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Introduction

Ce travail est une contribution à la théorie des modèles pures. La théorie des modèles
est une branche de la logique mathématique dont l’objet est l’étude des structures à
travers leurs algèbres de Boole des ensembles définissables. Une structure est la donnée
d’un ensembleM et d’une collection Σ de relations surM, c’est-à-dire de sous-ensembles
de différentes puissances cartésiennes de M. On suppose que Σ contient le graphe de
l’égalité. Un ensemble définissable est un élément de

⋃
k<ω P(Mk) obtenu en effectuant

un nombre fini de combinaisons booléennes, projections, produits et permutations de
coordonnées, à partir des relations de Σ.

Ce domaine se décompose traditionnellement en théorie des modèles pures (étude des
propriétés combinatoires de la classe des ensembles définissables) et théorie des modèles
appliquée (étude des structures particulières, venant de l’algèbre ou de la géométrie). Les
deux parties se nourrissent fortement l’une de l’autre : l’étude de structures classiques
motive le développement d’une théorie abstraite qui est ensuite appliquée en retour à
des cas concrets. Les applications principales se trouvent en géométrie algébrique, en
arithmétique et en géométrie réelle.

0.0.1 Historique et aperçu du sujet

Stabilité

On situe habituellement la naissance de la théorie des modèles pure moderne en 1965
avec le théorème de Morley.

Théorème 0.0.1 (Morley, [42]). Soit T une théorie du premier ordre dans un langage
dénombrable. Supposons que pour un cardinal κ > ℵ0, T admette, à isomorphisme près,
un unique modèle de cardinalité κ, alors ceci est vrai pour tout cardinal κ > ℵ0.

Ce résultat a été le point de départ d’un travail colossal mené par Saharon Shelah,
essentiellement dans les années 70 et 80. Shelah s’est posé le problème suivant : étant
donnée une théorie complète T , sous quelles conditions les modèles de T sont-ils classi-
fiables, à isomorphismes près, par une collection d’invariants cardinaux ? Par exemple,
un corps algébriquement clos de caractéristique nulle est entièrement déterminé par son
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degré de transcendance, un Q-espace vectoriel par sa dimension. À l’inverse, il n’existe
pas de collection raisonnable de cardinaux qui permette de caractériser un ordre linéaire
à isomorphisme près. Shelah a mis successivement en évidence un certain nombre de
propriétés qui doivent être satisfaites par une théorie classifiable. Lorsque toutes ces
propriétés sont vérifiées par une théorie T donnée, on peut montrer que les modèles de
T sont construits autour d’un squelette ayant la forme d’un arbre, un peu de la même
manière qu’un espace vectoriel est construit autour d’une de ses bases. Les squelettes
possibles sont aisément classifiables, ce qui permet de répondre à la question initiale.

La première de ces propriétés mise en évidence est la plus fondamentale. Il s’agit de
la stabilité.

Définition 0.0.1. Soit M une structure. Une formule φ(x̄, ȳ) est stable (dans M) s’il
existe un entier N pour lequel il n’existe pas d’uplets x̄1, ..., x̄N, ȳ1, ..., ȳN ∈M tels qu’on
ait :

φ(x̄i, ȳj) ⇐⇒ i ≤ j.

La structure M est stable si toutes les formules y sont stables. Une théorie T est
stable si tous ses modèles sont stables.

Une structure infinie qui admet un ordre définissable est instable, puisqu’il suffit de
prendre pour φ(x̄, ȳ) la formule définissant l’ordre, mais la réciproque est fausse. Plus
précisément, Shelah a montré l’alternative suivante : Si T est une théorie instable, alors
soit T admet un ordre partiel définissable avec des chaînes infinies, soit une formule
φ(x̄, ȳ) a la propriété d’indépendance, telle que définie ci-dessous.

Définition 0.0.2. Soit M une structure. Une formule φ(x̄, ȳ) a la propriété d’indépen-
dance (dans M) si pour tout entier N, il existe des uplets x̄0, ..., x̄N−1 et (ȳj : j ∈ P(N))
d’éléments de M tels qu’on ait :

φ(x̄i, ȳj) ⇐⇒ i ∈ j.

Nous reviendrons plus tard sur cette dernière définition, qui est centrale dans ce
travail.

Deux propriétés importantes font la force des théories stables : la définissabilité des
types et l’existence d’une bonne notion d’indépendance.

La définissabilité des types est le phénomène suivant : prenons M une structure
et M ≺ N une extension élémentaire. Soit ā ∈ N un uplet et φ(x̄, ȳ) une formule.
Considérons l’ensemble φ(M, ā) := {x̄ ∈ M : N |= φ(x̄, ā)}. Cet ensemble est donc la
trace sur M d’un ensemble définissable de N et n’est pas en général définissable dans
M. On dit que le type de ā sur M est définissable si, pour toute telle formule φ(x̄, ȳ),
l’ensemble φ(M, ā) est un ensemble définissable de M. On peut montrer qu’une théorie
T est stable si et seulement si tous les types sur tous ses modèles sont définissables.

La deuxième propriété est plus difficile à énoncer précisément. Considérons K un
corps algébriquement clos et C ⊆ K. On a alors la définition naturelle suivante : deux
uplets ā et b̄ sont indépendants sur C si L(ā) est algébriquement indépendant de L(b̄)
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au-dessus de L, où L est la clôture algébrique du corps engendré par C. Shelah a défini
dans toute théorie stable une notion analogue d’indépendance appelée non-déviation et a
montré que cette relation satisfait des propriétés naturelles de symétrie et de transitivité.
Grâce à cet outil, on peut associer un ensemble de dimensions à une structure stable
donnée et finalement, sous certaines hypothèses supplémentaires, classifier les modèles
de sa théorie.

On dispose ainsi d’un arsenal de techniques pour étudier les structures stables. Mal-
heureusement ces dernières sont assez rares. Ainsi toute structure infinie qui est natu-
rellement ordonnée est instable (telle le corps R des nombres réels ou tout corps non
trivialement valué). Citons comme exemples de structures stables les corps algébrique-
ment clos, les corps séparablement clos, les groupes abéliens, les corps différentiellement
clos (l’analogue des corps algébriquement clos pour les corps munis d’une différentielle).

Théories NIP

Une fois que les théories stables ont été bien comprises, les théoriciens des modèles se
sont efforcés d’étendre ces idées à des contextes plus larges. En 1992 Hrushovski a montré
que les corps pseudofinis admettaient une bonne notion d’indépendance, bien que ces
structures soient instables [30] (les corps pseudofinis canoniques sont les ultraproduits
non triviaux de corps finis). Motivés par ces résultats, Kim et Pillay ont étudié la notion
de théorie simple introduite par Shelah 15 ans auparavant. Il s’agit d’une hypothèse
combinatoire, plus faible que la stabilité, dont nous ne donnerons pas la définition ici.
Ils ont montré ([38]) que cette hypothèse était suffisante pour assurer la présence d’une
relation d’indépendance satisfaisant des propriétés naturelles. Les corps pseudofinis sont
simples ainsi que les corps algébriquement clos munis d’un automorphisme générique
([13]).

En revanche, aucune structure avec un ordre définissable infini n’est simple. Par
conséquent, ni les structures o-minimales (tels les corps réels clos) ni les corps valués
n’entrent dans cette classe. Pour intégrer ces structures dans un cadre abstrait, il faut
donc étendre la stabilité dans une autre direction.

Nous avons défini ci-dessus la propriété d’indépendance. Elle exprime en quelque
sorte qu’on peut coder des ensembles finis par des éléments. Par exemple la formule
x|y (x divise y) en arithmétique a la propriété d’indépendance ; il suffit pour le voir de
prendre des nombres premiers distincts pour les xi. Un ensemble de nombres premiers
est représenté par leur produit.

On est maintenant en mesure de définir la classe de théories qui est l’objet de ce
travail.

Définition 0.0.3. Une théorie T est NIP (No Independence Property), ou dépendante,
si dans aucun modèle de T , une formule n’a la propriété d’indépendance.

Il n’est pas difficile de voir qu’une théorie stable est NIP. D’autre part, une théorie
simple et NIP est stable. On peut donc considérer NIP comme une extension de la
stabilité dans une direction orthogonale à celle de la simplicité. De fait, on perd dans
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les théories NIP l’existence d’une bonne notion d’indépendance mais on conserve des
succédanés de définissabilité des types (comme on le verra dans le chapitre 1 de ce
texte).

Les exemples canoniques de structures NIP sont, en plus des structures stables, les
structures o-minimales, les corps valués algébriquement clos ainsi que les corps valués
henséliens dont le corps résiduel est stable de caractéristique nulle, et les corps p-adiques.
Ce sont donc en quelque sorte des structures construites en combinant des composants
stables et des ordres linéaires.

On peut distinguer trois axes ou motivations dans l’étude des théories NIP :

1. Comprendre les propriétés caractéristiques de cette classe. En particulier identifier
les théorèmes connus sur les théories stables et o-minimales qui peuvent se généraliser.

2. Dresser une cartographie de l’univers des théories NIP. C’est-à-dire comprendre
d’une part les pathologies qui peuvent apparaître et d’autre part identifier des sous-
classes pertinentes.

3. Avoir ainsi un ensemble d’outils pour étudier des cas particuliers, par exemple les
théories de corps valués et des notions affaiblies d’o-minimalité.

Des travaux importants ont déjà été faits sur chacun de ces points. En ce qui concerne
les deux premiers, les résultats principaux sont dus à Shelah. Dans une série d’article
de [55] à [57] il explore les théories NIP dans de nombreuses directions et démontre
plusieurs théorèmes majeurs. La diversité des résultats rend difficile d’en rendre compte
ici. Nous en mentionnerons cependant certains dans la suite de cette introduction. Une
ligne directrice qui semble se dégager de ces travaux est l’intuition suivante (énoncé
explicitement à plusieurs reprises) : «Les propriétés des théories NIP s’obtiennent par
combinaison de celles des théories stables d’une part et des ordres linéaires d’autre part».

La théorie abstraite a été appliquée essentiellement sur deux sujets : la conjecture de
Pillay sur les groupes dans les théories o-minimales (dont nous parlerons plus loin) et
l’étude des corps valués. Citons en particulier le travail [31] de Hrushovski et Loeser dans
lequel est donnée une construction modèle-théorique naturelle des espaces de Berkovich.
Un espace de Berkovich est un certain espace topologique associé à une variété sur
un corps valué K. Contrairement à l’espace naturel des K-points de la variété muni de
la topologie de la valuation, qui est totalement discontinu, cet espace est localement
connexe par arcs. Hrushovski et Loeser ont montré, en utilisant la théorie des modèles
des corps valués algébriquement clos et en exploitant le fait que cette théorie est NIP,
que cet espace correspondait essentiellement à l’espace des types génériquement stables
de la variété (dont on donne la définition en 1.0.20. Contentons-nous ici de dire qu’il
s’agit de types se comportant comme dans une théorie stable).

On voit là un exemple d’un thème fondamental que nous avons déjà mentionné et
qui servira de fil directeur à travers une partie de ce travail : la recherche de composants
stables à l’intérieur d’une théorie NIP.
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Les théories NIP vues d’ailleurs

La (non-)propriété d’indépendance apparaît dans d’autres domaines des mathéma-
tiques (probabilités, géométrie discrète, théorie de l’apprentissage) sous le nom de VC-
dimension finie. (La définition est donnée dans les préliminaires). Le résultat fonda-
mental à ce sujet est le théorème de Vapnik-Chervonenkis qui est une loi uniforme des
grands nombre pour une famille d’événements de VC-dimension finie ([68]). Ce résultat
est d’ailleurs utilisé par Hrushovski et Pillay dans l’article [33] en lien avec les mesures
de Keisler (voir le paragraphe 0.2.1).

En combinatoire, les familles de VC-dimension finie semblent avoir des propriétés
similaires aux familles de convexes de Rn. Ainsi un certain nombre de résultats connus
pour ces derniers (théorème de Helly fractionnaire, théorème (p, q)) ont été démontrés
dans le cas de VC-dimension finie ([41]).

Citons enfin une conjecture provenant de la théorie de l’apprentissage dont Laskowski
a donné une formulation modèle-théorique essentiellement équivalente ([34]). Il s’agit de
la conjecture de définissabilité uniforme des types sur les ensembles finis : si T est une
théorie NIP et φ(x̄, ȳ) une formule, alors il existe une formule ψ(x̄, z̄) telle que pour
tout modèle M de T , tout ensemble fini A ⊂ M et tout b̄ ∈ M, il existe c̄ ∈ A tel que
φ(A, b̄) = ψ(A, c̄). Elle a été démontrée dans le cas particulier des théories dp-minimales
par Guingona, [23].

0.0.2 Survol

Le travail que nous présentons porte sur quatre thèmes différents. Le premier est
celui des ensembles extérieurement définissables. La définissabilité des types est un fait
fondamental dans les structures stables. Shelah a montré ([56]) que dans une théorie
NIP, l’expansion d’un modèle par des définitions pour tous les types, était encore NIP.
Ce résultat important est resté mal compris tant à cause du caractère combinatoire de
sa preuve que par l’absence d’un cadre plus large dans lequel le placer. Dans le premier
chapitre de ce travail, «Ensembles extérieurement définissables et paires de structures
NIP»(en commun avec Artem Chernikov), nous définissons une notion d’ensemble fai-
blement stablement-plongé donnant un substitut dans le cas NIP à la définissabilité des
types. On en déduit une nouvelle démonstration du résultat de Shelah.

On applique ensuite cette idée au problème des paires de structures NIP. Un cer-
tain nombre d’articles ont paru ces dernières années qui étudiaient des structures NIP
auxquelles on ajoute un prédicat pour un sous-ensemble particulier. Il peut s’agir soit
d’exemples précis (tel C avec un prédicat pour les racines de l’unité : [7], [11]), soit de
situations plus générales (tel une structure topologique avec un prédicat pour une sous-
structure dense [9]). Souvent, la structure obtenue reste NIP et cela est montré à l’aide
d’un critère ad-hoc et différent à chaque fois. On donne ici des conditions suffisantes
pour que l’expansion d’une structure NIP reste NIP qui généralisent presque tous les cas
connus.

Le deuxième thème est celui des mesures génériquement stables. Il s’agit d’un objet
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nouveau qui existait en filigrane dans l’article [33] de Hrushovski et Pillay, que nous
définissons ici et étudions systématiquement. Apparues dans l’étude des groupes définis-
sablement compacts dans les théories o-minimales, ces mesures font un lien intéressant
entre théories NIP d’une part et théorie de la stabilité, logique continue et probabilités
d’autre part.

Leur étude débute dans le chapitre 2 du présent texte : «Mesures génériquement
stables»(travail en commun avec Udi Hrushovski et Anand Pillay) où sont données des
définitions équivalentes et propriétés de base. Dans le chapitre 3 : «Constructions de
mesures génériquement stables», on donne des constructions permettant d’en produire,
simplifiant et généralisant certains résultats précédents.

Le troisième thème s’inscrit dans une problématique que nous avons déjà mention-
née. Il s’agit de comprendre l’existence de comportements stables au sein d’une théorie
NIP. Dans le chapitre 3 : «Théories distales», on prend appui sur les résultats précé-
dents pour donner une définition de théorie purement instable et on donne des outils
pour appréhender la partie stable des types. On donne aussi une application à un résul-
tat partiel d’uniformité lié au premier thème de ce travail, pour lequel aucune approche
n’était connue jusqu’alors.

