Type Inference with structural Subtyping: the faithful description of an efficient constraint solver

Vincent Simonet

Vincent.Simonet@inria.fr
http://cristal.inria.fr/~simonet/
Talk Outline

- Structural subtyping
- Solving constraints
- Simplifying constraints
- Experimental results
Structural subtyping

Solving constraints
Simplifying constraints
Implementation

Structural subtyping
What is subtyping?

- A partial order \leq on types and a subsumption rule:

 \[
 \Gamma \vdash e : t_1 \quad t_1 \leq t_2 \\
 \quad \Rightarrow \\
 \Gamma \vdash e : t_2
 \]

- Widely used: object-oriented languages, static analysis, ...

- The definition of the subtyping order itself varies, depending on the application.
Structural subtyping: an example

Ground types

\[t ::= \text{num} \mid t \to t \mid t \times t \]
Structural subtyping: an example

Atoms

\[a \in \text{real} \quad \leq_A \quad \text{complex} \quad \leq_A \quad \text{nat} \]

Ground types

\[t ::= \text{num} a \mid t \to t \mid t \times t \]

Subtyping order

\[
\begin{align*}
& a \leq_A a' \\
& \frac{a \leq_A a'}{\text{num} a \leq \text{num} a'} \\
& \frac{t_1 \leq t_1' \quad t_2 \leq t_2'}{t_1 \to t_2 \leq t_1' \to t_2'} \\
& \frac{t_1 \leq t_1' \quad t_2 \leq t_2'}{t_1 \times t_2 \leq t_1' \times t_2'}
\end{align*}
\]
In structural subtyping, comparable types must have the same shape and can only differ by their atomic leaves.

- A poset of atoms $a \in (\mathcal{A}, \leq_{\mathcal{A}})$, supposed to be a lattice.
- A set of type constructors $c \in C$.
 Every type constructor is given with an arity, each parameter must be either covariant or contravariant.
- Ground types are defined by the following grammar:

 $$t ::= a \mid c(t_1, \ldots, t_n)$$
Structural subtyping (2/2)

The subtyping order \leq is defined by lifting the atomic order \leq_A along the type structure:

$$
\frac{a \leq_A a'}{a \leq a'}
$$

if c's i^{th} parameter is covariant then $t_i \leq t'_i$

if c's i^{th} parameter is contravariant then $t'_i \leq t_i$

$$
\frac{c(t_1, \ldots, t_n) \leq c(t'_1, \ldots, t'_n)}{c(t_1, \ldots, t_n) \leq c(t'_1, \ldots, t'_n)}
$$

We also define $t \approx t'$ (read: t has the same shape as t'):

$$
\frac{a \approx a'}{\forall i \ t_i \approx t'_i}
$$

$$
\frac{c(t_1, \ldots, t_n) \approx c(t'_1, \ldots, t'_n)}{c(t_1, \ldots, t_n) \approx c(t'_1, \ldots, t'_n)}
$$

\approx is the symmetric transitive closure of \leq.
Structural subtyping

Type inference for structural subtyping has been widely studied

<table>
<thead>
<tr>
<th>Mitchell (1981-1984)</th>
<th>First algorithms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuh and Mishra (1988-1989)</td>
<td>Solving atomic constraints is PSPACE-hard in the general case, but linear in a lattice</td>
</tr>
<tr>
<td>Tiuryn (1992)</td>
<td>Type inference is equivalent to constraint resolution</td>
</tr>
<tr>
<td>Hoang and Mitchell (1995)</td>
<td>Minimal typings</td>
</tr>
<tr>
<td>Rehof (1997)</td>
<td>The first-order theory of structural subtyping is decidable</td>
</tr>
<tr>
<td>Kuncak and Rinard (2003)</td>
<td></td>
</tr>
</tbody>
</table>
Our work

However, most of the implementation techniques remains in folklore. This paper proposes:

- A complete account about efficient techniques for constraint resolution in the case of structural subtyping.
- A generic implementation of an efficient constraint solver for structural subtyping.
Constraint-based type inference

Type inference systems for subtyping are constraint-based:

- Every piece of code is described by a constrained type scheme, which is computed by a syntactic analysis:

 \[\sigma ::= \forall \alpha [C] . \tau \quad \text{(scheme)}\]
 \[\tau ::= \alpha \mid a \mid c(\tau_1, \ldots, \tau_n) \quad \text{(type)}\]
 \[C ::= \tau \leq \tau' \mid C_1 \land C_2 \mid \exists \alpha . C \quad \text{(constraint)}\]

- It is well-typed if and only if the type scheme has an instance, i.e. its constraint is satisfiable:

 type inference is reduced to constraint solving
Structural subtyping

Example

\[
\begin{align*}
\text{let } & f = \lambda x. \lambda y \left(\text{bind } s = x + y \text{ in} \\
& \quad \text{bind } p = x \times y \text{ in} \\
& \quad (p + s, p - s) \right) \\
& \forall \alpha \left[\begin{array}{l}
\exists \alpha_1 \alpha_2 \alpha_3. (\alpha_1 = \alpha_2 \rightarrow \alpha_3 \land \alpha_1 \leq \alpha) \\
\land \exists \alpha_4 \alpha_5 \alpha_6. (\alpha_4 = \alpha_5 \rightarrow \alpha_6 \land \alpha_4 \leq \alpha_3) \\
\land \exists \beta_1 \gamma_1. (\gamma_1 = \text{num } \beta_1 \land \alpha_2 \leq \gamma_1 \land \alpha_5 \leq \gamma_1) \\
\land \exists \beta_2 \gamma_2. (\gamma_2 = \text{num } \beta_2 \land \alpha_2 \leq \gamma_2 \land \alpha_5 \leq \gamma_2) \\
\land \exists \beta_3 \gamma_3. (\gamma_3 = \text{num } \beta_3 \land \gamma_1 \leq \gamma_3 \land \gamma_2 \leq \gamma_3) \\
\land \exists \beta_4 \gamma_4. (\gamma_4 = \text{num } \beta_4 \land \gamma_1 \leq \gamma_4 \land \gamma_2 \leq \gamma_4) \\
\land \exists \alpha_7 \alpha_8 \gamma_5. (\gamma_3 \leq \alpha_7 \land \gamma_4 \leq \alpha_8 \\
\quad \land \gamma_5 = \alpha_7 \times \alpha_8 \land \gamma_5 \leq \alpha_6) \ldots \right] \\
& . \alpha
\end{array} \right]
\end{align*}
\]
Example

\[
\text{let } f = \lambda x. \lambda y (\text{bind } s = x + y \text{ in } \\
\text{bind } p = x \times y \text{ in } \\
(p + s, p - s))
\]

\[
\forall \alpha [\exists \beta. (\alpha = \text{num } \beta \rightarrow \text{num } \beta \rightarrow \text{num } \beta \times \text{num } \beta)] . \alpha
\]

\[
\forall \beta. \text{num } \beta \rightarrow \text{num } \beta \rightarrow \text{num } \beta \times \text{num } \beta
\]
Solving constraints
Overview

The solving procedure consists in three steps

- **Unification**: discovering sharing between type structures
- **Expansion and decomposition**: making type structure explicit and decomposing inequalities
- **Solving the resulting atomic problem**.
Example: unification (1/2)

Two unification algorithms are simultaneously performed:

- One for type equality (=)
- One for type structure (∼)

\[
\alpha_1 = \alpha_2 \rightarrow \alpha_3
\]
\[
\alpha_1 \leq \alpha
\]
\[
\langle \alpha_1 = \alpha_2 \rightarrow \alpha_3 \rangle \approx \alpha
\]
\[
\alpha_1 \leq \alpha
\]
Example: unification (2/2)

\[
\frac{\langle \alpha_1 = \alpha_2 \rightarrow \alpha_3 \rangle \approx \alpha}{\alpha_1 \leq \alpha}
\]

\[
\frac{\langle \alpha_4 = \alpha_5 \rightarrow \alpha_6 \rangle \approx \alpha_3}{\alpha_4 \leq \alpha_3}
\]

