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Abstract

We show basic facts about dp-minimal ordered structures. The main
results are: dp-minimal groups are abelian-by-finite-exponent, in a divis-
ible ordered dp-minimal group, any infinite set has non-empty interior,
and any theory of pure tree is dp-minimal.

Introduction

One of the latest topics of interest in pure model theory is the study of depen-
dent, or NIP , theories. The abstract general study was initiated by Shelah
in [14], and pursued by him in [15], [13] and [12]. One of the questions he
addresses is the definition of super-dependent as an analog of superstable for
stable theories. Although, as he writes, he has not completely succeeded, the
notion he defines of strong dependence seems promising. In [13] it is studied in
detail and in particular, ranks are defined. Those so-called dp-ranks are used to
prove existence of an indiscernible sub-sequence in any long enough sequence.
Roughly speaking, a theory is strongly dependent if no type can fork infinitely
many times, each forking being independent from the previous one. (Stated
this way, it is naturally a definition of “strong NTP2”). Also defined in that
paper are notions of minimality, corresponding to the ranks being equal to 1 on
1-types. In [7], Onshuus and Usvyatsov extract from this material the notion
of dp-minimality which seems to be the relevant one. A dp-minimal theory
is a theory where there cannot be two independent witnesses of forking for a
1-type. It is shown in that paper that a stable theory is dp-minimal if and
only if every 1-type has weight 1. In general, unstable, theories, one can link
dp-minimality to burden as defined by H. Adler ([1]).

Dp-minimality on ordered structures can be viewed as a generalization of
weak o-minimality. In that context, there are two main questions to address:
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what do definable sets in dimension 1 look like, (i.e. how far is the theory
from being o-minimal), and what theorems about o-minimality go through. J.
Goodrick has started to study those questions in [5], focussing on groups. He
proves that definable functions are piecewise locally monotonous extending a
similar result from weak-o-minimality.

In the first section of this paper, we recall the definitions and give equivalent
formulations. In the second section, we make a few observations on general lin-
early ordered inp-minimal theories showing in particular that, in dimension 1,
forking is controlled by the ordering. The lack of a cell-decomposition theorem
makes it unclear how to generalize results to higher dimensions.

In section 3, we study dp-minimal groups and show that they are abelian-
by-finite-exponent. The linearly ordered ones are abelian. We prove also that
an infinite definable set in a dp-minimal ordered divisible group has non-empty
interior, solving a conjecture of A. Dolich.

Finally, in section 4, we give examples of dp-minimal theories. We prove
that colored linear orders, orders of finite width and trees are dp-minimal.

I would like to thank John Goodrick and Alf Dolich for introducing me to
some of the questions addressed in this paper. I also wish to thank Elisabeth
Bouscaren and the referee for their thorough reading of the paper and for
suggesting various improvements.

1 Preliminaries on dp-minimality

Definition 1.1. (Shelah) An independence (or inp-) pattern of length κ is a
sequence of pairs (φα(x, y), kα)α<κ of formulas such that there exists an array
〈aαi : α < κ, i < λ〉 for some λ ≥ ω such that:

• Rows are kα-inconsistent: for each α < κ, the set {φα(x, aαi ) : i < λ} is
kα-inconsistent,

• paths are consistent: for all η ∈ λκ, the set {φα(x, aαη(α)) : α < κ} is
consistent.

Definition 1.2. • (Goodrick) A theory is inp-minimal if there is no inp-
pattern of length two in a single free variable x.
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• (Onshuus and Usvyatsov) A theory is dp-minimal if it is NIP and inp-
minimal.

A theory is NTP2 if there is no inp-pattern of size ω for which the formulas
φα(x, y) in the definition above are all equal to some φ(x, y). It is proven in
[2] that a theory is NTP2 if this holds for formulas φ(x, y) where x is a single
variable. As a consequence, any inp-minimal theory is NTP2.

We now give equivalent definitions (all the ideas are from [13], we merely
adapt the proofs there from the general NIP context to the dp-minimal one).

Definition 1.3. Two sequences (ai)i∈I and (bj)j∈J are mutually indiscernible
if each one is indiscernible over the other.

Lemma 1.4. Consider the following statements:

1. T is inp-minimal.

2. For any two mutually indiscernible sequences A = (ai : i < ω), B =
(bj : j < ω) and any point c, one of the sequences (tp(ai/c) : i < ω),
(tp(bi/c) : i < ω) is constant.

3. Same as above, but change the conclusion to: one the sequences A or B
stays indiscernible over c.

4. For any indiscernible sequence A = (ai : i ∈ I) indexed by a dense linear
order I, and any point c, there is i0 in the completion of I such that the
two sequences (tp(ai/c) : i < i0) and (tp(ai/c) : i > i0) are constant.