Enfin, le dernier chapitre «Théories dp-minimales ordonnées» traite d’un thème plus
particulier que les précédents. Il s’agit d’étudier les théories dp-minimales, qui sont dans
un certain sens des théories NIP de dimension 1. On se concentre sur les structures
dp-minimales ordonnées qui constituent une généralisation assez large des structures
o-minimales. L’étude des affaiblissements de la notion d’o-minimalité a été développée
dans plusieurs travaux ces dernières années (par ex. [40], [6], [20]). La dp-minimalité est
un tel affaiblissement, sans doute le moins géométrique et le plus abstrait de tous ceux
considérés jusqu’à présent. On résout notamment deux questions qui se posaient : les
groupes ordonnés dp-minimaux sont abéliens et les ensembles définissables dans un tel
groupe divisible sont finis ou d’intérieur non vide.

§0.1 Ensembles extérieurement définissables et paires

Ce chapitre, écrit en commun avec Artem Chernikov, a été soumis à l’été 2010 au Israel
Journal of Mathematics sous le titre «Externally definable sets and dependent pairs».

Il est bien connu qu’une théorie T est stable si et seulement si tout sous-ensemble
A ⊆ C est stablement plongé, ce qui veut dire :

(SP) pour toute formule φ(x;a), avec a ∈ C, il existe une autre formule ψ(x, b) avec
b ∈ A telle que φ(A,a) = ψ(A, b).

Quelques observations :
(i) Le cas extrême d’un ensemble non-stablement plongé est le suivant : prenons un

graphe biparti aléatoire M = (U(x), V(y);R(x, y)). Considérons un petit sous-ensemble
A ⊂ U. Alors tout sous-ensemble de A peut s’écrire R(A,a) pour un a ∈ V . Par contre,
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les seuls sous-ensembles de A à être relativement définissables par une formule à para-
mètres dans A sont les ensembles finis ou co-finis. Remarquons que la formule R(x, y) a
la propriété d’indépendance.

(ii) Prenons maintenant A = M une structure o-minimale. Les ensembles de la
forme φ(A,a) avec a ∈ C, en dimension 1, sont exactement les unions finies d’ensembles
convexes. Il y en a donc plus que d’ensembles définissables (M n’est pas stable), mais
on voit intuitivement qu’ils ne sont pas trop compliqués et assez proches d’ensembles
définissables.

Ceci suggère donc qu’une forme plus faible de (SP) doit être satisfaite par les théories
NIP. Plusieurs résultats avaient déjà été démontrés en ce sens. Le plus remarquable est
sans doute le théorème suivant de Shelah, généralisant un résultat de Baisalov et Poizat
dans le cas o-minimal :

Théorème 0.1.1 (Shelah). Soit M modèle d’une théorie NIP éliminant les quantifica-
teurs. Notons MSh la structure obtenue en ajoutant à M un prédicat Rφ(x̄) pour chaque
formule φ(x̄) à paramètres dans C interprété par φ(M). Alors MSh élimine les quanti-
ficateurs et est NIP.

Ce résultat est néanmoins frustrant pour plusieurs raisons : la preuve n’éclaire par
beaucoup ce qui se passe et le résultat ne dit rien pour un ensemble A quelconque. De
plus (mais nous devrons attendre le chapitre 4 pour apporter des précisions à ce sujet),
il n’y a pas d’énoncé d’uniformité dans l’élimination des quantificateurs. Pillay a donné
une preuve plus simple dans [48], mais sans résoudre ces problèmes.

Le théorème principal que nous démontrons dans le chapitre 1 donne une notion
d’ensemble ‘faiblement stablement plongé’ pertinente dans les théories NIP. Le théo-
rème de Shelah s’en déduit facilement et apparaît ainsi comme une conséquence d’un
phénomène plus général.

Théorème 0.1.2. Soit M modèle d’une théorie NIP et A ⊂M un sous-ensemble quel-
conque. Soit φ(x,m) une formule à paramètres dans M, alors il existe une extension
(M,A) ≺ (N,B) de la paire et une formule ψ(x, b) à paramètres dans B telle que
φ(A,m) = ψ(A, b) et que de plus ψ(B, b) ⊆ φ(B,m).

La propriété peut-être surprenante (dite d’honêteté) ψ(B, b) ⊆ φ(B,m) est le point-
clé de cet énoncé.

Ces dernières années, un certain nombre de structures construites à partir d’une
structure NIP (ou stable) classique en ajoutant un prédicat pour nommer un sous-
ensemble particulier ont été étudiées. Une des questions posées à leur sujet est de savoir
si la propriété NIP est conservée par cette expansion. En général, cela est vrai. Pour le
montrer, il faut toujours établir un critère abstrait qui assure qu’une expansion d’une
théorie NIP reste NIP. Plusieurs critères ont ainsi été énoncés, mais tous contiennent
des hypothèses de minimalité sur la structure (voir par exemple [11]). On démontre ici
un théorème de ce type qui ne suppose pas une telle hypothèse et qui s’applique dans
tous les cas connus.
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On fixe quelques notations pour pouvoir l’énoncer. On dispose d’un langage L et
d’un prédicat unaire additionnel P. On désigne par LP le langage L ∪ {P}. Soit M une
L structure et A ⊂ M un sous-ensemble. On considère la paire (M,A) comme une
LP-structure d’univers M dans laquelle P est interprété par A.

Une formule est dite bornée si elle est de la forme

(Q1x1 ∈ P)(Q2x2 ∈ P)...(Qnxn ∈ P)φ(x1, ..., xn, y1, .., ym)

où Qi peut être soit ∃ soit ∀ et φ est une L-formule. La structure Aind(L) est obtenue en
prenant A comme univers et en mettant un prédicat Rφ(x̄) pour chaque L-formule φ(x̄)
à paramètres dans M, interprété par la trace de cette formule sur A.

Théorème 0.1.3. Dans la situation décrite ci-dessus, supposons :
(i) M est NIP ;
(ii) toute LP-formule est équivalente dans (M,A) à une formule bornée ;
(iii) la structure Aind(L) est NIP.
Alors la paire (M,A) est NIP.

Le Théorème 0.1.2 est utilisé pour descendre les paramètres d’une formule donnée à
l’intérieur du prédicat P et utiliser ainsi l’hypothèse sur la structure induite sur celui-ci.

§0.2 Autour des mesures génériquement stables

0.2.1 L’article On NIP and invariant measures de Hrushovski et Pillay

L’article [33] On NIP and invariant measures de Hrushovski et Pillay est le point de
départ de la partie centrale de ce travail. Cet article fait suite à [32] écrit avec Peterzil
qui traite de la conjecture de Pillay sur les groupes définissablement compacts dans les
théories o-minimales. Si T est une théorie o-minimale, un groupe définissable G (affine
pour simplifier) est dit définissablement compact s’il est fermé et borné. La conjecture de
Pillay stipule que si G00 désigne le plus petit sous-groupe de G type-définissable d’indice
borné, alors G/G00 est un groupe de Lie de même dimension que G. Pour démontrer cette
conjecture, les auteurs utilisent un outil introduit par Keisler pour étudier les théories
NIP dans [37] mais qui n’avait alors pas encore trouvé d’applications : les mesures sur
l’espace des types.

Une mesure de Keisler est une mesure finiment additive sur l’algèbre de Boole des
ensembles définissables. De manière équivalente, c’est une mesure borélienne régulière
sur l’espace des types. On peut aussi voir les mesures comme des types au sens de la
logique continue, mais c’est un point de vue que nous n’adopterons pas ici afin de rester
dans le cadre de la logique du premier ordre. Les théories NIP sont un cadre naturel pour
étudier les mesures car elles y jouissent de bonnes propriétés, les rendant manipulables
essentiellement comme des types (par exemple, leur support dans l’espace des types est
un ensemble de cardinalité bornée).
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Si G est un groupe définissablement compact, Hrushovski et Pillay montrent dans
[33] qu’il admet une mesure de Keisler invariante par translation et que cette mesure
est unique. L’image de cette mesure dans le groupe de Lie G/G00 n’est autre que la
mesure de Haar sur ce groupe. La mesure invariante donne donc une mesure nulle à tous
les ensembles infinitésimaux. Pour montrer cela, les auteurs prouvent qu’un tel groupe
satisfait une hypothèse technique appelée fsg (génériques finiment satisfaisables). Ils
montrent ensuite que dans une théorie NIP, un groupe fsg admet une unique mesure de
Keisler invariante.

De cela est déduit un théorème dit de domination compacte de G par le groupe de
Lie G/G00. Notons π la projection canonique de G sur G/G00. Alors si D ⊆ G est un
ensemble définissable, l’ensemble des g ∈ G/G00 tels que π−1(g) a une intersection non
vide avec D et son complémentaire a mesure de Haar nulle. Ainsi les ensembles définis-
sables sont bien approximés en un certain sens par leur image dans le quotient. Le point
clé de la preuve est l’unicité de la mesure invariante sur G.

Enfin, les auteurs étudient la notion de type génériquement stable introduite précé-
demment par Shelah. Un type est génériquement stable s’il est définissable et finiment
satisfaisable sur un ensemble borné. De manière équivalente, c’est un type global in-
variant dont la suite de Morley est totalement indiscernable. Un cas particulier de tel
type est donné par les types stablement dominés étudiés dans [27] et repris ensuite dans
[31] pour donner une construction modèle-théorique des espaces de Berkovich que nous
avons déjà mentionnée.

La question est posée dans cet article de la bonne généralisation de cette notion
dans le cadre des mesures. On répond à cela dans le chapitre 2 écrit en commun avec
Hrushovski et Pillay.

0.2.2 Mesures génériquement stables

Ce chapitre, écrit en commun avec Ehud Hrushovski et Anand Pillay a été accepté pour
publication au Transactions of the AMS sous le titre «On generically stable and smooth
measures in NIP theories».

Dans cet article, on généralise aux mesures la définition de type génériquement stable.
On y montre que les différentes définitions équivalentes ont un analogue naturel dans ce
cadre ce qui prouve le bienfondé de cette notion. En particulier, les mesures générique-
ment stables sont définissables et finiment satisfaisables. Les groupes fsg apparaissent
comme les groupes admettant une mesure invariante génériquement stable. L’unicité de
la mesure invariante sur un tel groupe, démontrée dans [33], est alors un corollaire de la
théorie.

Une construction standard en théorie des modèle permet, étant donné un groupe
définissable G, de construire une structure dans laquelle ce même groupe G apparaît
comme un (sous-groupe d’un) groupe d’automorphismes. (Voir l’introduction de [33],
essentiellement on construit un espace homogène sur G). Il en découle une certaine
analogie entre groupes définissables et groupes d’automorphismes. Dans cette optique,
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des analogues de la propriété de fsg et de domination compacte dans le cas de groupes
d’automorphismes sont conjecturés dans [33]. Ainsi, une définition de fsg pour un type
sur un ensemble A quelconque est proposée et les auteurs demandent si un tel type p
s’étend de manière unique en une mesure A-invariante. On montre ici que la définition
suggérée est équivalente à l’existence d’une mesure génériquement stable A-invariante
étendant p. On peut alors répondre positivement à la question.

On généralise aussi la notion de domination compacte au cas de la domination par un
espace de types. Plus précisément, considérons un ensemble de paramètres A satisfaisant
une hypothèse de clôture (A = bdd(A), réalisée par exemple si A est un modèle). Une
mesure µ sur A admet une unique extension en une mesure globale A-invariante si et
seulement si on a la propriété suivante de domination :
� Pour tout ensemble C-définissable D, non-déviant sur A, l’ensemble des types sur

A admettant à la fois une extension A-invariante satisfaisant p et une extension satis-
faisant ¬D, est de µ-mesure nulle.

Enfin, on fait deux observations (la première étant beaucoup plus simple que la
seconde) :

(i) Si 〈ai : i ∈ (0, 1)〉 est une suite indiscernable, on définit une mesure µ sur C par
µ(φ(x)) = λ0({t ∈ (0, 1) :|= φ(at)}), où λ0 désigne la mesure de Lebesgue. Alors µ est
génériquement stable. Ceci permet de construire facilement des mesures génériquement
stables.

(ii) Une mesure σ-additive sur R ou Qp induit une mesure de Keisler lisse (c’est-à-
dire ayant une unique extension à un modèle plus grand ; une propriété beaucoup plus
forte que la générique stabilité, que nous considérons comme l’analogue pour les mesures
d’un type réalisé). Ce théorème généralise des résultats de Karpinski et Macintyre [35]
concernant la définissabilité des mesures de Haar réelle ou p-adique sur le disque unité.

On voit donc que les mesures génériquement stables sont plus universelles que les
types du même nom. Une thèse qu’on développe un peu plus dans le chapitre suivant.

0.2.3 Constructions de mesures génériquement stables

Ce chapitre a été accepté pour publication au Journal of Symbolic Logic sous le titre
«Finding generically stable measures».

Le but de ce chapitre est de montrer que les mesures génériquement stables sont
courantes et se comportent mieux que les types génériquement stables. On y généralise
les deux observations (i) et (ii) ci-dessus.

D’abord, en partant de n’importe quelle mesure µ, on peut construire une mesure µΣ
génériquement stable appelée une symétrisation de µ. L’idée est simple : de même que
le type moyen d’une suite totalement indiscernable d’éléments est génériquement stable,
on peut construire une mesure génériquement stable en moyennant une suite totalement
indiscernable de mesures. Or on peut facilement construire une telle suite à partir de la
suite de Morley µ(ω)

x1,x2,... de µ en prenant la moyenne sur les permutations des variables
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x1, x2, .... Ceci permet par exemple de démontrer simplement qu’une mesure générique-
ment stable sur une sorte imaginaire est la projection d’une mesure génériquement stable
sur M (prendre un relèvement quelconque et le symétriser). L’analogue est faux pour
les types génériquement stables. Ensuite, on montre que toute mesure σ-additive sur
un modèle fixé muni d’une tribu suffisamment riche induit une mesure génériquement
stable :

Théorème 0.2.1. SoitM une structure NIP et B une tribu de parties deM. On suppose
que pour toute extension M ≺ N et toute formule φ(x1, x2;a) avec a ∈ N, la trace
φ(M2;a) de cette formule est mesurable pour la tribu produit B⊗2. Soit λ une mesure
de probabilité sur (M,B), alors λ induit une mesure de Keisler génériquement stable sur
M.

Enfin, pour retrouver complètement les résultat de [29] sur les mesures σ-additives,
on montre que toute mesure génériquement stable sur une structure o-minimale ou élé-
mentairement équivalente à Qp est lisse.

On voit là apparaître une propriété des corps o-minimaux et p-adiques qu’on pour-
rait qualifier de ‘pure instabilité’ ; elle implique par exemple qu’il n’existe pas de type
génériquement stable non trivial. Il est naturel à ce point de se demander si on peut
caractériser cette propriété sans faire appel aux mesures, ou si elle découle d’une autre
propriété plus forte. Par ailleurs, la preuve présentée dans ce chapitre fonctionne par
récurrence sur la dimension en utilisant les fonctions de Skolem définissables et laisse
ouverte la question générale : si toutes les mesures génériquement stables sont lisses en
dimension 1, en est-il de même en toutes dimensions ?

