ≤ λ

intλ J λ′ � λ ≤ λ′

τ refλ J λ′ � τ J λ′ ∧ λ ≤ λ′

τ × τ ′ J λ′ � τ J λ′ ∧ τ ′ J λ′

(τ + τ ′)λ J λ′ � τ J λ′ ∧ τ ′ J λ′ ∧ λ ≤ λ′

Errors
`1 ≤ δ1 ≤ · · · ≤ δn ≤ `2 � false if `1 6≤L `2

τ1 ≤ τ2 � false if τ1 � τ2
(∗ ∗ [∗]−−−→ ∗)∗ J ∗ � false

Context
∗ ∧ C � C′ if C � C′

Fig. 11. Syntactic constraint implication

Roughly speaking, once it is known that the constraint passes the occur check,
the bulk of the constraint solving procedure consists in expanding types and rows
and decomposing constraints, so as to obtain constraints that bear on variables or
on atoms only. The absence of cycles in the type structure guarantees that the
expansion process terminates.

Let us introduce a so-called syntactic implication predicate between constraints,
written C ² C ′, defined by the rules in Figure 11. This predicate allows deriving
(a finite number of) logical consequences of a constraint C. The rules in Types
and Guards (see Figure 11) concern constraints bearing on types whose structure is
known, i.e. non-variable types. Such constraints are decomposed into a number of
sub-constraints bearing on their sub-terms. Similarly, the rules in Rows decompose
constraints bearing on non-variable rows. The last rule in Rows allows ∂λ1 and ∂λ2

to be linked by an arbitrarily long path of row variables. (This is made necessary
by the fact that the existence of a constraint ∂λ ≤ γ does not allow expanding γ
into ∂δ, for a fresh δ. Indeed, ∂` ≤ r does not imply that r is a constant row.) The
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Closure

C � C′ C′ 6A C

C _ C ∧ C′

ε1 6= ε2 γ 6∈ fv(C) @ρ ρ1 ≤ (ε2 : λ2; ρ) ∧ (ε1 : λ1; ρ) ≤ ρ2 A C

C ∧ (ε1 : λ1; ρ1) ≤ (ε2 : λ2; ρ2) _ C ∧ ρ1 ≤ (ε2 : λ2; γ) ∧ (ε1 : λ1; γ) ≤ ρ2

Expansion

β 7 unit A C

C _ C[unit/β]

β 7 int∗ A C δ 6∈ fv(C)

C _ C[intδ/β]

β 7 (∗ ∗ [∗]−−−→ ∗)∗ A C
β′, β′′, γ, δ, δ′ 6∈ fv(C)

C _ C[(β′′
δ′ [γ]−−−−→ β′)δ/β]

β 7 ∗ ref∗ A C β′, δ 6∈ fv(C)

C _ C[β′ refδ/β]

β 7 ∗ × ∗ A C β′, β′′ 6∈ fv(C)

C _ C[β′ × β′′/β]

β 7 (∗+ ∗)∗ A C β′, β′′, δ 6∈ fv(C)

C _ C[(β′ + β′′)δ/β]

γ 7 (ε : ∗; ∗) A C γ′, δ 6∈ fv(C)

C _ C[(ε : δ; γ′)/γ]

Fig. 12. Rewriting constraints

first rule in Errors discovers paths of the form `1 ≤ · · · ≤ `2, which are inconsistent
unless `1 ≤ `2 holds in L. The second error rule encodes the fact that any types
which are in the subtyping relation must have the same head constructor. (Let
τ1 ∼ τ2 hold if and only if either one of τ1, τ2 is a variable or τ1 and τ2 are (non-
variable) types with the same head constructor.) The last error rule reflects the
fact that an arrow type cannot satisfy a J constraint.

The final piece in the puzzle is a reduction relation _ on constraints, defined in
Figure 12. The first rewriting rule closes the constraint under syntactic implication.
The second rule solves subtyping constraints between rows that do not exhibit the
same head label; in other words, it allows row labels to commute. It introduces a
new row variable γ, which must be fresh with respect to the whole constraint, as
expressed by its second premise. The last premise prevents multiple applications
of the rule, which would compromise termination. The remaining rules expand
every type or row variable that is related to a non-variable term. This is achieved
by substituting for the former, within the whole constraint, a fresh term whose
structure mirrors the latter. τ1 ≶ τ2 A C is short for τ1 ≤ τ2 A C ∨ τ2 ≤ τ1 A C.
The following lemma states that reduction preserves satisfiability.