5. Same as above, but change the conclusion to: the two sequences (ai : i <
i0) and (ai : i > i0) are indiscernible over c.

6. T is dp-minimal.

Then for any theory T , (2), (3), (4), (5), (6) are equivalent and imply (1). If
T is NIP , then they are all equivalent.

Proof. (2) ⇒ (1): In the definition of independence pattern, one may assume
that the rows are mutually indiscernible. This is enough.

(2) ⇒ (3): Assume A = 〈ai : i < ω〉, B = 〈bi : i < ω〉 and c are a witness
to ¬(3). Then there are two tuples (i1 < ... < in), (j1 < ... < jn) and a
formula φ(x; y1, ..., yn) such that |= φ(c; ai1 , ..., ain) ∧ ¬φ(c; aj1 , ..., ajn). Take
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an α < ω greater than all the ik and the jk. Then, exchanging the ik and jk
if necessary, we may assume that |= φ(c; ai1 , ..., ain) ∧ ¬φ(c; an.α, ..., an.α+n−1).
Define A′ = 〈(ai1 , ..., ain)〉ˆ 〈(an.k, ..., an.k+n−1) : k ≥ α〉. Construct the same
way a sequence B′. Then A′, B′, c give a witness of ¬(2).

(3) ⇒ (2): Obvious.
(3) ⇒ (5): Let A = 〈ai : i ∈ I〉 be indiscernible and let c be a point. Then

assuming (3) holds, for every i0 in the completion of I, one of the two sequences
A<i0 = 〈ai : i < i0〉 and A>i0 = 〈ai : i > i0〉 must be indiscernible over c. Take
any such i0 such that both sequences are infinite, and assume for example that
A>i0 is indiscernible over c. Let j0 = inf{i ≤ i0 : A>i is indiscernible over c }.
Then A>j0 is indiscernible over c. If there are no elements in I smaller than
j0, we are done. Otherwise, if A<j0 is not indiscernible over c, then one can
find j1 < j0 such that again A<j1 is not indiscernible over c. By definition of
j0, A>j1 is not indiscernible over c either. This contradicts (3).

(5) ⇒ (4): Obvious.
(4) ⇒ (2): Assume ¬(2). Then one can find a witness of it consisting of

two indiscernible sequences A = 〈ai : i ∈ I〉, B = 〈bi : i ∈ I〉 indexed by a
dense linear order I and a point c.

Now, we can find an i0 in the completion of I such that for any i1 < i0 < i2
in I, there are i, i′, i1 < i < i0 < i′ < i2 such that tp(ai/c) 6= tp(ai′/c).
Find a similar point j0 for the sequence B. Renumbering the sequences if
necessary, we may assume that i0 6= j0. Then the indiscernible sequence of
pairs 〈(ai, bi) : i ∈ I〉 gives a witness of ¬ (4).

(6)⇒ (2): Let A, B, c be a witness of ¬(2). Assume for example that there
is φ(x, y) such that |= φ(c, a0)∧¬φ(c, a1). Then set A′ = 〈(a2k, a2k+1) : k < ω〉
and φ′(x; y1, y2) = φ(x; y1)∧¬φ(x; y2). Then byNIP , the set {φ′(x, ȳ) : ȳ ∈ A′}
is k-inconsistent for some k. Doing the same construction with B we see that
we get an independence pattern of length 2.

(5) ⇒ (6): Statement (5) clearly implies NIP (because IP is always wit-
nessed by a formula φ(x, y) with x a single variable). We have already seen
that it implies inp-minimality.

Standard examples of dp-minimal theories include:

• O-minimal or weakly o-minimal theories (recall that a theory is weakly-
o-minimal if every definable set in dimension 1 is a finite union of convex
sets),

• C-minimal theories,
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• Th(Z,+,≤),

• The theory of the p-adics.

We refer the reader to [4] for more details and some proofs.
More examples are given in section 4 of this paper.

2 Inp-minimal ordered structures

Little study has been made yet on general dp-minimal ordered structures. We
believe however that there are results to be found already at that general level.
In fact, we prove here a few lemmas that turn out to be useful for the study
of groups.

We show that, in some sense, forking in dimension 1 is controlled by the
order.

We consider (M,<) an inp-minimal linearly ordered structure with no first
nor last element. We denote by T its theory, and let M be a monster model of
T .

Lemma 2.1. Let X = Xā be a definable subset of M, cofinal in M. Then X
is non-forking (over ∅).

Proof. If Xā divides over ∅, there exists an indiscernible sequence (āi)i<ω, ā0 =
ā, witnessing this. Every Xāi is cofinal in M. Now pick by induction intervals
Ik, k < ω, with Ik < Ik+1 containing a point in each Xāi . We obtain an
inp-pattern of length 2 by considering x ∈ Xāi and x ∈ Ik.