\[
\frac{\langle \gamma_5 = \alpha_7 \times \alpha_8 \rangle \approx \alpha_6}{\gamma_5 \leq \alpha_6}
\]

\[
\langle \gamma_1 = \text{num } \beta_1 \rangle \approx \langle \gamma_2 = \text{num } \beta_2 \rangle \approx \langle \gamma_3 = \text{num } \beta_3 \rangle \approx \langle \gamma_4 = \text{num } \beta_4 \rangle \approx \\
\frac{\alpha_2 \approx \alpha_5 \approx \alpha_7 \approx \alpha_8}{\alpha_2, \alpha_5 \leq \gamma_1, \gamma_2 \wedge \gamma_1, \gamma_2 \leq \gamma_3, \gamma_4 \wedge \gamma_3 \leq \alpha_7 \wedge \gamma_4 \leq \alpha_8}
\]

\[
\beta_1 \approx \beta_2 \approx \beta_3 \approx \beta_4
\]
Example: expansion and decomposition

\[
\langle \alpha_1 = \alpha_2 \rightarrow \alpha_3 \rangle \approx \langle \alpha = \alpha_9 \rightarrow \alpha_{10} \rangle \\
\alpha_1 \leq \alpha
\]

\[
\langle \alpha_4 = \alpha_5 \rightarrow \alpha_6 \rangle \approx \alpha_3 \approx \alpha_{10} \\
\alpha_3 \leq \alpha_{10} \land \alpha_4 \leq \alpha_3
\]

\[
\langle \gamma_5 = \alpha_7 \times \alpha_8 \rangle \approx \alpha_6 \\
\gamma_5 \leq \alpha_6
\]

\[
\langle \gamma_1 = \text{num } \beta_1 \rangle \approx \langle \gamma_2 = \text{num } \beta_2 \rangle \approx \langle \gamma_3 = \text{num } \beta_3 \rangle \approx \langle \gamma_4 = \text{num } \beta_4 \rangle \approx \\
\alpha_2 \approx \alpha_5 \approx \alpha_7 \approx \alpha_8 \approx \alpha_9 \\
\alpha_9 \leq \alpha_2 \land \alpha_5 \leq \gamma_1, \gamma_2 \land \gamma_1, \gamma_2 \leq \gamma_3, \gamma_4 \land \gamma_3 \leq \alpha_7 \land \gamma_4 \leq \alpha_8
\]

\[
\beta_1 \approx \beta_2 \approx \beta_3 \approx \beta_4
\]
Solving constraints

Example: expansion and decomposition

\[\langle \alpha_1 = \alpha_2 \rightarrow \alpha_3 \rangle \approx \langle \alpha = \alpha_9 \rightarrow \alpha_{10} \rangle \]

\[\langle \alpha_4 = \alpha_5 \rightarrow \alpha_6 \rangle \approx \langle \alpha_3 = \alpha_{11} \rightarrow \alpha_{12} \rangle \approx \langle \alpha_{10} = \alpha_{13} \rightarrow \alpha_{14} \rangle \]

\[\alpha_3 \leq \alpha_{10} \wedge \alpha_4 \leq \alpha_3 \]

\[\langle \gamma_5 = \alpha_7 \times \alpha_8 \rangle \approx \alpha_6 \approx \alpha_{12} \approx \alpha_{14} \]

\[\gamma_5 \leq \alpha_6 \wedge \alpha_{12} \leq \alpha_{14} \wedge \alpha_6 \leq \alpha_{12} \]

\[\langle \gamma_1 = \text{num } \beta_1 \rangle \approx \langle \gamma_2 = \text{num } \beta_2 \rangle \approx \langle \gamma_3 = \text{num } \beta_3 \rangle \approx \langle \gamma_4 = \text{num } \beta_4 \rangle \approx \]

\[\alpha_2 \approx \alpha_5 \approx \alpha_7 \approx \alpha_8 \approx \alpha_9 \approx \alpha_{11} \approx \alpha_{13} \]

\[\alpha_9 \leq \alpha_2 \wedge \alpha_{13} \leq \alpha_{11} \wedge \alpha_{11} \leq \alpha_5 \wedge \alpha_2, \alpha_5 \leq \gamma_1, \gamma_2 \wedge \gamma_1, \gamma_2 \leq \gamma_3, \gamma_4 \wedge \gamma_3 \leq \alpha_7 \wedge \gamma_4 \leq \alpha_8 \]

\[\beta_1 \approx \beta_2 \approx \beta_3 \approx \beta_4 \]
Complexity

This strategy is theoretically exponential, but has a linear complexity under the hypothesis of types of bounded height.