Lemma 19 (Correctness). If C _ C ′ then C ≡ C ′.

Proof. By inspection of the definitions of ² and _.

Reduction is strongly normalizing. This property ensures that the constraint
solving algorithm terminates.

Lemma 20 (Termination). There is no infinite reduction for _ out of a con-
straint that satisfies the occur check.

Proof. Let us first remark that, if C passes the occur check, then so does every
reduct of C.
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Let C be a constraint that satisfies the occur check. Define the height of τ with
respect to C, written hC(τ), as max {n | ∃τ1 . . . τn τn ≺C · · · ≺C τ1 ≺C τ}.
Because C only has a finite number of sub-terms, any infinite descending chain for
≺C must exhibit a cycle. However, because C satisfies the occur check, no such
cycle exists. As a result, hC(τ) must be finite.

A row label ε is said to be apparent in C if there exists a row variable γ in
fv(C) such that ε 6∈ dom(γ). It is easy to check that reduction preserves the set of
apparent row labels, i.e. it does not cause new labels to appear.

We extend hC to elementary constraints that involve types: let hC(τ1 ≤ τ2) =
max (hC(τ1), hC(τ2)) and hC(τ J ∗) = hC(∗ C τ) = hC(τ). The weight of a
row variable γ is the pair (dom(γ), 1). The weight of a constraint ρ1 ≤ ρ2 is the
pair (dom(ρ1), 0). (Because the constraint is well-sorted, dom(ρ1) = dom(ρ2) must
hold.) Lastly, let us say that an elementary constraint c is active in C if and only
if either (i) there exists C ′ such that c ² C ′ and C ′ 6A C or (ii) c = (ε1 : λ1; ρ1) ≤
(ε2 : λ2; ρ2) and @ρ ρ1 ≤ (ε2 : λ2; ρ) ∧ (ε1 : λ1; ρ) ≤ ρ2 A C.

Let us now measure a constraint according to the following quantities, ordered
lexicographically: (1) the multiset of the heights of its type variables; (2) the mul-
tiset of the heights of its active elementary constraints that involve types; (3) the
multiset of the weights of its row variables and of its active elementary constraints
that involve rows; (4) the number of paths ∂λ1 ≤ γ1 ≤ · · · ≤ γn ≤ ∂λ2 which
appear in it, while λ1 ≤ λ2 does not; (5) 1 if false appears in the constraint, 0
otherwise. Given that heights are finite and the set of apparent exception names is
fixed, the ordering on measures has no infinite decreasing chain. We claim that this
measure decreases through every reduction step. Indeed, all expansion rules but the
last one eliminate a type variable, while introducing fresh type variables of lesser
height, so they decrease (1). The rules in Types and Guards (Figure 11) remove
an active constraint that involves types, while possibly introducing constraints on
types of lesser heights, on rows or on levels, so they decrease (2). Similarly, the first
three rules in Rows, as well as the second and last rules in Figure 12, decrease (3).
The last rule in Rows decreases (4). Lastly, the error rules decrease (5). It follows
that _ terminates.

Checking for the presence of false provides a complete satisfiability check for
constraints that are normal forms with respect to _.

Lemma 21 (Completeness). Let C be a normal form with respect to _ which
passes the occur check. C is satisfiable if and only if C does not contain false.

Proof. Clearly, if C contains false then C is not satisfiable. Conversely, assume
C passes the occur check test and does not contain false.

Let us define a strict ordering ≺ on elementary constraints as the smallest
transitive relation such that (i) τ ′1 ≺ τi and τ ′2 ≺ τj and {i, j} = {1, 2} imply
(τ ′1 ≤ τ ′2) ≺ (τ1 ≤ τ2), (ii) τ ′ ≺ τ implies (τ ′ J λ) ≺ (τ J λ) and (λ C τ ′) ≺ (λ C τ),
(iii) dom(ρ′1) ⊂ dom(ρ1) and dom(ρ′2) ⊂ dom(ρ2) imply (ρ′1 ≤ ρ′2) ≺ (ρ1 ≤ ρ2), (iv)
if c′ involves rows and c involves types, then c′ ≺ c, and (v) if c′ involves labels and
c involves rows, then c′ ≺ c. Again, if heights are finite and the set of apparent
exception names is fixed, this ordering has no infinite decreasing chain.
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Define the assignment φ as follows:

φ(δ) = t{` | ` ≤ · · · ≤ δ A C}
φ(γ) = ∂(t{φ(λ) | ∂λ ≤ · · · ≤ γ A C})
φ(β) = unit

We will now prove that φ ` C; that is, every elementary constraint c such that c A C
is satisfied by φ. The proof is by well-founded induction on ≺. The meta-variable
τ̇ (resp. ρ̇) denotes a non-variable type (resp. row).
◦ Case c = τ̇1 ≤ τ̇2. Because C does not contain false and because it is a normal

form, the types τ̇1 and τ̇2 must have the same head constructor. By inspection
of the first group of rules in Figure 11, c is entailed by a number of elementary
constraints, each of which appears in C and is less than c with respect to ≺. The
result follows by the induction hypothesis.
◦ Cases c = τ̇ J λ, c = λ C τ̇ , c = ρ̇1 ≤ ρ̇2. Similar to the previous case.
◦ Cases c = τ̇ ≤ β, c = β ≤ τ̇ , c = (ε : λ; ρ) ≤ γ and c = γ ≤ (ε : λ; ρ). Because

none of the expansion rules apply, these cases cannot arise.
◦ Case c = β ≤ β′. Immediate.
◦ Cases c = β J λ and c = λ C β. Because φ(β) = unit, φ ` c holds.
◦ Case c = ∂λ1 ≤ ∂λ2. Because C is a normal form, λ1 ≤ λ2 A C must hold. By

induction hypothesis, φ(λ1) ≤ φ(λ2) follows. This yields φ(∂λ1) ≤ φ(∂λ2).
◦ Case c = ∂λ ≤ γ. By construction, ∂(φ(λ)) ≤ φ(γ) holds.
◦ Case c = γ ≤ ∂λ. If ∂λ′ ≤ · · · ≤ γ A C, then, by transitivity, ∂λ′ ≤ · · · ≤ ∂λ A

C holds as well. Because C is a normal form, λ′ ≤ λ A C must hold. By induction
hypothesis, φ(λ′) ≤ φ(λ) follows. As a result, we have φ(γ) ≤ ∂(φ(λ)).
◦ Case c = γ ≤ γ′. By transitivity, ∂λ ≤ · · · ≤ γ A C implies ∂λ ≤ · · · ≤ γ′ A C.

It follows that {∂λ | ∂λ ≤ · · · ≤ γ A C} ⊆ {∂λ | ∂λ ≤ · · · ≤ γ′ A C}. This yields
φ(γ) ≤ φ(γ′).
◦ Case c = `1 ≤ `2. Because C does not contain false and because it is a normal

form, `1 ≤ `2 must hold in L. φ ` c follows.
◦ Case c = ` ≤ δ. By construction, ` ≤ φ(δ) holds.
◦ Case c = δ ≤ `. If `′ ≤ · · · ≤ δ A C, then, by transitivity, `′ ≤ · · · ≤ ` A C

holds as well. Because C does not contain false and because it is a normal form,
`′ ≤ ` must hold. As a result, we have t{`′ | `′ ≤ · · · ≤ δ A C} ≤ `, that is,
φ(δ) ≤ `.
◦ Case c = δ ≤ δ′. By transitivity, ` ≤ · · · ≤ δ A C implies ` ≤ · · · ≤ δ′ A C.

It follows that {` | ` ≤ · · · ≤ δ A C} ⊆ {` | ` ≤ · · · ≤ δ′ A C}. This yields
φ(δ) ≤ φ(δ′).

The results developed in this section may be summarized as follows.

Theorem 22. Constraint solving is decidable.

Proof. Given a constraint C, determine whether it satisfies the occur check.
If it doesn’t, report C is unsatisfiable. If it does, normalize it with respect to _,
yielding C ′. If C ′ contains false, report C is unsatisfiable; otherwise, report it
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is satisfiable. Lemma 20 ensures that the algorithm terminates. Lemmas 18, 19
and 21 guarantee that it is correct.

9. EXAMPLES

We intend to integrate mlif into a realistic programming language, such as Caml-
Light [Leroy et al. 1997]. In this section, we give a taste of that by describing
the principal type schemes inferred for some library functions by our prototype
implementation. We use Caml-Light syntax, which can be easily de-sugared into
Core ML.