If Xā forks over ∅, it implies a disjunction of formulas that divide, but one
of these formulas must be cofinal: a contradiction.

A few variations are possible here. For example, we assumed that X was
cofinal in the whole structure M, but the proof also works if X is cofinal in
a ∅-definable set Y , or even contains an ∅-definable point in its closure. This
leads to the following results.

For X a definable set, let Conv(X) denote the convex hull of X. It is again
a definable set.

Porism 2.2. Let X be a definable set of M (in dimension 1). Assume Conv(X)
is A definable. Then X is non-forking over A.

5



Porism 2.3. Let M ≺ N and let p be a complete 1-type over N . If the cut of
p over N is of the form +∞, −∞, a+ or a− for a ∈M , then p is non-forking
over M .

Proposition 2.5 generalizes this.

Lemma 2.4. Let X be an A-definable subset of M. Assume that X divides
over some model M , then:

1. We cannot find (ai)i<ω in M and points (xi)i<ω in X(M) such that a0 <
x0 < a1 < x1 < a2 < ....

2. The set X can be written as a finite disjoint union X =
⋃
Xi where the

Xi are definable over M ∪ A, and each Conv(Xi) contains no M-point.

Proof. Easy; (2) follows from (1).

Proposition 2.5. Let A ⊂ M , with M , |A|+-saturated, and let p ∈ S1(M).
The following are equivalent:

1. The type p forks over A,

2. There exist a, b ∈M such that p ` a < x < b, and a and b have the same
type over A,

3. There exist a, b ∈M such that p ` a < x < b, and the interval Ia,b = {x :
a < x < b} divides over A.

Proof. (3) ⇒ (1) is trivial.

For (2) ⇒ (3), it is enough to show that if a ≡A b, then Ia,b divides over A.
Let σ be an A-automorphism sending a to b. Then the tuple (b = σ(a), σ(b))
has the same type as (a, b), and a < b < σ(b). By iterating, we obtain a
sequence a1 < a2 < ... such that (ak, ak+1) has the same type over A as (a, b).
Now the sets Ia2k,a2k+1

are pairwise disjoint and all have the same type over A.
Therefore each of them divides over M .

We now prove (1) ⇒ (2)
Assume that (2) fails for p. Let Xā be an M -definable set such that p ` Xā.

Let ā0 = a, ā1, ā2, ... be an A-indiscernible sequence. Note that the cut of p
is invariant under all A-automorphisms. Therefore each of the Xāi contains a
type with the same cut over M as p. Now do a similar reasoning as in Lemma
2.1.
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Corollary 2.6. Forking equals dividing: for any A ⊂ B, any p ∈ S(B), p
forks over A if and only if p divides over A.

Proof. By results of Chernikov and Kaplan ([3]), it is enough to prove that no
type forks over its base. And it suffices to prove this for one-types (because of
the general fact that if tp(a/B) does not fork over A and tp(b/Ba) does not
fork over Aa, then tp(a, b/B) does not fork over A).

Assume p ∈ S1(A) forks over A. Then by the previous proposition, p implies
a finite disjunction of intervals

⋃
i<n(ai, bi) with ai ≡A bi. Assume n is minimal.

Without loss, assume a0 < a1 < .... Now, as a0 ≡A b0 we can find points a′i, b
′
i,

with (ai, bi) ≡A (a′i, b
′
i) and a′0 = b0.

Then p proves
⋃
i<n(a′i, b

′
i). But the interval (a0, b0) is disjoint from that

union, so p proves
⋃

0<i<n(ai, bi), contradicting the minimality of n.

Note that this does not hold without the assumption that the structure is
linearly ordered. In fact the standard example of the circle with a predicate
C(x, y, z) saying that y is between x and z (see for example [17], 2.2.4.) is
dp-minimal.

Lemma 2.7. Let E be a definable equivalence relation on M , we consider the
imaginary sort S = M/E. Then there is on S a definable equivalence relation
∼ with finite classes such that there is a definable linear order on S/ ∼.

Proof. Define a partial order on S by a/E ≺ b/E if inf({x : xEa}) < inf({x :
xEb}). Let ∼ be the equivalence relation on S defined by x ∼ y if ¬(x ≺
y∨y ≺ x). Then ≺ defines a linear order on S/ ∼. The proof that ∼ has finite
classes is another variation on the proof of 2.1.

From now until the end of this section, we also assume NIP .
Recall that in an NIP theory, if a type p splits over a model M , then it

forks over M . In other words, if a, a′ have the same type over M , then the
formula φ(x, a)4φ(x, a′) forks over M . (Note that the converse: “if p forks
over M , then it splits over M” is true in any theory.)

Lemma 2.8. (NIP ). Let p ∈ S1(M) be a type inducing an M-definable cut,
then p is definable over M .