On répond à ces questions dans le chapitre suivant.

§0.3 Théories distales

Ce chapitre a été soumis pour publication aux Annals of Pure and Applied Logic en juin
2011 sous le titre «Distal and non-distal theories».

Cet article est composée de deux parties essentiellement indépendantes. La première
répond aux questions soulevées dans le Chapitre 3 sur les théories NIP où toutes les me-
sures génériquement stables sont lisses. Ces théories sont appelées ‘distales’. La deuxième
partie étudie les théories non-distales et montre que dans un certain sens, les relations
non distales entre deux types sont des relations stables.

a) Théories distales.
Motivé par l’exemple des corps valués, on considère souvent les théories NIP comme

étant une combinaison de parties stables et d’ordres. Dans le cas des corps algébrique-
ment clos valués, cette idée est rendue précise par les travaux de Haskell, Hrushovski et
Macpherson sur la métastabilité ([27]) : dans cette théorie, un type tp(a/C) (sur une
‘bonne base’ C) a une composante o-minimale Γ(a) et un quotient tp(a/Γ(a)C) généri-
quement stable (et même stablement dominé, ce qui est une condition plus forte). On ne
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peut probablement pas s’attendre à ce qu’un résultat similaire soit vrai en général. On
prend néanmoins ici cette intuition à la lettre et on cherche à définir dans une théorie
NIP quelconque une partie stable.

Bien sûr, on ne sait pas exactement ce qu’on entend par là. L’idée de départ est la
suivante : au lieu de définir ce qu’est la partie stable d’une théorie, on peut chercher ce
qui caractérise les théories pour lesquelles cette partie stable est triviale. On pense en
particulier aux théories o-minimales ou aux corps p-adiques. On veut donc définir une
notion de théorie NIP purement instable.

Une condition évidemment nécessaire pour qu’une théorie soit qualifiée de purement
instable est qu’elle n’admette pas d’ensemble interprétable infini stable (c’est-à-dire sur
lequel la structure induite est stable). Mais cela semble bien trop faible. Une définition
plus forte serait :

(D0) Il n’y a pas de types génériquement stables (non-réalisés).
Cette définition a un problème majeur : elle n’est pas conservée par passage de M à

Meq. Une solution serait de la formuler directement surMeq. Seulement, il est probable
que dans le cas NIP, Meq ne contienne pas assez d’éléments et qu’il devienne nécessaire
d’introduire des imaginaires d’ordre supérieur (comme cela a été le cas pour les théories
simples).

Au chapitre précédent il est apparu une version plus forte de (D0) :
(D1) Les mesures génériquement stables sont lisses.
On sait que cette notion est stable par passage de M à Meq et qu’elle est satisfaite

par les théories o-minimales et les corps p-adiques. Les résultats de cette première partie
montrent que cette définition est robuste et se comporte mieux que (D0). C’est donc un
bon candidat pour la définition recherchée. Dans ce chapitre, on donne des définitions
équivalentes en terme de suites indiscernables et de types invariants et on prouve qu’il
suffit de vérifier (D1) en dimension 1. Plus précisément :

Théorème 0.3.1. Il y a équivalence, pour une théorie NIP T , entre les trois propriétés
suivantes :

(i) Pour toute suite indiscernable I1 + I2, les types limites lim(I1) et lim(I2) sont
orthogonaux,

(ii) Deux types invariants qui commutent sont orthogonaux,
(iii) Toute mesure génériquement stable est lisse.
De plus, il suffit de vérifier chacune de ces conditions en dimension 1.

Une théorie satisfaisant (D1) est appelée «distale».

b) Fort de cette définition, on se propose dans une deuxième partie d’étudier les
théories NIP non-distales, suivant l’intuition que la non-distalité doit correspondre à
des phénomènes de stabilité. Le résultat principal est ainsi la mise en évidence d’une
relation d’indépendance a |̂ s

M
b qui intuitivement dit que les parties stables de a et b

sont indépendantes au-dessus de M. On montre que cette relation est symétrique et de
poids borné.
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Ainsi, on n’a pas exhibé explicitement la partie stable, mais on a réussi à donner un
sens à la phrase «les parties stables de a et b sont indépendantes au-dessus de M».

On obtient comme application un théorème sur la combinatoire des suites indiscer-
nables (‘Finite-co-finite theorem’ 5.3.30), dont nous ne connaissons pas de démonstration
directe (malgré son apparente simplicité).

Théorème 0.3.2. Soit I = I1 + I2 + I3 une suite indiscernable avec I1 et I2 infinis,
et soit φ(x, a) une formule. On suppose que I1 + I3 est une suite indiscernable sur les
paramètres a. Alors l’ensemble {x ∈ I2 :|= φ(x, a)} est fini ou co-fini dans I2.

c) Dans la dernière partie de ce chapitre, on définit une classe de théories (les théories
sharp, ou nettes en français) pour lesquelles la ‘partie stable’ est matérialisée par des
types génériquement stables. Pour justifier cette définition, on donne un critère en terme
de décomposition des suites indiscernables et on montre qu’il suffit de vérifier ce critère
sur les suites d’éléments (et non d’uplets). En particulier, toute théorie dp-minimale est
nette (voir paragraphe suivant).

§0.4 Théories dp-minimales ordonnées

Ce chapitre a été publié au Journal of Symbolic Logic, 76, 2 (2011), pp. 448-460, sous le
titre «On dp-minimal ordered structures».

La question de savoir s’il existe une notion abstraite de minimalité incluant les struc-
tures o-minimales est restée ouverte pendant longtemps. Shelah dans [53] a proposé la
dp-minimalité qui est une forme uni-dimensionnelle de la propriété NIP (voir prélimi-
naires 1.1.2). Voici quelques exemples de théories dp-minimales :

1. Les théories superstables de rang U égal à 1,
2. Les théories o-minimales,
3. Les corps valués algébriquement clos,
5. Plus généralement les structures C-minimales (qui sont aux corps valués algébri-

quement clos ce que les structures o-minimales sont aux corps réels clos),
4. Les p-adiques.

Les théories dp-minimales ordonnées ont donc été étudiées très récemment comme
une généralisation assez large des structures o-minimales. Ainsi, les groupes dp-minimaux
ordonnés ont été étudiées par Goodrick dans [21] où il prouve qu’une fonction définis-
sable unaire est union d’un nombre fini de fonctions continues localement monotones.
Cette recherche s’inscrit dans un mouvement important de tentatives d’affaiblissement
de la notion d’o-minimalité. De nombreuses définitions ont ainsi été données (structures
faiblement o-minimales, quasi o-minimales, o-minimal open core... Voir par exemple [39],
[6], [20]) dont certaines seulement impliquent la dp-minimalité.

Dans cette optique, on s’intéresse surtout aux structures qui sont des expansions
d’un groupe ordonné, voire d’un corps réel clos. Néanmoins, la particularité de l’étude
qu’on fait ici est de ne pas introduire de loi de groupe tout de suite et d’essayer de tirer
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le maximum d’information de la seule structure d’ordre. On montre ainsi qu’un type
dévie sur un modèle M si et seulement si sa réduction à l’ordre pur dévie. Dans un
deuxième temps seulement, on s’intéresse aux groupes ordonnés. On résout alors deux
questions qui se posaient à leur sujet : les groupes ordonnés dp-minimaux sont abéliens,
et les ensembles définissables en dimension 1 sont finis ou d’intérieur non-vide (dans
le cas d’un groupe divisible). D’autre part, on donne une démonstration simple du fait
qu’un groupe dp-minimal est abélien-par-exposant-fini. Ceci était connu pour les groupes
C-minimaux ([39]).

Enfin, on donne des exemples de structures dp-minimales. On montre que les ordres
totaux et les arbres purs sont dp-minimaux (il est connu depuis longtemps que ces
structures sont NIP). Ceci est à rapprocher du fait que les structures o-minimales ou
C-minimales sont NIP : un ordre pur n’est pas nécessairement o-minimal et un arbre
pur peut ne pas être C-minimal, mais ce résultat montre qu’ils sont tout de même
relativement simples.



1
Préliminaires : Théories NIP

1.0.1 VC dimension

Nous commençons par introduire la notion fondamentale de VC-dimension. Nous
prenons dans cette section le point de vue combinatoire, mais nous l’abandonnerons
rapidement pour adopter un point de vue plus qualitatif et modèle-théorique.

On considère un ensemble E et une famille C de parties de E.

Définition 1.0.1. Des éléments x1, . . . , xn sont éclatés par C si pour toute partie I ⊆
{1, . . . , n}, il existe A ∈ C tel que : xi ∈ A⇔ i ∈ I.

Définition 1.0.2. La classe C est de VC-dimension n s’il existe n points éclatés par C,
mais pas n+ 1.

Elle est dite de VC-dimension infinie s’il existe n points éclatés par C pour tout n.

Quelques exemples : Si (E,≤) est un ensemble totalement ordonnée, et C est la
collection des intervalles, alors VC-dim(C)=2.

Soit (E,≤) un arbre (c’est-à-dire que ≤ définit un ordre partiel et pour tout a ∈ E,
l’ensemble {x ∈ E : x ≤ a} est totalement ordonné par ≤). On prend pour C l’ensemble
des boules fermés : C = {Fa : a ∈ E} où Fa = {x ∈ E : x ≥ a}. Alors on a VC-dim(C)=2.

Ces deux exemples sont les exemples fondamentaux de classes de VC-dimension finie.
Ils sont reliés en théorie des modèles respectivement aux structures o-minimales et C-
minimales.

Avant de parler de théorie des modèles, citons deux résultats combinatoires. Le pre-
mier est instructif, mais ne sera pas utilisé par la suite. Le deuxième est le théorème fon-
damental de Vapnik et Chervonenkis qui a justifié l’étude des familles de VC-dimension
finie en géométrie combinatoire et en théorie de l’apprentissage. Il n’interviendra pas
directement dans cette thèse, mais est sous-jacent à certains résultats sur les mesures.

1
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Lemme de Sauer

Étant donnée une famille C comme ci-dessus, on définit

πC(m) = max
B⊆A,|B|=m

|{S ∩ B : S ∈ C}|.

Lemme 1.0.3 (Lemme de Sauer). Si la famille C est de VC-dimension au plus d, alors
C(m) = O(md).

Ainsi, pour une famille C donnée, soit πC(m) vaut 2m pour toutm, soit cette fonction
est à croissance polynomiale.

Théorème de Vapnik-Chervonenkis et ε-réseaux

Nous décrivons maintenant le résultat fondateur de la notion de VC-dimension.
Soit (X,Ω, µ) un espace de probabilités (Ω est une tribu sur l’ensemble X et µ une

mesure probabilité sur cette tribu). Soit aussi C une famille de sous-ensembles de X.
Pour chaque entier k, on note µk la mesure produit sur l’espace Xk.

On considère les hypothèses suivantes :
(i) Chaque C ∈ C est µ-mesurable,
(ii)d La famille C est de VC-dimension au plus d,

Si C ⊆ X, on note Fr(C; x1, ..., xn) = 1
n

∑
i χC(xi) où χC est la fonction caractéristique

de C. On définit aussi, pour chaque entier n,

gkC(x1, ..., xk) = sup
C∈C

|Fr(C; x1, ..., xk) − µ(C)|,

et
hkC(x1, ..., xk, y1, ..., yk) = sup

C∈C
|Fr(C, x1, ..., xk) − Fr(C, y1, ..., yk)|.

(iii) Pour chaque k, la fonction gkC est µk-mesurable et la fonction hkC est µ2k-
mesurable.

Théorème 1.0.1 (Vapnik-Chervononkis). Soit d un entier, alors il existe une fonction
fd(k, ε) telle que pour tout ε > 0, fd(k, ε) → 0 lorsque k → +∞ et tel que pour tout
espace de probabilités (X,Ω, µ) et toute famille C satisfaisant aux conditions (i), (ii)d,
(iii) ci-dessus, on ait :

µk({x̄ : gkC(x̄) > ε}) < f(k, ε).

Ce théorème est une version uniforme de la loi des grands nombres. Il dit que dans une
suite de tirages aléatoires, la fréquence d’apparition d’un certain événement C converge
vers la mesure de C, et ce uniformément en C ∈ C.

Un corollaire immédiat, est l’existence d’ε-réseaux pour les familles de VC-dimension
finie.
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Corollaire 1.0.4. Soit (X,Ω, µ) un espace de probabilités et C une famille de parties
mesurables de X de VC-dimension finie. Soit aussi ε > 0. Il existe alors un ensemble
fini A ⊂ X tel que pour tout C ∈ C, on ait∣∣∣∣ |A ∩ C||A|

− µ(C)

∣∣∣∣ ≤ ε.
Pour plus de détails, voir [41], Chapitre 10. Voir aussi [10] pour l’importance de ces

notions en théorie de l’apprentissage.

1.0.2 Formules NIP

On se place maintenant dans le cadre de la théorie des modèles de la logique du
premier ordre. On utilise les notations standard. On travaille ainsi avec une théorie T
donnée ; C désigne un modèle κ̄-saturé et κ̄-homogène pour un grand cardinal κ̄ supérieur
à tous les cardinaux des sous-structures considérées. Un sous-ensemble de C sera dit borné
s’il est de cardinalité inférieure à κ̄.

On désignera par S(A) l’espace des types complets sur A. Si A ⊆ B sont deux
ensembles et p un type sur B, on notera p|A la restriction de p à A.

Nous donnons maintenant la définitions des théories NIP et présentons leurs proprié-
tés principales. Pour plus de détails, nous renvoyons le lecteur à l’article d’exposition de
H. Adler [2] et au sections 1 à 4 de l’article [33] de Hrushovski et Pillay.

Définition 1.0.5. Une formule φ(x, y) (x et y a priori de tailles différentes) a la propriété
d’indépendance si la VC-dimension de C est infinie, où C = {φ(x, b) | b ∈ C}.

Dans le cas contraire, on dira que φ est NIP (not independence property).

Remarque 1.0.6. Par compacité, la propriété d’indépendance équivaut à : pour tout λ il
existe {ai, i < λ} et {bI, I ∈ P(λ)} tels que :

|= φ(ai, bI)⇔ i ∈ I.

En particulier, ceci implique qu’il existe 2λ types sur l’ensemble des ai, et ainsi que
T est instable.

Une théorie est NIP si toutes ses formules sont NIP.
Remarque 1.0.7. Le fait d’être NIP est symétrique en x et y, c’est à dire que si φ(x, y)
est NIP, ψ(y, x) := φ(x, y) l’est aussi.

Si φ et ψ sont NIP, il en va de même de ¬φ, φ∧ψ et φ∨ψ.
Le théorème suivant donne une caractérisation équivalente de la propriété d’indé-

pendance qui est souvent plus simple à exploiter que la définition donnée ci-dessus.
Rappelons qu’une suite (ai)i<ω est dite indiscernable si pour tous i1 < i2 < ... < in et
j1 < j2 < .... < jn et toute formule φ(x1, ..., xn) on a

φ(ai1 , ..., ain) ⇐⇒ φ(aj1 , ..., ajn).

Une suite est dite totalement indiscernable si ceci reste vrai pour toute permutation des
indices.
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Proposition 1.0.8. Une formule φ(x, y) a la propriété d’indépendance si et seulement
s’il existe une suite indiscernable (ai)i<ω et un uplet b tel qu’on ait pour tout i :

|= φ(a2i, b)∧ ¬φ(a2i+1, b).