We omit type annotations on top of → when they are unconstrained, anonymous
type variables. Because none of the type schemes below has free type variables, we
omit the universally quantified variables after ∀.

We have not explained how to include datatype declarations in the language.
Since we already have product and sum types, this should be straightforward. Let
us assume the type constructor list is declared as follows:

type (’b, ’d) list = <’d>
| []
| (::) of ’b * (’b, ’d) list

In β listδ, the parameter β is the type of the list’s elements, as usual, while δ is a
security level. The annotation <’d> on the right-hand side is meant to indicate that
δ is the security annotation carried by the sum type. Our first example function
computes the length of a list:

let rec length = function
| [] -> 0
| _ :: l -> 1 + length l

A valid type scheme for length is ∀[δ ≤ δ′]. ∗ listδ → intδ
′
. As expected, the

result’s security annotation δ′ does not depend on the type of the list’s elements.
The constraint δ ≤ δ′ describes the information flow induced by the function: the
length of a list contains some information about its structure. This type scheme is
in fact equivalent to ∀[]. ∗ listδ → intδ, a simplification which our implementation
performs automatically.

let rec iter f = function
| [] -> ()
| x :: l -> f x; iter f l

iter applies f successively to every element of a list. Its inferred type scheme is

∀[t γ ≤ δ].(β
δ [γ]−−−→ ∗)δ → β listδ

δ [γ]−−−→ unit

Here, γ represents f’s effect. Because iter does not raise any exceptions of its
own, γ is also iter’s effect. δ is f’s pc parameter. It must dominate iter’s own pc
parameter (because f is invoked by iter), the list’s security level (because gaining
control tells f that the list is nonempty) and t γ (because gaining control tells f
that its previous invocation terminated normally).

let incr r =
r := !r + 1
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incr has ∀[].intδ refδ δ [∗]−−−→ unit as principal type scheme. Indeed, by e-Assign, the
security level of the reference’s contents must dominate both incr’s pc parameter
and the reference’s own security level. We now re-implement length in imperative
style:

let length’ l =
let count = ref 0 in
iter (fun () -> incr count) l;
!count

We obtain ∀[]. ∗ listδ
δ [∗]−−−→ intδ. This appears more restrictive than length’s type

scheme: the result’s security level must now be greater than or equal to the func-
tion’s pc parameter. However, the difference is only superficial; it can be checked
that both types in fact have the same expressive power. Formalizing this claim,
and understanding its consequences, are left for future work. We continue with a
few library functions which deal with association lists.

let rec mem_assoc x = function
| [] -> false
| (y, _) :: l -> if x = y then true else mem_assoc x l

Because mem assoc’s result reveals information about both the structure of the list
and the keys stored in it, we obtain:

∀[β J δ].β → (β × ∗) listδ → boolδ

The constraint β J δ, which arises due to the use of polymorphic equality, specifies
that δ must be an upper bound for all security annotations which occur in the type
of the keys.

let rec assoc x = function
| [] -> raise Not_found
| (y, d) :: l -> if x = y then d else assoc x l

assoc returns the piece of data associated with a given key. If no such key exists,
Not found is raised, as reflected in assoc’s effect:

∀[β J δ, δ C β′, δ ≤ δ′].β → (β × β′) listδ
δ′ [Not found: δ′; ∗]−−−−−−−−−−−→ β′

Here, as in mem assoc, δ represents the information associated with the list’s struc-
ture and keys. Because this information is reflected both in assoc’s normal and
exceptional results, the type system requires δ C β′ and δ ≤ δ′.

Lastly, we re-implement mem assoc in terms of assoc, using an exception handler:

let mem_assoc’ x l =
try

let _ = assoc x l in
true

with Not_found ->
false
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As in the case of length vs. length’, the new type scheme requires the result’s
security level to be greater than or equal to the function’s pc parameter:

∀[β J δ].β → (β × ∗) listδ
δ [∗]−−−→ boolδ

This betrays the fact that the function’s implementation uses effects, but does not
otherwise restrict its applicability.

10. DISCUSSION

10.1 On exceptions

The reader may notice that normal and exceptional results are not dealt with in
a symmetric way by our type system. Indeed, in a typing judgement pc, Γ,M `
e : t [ r ], the row r associates a security level with every exception name, so as
to record how much information is gained by observing that particular exception.
However, no information level is explicitly associated with normal termination.
Instead, the typing rule for sequential composition, namely e-Bind, uses t r as an
approximation of it.