We have to simplify constraints throughout the solving process:

- To improve its efficiency,
- To obtain human readable results.
Simplifying constraints
Overview

Simplification is a subtle problem:

- It must be **correct**!
- It cannot be **time consuming**.

Simplification can be performed:

- **Throughout the expansion process**, in order to reduce the potential number of expanded variables.
- **At the atomic level**: useful in presence of let-polymorphism.

We are **not interested by optimality** (in size) of simplification techniques.
Simplifying constraints

Polarities
[Fuh & Mishra (1989), Trifonov & Smith, Pottier]

Polarities assigned to type variables in a type scheme gives some information about their use:

A negative type variable represents an input of the expression
A positive type variable represents an output of the expression

Example:

\[\forall \alpha_1 \alpha_2 \beta_1 \beta_2[\alpha_1 \leq \beta_1 \land \alpha_2 \leq \beta_1 \land \alpha_2 \leq \beta_2].\alpha_1 \rightarrow \alpha_2 \rightarrow \beta_1 \times \beta_2 \]

A negative type variable can receive new lower bounds
A positive type variable can receive new upper bounds
Chains reduction
[Elfrig et al. (1995), Aiken and Fahndrich (1996)]

Polarities can be exploited throughout expansion to eliminate variables:

A non-positive variable can be unified with its unique upper bound.
A non-negative variable can be unified with its unique lower bound.

Example:

\[
\forall \alpha_1 \alpha_2 \beta_1 \beta_2 [\alpha_1 \leq \beta_1 \land \alpha_2 \leq \beta_1 \land \alpha_2 \leq \beta_2]. \alpha_1 \rightarrow \alpha_2 \rightarrow \beta_1 \times \beta_2
\]

is equivalent to

\[
\forall \alpha_1 \alpha_2 \beta_1 \beta_2 [\alpha_1 \leq \beta_1 \land \alpha_2 \leq \beta_1]. \alpha_1 \rightarrow \alpha_2 \rightarrow \beta_1 \times \alpha_2
\]
Example: reducing a chain

\[\alpha \approx \langle \alpha_1 = \alpha_2 \rightarrow \alpha_3 \rangle \]
\[\alpha \parallel \alpha_1 \leq \alpha \]
\[\alpha_3 \approx \langle \alpha_4 = \alpha_5 \rightarrow \alpha_6 \rangle \]
\[\alpha_4 \leq \alpha_3 \]
\[\alpha_6 \approx \langle \gamma_5 = \alpha_7 \times \alpha_8 \rangle \]
\[\gamma_5 \leq \alpha_6 \]

\[\langle \gamma_1 = \text{num} \ \beta_1 \rangle \approx \langle \gamma_2 = \text{num} \ \beta_2 \rangle \approx \langle \gamma_3 = \text{num} \ \beta_3 \rangle \approx \langle \gamma_4 = \text{num} \ \beta_4 \rangle \approx \]
\[\alpha_2 \approx \alpha_5 \approx \alpha_7 \approx \alpha_8 \]
\[\alpha_2, \alpha_5 \leq \gamma_1 \land \alpha_2, \alpha_5 \leq \gamma_2 \land \gamma_1, \gamma_2 \leq \gamma_3, \gamma_4 \land \gamma_3 \leq \alpha_7 \land \gamma_4 \leq \alpha_8 \]

\[\beta_1 \approx \beta_2 \approx \beta_3 \approx \beta_4 \]
Simplifying constraints