Proof. We know that p does not fork over M , so by NIP , p does not split over
M . Let M1 be an |M |+-saturated model containing M . Then the restriction
of p to M1 has a unique M -invariant extension. Therefore by NIP , it has a
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unique global extension that does not fork over M . This in turn implies by
2.5 that p|M1 has a unique global extension inducing the same cut as p, in
particular it has a unique heir.

Therefore p is definable, and being M -invariant, p is definable over M .

The next lemma states that members of a uniformly definable family of sets
define only finitely many “germs at +∞”.

Lemma 2.9. (NIP ). Let φ(x, y) be a formula with parameters in some model
M0, x a single variable. Then there are b1, ..., bn such that for every b, there is
α ∈M and k such that the sets φ(x, b)∧ x > α and φ(x, bk)∧ x > α are equal.

Proof. Let E be the equivalence relation defined on tuples by bEb′ iff (∃α)(x >
α → (φ(x, b) ↔ φ(x, b′))). Let b, b′ having the same type over M0. By NIP ,
the formula φ(x, b)4φ(x, b′) forks over M0. By Lemma 2.1, this formula cannot
be cofinal, so b and b′ are E-equivalent. This proves that E has finitely many
classes.

If the order is dense, then this analysis can be done also locally around a
point a with the same proof:

Lemma 2.10. (NIP + dense order). Let φ(x, y) be a formula with parameters
in some model M0, x a single variable. Then there exists n such that: For any
point a, there are b1, ..., bn such that for all b, there is α < a < β and k such
that the sets φ(x, b) ∧ α < x < β and φ(x, bk) ∧ α < x < β are equal.

3 Dp-minimal groups

We study inp-minimal groups. Note that by an example of Simonetta, ([16]),
not all such groups are abelian-by-finite. It is proven in [6] that C-minimal
groups are abelian-by-torsion. We generalize the statement here to all inp-
minimal theories.

Proposition 3.1. Let G be an inp-minimal group. Then there is a definable
normal abelian subgroup H such that G/H is of finite exponent.

Proof. Let A,B be two definable subgroups of G. If a ∈ A and b ∈ B, then
there is n > 0 such that either an ∈ B or bn ∈ A. To see this, assume an /∈ B
and bn /∈ A for all n > 0. Then, for n 6= m, the cosets amB and anB are
distinct, as are A.bm and A.bn. Now we obtain an independence pattern of
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length two by considering the sequences of formulas φk(x) = “x ∈ akB” and
ψk(x) = “x ∈ A.bk”.

For x ∈ G, let C(x) be the centralizer of x. By compactness, there is k
such that for x, y ∈ G, for some k′ ≤ k, either xk

′ ∈ C(y) or yk
′ ∈ C(x). In

particular, letting n = k!, xn and yn commute.
Let H = C(C(Gn)), the bicommutant of the nth powers of G. It is an

abelian definable subgroup of G and for all x ∈ G, xn ∈ H. Finally, if H
contains all n powers then it is also the case of all conjugates of H, so replacing
H by the intersection of its conjugates, we obtain what we want.

Now we work with ordered groups.
Note that in such a group, the convex hull of a subgroup is again a subgroup.

Lemma 3.2. Let G be an inp-minimal ordered group. Let H be a definable
subgroup of G and let C be the convex hull of H. Then H is of finite index in
C.

Proof. We may assume that H and C are ∅-definable. So without loss, assume
C = G.

If H is not of finite index, there is a coset of H that forks over ∅. All cosets
of H are cofinal in G. This contradicts Lemma 2.1.

Proposition 3.3. Let G be an inp-minimal ordered group, then G is abelian.

Proof. Note that if a, b ∈ G are such that an = bn, then a = b, for if for example
0 < a < b, then an < an−1b < an−2b2 < ... < bn.

For x ∈ G, let C(x) be the centralizer of x. We let also D(x) be the convex
hull of C(x). By 3.2, C(x) is of finite index in D(x). Now take x ∈ G and
y ∈ D(x). Then xy is in D(x), so there is n such that (xy)n ∈ C(x). Therefore
(yx)n = x−1(xy)nx = (xy)n. So xy = yx and y ∈ C(x). Thus C(x) = D(x) is
convex.

Now if 0 < x < y ∈ G, then C(y) is a convex subgroup containing y, so it
contains x, and x and y commute.

This answers a question of Goodrick ([5] 1.1).

Now, we assume NIP , so G is a dp-minimal ordered group. We denote by
G+ the set of positive elements of G.

Let φ(x) be a definable set (with parameters). For α ∈ G, define Xα =
{g ∈ G+ : (∀x > α)(φ(x)↔ φ(x+ g))}. Let Hα be equal to Xα ∪ −Xα ∪ {0}.
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Then Hα is a definable subgroup of G and if α < β, Hα is contained in Hβ.
Finally, let H be the union of the Hα for α ∈ G, it is the subgroup of eventual
periods of φ(x).