Ainsi, à toute formule NIP φ(x, y) est associé un entier N vérifiant : Pour toute suite
indiscernable (ai), il n’existe pas de b tel que ¬(φ(ai, b)↔ φ(ai+1, b)) pour i = 0, . . . ,N.
Le plus petit tel nombre s’appelle le nombre d’alternances de φ.

Par conséquent, si T est NIP et que (ai)i∈I (où I est un ordre linéaire sans dernier
élément) est une suite indiscernable, pour tout ensemble A de paramètres, la suite

(tp(ai/A) : i ∈ I)

converge dans S(A). La limite est appelée type limite de (ai) surA et notée lim((ai)i∈I/A).
Supposons que la suite (ai)i∈I est de plus totalement indiscernable (c’est-à-dire que

toute permutation de cette suite est indiscernable). Soit φ(x, y) une formule NIP de
nombre d’alternance N et b ∈ C. Supposons que lim((ai)/b) |= φ(x, b). Alors il existe
au plus N valeurs de i telles que ai |= ¬φ(x, b).

Théorème 1.0.2 (Shelah). Une théorie est NIP si et seulement si toutes les formules
φ(x, y), où x est une seule variable (et non un uplet de variables), le sont.

On peut maintenant donner des exemples de théories NIP.

Proposition 1.0.9. Les théories (ou classes de théories) suivantes sont NIP.
1. Les théories stables,
2. Les théories o-minimales,
3. Les théories C-minimales (analogue de la o-minimalité pour des abres à la place

d’ordres linéaires), par exemple ACVF : la théorie des corps valués algébriquement
clos,

4. Toute théorie d’un groupe abélien ordonné,
5. Une théorie d’un corps valué hensélien de caractéristique résiduelle nulle et de

corps résiduel k a la propriété d’indépendance si et seulement si Th(k) l’a,
6. La théorie des corps p-adiques (dans le langage des corps pur ou dans celui des

corps valués).

1.0.3 Types invariants

Si A ⊂ C est un ensemble de paramètres, un type global p ∈ S(C) est dit A-invariant,
s’il est invariant par tout automorphisme qui fixe A. En d’autres termes, pour toute
formule φ(x;y) et b, b ′ ∈ C, si b et b ′ ont même type sur A, alors p |= φ(x;b)↔ φ(x;b ′).
On dira qu’un type global p est invariant s’il est A-invariant pour un A de taille < κ̄.
Un type invariant est entièrement déterminé par sa restriction à un modèle M ⊃ A,
|A|+-saturé.

Il est vrai dans toute théorie qu’un type M-invariant ne dévie pas sur M. Dans une
théorie NIP, la réciproque l’est aussi.
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Lemme 1.0.10. Soit M un modèle d’une théorie NIP T et p ∈ S(C) un type global.
Alors p ne dévie pas sur M si et seulement s’il est M-invariant.

Soient px et qy deux types globaux invariants. On peut définir le produit (p⊗ q)xy.
Pour cela, prendre a |= p|C et b |= q|Ca. On pose alors (p ⊗ q) = tp(ab/C). C’est un
type invariant. En général, px ⊗ qy 6= qy ⊗ px (voir le Chapitre 5 pour une étude de ces
questions).

Soit p un type global A-invariant etM ⊂ C contenant A. On construit inductivement
une suite (ai)i<ω de la manière suivante : on prend a0 |= p|M, puis a1 |= p|Ma0 , a2 |=
p|Ma0a1 et ainsi de suite. On dite que (ai)i<ω est une suite de Morley de p surM. C’est
une suite indiscernable surM dont le type ne dépend que de p etM. Dans le casM = C,
on notera ce type pω.

Dans une théorie stable, on retrouve p à partir de (ai)i<ω par la formule p =
lim((ai)/C). Ceci n’est plus vrai en général dans une théorie NIP (prendre pour p le
type à +∞ dans les ordres linéaires denses). Néanmoins, les types invariants sont quand
même déterminés par le type de leur suite de Morley comme l’indique la proposition
suivante.

Proposition 1.0.11. Supposons T NIP. Soient p et q deux types globaux A-invariants.
Si p(ω)|A = q(ω)|A, alors p = q.

Nous décrivons maintenant une procédure pour retrouver le type A-invariant p à
partir d’une réalisation (ai)i<ω de sa suite de Morley sur A. Soit b un paramètre quel-
conque. Soit aω réalisant lim((ai)i<ω/Ab). On cherche, si possible, un élément aω+1 tel
que (ai)i≤ω+1 soit indiscernable sur A et aω |= φ(x, b) ⇐⇒ aω+1 |= ¬φ(x, b). On
continue ensuite en cherchant aω+2 tel que aω+1 |= φ(x, b) ⇐⇒ aω+2 |= ¬φ(x, b). Et
ainsi de suite. Par NIP, cette construction doit s’arrêter à un certain aω+k. On a alors
p ` φ(x, b) ⇐⇒ aω+k |= φ(x, b). En effet, on peut construire un aω+k+1 en prenant
une réalisation de p sur tout ce qui précède.

1.0.4 Types génériquement stables

On définit maintenant plusieurs notions de types stables (dans une théorie générale
d’abord, puis dans le cas particulier d’une théorie NIP).

Commençons par discuter les notions d’ensembles stables.

Définition 1.0.12. Un sous-ensembleA de C est stablement plongé si tout sous-ensemble
définissable de A est définissable avec paramètres dans A.

(On appelle ensemble définissable de A l’intersection avec A d’un ensemble définis-
sable de C.)

De manière équivalente, A est stablement plongé si tous les types sur A sont définis-
sables. On voit donc qu’une théorie est stable si et seulement si tous les ensembles sont
stablement plongés.

Dans le cas général, cette notion sera surtout utilisée pour A définissable ou type-
définissable.
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Proposition 1.0.13. Soit X un ensemble type-définissable. Les propriétés suivantes sont
équivalentes :

1. X est stablement plongé.
2. Pour tout a, il existe X0 ⊆ X borné tel que tp(a/X0) ` tp(a/X).
3. Pour tout a, tp(a/X) est définissable sur un X0 borné.
4. Tout automorphisme de X0 s’étend en un automorphisme de X.

Définition 1.0.14. Un ensemble type-définissable X est faiblement stable s’il n’existe
pas de formule φ(x, y) (à paramètres dans C) et des (ai, bi)i<ω uplets d’éléments de X
tels que C |= φ(ai, bj) si et seulement si i ≤ j.

Définition 1.0.15. Un ensemble type-définissable X est stable, stablement plongé s’il
n’existe pas de formule φ(x, y) (à paramètres dans C) et des (ai, bi)i<ω, ou les ai sont
des uplets d’éléments de X tels que C |= φ(ai, bj) si et seulement si i ≤ j.

Proposition 1.0.16. Supposons, pour simplifier, T dénombrable. Soit X type-définissable.
Les propriétés suivantes sont équivalentes :

1. X est stable, stablement plongé.
2. Pour tout A ⊂ C dénombrable et toute formule φ(x, y), l’ensemble {tpφ(c/A) | c ∈
X} est dénombrable.

3. Pour tout A, le nombre de A-types réalisés dans X est inférieur à |A|ℵ0 .
4. Pour tout A et x ∈ X, le type de x sur A est définissable.

Proposition 1.0.17. Supposons X ∅-définissable, alors X est stable, stablement plongé
si et seulement si X est faiblement stable et stablement plongé.

Dans le cas NIP, les choses sont un peu plus simples.

Proposition 1.0.18. Supposons T NIP, alors si l’ensemble type-définissable X est fai-
blement stable, il est stable stablement plongé.

On définit à présent les types génériquement stables, qui se comportent générique-
ment comme des types dans une théorie stable.

Proposition 1.0.19. (NIP) Soit p un type global A-invariant. Les conditions suivantes
sont équivalentes :

1. p est définissable et finiment satisfaisable dans un modèle contenant A.
2. Toute suite de Morley de p sur A est totalement indiscernable.
3. Pour tout B ⊇ A borné, p est l’unique extension globale non-déviante de p|B.
4. Si I réalise p(ω)|A, alors p = Lim(I/C).

Définition 1.0.20. Un type invariant vérifiant les conditions équivalentes ci-dessus est
dit génériquement stable.

Plus généralement, un type sur un ensemble A sera dit génériquement stable s’il
admet une extension non-déviante génériquement stable. (Ceci ne dépend pas de l’ex-
tension choisie).
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Il est facile de voir que l’existence d’un type génériquement stable (non-réalisé) est
équivalente à celle d’une suite totalement indiscernable (non-constante). La condition 2
donne une implication, et réciproquement, si I = (ai)i<ω est totalement indiscernable,
alors le type limite p = lim(I/C) est un type global I-invariant. Il est clairement fi-
niment satisfaisable dans I et aussi définissable par : p ` φ(x, c) si et seulement si
|= ∨w⊂2N,|w|=N ∧i∈w φ(ai, c) pour N assez grand.

Enfin, on dit qu’un type est pleinement stable si toutes ses extensions (déviantes et
non-déviantes) sont génériquement stables.

Exemple 1.0.21. Tout type contenant une formule stable stablement plongé est plei-
nement stable. Un exemple d’un tel ensemble est donné par le corps résiduel dans un
modèle d’ACVF (corps valués algébriquement clos).

Un exemple de type génériquement stable non pleinement stable est donné par le
type générique d’une boule fermée dans un modèle d’ACVF.

§1.1 Combinatoire des suites indiscernables

On sait qu’une théorie est NIP si et seulement si pour toute suite indiscernable
I = (ai)i∈I et toute formule φ(x, b), on ne peut pas trouver de suite strictement croissante
(ik : k < ω) d’éléments de I vérifiant φ(aik , b) ↔ ¬φ(aik+1 , b) pour tout k. On étudie
dans cette section des conséquences et raffinements de cette propriété.

On suppose dans toute cette section que T est une théorie NIP.

1.1.1 Découpage de suites indiscernables

La propriété rappelée caractérise les sous-ensembles de I qui peuvent s’écrire {i ∈
I :|= φ(ai, b)} pour une certaine formule φ(x, b). On va maintenant donner une carac-
térisation similaire pour les sous-ensembles de In qui s’expriment comme {(i1, ..., in) ∈
In :|= φ(ai1 , ..., ain , b)} pour une certaine formule φ(x1, ..., xn, b).

Une relation d’équivalence ∼ sur I est dit convexe si ses classes d’équivalences sont
convexes. On écrira (i1, ..., in) ∼ (j1, ..., jn) si pour tout k ≤ n, on a ik ∼ jk et pour tout
k, k ′ ≤ n, on a ik ≤ ik ′ ⇐⇒ jk ≤ jk ′ .

Enfin, une relation d’équivalence convexe ∼ est finie si elle a un nombre fini de
classes. Elle sera dite essentiellement de taille κ si elle est l’intersection de κ relations
d’équivalence convexes finies. Si ∼ est essentiellement de taille κ, elle peut avoir jusqu’à
2κ classes.

Théorème 1.1.1. Soit I = (ai)i∈I une suite indiscernable. Soit b un uplet fini de para-
mètres et φ(x1, ..., xn;y) une formule. Alors il existe une relation d’équivalence convexe
finie ∼ sur I telle que :

(i1, ..., in) ∼ (j1, .., jn) =⇒ φ(ai1 , ..., ain ;b)↔ φ(aj1 , ..., ajn ;b).
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On voit que si on prend pour ∼ la relation d’équivalence la plus grossière ayant
cette propriété, les coupures qu’elle induit sur I sont définissables à partir de b dans
la structure (C, I) où on a ajouté un prédicat unaire pour I. On dira de ces coupures
qu’elles sont induites par b sur I.

Si on fait parcourir à φ toutes les formules à paramètres dans b, on obtient |T |

coupures de I définies par les différents ∼, et l’intersection de toutes ses relations d’équi-
valence donne une relation d’équivalence essentiellement de taille |T |. Il est remarquable
que si on travaille sur un ensemble de paramètres A de taille quelconque, cela n’augmente
pas le nombre de coupures induites par b.

Théorème 1.1.2 (Découpage d’une suite indiscernable). Soit A ⊂ C un ensemble quel-
conque de paramètres et soit I = (ai)i∈I une suite indiscernable sur A. Soit b un uplet
fini. Il existe alors une relation d’équivalence convexe ∼ sur I essentiellement de taille
|T | telle que pour tout n et toute formule φ(x1, ..., xn;y) à paramètres dans A on ait :

(i1, ..., in) ∼ (j1, .., jn) =⇒ φ(ai1 , ..., ain ;b)↔ φ(aj1 , ..., ajn ;b).

Un cas particulier important de ces résultats (qui peut se prouver directement) est
que si I est une suite A-indiscernable indexée par un ordre I de cofinalité > |T |, et b est
un uplet fini, alors il existe un segment final de I qui est indiscernable sur Ab.

1.1.2 Suites mutuellement indiscernables

Une famille (Ii)i∈Ω est dite mutuellement indiscernable si pour tout i ∈ Ω, Ii est
indiscernable sur ∪j 6=iIj. Par exemple, si I =

∑
i∈Ω Ii est une suite indiscernable (où

on note I + J la concaténation des deux suites I et J), alors les suites (Ii)i∈Ω sont mu-
tuellement indiscernable. De manière générale, les énoncés sur le découpage d’une suite
indiscernable admettent un analogue en termes de suites mutuellement indiscernables.
Par exemple :

Théorème 1.1.3 (Découpage en termes de suites mutuellement indiscernables). Soit
A ⊂ C et (Ii)i∈Ω une famille de suites mutuellement indiscerables sur A. Soit d un uplet
fini. Alors il existe un sous ensemble Ω ′ ⊆ Ω avec |Ω \ Ω ′| ≤ |T | tel que la famille
(Ii)i∈Ω ′ soit mutuellement indiscernable sur Ad.

Un exemple de suites mutuellement indiscernables est donné par la situation sui-
vante : soit (pi)i∈Ω une famille de types globaux A-invariants. On suppose que les pi
commutent deux-à-deux, c’est-à-dire que pour i 6= j ∈ Ω, on a pi ⊗ pj = pj ⊗ pi. On
réalise inductivement Ii |= p

(ω)
i |A∪ {Ij : j <Ω i}. Alors la famille (Ii)i∈Ω est mutuellement

indiscernable.

1.1.3 Théories fortement-dépendantes et dp-minimales

Le théorème précédent suggère naturellement des notions de ‘forte-dépendance’ ana-
logues à la superstabilité. Shelah en a ainsi étudié plusieurs dans [53]. Nous donnons ici
la principale.
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Définition 1.1.1. Soit T une théorie NIP. Alors T est dite fortement-dépendante si pour
toute famille (Ii)i∈Ω de suites mutuellement indiscernables, et tout uplet d fini, il existe
un sous-ensemble Ω ′ ⊆ Ω avec |Ω \Ω ′| < ω tel que pour tout i ∈ Ω ′, la suite Ii soit
indiscernable sur d.

Enfin, la notion de théorie dp-minimale est encore plus restrictive.