Example: propagating polarities

\[\langle \alpha = \alpha_1 = \alpha_2 \rightarrow \alpha_3 \rangle \]

\[\langle \alpha_4 = \alpha_5 \rightarrow \alpha_6 \rangle \approx \alpha_3 \]

\[\alpha_4 \leq \alpha_3 \]

\[\langle \gamma_5 = \alpha_7 \times \alpha_8 \rangle \approx \alpha_6 \]

\[\gamma_5 \leq \alpha_6 \]

\[\langle \gamma_1 = \text{num } \beta_1 \rangle \approx \langle \gamma_2 = \text{num } \beta_2 \rangle \approx \langle \gamma_3 = \text{num } \beta_3 \rangle \approx \langle \gamma_4 = \text{num } \beta_4 \rangle \approx \]

\[\alpha_2 \approx \alpha_5 \approx \alpha_7 \approx \alpha_8 \]

\[\alpha_2, \alpha_5 \leq \gamma_1 \land \alpha_2, \alpha_5 \leq \gamma_2 \land \gamma_1, \gamma_2 \leq \gamma_3, \gamma_4 \land \gamma_3 \leq \alpha_7 \land \gamma_4 \leq \alpha_8 \]

\[\beta_1 \approx \beta_2 \approx \beta_3 \approx \beta_4 \]
Example: removing a non-polar variable

\[\langle \alpha = \alpha_4 = \alpha_2 \rightarrow \alpha_3 \rangle \]

\[\alpha_3 \approx \langle \alpha_4 = \alpha_5 \rightarrow \alpha_6 \rangle \]

\[\alpha_4 \leq \alpha_3 \]

\[\alpha_6 \approx \langle \gamma_5 = \alpha_7 \times \alpha_8 \rangle \]

\[\gamma_5 \leq \alpha_6 \]

\[\langle \gamma_1 = \text{num} \beta_1 \rangle \approx \langle \gamma_2 = \text{num} \beta_2 \rangle \approx \langle \gamma_3 = \text{num} \beta_3 \rangle \approx \langle \gamma_4 = \text{num} \beta_4 \rangle \approx \]

\[\alpha_2 \approx \alpha_5 \approx \alpha_7 \approx \alpha_8 \]

\[\alpha_2, \alpha_5 \leq \gamma_1 \land \alpha_2, \alpha_5 \leq \gamma_2 \land \gamma_1, \gamma_2 \leq \gamma_3, \gamma_4 \land \gamma_3 \leq \alpha_7 \land \gamma_4 \leq \alpha_8 \]

\[\beta_1 \approx \beta_2 \approx \beta_3 \approx \beta_4 \]
Example: reducing a chain

\[\langle \alpha = \alpha_2 \rightarrow \alpha_3 \rangle \]

\[\alpha_3 \approx \langle \alpha_4 = \alpha_5 \rightarrow \alpha_6 \rangle \]
\[\alpha_4 \leq \alpha_3 \]

\[\alpha_6 \approx \langle \gamma_5 = \alpha_7 \times \alpha_8 \rangle \]
\[\gamma_5 \leq \alpha_6 \]

\[\langle \gamma_1 = \text{num } \beta_1 \rangle \approx \langle \gamma_2 = \text{num } \beta_2 \rangle \approx \langle \gamma_3 = \text{num } \beta_3 \rangle \approx \langle \gamma_4 = \text{num } \beta_4 \rangle \approx \]
\[\alpha_2 \approx \alpha_5 \approx \alpha_7 \approx \alpha_8 \]
\[\alpha_2, \alpha_5 \leq \gamma_1 \land \alpha_2, \alpha_5 \leq \gamma_2 \land \gamma_1, \gamma_2 \leq \gamma_3, \gamma_4 \land \gamma_3 \leq \alpha_7 \land \gamma_4 \leq \alpha_8 \]

\[\beta_1 \approx \beta_2 \approx \beta_3 \approx \beta_4 \]
Example: reducing a chain

\[
\langle \alpha = \alpha_2 \rightarrow \alpha_3 \rangle
\]

\[
\langle \alpha_3 = \alpha_5 \rightarrow \alpha_6 \rangle
\]

\[
\alpha_6 \approx \langle \gamma_5 = \alpha_7 \times \alpha_8 \rangle
\]

\[
\gamma_5 \leq \alpha_6
\]