Now apply Lemma 2.9 to the formula ψ(x, y) = φ(x− y). It gives n points
b1, ..., bn such that for all b ∈ G, there is k such that b−bk is in H. This implies
that H has finite index in G.

If furthermore G is densely ordered, then we can do the same analysis lo-
cally. This yields a proof of a conjecture of A. Dolich: in a dp-minimal divisible
ordered group, any infinite set has non empty interior. As a consequence, a
dp-minimal divisible definably complete ordered group is o-minimal.

We will make use of two lemmas from [5] that we recall here for convenience.

Lemma 3.4 ([5], 3.3). Let G be a densely ordered inp-minimal group, then
any infinite definable set is dense in some non trivial interval.

In the following lemma, G stands for the completion of G. By a definable
function f into G, we mean a function of the form a 7→ inf φ(a;G) where φ(x; y)
is a definable function. So one can view G as a collection of imaginary sorts
(in which case it naturally contains only definable cuts of G), or understand
f : G→ G simply as a notation.

Lemma 3.5 (special case of [5], 3.19). Let G be a densely ordered group,
f : G → G be a definable partial function such that f(x) > 0 for all x in the
domain of f . Then for every interval I, there is a sub-interval J ⊆ I and ε > 0
such that for x ∈ J ∩ dom(f), |f(x)| ≥ ε.

Theorem 3.6. Let G be a divisible ordered dp-minimal group. Let X be an
infinite definable set, then X has non-empty interior.

Proof. As before, Ia,b denotes the open interval a < x < b, and τb is the
translation by −b.

Let φ(x) be a formula defining X.
By Lemma 3.4, there is an interval I such that X is dense in I. By Lemma

2.10 applied to ψ(x; y) = φ(y + x) at 0, there are b1, ..., bn ∈ M such that for
all b ∈M , there is α > 0 and k such that |x| < α→ (φ(b+ x)↔ φ(bk + x)).

Taking a smaller I and X, if necessary, assume that for all b ∈ I ∩X, we
may take k = 1.

Define f : x 7→ sup{y : I−y,y ∩ τb1X = I−y,y ∩ τxX}, it is a function into M ,
the completion of M . By Lemma 3.5, there is J ⊂ I such that, for all b ∈ J ,
we have |f(b)| ≥ ε.
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Fix ν < ε
2

and b ∈ J such that Ib−2ε,b+2ε ⊆ J (taking smaller ε if necessary).
Set L = Ib−ν,b+ν and Z = L ∩ X. Assume for simplicity b = 0. Easily, if
g1, g2 ∈ Z, then g1 + g2 ∈ Z ∪ (G \ L) and −g1 ∈ Z (because the two points 0
and g1 in Z have isomorphic neighborhoods of size ε). So Z is a group interval:
it is the intersection with Ib−ν,b+ν of some subgroup H of G. Now if x, y ∈ L
satisfy that there is α > 0 such that I−α,α ∩ τxX = I−α,α ∩ τyX, then x ≡ y
modulo H. It follows that points of L lie in finitely many cosets modulo H.
Assume Z is not convex, and take g ∈ L \ Z. Then for each n ∈ N, the
point g/n is in L and the points g/n define infinitely many different cosets; a
contradiction.

Therefore Z is convex and X contains a non trivial interval.

Corollary 3.7. Let G be a dp-minimal ordered group. Assume G is divisible
and definably complete, then G is o-minimal.

Proof. Let X be a definable subset of G. By 3.6, the (topological) border Y
of X is finite.

Let a ∈ X, then the largest convex set in X containing a is definable. By
definable completeness, it is an interval and its end-points must lie in Y . As
Y is finite, X is a finite union of (closed or open) intervals.

4 Examples of dp-minimal theories

We give examples of dp-minimal theories, namely: linear orders, order of finite
width and trees.

We first look at linear orders. We consider structures of the form (M,≤
, Ci, Rj) where ≤ defines a linear order on M , the Ci are unary predicates
(“colors”), the Rj are binary monotone relations (that is x1 ≤ xRjy ≤ y1

implies x1Rjy1).
The following is a (weak) generalization of Rubin’s theorem on linear orders

(see [10], or [9]).

Proposition 4.1. Let (M,≤, Ci, Rj) be a colored linear order with monotone
relations. Assume that all ∅-definable sets in dimension 1 are coded by a color
and all monotone ∅-definable binary relations are represented by one of the Rj.
Then the structure eliminates quantifiers.

Proof. The result is obvious if M is finite, so we may assume (for convenience)
that this is not the case.
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We prove the theorem by back-and-forth. Assume that M is ω-saturated
and take two tuples x̄ = (x1, ..., xn) and ȳ = (y1, ..., yn) from M having the
same quantifier free type.