Définition 1.1.2. Une théorie NIP T est dite dp-minimale si pour toute famille (Ii)i∈Ω
de suites mutuellement indiscernables, et tout 1-uplet d, il existe i0 ∈ Ω tel que pour
tout i ∈ Ω, i 6= i0, Ii est indiscernable sur d.

Une théorie stable de rang U finie est fortement-dépendante, mais la réciproque
n’est pas vraie. Les théories o-minimales, C-minimales et les corps p-adiques sont dp-
minimales.

Voir le Chapitre 6 de cette thèse pour plus d’informations sur les théories dp-
minimales.

§1.2 Mesures

On introduit à présent les mesures de Keisler. Pour plus de précisions à ce sujet, voir
les articles [32] et [33].

On suppose dans toute cette section que T est NIP.
Si A est un ensemble de paramètres, on note Lx(A) l’ensemble des formules en la

variable libre x et à paramètres dans A quotienté par la relation d’équivalence T ` φ↔
ψ. On identifie cet ensemble avec l’ensemble des sous-ensembles A-définissables de C|x|.

Définition 1.2.1. Une mesure de Keisler (ou mesure) en la variable x sur A est une
mesure de probabilité finiment additive sur l’algèbre de Boole Lx(A).

C’est-à-dire qu’on a pour toutes formules φ(x) et ψ(x),

µ(φ(x)∧ψ(y)) + µ(φ(x)∨ψ(x)) = µ(φ(x)) + µ(ψ(x)),

et
µ(x = x) = 1.

On notera parfois une mesure µx pour indiquer que la mesure µ porte sur la variable
x.

Exemple 1.2.2. Un type est un cas particulier de mesure : soit p ∈ Sx(A), alors p peut
être vu comme une mesure en posant, pour φ ∈ Lx(A), p(φ) = 1 si p ` φ et p(φ) = 0
dans le cas contraire.

Pour µ une mesure, l’ensemble S(µ) = {p ∈ S(A) | ∀φ(µ(φ) = 1 → p |= φ)} est un
fermé de l’espace des types appelé support de µ.

On note Mx(A) l’espace des mesures de Keisler sur A en la variable x. C’est un
espace compact lorsqu’on le munit de la topologie faible, c’est-à-dire celle engendrée par
les Bφ(x0, r) := {µ : |µ(φ) − x0| < r} pour x0, r ∈ [0, 1].
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Toute mesure µ sur A s’étend de manière unique en une mesure borélienne régulière
sur l’espace des types S(A) («régulière»veut dire que la mesure d’un borélien X est l’infi-
mum des mesures des ouverts O contenant X. Dans notre cas où l’espace est totalement
discontinu, la mesure de O est elle-même le supremum des mesures des ouverts-fermés
qu’il contient). Réciproquement, toute mesure borélienne régulière sur S(A) donne une
mesure de Keisler en la restreignant aux ouverts-fermés.

On a donc une bijection :

Mesures de Keisler sur A←→ Mesures boréliennes régulières sur S(A).

Quelques résultats élémentaires issus de [32] et [33] :

Proposition 1.2.3. Si (ai) est une suite indiscernable et φ(x, y) une formule, supposons
qu’il existe ε > 0 tel que µ(φ(x, ai)) > ε pour tout i, alors

∧
φ(x, ai) est consistant.

Proposition 1.2.4. Il n’existe pas {bi, i < ω} et ε > 0 vérifiant

i 6= j→ µ(φ(x, bi)4φ(x, bj)) > ε.

À partir d’une mesure µ, on peut définir une relation d’équivalence sur les ensembles
définissables par φ ∼µ ψ si µ(φ4ψ) = 0.

Proposition 1.2.5. L’ensemble {X/ ∼µ} est borné (i.e., de taille < κ̄).

Corollaire 1.2.6. L’espace S(µ) est de cardinalité bornée.

Exemple 1.2.7. Contre-exemple à ces propriétés dans le cas non-NIP : prendre pour
T la théorie du graphe aléatoire (sur le langage L = {R}) et pour µ la mesure globale
définie par : µ(∧ni=1(xRai)

εi) = 2−n (pour tout εi ∈ {−1, 1} et ai ∈ C). Le support de µ
est l’ensemble des types non-réalisés.

On peut déduire du théorème de Vapnik-Chervonenkis 1.0.1, le résultat suivant :

Proposition 1.2.8. Soit µ une mesure globale et φ(x, y) une formule. Soit aussi ε > 0.
Il existe alors p1, . . . , pn ∈ S(µ) tels que pour tout b ∈ C :∣∣∣∣∣∣µ(φ(x, b)) − 1

n

∑
i≤n

pi(φ(x, b))

∣∣∣∣∣∣ ≤ ε.
Ces résultats expliquent que dans les théories NIP, les mesures ont un comportement

proche de celui des types. On peut généraliser les définitions usuelles.

Définition 1.2.9. Soint M ≺ N, avec N |M|+-saturé et soit µ ∈M(N),
– µ est finiment satisfaisable dans M si pour tout φ ∈ Lx(N) tel que µ(φ) > 0, il

existe a ∈M tel que N |= φ(a).
– µ estM-invariante si pour tout φ(x;y) ∈ L, et b ≡M b ′, µ(φ(x;b)) = µ(φ(x;b ′)).
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– µ est définissable sur M si elle est M-invariante et pour tout φ(x;y) ∈ L, et
r ∈ [0, 1], l’ensemble {p ∈ Sy(M) : µ(φ(x;b)) ≤ r pour tout b ∈ N,b |= p} est un
fermé de Sy(M).

– µ est Borel-définissable sur M si l’ensemble ci-dessus est un borélien de Sy(M).

Proposition 1.2.10 ([33] 4.9). Si µ ∈ M(N) est M-invariants (N est |M|+-saturé),
alors µ est Borel-définissable sur M.

Cette propriété permet de définir le produit de deux mesures µx ⊗ µy de la manière
suivante. Soit M ≺ N, N un modèle |M|+-saturé. Soient µx ∈ M(N) une mesure M-
invariante et λy ∈ M(N) une mesure quelconque. Alors la mesure µx ⊗ λy est définie
comme une mesure à deux variables x, y sur N par (µx ⊗ λy)(φ(x, y)) =

∫
Sy(P)

f(y)dλy,

où P ≺ N est un petit modèle contenant M et les paramètres de φ et f : S(P) → [0, 1]
est définie par f(p) = µ(φ(x, b)) pour b ∈ N, b |= p.

Si µx est une mesure globale M-invariante, on définit par récurrence : µ(n)x1...xn par
µ
(1)
x1 = µ et µn+1x1...xn+1

= µxn+1 ⊗ µ
(n)
x1...xn . On définit µ(ω)

x1x2... comme l’union des µ(n). C’est
la suite de Morley de µ. C’est une suite indiscernable au sens suivant.

Définition 1.2.11. Une mesure µx1x2... est indiscernable surA si pour tout φ(x1, .., xn) ∈
L(A) et des indices i1 < ... < in, on a

µ(φ(x1, .., xn)) = µ(φ(xi1 , .., xin)).

On aura besoin du résultat suivant de [71] (voir aussi Chapitre 2, 2.10).

Proposition 1.2.12. Si µx1,x2,... ∈M(M) est indiscernable, et ωy,x1,x2,... étend µ, alors
pour toute formule φ(x, y) ∈ L(M), limi→ωω(φ(xi, y)) existe. De manière équivalente,
pour tout φ(x, y) et ε > 0, il y a un indice N tel que pour toute mesure ωy,x1,x2,... comme
ci-dessus, on ait |ω(φ(xi, y)) −ω(φ(xi+1, y))| ≥ ε pour au plus N valeurs de i.

Mesures lisses

Nous considérons la notion suivante comme un analogue pour les mesures des types
réalisés.

Définition 1.2.13 (Lisse). Une mesure µ ∈M(N) est lisse si µ a une unique extension
globale. Si M ⊂ N, on dit que µ est lisse sur M si µ|M est lisse.

Les propriétés importantes suivantes sont prouvées dans le Chapitre 2.

Proposition 1.2.14 (II. 2.3). Soit µ lisse sur M et soient φ(x, y) ∈ L et ε > 0. Alors
il existe des formules ν1i (x), ν

2
i (x) et ψi(y) pour i = 1, .., n dans L(M) telles que :

1. Pour tout b ∈ C, il existe i tel que b |= ψi(y) ;

2. pour tout i et b ∈ C, si |= ψi(b), alors C |= ν1i (x)→ φ(x, b)→ ν2i (x) ;

3. pour tout i, µ(ν2i (x)) − µ(ν
1
i (x)) < ε.
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Réciproquement, si la condition est satisfaite pour tout φ(x, y) et ε, alors µ est lisse.

Corollaire 1.2.15. Si µ est lisse sur N, alors :

1. il existe M ≺ N de taille |T | tel que µ est lisse sur M ;

2. µ est définissable et finiment satisfaisable dans N (en particulier µ est générique-
ment stable).

Le fait suivant a été observé dans l’article fondateur de Keisler [37].

Lemme 1.2.16 (II. 2.2). Soit µ une mesure sur M. Alors il y a une extension M ≺ N
et une mesure µ ′ sur N étendant µ telle que µ ′ est lisse.



2
Ensembles extérieurement définissables et paires

écrit en commun avec Artem Chernikov

§2.1 Introduction

This paper is organised in two main parts, the first studies externally definable sets
in first order NIP theories and the second, using those results, proves dependence of
some theories with a predicate, under quite general hypothesis. We believe both parts
to be of independent interest. A third section gives some examples of dependent pairs
and relates results proved here to ones existing in the literature.

Honest definitions

LetM be a model of a theory T . An externally definable subset ofMk is an X ⊆Mk

that is equal to φ(Mk, d) for some formula φ and d in some N �M. In a stable theory,
by definability of types, any externally definable set coincides with some M-definable
set. By contrast, in a random graph for example, any subset in dimension 1 is externally
definable.

Assume now that T is NIP. A theorem of Shelah ([53]), generalising a result of Poizat
and Baisalov in the o-minimal case ([3]), states that the projection of an externally
definable set is again externally definable. His proof does not give any information on
the formula defining the projection. A slightly clarified account is given by Pillay in [48].

In section 1, we show how this result follows from a stronger one : existence of honest
definitions. An honest definition of an externally definable set is a formula φ(x, d) whose
trace on M is X and which implies all M-definable subsets containing X. Then the
projection of X can be obtained simply by taking the trace of the projection of φ(x, d).

Combining this notion with an idea from [22], we can adapt honest definitions to be
defined over any subset A instead of a model M. We obtain a property of weak stable-
embeddedness of sets in NIP structures. Namely, consider a pair (M,A), where we have

13
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added a unary predicate P(x) for the set A. Take c ∈ M and φ(x, c) a formula. We
consider φ(A, c). If A is stably embedded, then this set is A-definable. Guingona shows
that in an NIP theory, this set is externally A-definable, i.e., coincides with ψ(A,d) for
some ψ(x, y) ∈ L and d ∈ A ′ where (M ′, A ′) � (M,A). We strengthen this by showing
that one can find such a φ(x, d) with the additional property that ψ(x, d) never lies,
namely (M ′, A ′) |= ψ(x, d) → φ(x, c). In particular, the projection of ψ(x, d) has the
same trace on A as the projection of φ(x, c). This is the main tool used in Section 2 to
prove dependence of pairs.

Dependent pairs

In the second part of the paper we try to understand when dependence of a theory
is preserved after naming a new subset by a predicate. We provide a quite general
sufficient condition for the dependence of the pair, in terms of the structure induced on
the predicate and the restriction of quantification to the named set.

This question was studied for stable theories by a number of people (see [12] and
[4] for the most general results). In the last few years there has been a large number
of papers proving dependence for some pair-like structures, e.g. [9], [25], [11], etc. We
apologise for adding yet another result to the list. However, our approach differs in an
important way from the previous ones, in that we work in a general NIP context and do
not make any assumption of minimality of the structure (by asking for example that the
algebraic closure controls relations between points). In particular, in the case of pairs of
models, we obtain that if M is dependent, N �M and (N,M) is bounded (see Section
2 for a definition), then (N,M) is dependent.

Those results seem to apply to most, if not all, of the pairs known to be dependent. It
also covers some new cases, in particular answering a question of Baldwin and Benedikt
about naming an indiscernible sequence.

The setting

We will not make a blanket assumption that T is NIP, so we work a priori with a
general first order theory T in a language L. We use standard notation. We have a monster
model M. If A is a set of parameters, L(A) denotes the formulas of L with parameters
from A. If φ(x) is some formula, and A a subset of M, we will write φ(A) for the set
of tuples a ∈ A|x| such that φ(a) holds. If A is a set of parameters, by φ(x) →A ψ(x),
we mean that for every a ∈ A, φ(a) → ψ(a) holds. Also φ(x) →p(x) ψ(x) stands for
φ(x)→p(M) ψ(x).

We will often consider pairs of structures. So if our base language is L, we define
the language LP where we add to L a new unary predicate P(x). If M is an L-structure
and A ⊆ M, by the pair (M,A) we mean the LP extension of M obtained by setting
P(a)⇔ a ∈ A. Throughout the paper P(x) will always denote this extra predicate.

As usual alt(φ) is the maximal number n such that there exists an indiscernible
sequence (ai)i<n and c satisfying φ(ai, c)⇔ i is even. Standardly φ(x, y) is dependent
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if and only if alt(φ) is finite. For more on the basics of dependent theories see e.g. [2].
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§2.2 Externally definable sets and honest definitions

Recall that a partial type p(x) is said to be stably embedded if any definable subset of
p(x) is definable with parameters from p(M). It is well known that if p(x) is stable, then
p(x) is stably embedded (see e.g. [44]). We are concerned with an analogous property
replacing stable by dependent.

We say that a formula φ(x, c) is NIP over a (partial) type p(x) if there is no indis-
cernible sequence (ai)i<ω of realisations of p such that φ(ai, c) holds if and only if i is
even. We say that φ(x, y) is NIP over p(x) if φ(x, c) is NIP over p(x) for every c.

The following is the fundamental observation. We assume here that we have two
languages L ⊆ L ′, and we work inside a monster model M that is an L ′-structure. The
language L ′ could be LP for example.

Proposition 2.2.1. Let p(x) be a partial L ′-type and φ(x, c) ∈ L(M) be NIP over p(x).
Then for each small A ⊆ p(M) there is θ(x) ∈ L(p(M)) such that

1) θ(x) ∩A = φ(x, c) ∩A
2) θ(x)→p(x) φ(x, c)
3) φ(x, c) \θ(x) does not contain any A-invariant global L-type consistent with p(x).

Démonstration. Let q(x) ∈ SL(M) be A-invariant and consistent with {φ(x, c)} ∪ p(x).
We try to choose inductively ai, bi ∈ p(M) and qi ⊆ q, for i < ω such that

- qi(x) = q(x)|Aa<ib<i
- ai |= qi(x) ∪ {φ(x, c)} ∪ p(x) (we can always find one by assumption)
- bi |= qi(x) ∪ {¬φ(x, c)} ∪ p(x).
Assume we succeed. Consider the sequence (di)i<ω where di = ai if i is even and

di = bi otherwise. It is a Morley sequence of q over A, and as such is L-indiscernible.
Furthermore, we have |= φ(di, c) if and only if i is even. This contradicts φ(x, y)
being NIP over p(x), so the construction must stop at some finite stage i0. Then
qi0(x) →p(x) φ(x, c) and by compactness there is ψq(x) ∈ qi0 (so ψq ∈ L(p(M))) such
that ψq(x)→p(x) φ(x, c). So we see that the set of all such ψq’s covers the compact space
of global L-types invariant over A and consistent with {φ(x, c)} ∪ p(x) (so in particular
all realised types of elements of A such that φ(a, c)). Let (ψj)j<n be a finite subcovering,
then taking θ(x) =

∨
j<nψj(x) does the job.