\[
\langle \gamma_1 = \text{num} \beta_1 \rangle \approx \langle \gamma_2 = \text{num} \beta_2 \rangle \approx \langle \gamma_3 = \text{num} \beta_3 \rangle \approx \langle \gamma_4 = \text{num} \beta_4 \rangle \approx \alpha_2 \approx \alpha_5 \approx \alpha_7 \approx \alpha_8
\]

\[
\alpha_2, \alpha_5 \leq \gamma_1 \land \alpha_2, \alpha_5 \leq \gamma_2 \land \gamma_1, \gamma_2 \leq \gamma_3, \gamma_4 \land \gamma_3 \leq \alpha_7 \land \gamma_4 \leq \alpha_8
\]

\[
\beta_1 \approx \beta_2 \approx \beta_3 \approx \beta_4
\]
Reducing two chains

\[\langle \alpha = \alpha_2 \rightarrow \alpha_3 \rangle \]

\[\langle \alpha_3 = \alpha_5 \rightarrow \alpha_6 \rangle \]

\[\langle \alpha_6 = \alpha_7 \times \alpha_8 \rangle \]

\[\langle \gamma_1 = \text{num} \beta_1 \rangle \approx \langle \gamma_2 = \text{num} \beta_2 \rangle \approx \langle \gamma_3 = \text{num} \beta_3 \rangle \approx \langle \gamma_4 = \text{num} \beta_4 \rangle \approx \alpha_2 \approx \alpha_5 \approx \alpha_7 \approx \alpha_8 \]

\[\alpha_2, \alpha_5 \leq \gamma_1, \gamma_2 \wedge \gamma_1, \gamma_2 \leq \gamma_3, \gamma_4 \wedge \gamma_3 \leq \alpha_7 \wedge \gamma_4 \leq \alpha_8 \]

\[\beta_1 \approx \beta_2 \approx \beta_3 \approx \beta_4 \]
Example: reducing two chains

\[
\langle \alpha = \alpha_2 \rightarrow \alpha_3 \rangle
\]

\[
\langle \alpha_3 = \alpha_5 \rightarrow \alpha_6 \rangle
\]

\[
\langle \alpha_6 = \alpha_7 \times \alpha_8 \rangle
\]

\[
\langle \gamma_1 = \text{num} \beta_1 \rangle \approx \langle \gamma_2 = \text{num} \beta_2 \rangle \approx \langle \gamma_3 = \alpha_7 = \text{num} \beta_3 \rangle \approx \langle \gamma_4 = \alpha_8 = \text{num} \beta_4 \rangle \approx \langle \alpha_2 \rangle \approx \langle \alpha_5 \rangle
\]

\[
\alpha_2, \alpha_5 \leq \gamma_1, \gamma_2 \wedge \gamma_1, \gamma_2 \leq \gamma_3, \gamma_4
\]

\[
\beta_1 \approx \beta_2 \approx \beta_3 \approx \beta_4
\]
Simplifying constraints

Example: expanding variables

\[
\langle \alpha = \alpha_2 \rightarrow \alpha_3 \rangle
\]

\[
\langle \alpha_3 = \alpha_5 \rightarrow \alpha_6 \rangle
\]

\[
\langle \alpha_6 = \alpha_7 \times \alpha_8 \rangle
\]

\[
\langle \gamma_1 = \text{num} \beta_1 \rangle \approx \langle \gamma_2 = \text{num} \beta_2 \rangle \approx \langle \gamma_3 = \alpha_7 = \text{num} \beta_3 \rangle \approx \langle \gamma_4 = \alpha_8 = \text{num} \beta_4 \rangle \approx \langle \alpha_2 = \text{num} \beta_5 \rangle \approx \langle \alpha_5 = \text{num} \beta_6 \rangle
\]

\[
\alpha_2, \alpha_5 \leq \gamma_1, \gamma_2 \land \gamma_1, \gamma_2 \leq \gamma_3, \gamma_4
\]

\[
\beta_1 \approx \beta_2 \approx \beta_3 \approx \beta_4 \approx \beta_5 \approx \beta_6
\]
Example: decomposing inequalities