Take x0 ∈ M ; we look for a corresponding y0. Notice that ≤ is itself a
monotone relation, a finite boolean combinations of colors is again a color, a
positive combination of monotone relations is again a monotone relation, and
if xRy is monotone φ(x, y) = ¬yRx is monotone. By compactness, it is enough
to find a y0 satisfying some finite part of the quantifier-free type of x0; that is,
we are given

• One color C such that M |= C(x0),

• For each k, monotone relations Rk and Sk such that M |= x0Rkxk ∧
xkSkx0.

Define Uk(x) = {t : tRkxk} and Vk(x) = {t : xSkt}. The Uk(x) are initial
segments of M and the Vk(x) final segments. For each k, k′, either Uk(xk) ⊆
Uk′(xk′) or Uk′(xk′) ⊆ Uk(xk). Assume for example Uk(xk) ⊆ Uk′(xk′), then this
translates into a relation φ(xk, xk′), where φ(x, y) = (∀t)(tRkx→ tRk′y). Now
φ(x, y) is a monotone relation itself. The assumptions on x̄ and ȳ therefore
imply that also Uk(yk) ⊆ Uk′(yk′).

The same remarks hold for the final segments Vk.
Now, we may assume that U1(x1) is minimal in the Uk(xk) and Vl(xl) is

minimal in the Vk(xk). We only need to find a point y0 satisfying C(x) in the
intersection U1(y1) ∩ Vl(yl).

Let ψ(x, y) be the relation (∃t)(C(t) ∧ tR1y ∧ xRlt). This is a monotone
relation. As it holds for (x0, xl), it must also hold for (y0, yl), and we are
done.

The following result was suggested, in the case of pure linear orders, by
John Goodrick.

Proposition 4.2. Let M = (M,≤, Ci, Rj) be a linearly ordered infinite struc-
ture with colors and monotone relations. Then Th(M) is dp-minimal.

Proof. By the previous result, we may assume that T = Th(M) eliminates
quantifiers. Let (xi)i∈I , (yi)i∈I be mutually indiscernible sequences of n-tuples,
and let α ∈M be a point. We want to show that one of the following holds:

• For all i, i′ ∈ I, xi and xi′ have the same type over α, or
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• for all i, i′ ∈ I, yi and yi′ have the same type over α.

Assume that I is dense without end points.
By quantifier elimination, we may assume that n = 1, that is the xi and

yi are points of M . Without loss, the (xi) and (yi) form increasing sequences.
Assume there exists i < j ∈ I and R a monotone definable relation such
that M |= ¬αRxi ∧ αRxj. By monotonicity of R, there is a point iR of the
completion of I such that i < iR → ¬αRxi and i > iR → αRxi.

Assume there is also a monotone relation S and an iS such that i < iS →
¬αSyi and i > iS → αSyi.

For points x, y define I(x, y) as the set of t ∈M such that M |= ¬tRx∧tRy.
This is an interval of M . Furthermore, if i1 < i2 < i3 < i4 are in I, then the
intervals I(xi1 , xi2) and I(xi3 , xi4) are disjoint. Define J(x, y) the same way
using S instead of R.

Take i0 < iR < i1 < i2 < ... and j0 < iS < j1 < j2 < .... For k < ω,
define Ik = I(xi2k , xi2k+1

) and Jk = J(yj2k , yj2k+1
). The two sequences (Ik) and

(Jk) are mutually indiscernible sequences of disjoint intervals. Furthermore,
we have α ∈ I0∩J0. By mutual indiscernibility, Ii∩Jj 6= ∅ for all indices i and
j, which is impossible.

We treated the case when α was to the left of the increasing relations R
and S. The other cases are similar.

An ordered set (M,≤) is of finite width, if there is n such that M has no
antichain of size n.

Corollary 4.3. LetM = (M,≤) be an infinite ordered set of finite width, then
Th(M) is dp-minimal.

Proof. We can define such a structure in a linear order with monotone relations:
see [11]. More precisely, there exists a structure P = (P,≺, Rj) in which ≺
is a linear order and the Rj are monotone relations, and there is a definable
relation O(x, y) such that the structure (P,O) is isomorphic to (M,≤).

The result therefore follows from the previous one.

We now move to trees. A tree is a structure (T,≤) such that ≤ defines
a partial order on T , and for all x ∈ T , the set of points smaller than x is
linearly ordered by ≤. We will also assume that given x, y ∈ T , the set of
points smaller than x and y has a maximal element x ∧ y (and set x ∧ x = x).
This is not actually a restriction, since we could always work in an imaginary
sort to ensure this.
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Given a, b ∈ T , we define the open ball B(a; b) of center a containing b as
the set {x ∈ T : x ∧ b > a}, and the closed ball of center a as {x ∈ T : x ≥ a}.