Definition 2.2.2 (Externally definable set). LetM be a model, an externally definable
set ofM is a subset X ofMk for some k such that there is a formula φ(x, y) and d ∈M
with φ(M,d) = X. Such a φ(x, d) is called a definition of X.
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We can now prove a form of weak stable embeddedness for NIP formulas.

Corollary 2.2.3 (Weak stable-embeddedness). Let φ(x, y) be NIP. Given (M,A) and
c ∈ M there are (M ′, A ′) � (M,A) and θ(x) ∈ L(A ′) such that φ(A, c) = θ(A) and
θ(x)→A ′ φ(x, c).

Démonstration. Notice that φ(x, y) is still NIP in any expansion of the structure. In
particular in the LP-structure (M,A). Now apply Proposition 2.2.1 with L ′ = LP and
p(x) = {P(x)}.

Question 2.2.4. Do we get uniform weak stable embeddedness ? In other words, is it
possible to choose θ depending just on φ, or at least just on φ and Th(M,A) ?

Corollary 2.2.5. Let f : M → M be an externally definable function, that is the trace
on M of an externally definable relation which happens to be a function on M. Then
there is an M-definable partial function g : M→M with g|M = f.

Démonstration. Let φ(x, y; c) induce f on M, c ∈ N � M. By Corollary 2.2.3 we find
(N ′,M ′) � (N,M) and θ(x, y) ∈ L(M ′) satisfying θ(M2) = φ(M2, c) and θ(x, y) →M ′

φ(x, y; c). As the extension of pairs is elementary and M ′ |= T , it follows that θ(x, y) is
a graph of a partial function.

Definition 2.2.6 (Honest definition). Let X ⊆ Mk be externally definable. Then an
honest definition of X is a definition φ(x, d) of X, d ∈M such that :

M |= φ(x, d)→ ψ(x) for every ψ(x) ∈ L(M) such that X ⊆ ψ(M).

In Section 2, we will need the notion of an honest definition over A which is defined
at the beginning of that section.

Proposition 2.2.7. Let T be NIP. Then every externally definable set X ⊂Mk has an
honest definition.

Démonstration. Let M ≺ N and φ(x) ∈ L(N) be a definition of X, and let (N ′,M ′) �
(N,M) be |N|+-saturated (in LP). Let θ(x) ∈ L(M ′) as given by Corollary 2.2.3, so
(N ′,M ′) |= (∀x ∈ P) θ(x) → φ(x). If ψ(x) ∈ L(M) with X ⊆ ψ(M) then (N ′,M ′) |=
(∀x ∈ P)φ(x)→ ψ(x). Combining, we get (N ′,M ′) |= (∀x ∈ P) θ(x)→ ψ(x). But since
M ′ |= T and θ(x), ψ(x) ∈ L(M ′) we have finally M ′ |= θ(x)→ ψ(x).

We illustrate this notion with an o-minimal example inspired by [3].
We letM0 be the real closure of Q and let ε > 0 be an infinitesimal element. LetM

be the real closure of M0(ε). Let π be the usual transcendental number, and finally let
N be the real closure of M(π).

Lemma 2.2.8. Let 0 < b ∈ N be infinitesimal, then there is n ∈ N such that b < ε1/n.
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Démonstration. We define a valuation v on Q(π, ε) by setting v(x) = 0 for all x ∈ Q(π)
and v(ε) = 1. We also define a valuation on N with the following standard construction :
let O ⊂ N be the convex closure of Q and M be the ring of infinitesimals. Then O is a
valuation ring, namely every element of N or its inverse lies in it. It has M as unique
maximal ideal. There is therefore a valuation v ′ on N such that v ′(x) ≥ 0 on O and
v ′(x) > 0 on M. Renaming the value group, we can set v ′(ε) = 1. Then v ′ extends the
valuation v. As N is in the algebraic closure of Q(ε, π), by standard results on valuation
theory (see for example [19], Theorem 3.2.4), the value group of v ′ is in the divisible hull
of the value group of v.

Let b ∈ N be a positive infinitesimal. By the previous argument v ′(b) is rational,
so there is n ∈ N such that v ′(b) > v ′(ε1/n). Then v ′(b/(ε1/n)) > 0, so b/(ε1/n) is
infinitesimal and in particular b < ε1/n.

Let A = {x ∈ M : x < π}. So A is an externally definable initial segment of M.
Consider the externally definable set X = {(x, y) ∈M2 : x ∈ A∧y /∈ A}. Let φ(x, y; t) =
(x < t∧y > t). Then φ(x, y;π) is a definition of X. However it is not an honest definition
because it is not included in the M-definable set {(x, y) : y − x > ε}. We actually show
more.

Claim 1 : There is no honest definition of X with parameters in N.
Proof : Assume that χ(x, y) is such a definition. Consider c = inf{y − x : y − x >

0∧ χ(x, y)}. Then c ∈ N. For every 0 < ε ∈M infinitesimal, we have c > ε by the same
argument as above. By the previous lemma, there is 0 < e ∈ Q such that c > e. This is
absurd as χ(x, y) ⊇ X.

Let p be the global 1-type such that for a ∈ M, p ` x > a if and only if there
is b ∈ A ⊂ M such that a < b. Thus p is finitely satisfiable in M. Let a0 = π and
a1 |= p|N. Consider the formula ψ(x, y;a0, a1) = (x < a1 ∧ y > a0).

Claim 2 : The formula ψ is an honest definition of X.
Proof : Let θ(x, y) ∈ L(M) be a definable set. Assume that X ⊆ θ(M2) and for a

contradiction that M |= (∃x, y)ψ(x, y;a0, a1)∧¬θ(x, y). As p is finitely satisfiable inM,
there is u0 ∈M such that |= (∃x, y)x < u0∧y > a0∧¬θ(x, y). Consider theM-definable
set {v : (∃x, y)x < u0 ∧ y > v ∧ ¬θ(x, y)}. By o-minimality, this set has a supremum
m ∈ M ∪ {+∞}. We know m ≥ a0, so necessarily there is v0 ∈ M, v0 /∈ A such that
M |= (∃x, y)x < u0 ∧ y > v0 ∧ ¬θ(x, y). This contradicts the fact that X ⊆ θ(M2).

We therefore see that if φ(x, y;a) is a formula and M a model, then one cannot
in general obtain an honest definition of φ(M2;a) with the same parameter a. We
conjecture that one can find such an honest definition with parameters in a Morley
sequence of any coheir of tp(a/M).

As an application, we give another proof of Shelah’s expansion theorem from [56].

Proposition 2.2.9. (T is NIP) Let X ⊆ Mk be an externally definable set and f an
M-definable function. Then f(X) is externally definable.
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Démonstration. Let φ(x, c) be an honest definition of X. We show that

θ(y, c) = (∃x)(φ(x, c)∧ f(x) = y)

is a definition of f(X). First, as φ(x, c) is a definition of X, we have f(X) ⊆ θ(M,c).
Conversely, consider a tuple a ∈ Mk \ f(X). Let ψ(x) = (f(x) 6= a). Then X ⊆ ψ(M).
So by definition of an honest definition, M |= φ(x, c) → ψ(x). This implies that M |=
¬θ(a, c). Thus θ(M,c) ⊆ f(X).

In fact one can check that θ(y, c) is an honest definition of f(X).

Corollary 2.2.10 (Shelah’s expansion theorem). Let M |= T , be NIP and let MSh

denote the expansion of M where we add a predicate for all externally definable sets of
Mk, for all k. Then MSh has elimination of quantifiers in this language and is NIP.

Démonstration. Elimination of quantifiers follows from the previous proposition, taking
f to be a projection. As T is NIP, it is clear that all quantifier free formulas of MSh are
dependent. It follows that MSh is dependent.

Note that there is an asymmetry in the notion of an honest definition. Namely if θ(x)
is an honest definition of some X ⊂M, then ¬θ(x) is not in general an honest definition
ofM \X. We do not know about existence of symmetric honest definitions which would
satisfy this. All we can do is have an honest definition contain one (or indeed finitely
many) uniformly definable family of sets. This is the content of the next proposition.

Proposition 2.2.11. (T is NIP) Let X ⊆ Mk be externally definable. Let ζ(x, y) ∈ L.
Define Ω = {y ∈M : ζ(M,y) ⊆ X}. Assume that

⋃
y∈Ω ζ(M,y) = X.

Then there is a formula θ(x, y) and d ∈M such that :

1. θ(x, d) is an honest definition of X,

2. M |= ζ(x, c)→ θ(x, d) for every c ∈ Ω,

3. For any c1, .., cn ∈ Ω, there is d ′ ∈ M such that θ(M,d ′) ⊆ X, and ζ(x, ci) →
θ(x, d ′) holds for all i.

Démonstration. LetM ≺ N where N is |M|+-saturated. Consider the set Y ⊂M defined
by

y ∈ Y ⇐⇒ (∀x ∈M)(ζ(x, y)→ x ∈ X).

By Corollary 2.2.10, this is an externally definable subset ofM, so there is ψ(x) ∈ L(N)
a definition of it. Let also φ(x) ∈ L(N) be a definition of X. Let (N,M) ≺ (N ′,M ′) be an
elementary extension of the pair, sufficiently saturated. Applying Proposition 2.2.1 with
p(y) = {P(y)}, A =M we obtain a formula α(y, d) ∈ L(M ′) such that α(M,d) = ψ(M)
and N ′ |= α(y, d) →P(y) ψ(y). Set θ(x, d) = (∃y)(α(y, d) ∧ ζ(x, y)). We check that
θ(x, d) satisfies the required properties.

First, let a ∈M ′ such that N ′ |= θ(a, d). Then as M ′ ≺ N ′, there is y0 ∈M ′ such
that α(y0, d)∧ζ(a, y0). By construction of α(y, d), this implies that N ′ |= ψ(y0). So by
definition of ψ(y), N ′ |= φ(a), so N ′ |= θ(x, d)→P(x) φ(x). Now, assume that a ∈ X. By
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hypothesis, there is y0 ∈ Ω such that M |= ζ(a, y0). Then ψ(y0) holds, and as y0 ∈M,
N ′ |= α(y0, d). Therefore N ′ |= θ(a, d). This proves that θ(x, d) is an honest definition
of X.

Next, if c ∈ Ω, then N ′ |= α(c, d), so N ′ |= ζ(x, c)→ θ(x, d).
Finally, let c1, ..., cn ∈ Ω. Then

N ′ |= (∃d ∈ P)(
∧
ζ(x, ci)→P(x) θ(x, d))∧ (θ(x, d)→P(x) φ(x)).

By elementarity, (N,M) also satisfies that formula. This gives us the required d ′.

Note in particular that the hypothesis on ζ(x, y) is always satisfied for ζ(x, y) =
(x = y). As an application, we obtain that large externally definable sets contain infinite
definable sets.

Corollary 2.2.12. (T is NIP) Let X ⊆ Mk be externally definable, then if one of the
two following conditions is satisfied, X contains an infinite M-definable set.

1. X is infinite and T eliminates the quantifier ∃∞.

2. |X| ≥ iω.

Démonstration. Let θ(x, y) be the formula given by the previous proposition using
ζ(x, y) = ‘‘x = y”.

If the first assumption holds, then there is n such that for every d ∈M, if θ(M,d)
has size at least n, it is infinite. Take c1, ..., cn ∈ X and d ′ ∈M given by the third point
of 2.2.11. Then θ(M,d ′) is an infinite definable set contained in X.

Now assume that |X| ≥ iω. By NIP, there is ∆ a finite set of formulas and n such
that if (ai)i<ω is a ∆-indiscernible sequence and d ∈ M, there are at most n indices
i for which ¬(θ(ai, d) ↔ θ(ai+1, d)). By the Erdös-Rado theorem, there is a sequence
(ai)i<ω1 in X which is ∆-indiscernible. Define ci = aω.i for i = 0, .., n and let d ′ be
given by the third point of Proposition 2.2.11. Then θ(x, d ′) must contain an interval
〈ai : ω× k ≤ i ≤ ω× k+ 1〉 for some k ∈ {0, .., n− 1}. In particular it is infinite.

This property does not hold in general. For example in the random graph, for any κ
it is easy to find a model M and A ⊂M, |A| ≥ κ such that every M-definable subset of
A is finite, while A itself is externally definable.

Also, taking M = (N + Z, <) and X = N shows that |X| has to be bigger than ℵ0 in
2.2.12 in general.

Question 2.2.13. Is it possible to replace iω by ℵ1 in 2.2.12 ?

§2.3 On dependent pairs
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Setting

In this section, we assume that T is NIP. We consider a pair (M,A) with M |= T . If
φ(x, a) is some formula of LP(M), then an honest definition of φ(x, a) over A is a formula
θ(x, c) ∈ LP, c ∈ P(M) such that θ(A, c) = φ(A,a) and |= (∀x ∈ P)(θ(x, c)→ φ(x, a)).

(Note that if M |= T , φ(x, c) ∈ L(M) and X = φ(M,c), then an honest definition
of φ(x, c) over M in the pair (M,M) which happens to be an L-formula is an honest
definition of X in the sense of Definition 2.2.6.)

We say that an LP-formula is bounded if it is of the form Q1y1 ∈ P...Qnyn ∈
Pφ(x, y1, ..., yn) where Qi ∈ {∃, ∀} and φ(x, ȳ) is an L-formula, and let LbddP be the
collection of all bounded formulas. We say that TP is bounded if every formula is equi-
valent to a bounded one.

Recall that a formula φ(x, y) ∈ LP is said to be NIP over P(x) if there is no LP-
indiscernible (equivalently L-indiscernible if φ ∈ L) sequence (ai)i<ω of points of P and
y such that φ(ai, y) ⇔ i is even. If this is the case, then Proposition 2.2.1 applies and
in particular there is an honest definition of φ(x, a) over P for all a.

We say that T (or TP) is NIP over P if every L (resp. LP) formula is.
Given a small subset of the monster A and a set of formulas Ω (possibly with

parameters) we let Aind(Ω) be the structure with domain A and a relation added for
every set of the form An ∩ φ(x̄), where φ(x̄) ∈ Ω.

Notice that Aind(LbddP ) eliminates quantifiers, while Aind(L) not necessarily does. Ho-
wever Aind(LbddP ) and Aind(L) are bi-interpretable.

Lemma 2.3.1. Assume that ϕ(xy, c) ∈ LP has an honest definition ϑ(xy, d) ∈ LP
over A. Then θ(x, d) = (∃y ∈ P)ϑ(xy, d) is an honest definition of φ(x, c) = (∃y ∈
P)ϕ(xy, c) over A.

Démonstration. For a ∈ P, θ(a, d) ⇒ ϑ(ab, d) for some b ∈ P ⇒ ϕ(ab, c) (as ϑ(xy, d)
is honest and ab ∈ P) ⇒ φ(a, c).