\[
\begin{align*}
\langle \alpha = \alpha_2 \rightarrow \alpha_3 \rangle &= \\
\langle \alpha_3 = \alpha_5 \rightarrow \alpha_6 \rangle &= \\
\langle \alpha_6 = \alpha_7 \times \alpha_8 \rangle &= \\
\langle \gamma_1 \geq \text{num} \beta_1 \rangle \approx \langle \gamma_2 \geq \text{num} \beta_2 \rangle \approx \langle \gamma_3 = \alpha_7 = \text{num} \beta_3 \rangle \approx \langle \gamma_4 = \alpha_8 = \text{num} \beta_4 \rangle \approx \langle \alpha_2 = \text{num} \beta_5 \rangle \approx \langle \alpha_5 = \text{num} \beta_6 \rangle \approx \alpha_2, \alpha_3 \leq \gamma_1, \gamma_2 \land \gamma_1, \gamma_2 \leq \gamma_3, \gamma_4
\end{align*}
\]

\[
\begin{align*}
\beta_1 &\approx \beta_2 \approx \beta_3 \approx \beta_4 \approx \beta_5 \approx \beta_6 \\
\beta_5, \beta_6 &\leq \gamma_1, \gamma_2 \land \gamma_1, \gamma_2 \leq \beta_3, \beta_4
\end{align*}
\]
Summary of expansion

- On this example, expansion introduces only 2 variables.
- In the absence of simplification, they would have been 25.
- It remains to simplify the atomic graph.
Example: polarised closure

[Fuh & Mishra (1989)]

Polarised closure removes non-polar variables in the atomic graph, and keeps only paths from negative variables to positive ones.
Simplifying constraints

Example: minimisation

Two negative variables with the same successors are equivalent to two positive variables with the same predecessors.

\[\beta_6 \rightarrow \beta_4 \]
\[\beta_5 \rightarrow \beta_3 \]

Minimisation:
\[\beta_6 = \beta_5 \rightarrow \beta_4 = \beta_3 \]

Chain reduction:
\[\beta_6 = \beta_4 = \beta_3 \]
Example: final result

\[
\langle \alpha = \alpha_2 \rightarrow \alpha_3 \rangle
\]

\[
\langle \alpha_3 = \alpha_5 \rightarrow \alpha_6 \rangle
\]

\[
\forall \alpha . [\exists \cdots . \alpha]
\]

\[
\forall \alpha [\exists \beta_5 . (\alpha = \text{num } \beta_5 \rightarrow \text{num } \beta_5 \rightarrow \text{num } \beta_5 \times \text{num } \beta_5)] . \alpha
\]

\[
\forall \beta_5 . \text{num } \beta_5 \rightarrow \text{num } \beta_5 \rightarrow \text{num } \beta_5 \times \text{num } \beta_5
\]

\[
\langle \alpha_2 = \alpha_5 = \alpha_7 = \alpha_8 = \text{num } \beta_5 \rangle
\]

\[
\langle \beta_5 = \beta_6 = \beta_3 = \beta_4 \rangle
\]
Implementation
The Dalton Library

- The Dalton Library is a real-size implementation in Objective Caml of these algorithms.
 - http://cristal.inria.fr/~simonet/soft/dalton/

- It comes as a functor parametrized by a series of modules describing the client's type system.

- It has been used within the Flow Caml System, an information flow analyzer for the Caml Language.
 - http://cristal.inria.fr/~simonet/soft/flowcaml/
Experimental results

<table>
<thead>
<tr>
<th></th>
<th>Typing the code of Caml Light library</th>
<th>Typing the code of an ML compiler</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.s.t. nodes</td>
<td>14002</td>
<td>22996</td>
</tr>
<tr>
<td>Unification solver</td>
<td>0.346 s</td>
<td>0.954 s</td>
</tr>
<tr>
<td>Structural subtyping solver</td>
<td>0.966 s</td>
<td>2.213 s</td>
</tr>
<tr>
<td>/</td>
<td>2.79</td>
<td>2.31</td>
</tr>
</tbody>
</table>
Conclusion

- An efficient implementation type inference engine for structural subtyping

- whose correctness is proved.