Notice that two balls are either disjoint or one is included in the other.

Lemma 4.4. Let (T,≤) be a tree, a ∈ T , and let D denote the closed ball of
center a. Let x̄ = (x1, ..., xn) ∈ (T \ D)n and ȳ = (y1, ..., ym) ∈ Dm. Then
tp(x̄/a) ∪ tp(ȳ/a) ` tp(x̄ ∪ ȳ/a).

Proof. A straightforward back-and-forth, noticing that tp(x̄/a) ∪ tp(ȳ/a) `
tpqf (x̄ ∪ ȳ/a) (quantifier-free type).

We now work in the language {≤,∧}, so a sub-structure is a subset closed
under ∧.

Proposition 4.5. Let A = (a0, ..., an), B = (b0, ..., bn) be two sub-structures
from T . Assume:

1. A and B are isomorphic as sub-structures,

2. for all i, j such that ai ≥ aj, tp(ai, aj) = tp(bi, bj).

Then tp(A) = tp(B).

Proof. We do a back-and-forth. Assume T is ω-saturated and A, B satisfy the
hypothesis. We want to add a point a to A. We may assume that A ∪ {a}
forms a sub-structure (otherwise, if some ai ∧ a is not in A∪{a}, add first this
element).

We consider different cases:
1. The point a is below all points of A. Without loss a0 is the minimal

element of A (which exists because A is closed under ∧). Then find a b such
that tp(a0, a) = tp(b0, b). For any index i, we have: tp(ai, a0) = tp(bi, b0) and
tp(a, a0) = tp(b, b0). By Lemma 4.4, tp(ai, a) = tp(bi, b).

2. The point a is greater than some point in A, say a1, and the open ball
a := B(a1; a) contains no point of A.

Let A be the set of all open balls B(a1; ai) for ai > a1. Let n be the
number of balls in A that have the same type p as a. Then tp(a1) proves that
there are at least n + 1 open balls of type p of center a1. Therefore, tp(b1)
proves the same thing. We can therefore find an open ball b of center b1 of
type p that contains no point from B. That ball contains a point b such that
tp(b1, b) = tp(a1, a). Now, if ai is smaller than a1, we have tp(ai, a1) = tp(bi, b1)
and tp(a1, a) = tp(b1, b), therefore by Lemma 4.4, tp(a, ai) = tp(b, bi).
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The fact that we have taken b in a new open ball of center b1 ensures that
B∪{b} is again a sub-structure and that the two structures A∪{a} and B∪{b}
are isomorphic.

3. The point a is between two points of A, say a0 and a1 (a0 < a1), and
there are no points of A between a0 and a1.

Find a point b such that tp(a0, a1, a) = tp(b0, b1, b). Then if i is such that
ai > a, we have ai ≥ a1 and again by Lemma 4.4, tp(ai, a) = tp(bi, b). And
same if ai < a.

Corollary 4.6. Let A ⊂ T be any subset. Then
⋃

(a,b,c)∈A3 tp(a, b, c) ` tp(A).

Proof. Let A0 be the substructure generated by A. By the previous theorem
the following set of formulas implies the type of A0:

• the quantifier-free type of A0,

• the set of 2-types tp(a, b) for (a, b) ∈ A2
0, a ≤ b.

We need to show that those formulas are implied by the set of 3-types of
elements of A. We may assume A is finite.

First, the knowledge of all the 3-types is enough to construct the structure
A0. To see this, start for example with a point a ∈ A maximal. Knowing the
3-types, one knows in what order the b∧ a, b ∈ A are placed. Doing this for all
such a, enables one to reconstruct the tree A0.

Now take m1 = a ∧ b, m2 = c ∧ d for a, b, c, d ∈ A such that m1 ≤ m2. The
points m1 and m2 are both definable using only 3 of the points a, b, c, d, say
a, b, c. Then tp(a, b, c) ` tp(m1,m2).

The previous results are also true, with the same proofs, for colored trees.

It is proven in [8] that theories of trees are NIP . We give a more precise
result.

Proposition 4.7. Let T = (T,≤, Ci) be a colored tree. Then Th(T ) is dp-
minimal.

Proof. We will use criterion (3) of 1.4: if (ai)i∈I and (bj)j∈J are mutually
indiscernible sequences and α ∈ T is a point, then one of the sequences (ai)
and (bj) is indiscernible over α.
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We will always assume that the index sets (I and J) are dense linear orders
without end points.

1) We start by showing the result assuming the ai and bj are points (not
tuples).

We classify the indiscernible sequence (ai) in 4 classes depending on its
quantifier-free type.

I The sequence (ai) is monotonous (increasing or decreasing).

II The ai are pairwise incomparable and ai∧aj is constant equal to some point
β.