For a ∈ A, φ(a, c) ⇒ ϕ(ab, c) for some b ∈ A ⇒ ϑ(ab, d) (as ϑ(A,d) = ϕ(A, c))⇒ θ(a, d).

We will be using λ-big models (see [28, 10.1]). We will only use that if N is λ-big,
then it is λ-saturated and strongly λ-homogeneous (that is, for every ā, b̄ ∈ N<λ such
that (N, ā) ≡ (N, b̄) there is an automorphism of N taking ā to b̄) (see [28, 10.1.2 +
Exercise 10.1.4]). Every model M has a λ-big elementary extension N.

Lemma 2.3.2. 1) If N �M,M is ω-big, N is |M|+-big, and a, b ∈M<ω then tpL(a) =
tpL(b)⇔ tpLP(a) = tpLP(b) in the sense of the pair (N,M).

2) Let φ(x, y) ∈ LP, (M,A) ω-big, (ai)i<ω ∈Mω be LP-indiscernible, and let θ(x, d0)
be an honest definition for φ(x, a0) over A (where d0 is in P of the monster model). Then
we can find an LP-indiscernible sequence (di)i<ω ∈ Pω such that θ(x, di) is an honest
definition for φ(x, ai) over A.
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Démonstration. 1) We consider here the pair (N,M) as an LP-structure, where P(x) is a
new predicate interpreted in the usual way. Let σ ∈ AutL(M) be such that σ(a) = b. As
N is big, it extends to σ ′ ∈ AutL(N), with σ ′(M) =M. But then actually σ ′ ∈ AutLP(N)
(since it preserves all L-formulas and P).

2) Let (N,B) � (M,A) be |M|+-big. We consider the pair of pairs Th((N,B), (M,A))
in the language LP,P ′ , with P ′(N) =M. By 1) the sequence (ai)i<ω is LP,P ′-indiscernible.
The fact that θ(x, d0) is an honest definition of φ(x, a0) over A is expressible by the
formula

(d0 ∈ P)∧ ((∀x ∈ P ′ ∩ P) θ(x, d0) ≡ φ(x, a0))∧ ((∀x ∈ P)θ(x, d0)→ φ(x, a0)).

By LP,P ′-indiscernibility, for each i, we can find di such that the same formula holds of
(ai, di). Then using Ramsey, for any finite ∆ ⊂ LP, we can find an infinite subsequence
(ai, di)i∈I, I ⊆ ω that is ∆-indiscernible. As (ai) is indiscernible, we can assume I = ω.
Then by compactness, we can find the di’s as required.

We will need the following technical lemma.

Lemma 2.3.3. Let (M,A) |= TP be ω-big and assume that Aind(LP) is NIP.
Let (ai)i<ω ∈ Mω be LP-indiscernible, (b2i)i<ω ∈ Aω and ∆((xi)i<n; (yi)i<n) ∈ LP

be such that ∆((xi)i<n; (ai)i<n) has an honest definition over A by an LP-formula, and
|= ∆(b2i0 , ..., b2in−1 ;a2i0 , ..., a2in−1) for any i0, ..., in−1 < ω.

Then there are i0, ..., in−1 ∈ ω with ij ≡ j (mod2) and (bij)j≡1(mod2),<n ∈ P such
that |= ∆(bi0 , ..., bin−1 ;ai0 , ..., ain−1).

Démonstration. To simplify notation assume that n is even. Let

∆ ′((x2i)2i<n; (yi)i<n) = (∃x1x3...xn−1 ∈ P)∆((xi)i<n; (yi)i<n).

By assumption and Lemma 2.3.1 ∆ ′((x2i)2i<n; (ai)i<n) has an honest definition over A
by some LP-formula, say θ((x2i)2i<n, d) with d ∈ P. Since Aind(LP) is NIP, let N = alt(θ)
inside P.

Choose even i0, i2, ..., in−2 ∈ ω such that ij+2 − ij > N and consider the sequence
(āi)0<i<N with āi = ai0ai0+iai2ai2+i...ain−2ain−2+i. It is LP-indiscernible (and extends to
an infinite LP-indiscernible sequence). By Lemma 2.3.2 we can find an LP-indiscernible se-
quence (di)i<N, di ∈ P such that θ((x2i)2i<n;di) is an honest definition for ∆ ′((x2i)2i<n; āi).
By assumption θ((bi2j)2j<n;di) holds for all even i < N. But then since N = alt(θ) in-
side P, it must hold for some odd i ′ < N. By honesty this implies that ∆ ′((bi2j)2j<n; āi ′)
holds, and decoding we find some (bi2j+i ′)2j<n ∈ P

n
2 as wanted.

Now the main results of this section.

Theorem 2.3.4. Assume T is NIP and TP is NIP over P. Then every bounded formula
is NIP.
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Démonstration. We prove this by induction on adding an existential bounded quantifier
(since NIP formulas are preserved by boolean operations). So assume that φ(x, y) =
(∃z ∈ P)ψ(xz, y) has IP, where ψ(xz, y) ∈ LbddP isNIP. Then there is anω-big (M,A) |=
TP and an LP-indiscernible sequence (ai)i<ω ∈ Mω and c ∈ M such that φ(ai, c) ⇔
i = 0(mod 2). Then we can assume that there are b2i ∈ A such that (a2ib2i) is LP-
indiscernible and |= ψ(a2ib2i, c).

Notice that from TP being NIP over P it follows that Aind(LP) is NIP and that every
LP-formula has an honest definition over A. For δ ∈ LP take ∆δ((xi)i<n; (yi)i<n) to be
an LP-formula saying that (xiyi)i<n is δ-indiscernible. Applying Lemma 2.3.3, we obtain
i0, ..., in ∈ ω with ij ≡ j (mod 2) and (bij)j≡1(mod 2),<n ∈ P such that (aikbik)k<n is
δ-indiscernible. Since |= ¬(∃z ∈ P)ψ(a2i+1z, c) for all i, we see that ψ(aikbik , c) holds
if and only if k is even. Taking n and δ large enough, this contradicts dependence of
ψ(xz, y).

Corollary 2.3.5. Assume T is NIP, Aind(L) is NIP and TP is bounded. Then TP is NIP.

Démonstration. Since Aind(LbddP ) is interpretable in Aind(L) the hypothesis implies that
Aind(LbddP ) is NIP. Thus, if ā = (ai)i<n is a sequence inside P then any ∆(x̄, ā) has an
honest definition over A (although we don’t yet know that ∆(x̄, ȳ) is NIP over P, we
do know that ∆(x̄, ā) is NIP over P, so Proposition 2.2.1 applies). We can then use the
same proof as in 2.3.4 to ensure that TP is NIP over P, and finally apply Theorem 2.3.4
to conclude.

Corollary 2.3.6. Assume T is NIP, and let (M,N) be a pair of models of T (N ≺M).
Assume that TP is bounded, then TP is NIP.

Démonstration. Nind(L) is dependent, and so the hypotheses of Corollary 2.3.5 are sa-
tisfied.

Note that the boundedness assumption cannot be dropped, because for example a
pair of real closed fields can have IP, and also there is a stable theory such that some
pair of its models has IP ([49]).

§2.4 Applications

In this section we give some applications of the criteria for the dependence of the
pair.

2.4.1 Naming an indiscernible sequence

In [5] Baldwin and Benedikt prove the following.

Fact 2.4.1. (T is NIP) Let I ⊂ M be an indiscernible sequence indexed by a dense
complete linear order, small in M (that is every p ∈ S<ω(I) is realised in M). Then

1) Th(M, I) is bounded ([5, Theorem 3.3]),
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2) (M, I) ≡ (N, J) if and only if EM(I) = EM(J) ([5, Theorem 8.1]),
3) The LP-induced structure on P is just the equality (if I is totally transcendental)

or the linear order otherwise ([5, Corollary 3.6]).

It is not stated in the paper in exactly this form because the bounded formula
from [5, Theorem 3.3] involves the order on the indiscernible sequence. However, it
is not a problem. If the sequence I = (ai) is not totally indiscernible, then the or-
der is L-definable (maybe after naming finitely many constants). Namely, we will have
φ(a0, ..., ak, ak+1, ..., an) ∧ ¬φ(a0, ..., ak+1, ak, ..., an) for some k < n and φ ∈ L (as
the permutation group is generated by transpositions). But then the order on I is given
by y1 < y2 ↔ φ(a ′0...a

′
k−1, y1, y2, a

′
k+2, ..., a

′
n), for any a ′0...ak−1Ia

′
k+2...a

′
n indiscernible

(and we can find such a ′0...ak−1a
′
k+2...a

′
n in M by the smallness assumption). If I is an

indiscernible set, then the stable counterpart of their theorem [5, 3.3] applies giving a
bounded formula using just the equality (as the proof in [5, Section 4] only uses that for
an NIP formula φ(x, y) and an arbitrary c, {ai : φ(ai, c)} is either finite or cofinite, with
size bounded by alt(φ)).

The following answers Conjecture 9.1 from that paper.

Proposition 2.4.2. Let (M, I) be a pair as described above, obtained by naming a small,
dense, complete indiscernible sequence. Then TP is NIP.

Démonstration. By 1) and 3) above, all the assumptions of Corollary 2.3.5 are satisfied.

It also follows that every unstable dependent theory has a dependent expansion with
a definable linear order.

Recall the following definition (one of the many equivalent) from [53].

Definition 2.4.3. [53, Observations 2.1 and 2.10] T is strongly (resp. strongly+) de-
pendent if for any infinite indiscernible sequence (āi)i∈I with āi ∈ Mω, I a com-
plete linear order, and finite tuple c there is a finite u ⊂ I such that for any two
i1 < i2 ∈ u, (i1, i2) ∩ u = ∅ the sequence (āi)i∈(i1,i2) is indiscernible over c (resp.
c ∪ (āi)i∈(−∞,i1]∪[i2,∞)).

T is dp-minimal (resp. dp+-minimal) when for a singleton c there is such a u of size
1.

For a general NIP theory, the property described in the definition holds, but with
u ⊂ I of size |T |, instead of finite. We can take u to be the set of critical points of I
defined by : i ∈ I is critical for a formula φ(x;y1, ..., yn, c) ∈ L if there are j1, ..., jn 6= i

such that φ(ai;aj1 , ..., ajn , c) holds, but in every open interval of I containing i, we can
find some i ′ such that ¬φ(ai ′ ;aj1 , ..., ajn , c) holds. One can show (see [2, Section 3]) that
given such a formula φ(x;y1, .., yn, c), the set of critical points for φ is finite. Also T is
strongly+ dependent if and only if for every finite set c of parameters, the total number
of critical points for formulas in L(c) is finite.



24 CHAPITRE 2. ENSEMBLES EXTÉRIEUREMENT DÉFINISSABLES

Unsurprisingly dp-minimality is not preserved in general after naming an indiscer-
nible sequence. By [21, Lemma 3.3] in an ordered dp-minimal group, there is no infinite
definable nowhere-dense subset, but of course every small indiscernible sequence is like
this.

There are strongly dependent theories which are not strongly+ dependent, for example
p-adics ([53]). In such a theory, strong dependence is not preserved by naming an indis-
cernible sequence.

Proposition 2.4.4. Let T be not strongly + dependent, witnessed by a dense complete
indiscernible sequence (āi)i∈I of finite tuples. Let P name that sequence in a big saturated
model. Then TP is not strongly dependent.

Démonstration. So let (āi)i∈I, c witness failure of strong+ dependence. By dependence
of T , let u ⊂ I be chosen as above. Notice that for every φ(x;y1, ..., yn, c) , the finite set
of its critical points in I is LP-definable over c (and possibly finitely many parameters,
using order on I in the non-totally indiscernible case, and just the equality otherwise).
As in our situation u is infinite, we get infinitely many different finite subsets of (āi)i∈I
definable over c, in TP. As (āi)i∈I is still indiscernible in TP by Fact 2.4.1, 3), this
contradicts strong dependence.

Question 2.4.5. Is strong+ dependence preserved by naming an indiscernible sequence ?

2.4.2 Dense pairs and related structures

Van den Dries proves in [66] that in a dense pair of o-minimal structures, formulas
are bounded. This is generalised in [8] to lovely pairs of geometric theories of thorn-rank
1. From Theorem 2.3.6, we conclude that such pairs are dependent.

This was already proved by Berenstein, Dolich and Onshuus in [9] and generalised
by Boxall in [11]. Our result generalises [9, Theorem 2.7], since the hypothesis there (acl
is a pregeometry and A is “innocuous”) imply boundedness of TP. To see this take any
two tuples a and b and assume that they have the same bounded types. Let a ′ ∈ P be
such that aa ′ is a P-independent tuple. Then by hypothesis, we can find b ′ such that
tpLbddP

(bb ′) = tpLbddP
(aa ′). Now the fact that aa ′ is P-independent can be expressed by

bounded formulas. In particular bb ′ is also P-independent. So by innocuous, tpLP(aa
′) =

tpLP(bb
′) and we are done.

It is not clear to us if Boxall’s hypothesis imply that formulas are bounded. (However,
note that in the same paper Boxall applies his theorem to the structure of R with a named
subgroup studied by Belegradek and Zilber, where we know that formulas are bounded.)

The paper [9] gives other examples of theories of pairs for which formulas are boun-
ded, including dense pairs of p-adic fields and weakly o-minimal theories, recast in the
more general setting of geometric topological structures.

Similar theorems are proved by Günaydin and Hieronymi in [25]. Their Theorem
1.3 assumes that formulas are bounded along with other hypothesis, so is included in
Theorem 2.3.6. They apply it to show that pairs of the form (R, Γ) are dependent, where
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Γ ⊂ R>0 is a dense subgroup with the Mann property. We refer the reader to [25] for
more details.

In this same paper the authors also consider the case of tame pairs of o-minimal
structures. This notion is defined and studied in [67]. Let T be an o-minimal theory.
A pair (N,M) of models of T is tame if M ≺ N and for every a ∈ N which is in the
convex hull of M, there is st(a) ∈M such that |a − st(a)| < b for every b ∈M>0. It is
proved in [67] that formulas are bounded is such a pair, so again it follows from Theorem
2.3.6 that TP is dependent. Note that Günaydin and Hieronymi prove this using their
Theorem 1.4 involving quantifier elimination in a language with a new function symbol.
This theorem does not seem to factorise trivially through 2.3.5. They also prove in that
same paper that the pair (R, 2Z) is dependent.

Let C be an elliptic curve over the reals, defined by y2 = x3 + ax+ b with a, b ∈ Q,
and let P ⊆ Q2 name the set of its rational points. This theory is studied in [24], where
it is proved in particular that

Fact 2.4.6. 1) Th(R,C(Q)) is bounded (follows from [24, Theorem 1.1])
2) Aind(LP) is NIP (follows from [24, Proposition 3.10])

Applying Corollary 2.3.5 we conclude that the pair is dependent.
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3
Mesures génériquement stables

écrit en commun avec Ehud Hrushovski et Anand Pillay

§3.1 Introduction and preliminaries

In this introduction we will discuss background and motivation, describe and sum-
marize our main results, and then recall some essential definitions and prior results. A
familiarity with the earlier papers [32] and [33] would be advantageous, but we will try
to make the bulk of the paper accessible to a wider audience, even though we are so-
mewhat terse. Even in the introduction we may make some rather advanced comments
or references, and the general reader should feel free to ignore these at least on the first
reading.