Myers’ [Myers 1999a; 1999b] sets of path labels X, on the other hand, record
the security level associated with normal termination under a special label n, which
is then used in the sequential composition rule. It is, however, typically an upper
bound for the value of pc inside every sub-expression of the expression at hand, so
this design alone would make the type system very restrictive. To prevent that,
Myers adds a non-syntax-directed rule, the single-path rule, stating that X[n] can
be reset to ∅ if the expression at hand can be shown to always terminate normally.

Our system doesn’t need the single-path rule: indeed, when r1 is ∂⊥, then t r1

is ⊥, and e-Bind typechecks e1 and e2 at a common pc, as desired. Myers’ system
is more precise than ours in a few cases, which involve expressions that never
terminate normally; experience will tell how common they are. The single-path
rule requires a distinction between ∅ and ⊥ (i.e. between expressions that do not
raise exceptions and expressions that raise only low-security exceptions), which we
have dropped, for simplicity. More importantly, it requires counting the number
of non-∅ entries in a row; in the presence of row variables, this requires heavy
constraint forms, which is why we avoid it. This difficulty does not arise in Myers’
framework because he relies on Java’s explicit, monomorphic throws clauses.

There exists a simple monadic encoding of exceptions into sums [Moggi 1989;
Wadler 1992]. Thus, it is possible, in principle, to derive a type system for excep-
tions out of a type system that can handle sums. This approach sounds interesting,
because it is systematic and promises to yield a symmetric treatment of normal vs.
exceptional results. However, we have found that, in order to obtain acceptable
precision in the end, the treatment of sums that is chosen as a starting point must
be very accurate (much more so than the one given in this paper). For more details,
the reader is referred to a recent paper by the second author [Simonet 2002].

10.2 Variations

In this paper, the type unit carries no security annotation, which is natural, and
fits well with the constraint solving algorithm proposed in Section 8.5, because unit
can be proposed as a solution for β in every constraint of the form λ C β or β J λ
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v-Abs

pc, Γ[x 7→ t′][f 7→ t′
pc [r]−−−−→ t], M ` e : t [ r ]

Γ, M ` fix f.λx.e : t′
pc [r]−−−−→ t

e-App
Γ, M ` v1 : t′

pc′ [r]−−−−→ t
Γ, M ` v2 : t′ pc ≤ pc′

pc, Γ, M ` v1 v2 : t [ r ]

Fig. 13. Modifications for an invariant pc parameter

(see the proof of Lemma 21). However, as a consequence of this fact, it is not the
case that ` C t and t J `′ imply ` ≤ `′. We have found that the lack of such a
law makes constraint simplification more intricate and less effective. This might
be sufficient motivation to switch back to a type of the form unit`. (Product types
would remain unannotated.) Then, every type t would contain at least one security
annotation, restoring the above law.

As in previous work [Heintze and Riecke 1998], our arrow types carry two anno-
tations pc and `, which are respectively contravariant and covariant. These anno-
tations are independent. Yet, the first premise of rule e-App (Figure 6), together
with the subtyping rules, show that a function cannot be applied unless ` ≤ pc
holds. So, the current type system makes it possible to create functions that are
not applicable—a rather undesirable feature. To eliminate this problem, one might
wish to merge the annotations pc and `, that is, to use arrow types of the form

t
pc [r]−−−→ t′, where pc is invariant. Then, by definition, ` C ∗ pc [∗]−−−→ t′ would be

equivalent to ` ≤ pc ∧ ` C t′. The typing rules for abstraction and application
would be modified as described in Figure 13. In addition to earlier detection of
type errors, this modification would perhaps help infer more readable types. We
have experimented with this idea, however, and have run into trouble with recur-
sive definitions: the types inferred for some recursive functions become less precise,
unless polymorphic recursion [Mycroft 1984] is added to the type system.

10.3 Future work

Our main direction for future work is to create a full implementation of the system
on top of a fragment of Objective Caml, and to assess its usability through a number
of case studies. We also intend to publish a more detailed account of our constraint
resolution and simplification techniques. Lastly, the fact that certain distinct types
appear to have the “same” meaning, illustrated in Section 9 by comparing the types
ascribed to length and length’, would deserve deeper study.
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