If (ai) is in none of those two cases, consider indices i < j < k. Note that it is
not possible that ai ∧ aj < ai ∧ ak, so there are two cases left to consider:

III ai ∧ ak = ai ∧ aj. Then let a′i = ai ∧ aj (this does not depend on j, j > i).
The a′i form an increasing indiscernible sequence.

IV ai∧ak < ai∧aj. Then a′j = ai∧aj is independent of the choice of i (i < j)
and (a′j) is a decreasing indiscernible sequence.

Assume (ai) lands in case I. Consider the set {x : x < α}. If that set
contains a non-trivial subset of the sequence (ai), we say that α cuts the
sequence. If this is not the case, then the sequence (ai) stays indiscernible over
α. To see this, assume for example that (ai) is increasing and that α is greater
than all the ai. Take two sets of indices i1 < ... < in and j1 < ... < jn and a k ∈
I greater than all those indices. Then tp(ai1 , ..., ain/ak) = tp(aj1 , ..., ajn/ak).
Therefore by Lemma 4.4, tp(ai1 , ..., ain/α) = tp(aj1 , ..., ajn/α).

In case II, note that if (ai) is not α-indiscernible, then there is i ∈ I such
that α lies in the open ball B(β; ai) (we will also say that α cuts the sequence
(ai)). This follows easily from Proposition 4.5.

In the last two cases, if (ai) is α-indiscernible, then it is also the case for
(a′i). Conversely, if (a′i) is α-indiscernible, then α does not cut the sequence
(a′i). From 4.5, it follows easily that (ai) is also α-indiscernible. We can there-
fore replace the sequence (ai) by (a′i) which belongs to case I.

Going back to the initial data, we may assume that (ai) and (bj) are in case
I or II. It is then straightforward to check that α cannot cut both sequences.
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For example, assume (ai) is increasing and (bj) is in case II. Then define β as
bi ∧ bj (any i, j). If α cuts (bj), then α > β. But (ai) is β-indiscernible. So
β does not cut (ai). The only possibility for α to cut (ai) is that β is smaller
that all the ai and the ai lie in the same open ball of center β as α. But then
the ai lie in the same open ball of center β as one of the bj. This contradicts
mutual indiscernability.

2) Reduction to the previous case. We show that if (ai)i∈I is an indiscernible
sequence of n-tuples and α ∈ T such that (ai) is not α-indiscernible, then there
is an indiscernible sequence (di)i∈I of points of T in dcl((ai)) such that (di) is
not α-indiscernible.

First, by 4.6, we may assume that n = 2. Write ai = (bi, ci) and define
mi = bi ∧ ci. We again study different cases:

1. The mi are all equal to some m.
As (ai) is not α-indiscernible, necessarily, α > m and the ball B(m;α) contains
one bi (resp. ci). Then take di = bi (resp. di = ci) for all i.

2. The mi are linearly ordered by < and no bi nor ci is greater than all the
mi.
Then the ballsB(mi; bi) andB(mi; ci) contain no other point from (bi, ci,mi)i∈I .
Then, α must cut the sequence (mi) and one can take di = mi for all i.

3. The mi are linearly ordered by < and, say, each bi is greater than all the
mi.
Then each ball B(mi; ai) contains no other point from (bi, ci,mi)i∈I . If α cuts
the sequence mi, than again one can take di = mi. Otherwise, take a point γ
larger than all the mi but smaller than all the di. Applying 4.4 with a there
replaced by γ, we see that (bi) cannot be α-indiscernible. Then take di = bi
for all i.

4. The mi are pairwise incomparable.
The the sequence (mi) lies in case II, III or IV. The open balls B(mi; bi) and
B(mi; ci) cannot contain any other point from (bi, ci,mi)i∈I . Considering the
different cases, one sees easily that taking di = mi will work.

This finishes the proof.
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[10] Matatyahu Rubin. Theories of linear order. Israel Journal of Mathematics,
17(4):392–443, 1974.

[11] James H. Schmerl. Partially ordered sets and the independence property.
Journal of Symbolic Logic, 54(2), 1989.

[12] Saharon Shelah. Dependent theories and the generic pair conjecture. 900.

[13] Saharon Shelah. Strongly dependent theories. 863.

[14] Saharon Shelah. Classification theory for elementary classes with the
dependence property - a modest beginning. Scientiae Math Japonicae,
59(2):263–316, 2004.

[15] Saharon Shelah. Dependent first order theories, continued. Israel Journal
of Mathematics, 173, 2009.

[16] Patrick Simonetta. An example of a c-minimal group which is not
abelian-by-finite. Proceedings of the American Mathematical Society,
131(12):3913–3917, 2003.

18



[17] Frank O. Wagner. Simple theories. Mathematics and Its Applications,
503. Kluwer Academic Publishers, 2000.

19