Shelah defined a formula φ(x, y) to have the independence property if there exist
arbitrarily large (finite) sets A such that any subset B of A has the form {a ∈ A : φ(a, b)},
for some parameter b. A theory has NIP if no formula has the independence property.
An equivalent definition in a combinatorial / probabilistic rather than logical setting was
found by Chervonenkis and Vapnik [68]. o-minimal and p-minimal theories are notable
examples.

A general theme in this paper is “stable-like” behaviour in theories with NIP. One
of the main points is to develop the theory of “generically stable measures” in NIP
theories, in analogy with generically stable types. A “generically stable type” is a global
type (namely a complete type over a saturated model) which looks very much like a
type in a stable theory, for example it is both definable over and finitely satisfiable in
some small modelM. The theory, at least in the NIP context was developed in [56], [33]
and [65]. Among the consequences (or even equivalences) of generic stability of a type
p, assuming T has NIP, are nonforking symmetry (or the total indiscernibility of any
“Morley sequence” in p), as well as stationarity, in the sense that p is the unique global
nonforking extension of its restriction to M.

27
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In the theory of algebraically closed valued fields generically stable types coincide
with stably dominated types and play a major role in the structural analysis of definable
sets [27] as well as in a model-theoretic approach to Berkovich spaces [31]. However in
o-minimal theories and p-adically closed fields for example, there are no (nonalgebraic)
generically stable types.

On the other hand, what we have called Keisler measures (introduced in Keisler’s
seminal paper [37]), are the natural generalization of complete types to finitely additive
[0, 1] valued measures on Boolean algebras of definable sets. Keisler showed (in slightly
different terms) that in a NIP theory, for any Keisler measure µ on a model M any
formula φ(x, y) and any ε > 0, there exist finitely many formulas φ(x, bi) such that
for any b, µ(φ(x, bi)4φ(x, b)) < ε for some i. To see this, take a maximal set {bi}

such that µ(φ(x, bi)4φ(x, bj)) ≥ ε/2 for i 6= j. If this set is finite, we are done. If
it is infinite, by compactness one obtains an indiscernible sequence (bn : n ∈ N) and
some measure µ ′ with the same property. So µ(φ(x, bm) \ φ(x, bm+1)) ≥ ε/4 for all
odd m (or for all even m ; say odd.) It follows by elementary measure considerations
that (µ(φ(x, bm) \ φ(x, bm+1)) : m = 2, 4, . . .) cannot be k-inconsistent, for any k. So
{φ(x, bm) : m = 1, 2, . . .}∪{¬φ(x, bm) : m = 2, 4, . . .} is consistent. But by indiscernibility
the same must be true for any subset in place of the odds, contradicting NIP.

Keisler measures play an important role in the solution of certain conjectures on
groups in o-minimal structures [32]. They were studied further and from a more stability-
theoretic point of view in [33]. In fact in the latter paper, we defined generically stable
measures to be global Keisler measures which are both definable over and finitely sa-
tisfiable in some small model. We also found natural examples as translation invariant
measures on suitable definable groups (such as definably compact groups in o-minimal
theories). However, there were on the face of it technical obstacles to obtaining analogous
properties (like stationarity, total indiscernibility) for generically stable measures as for
generically stable types. For example, what is a “realization” of a measure, or a “Morley
sequence in a measure” ? This is solved in various ways in the current paper, including
making heavy use of Keisler’s “smooth measures” (see section 2). Essentially a com-
plete counterpart to the type case is obtained, the main results along these lines being
Theorem 3.2 and Proposition 3.3, where another property, “frequency interpretation
measure” makes an appearance. Moreover we also point out how widespread generically
stable measures are in NIP theories.

Let us take the opportunity to remark that a natural formal way to deal with “tech-
nical” issues such as realizing Keisler measures would be to pass to the randomization TR

of T . TR is a continuous first order theory whose models are random variables in models
of T . The type spaces of TR correspond to the spaces of Keisler measures (over ∅) of T .
This randomization was introduced by Keisler and situated in the context of continuous
logic by Ben Yaacov and Keisler [70]. Ben Yaacov proved that TR has NIP if T does,
and further showed that making systematic use of TR would provide, in principle, ano-
ther route to the results of the current paper ([71], [72]). Measures in NIP theories are
roughly of the same complexity as types, as is evidenced for instance by boundedness
of the number of formulas modulo measure zero. But measures on the space of mea-
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sures appear to be genuinely analytic objects, and required nontrivial analytic tools in
Ben Yaacov’s treatment. We make use of a weak version of Ben Yaacov’s preservation
theorem (see Lemma 2.10) to give one proof of our characterization of generically stable
measures (Theorem 3.2), but also give an independent proof remaining within the usual
model theoretic framework.

In section 4 we generalize the notion of a group with finitely satisfiable generics or
with the fsg property, to types and measures, and make the connection with generic
stability.

In section 5 we introduce a weak notion of “compact domination” where the set being
dominated is a space of types rather than a definable or type-definable set. We relate
this to stationarity of measures (unique nonforking extensions) in what we consider to
be a measure-theoretic version of the finite equivalence theorem.

In section 6, we prove smoothness (unique extension to a global Keisler measure) of
Borel probability measures on real or p-adic semialgebraic sets, yielding a quite extensive
strengthening of work by Karpinski and Macintyre in the case of Haar measure.

As far as sections 2, 3 and 6 are concerned, the paper is relatively self-contained.
However sections 4 and 5 make rather more references to the earlier papers [32] and [33],
and not only hyperimaginaries but also the compact Lascar group are involved.

The current paper does not only follow on from those two earlier papers, but also
naturally continues and builds on Keisler’s original papers [37], [36].

We fix a complete first order theory T . We typically work in T eq. For convenience we
choose a very saturated “monster model” or “universal domain” M̄ = M̄eq. M,N,M0, ..

denote small elementary submodels. For now A,B,C, .. denote subsets, usually small, of
M̄. x, y, .. range over (finitary) variables and by convention a variable carries along with
it its sort.

The reader is referred to say [47], [2], [50], [54] as well as [32], [33], for exten-
sive and detailed material around stable theories, NIP theories as well as the adap-
tation/interpretation of forking to types and measures in NIP theories.

However we recall here the key notions relevant to the current paper.
It is convenient to start with the notion of a finitely additive measure µ on an

arbitrary Boolean algebra Ω : µ(b) ∈ [0, 1] for all b in Ω, µ(1) = 1, µ(0) = 0 and µ is
finitely additive. As in section 4 of [33], such a measure on a Boolean algebra Ω can be
identified with a regular Borel probability measure on the Stone space SΩ of Ω. The set
of finitely additive measures on Ω is naturally a compact space.

We apply this to our monster model M̄. By a Keisler measure µx over A we mean
a finitely additive measure on the Boolean algebra of formulas φ(x) over A up to equi-
valence in M̄. So a Keisler measure over A generalizes the notion of a complete type
over A rather than a partial type over A. By a global Keisler measure we mean one over
M̄. So again a global Keisler measure generalizes the notion of a global complete type.
We repeat from the previous paragraph that a Keisler measure µx over A coincides with
a regular probability measure on Sx(A). We often talk about closed, open, Borel, sets,
over A. So for example, a Borel set over A is simply the union of the sets of realizations
in M̄ of types p ∈ S(A), for p in some given Borel subset of Sx(A).
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Definition 3.1.1. Let µx be a Keisler measure over A, and p ∈ S(A), then we say that
p is weakly random for µ if µ(φ(x)) > 0 whenever p ` φ(x) (where φ is a formula over
A).

Similarly, a is weakly random for µ (over A) if tp(a/A) is weakly random.

Keisler [37] uses the notion of a measure over or on a fragment, which it is now
convenient to work with in a generalized form. By a fragment F he means a small
collection of formulas φ(x) (or definable sets of sort x) which is closed under (finite)
Boolean combination. (A typical case is the collection of all formulas over a given base
set A.) Then a Keisler measure on or over F is simply a finitely additive probability
measure on this Boolean algebra of definable subsets of sort x. As above this identifies
with a regular Borel probability measure on the space SF of complete types over F. He
also remarks that if F ⊆ G are fragments (in sort x) then any Keisler measure on F
extends to one on G. In particular any Keisler measure on F extends to a global Keisler
measure on the sort of x.

For most of this paper this notion of fragment is adequate, and the reader may
proceed with this in mind, at least until section 5. However in some situations we will
need to consider algebras of subsets of M̄ that, while contained in the Borel subalgebra
of SF for various fragments F of formulas, cannot canonically be presented in this manner.
We therefore give in advance a formalism beginning with closed rather than clopen sets,
i.e. partial types rather than formulas. Our fragments correspond to small topological
quotients of the space of global types : an element of the fragment is the pullback of a
closed set. We describe this more syntactically in the next paragraph.

Let F now consist of a small collection of partial types Σ(x) in a fixed set of variables
x, identified if you wish with their sets of realizations in M̄. We assume F is closed under
finite disjunctions and (possibly infinite) conjunctions. We will call a subset of the x-
sort of M̄ closed over F it is defined by a partial type in F, and open over F if it is the
complement of a closed over F set (and also we can obtain the Borel over F sets).

Definition 3.1.2. (a) Let F be as in the above paragraph. We call F a fragment if
(i) any open set over F is a union of closed sets over F, and
(ii) any two disjoint closed over F sets are separated by two disjoint open over F sets.
(b) If F is a fragment, let SF denote the set of maximal partial types in F (i.e. maximal
among partial types in F).

Clearly a fragment in the sense of Keisler extends uniquely to a fragment in the sense
of Definition 1.1.

For a fragment F define a topology on SF in the obvious way : a closed set is by
definition a set of points extending a given partial type in F. Then with this definition
it is clear that SF will be a compact Hausdorff space.

Definition 3.1.3. By a Keisler measure on or over a fragment F we mean a map from
the set of closed/open over F sets to [0, 1] which is induced by a regular Borel probability
measure on the space SF.
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For hyperimaginaries, as well as the notion bdd(A) (set of hyperimaginaries in the
bounded closure of A) see [26] or [69].

Lemma 3.1.4. (i) Let A be a small set of hyperimaginaries. Then the collection of
partial types over A is a fragment.
(ii) Let F ⊆ G be fragments (in sort x). Then any Keisler measure over F extends to a
Keisler measure over G.

One more definition at the level of fragments is :

Definition 3.1.5. Let µ be a measure over a fragment F. Let D be a Borel set over
F with positive µ measure. Then the localization µD of µ at D is defined by : For any
Borel E over F, µD(E) = µ(E ∩D)/µ(D).

Now we pass to forking for measures in NIP theories. First, T is said to have the
independence property, if there is an indiscernible (over ∅) sequence (ai : i < ω) and
formula φ(x, b) such that |= φ(ai, b) for i even, and |= ¬φ(ai, b) for i odd. We usually
say that T is (or has) NIP if T does not have the independence property.

We recall that a formula φ(x, b) (where we exhibit the parameters) divides over a
small set A if there is an A-indiscernible sequence (bi : i < ω) with b0 = b such that
{φ(x, bi) : i < ω} is inconsistent. A formula forks overA if it implies a finite disjunction of
formulas each of which divides over A. We say that a global Keisler measure µx does not
divide (does not fork) over a small set A if every formula φ(x) with positive µ-measure
does not divide (does not fork) over A. In fact for such global µ, not dividing over A and
not forking over A are equivalent, and A can even be a set of hyperimaginaries. Recall
from [33] that assuming T has NIP, µ does not fork over A iff µ is Aut(M̄/bdd(A))
invariant (we just say bdd(A)-invariant) iff µ is Borel definable over bdd(A). Here Borel-
definability of µ over A, means that for a given formula φ(x, y) ∈ L and closed subset
C of [0, 1], {b : µ(φ(x, b) ∈ C} is Borel over A. We persist in calling a global measure
µx definable over A if for φ(x, y) ∈ L and closed C ⊆ [0, 1], {b : φ(x, b) ∈ C} is closed
over A, namely type-definable over A. (Although the expression ∞-definable might be
better.) We also say that µ is finitely satisfiable in A (where usually A is a model M)
if every formula over M̄ with positive µ-measure is satisfied by some element (or tuple)
from A. These are all natural generalizations of the corresponding classical notions for
global types.

Let us make the important remark that if the global Keisler measure µx is finitely
satisfiable over A, then it is also A-invariant, hence (assuming that T has NIP) is Borel
definable (over A).

The (nonforking) product of measures µx and λy is a fundamental notion in this
paper (as well as in [33]). Identifying a global Keisler measure µx with a measure on
Sx(M̄), then this could not simply be the usual product measure because the type
space Sxy(M̄) is not the product of Sx(M̄) with Sy(M̄) (and the same issue arises for
types). In the case of types, if p(x), q(y) are global complete types, and p(x) does not
split over A for some small A (equivalently is A-invariant), then we can form p(x) ⊗
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q(y) in variables xy, defined as tp(a, b/M̄) where b realizes q and a realizes p|M̄, b.
Equivalently, φ(x, y,m) ∈ p(x)⊗q(y) if for some (any) b realizing q|A,m, φ(x, b) ∈ p.
Now if µ(x) is Borel definable (over A) say, and λ(y) arbitrary (both global say) then the
analogous product µx⊗λy is obtained via integration : Pick a formula φ(x, y) over M̄. For
any q(y) ∈ Sy(M̄), and realization b of q, we can consider the extension µ ′ = µ|(M̄, b) of
µ ′ given by applying the same Borel definition. In any case µ ′(φ(x, b)) depends only on
q, so we can write it as f(q) for some function f : Sy(M̄)→ [0, 1]. The Borel definability
of µ says that the function f is Borel (preimage of a closed set is Borel). Hence we can
integrate f along λ (treated as a Borel measure on Sy(M̄)), to obtain

∫
Sy(M̄) f(q)dλ. And

we call this (µ(x)⊗ λ(y))(φ(x, y)).
Note that this integral can be “computed” as follows : again choose a formula

φ(x, y,m) where now we exhibit additional parameters from M̄ as m. Fix natural
number N and partition [0, 1] into equal intervals I1, .., IN of length 1/N, let Yj =
{b : µ(φ(x, b,m) ∈ Ij} (a Borel set over A,m), let cj be the midpoint of Ij. Let
FN =

∑
j=1,..,N λ(Yj)cj. Then (µ(x)⊗ λ(y))(φ(x, y,m)) = limN→∞FN.

We will often use this, when doing approximations or computations.
We emphasize that the product µx⊗λy is well defined only when µ is Borel-definable.

This implies that µ does not fork over some small set, and the converse is true assuming
NIP.

Lemma 3.1.6. Suppose that µ(x), λ(y) are global Keisler measures which are both
definable. Then so is µ(x) ⊗ λ(y). Likewise for Borel definable, and (assuming NIP)
“finitely satisfiable in a small model”.

Proof. Let us just deal with the finitely satisfiable case, the proof of which will be an
elementary example of methods which pervade the paper. Assume that both µ and λ are
finitely satisfiable inM. They are thusM-invariant and by NIP Borel-definable overM.
It therefore makes sense to consider the product µx⊗λy. We show that it is itself finitely
satisfiable in M. Let φ(x, y,m) be a formula over M̄ with positive µx ⊗ λy measure
(where we exhibit the parameter m). It follows from the definition of this “nonforking
product” that Y = {b ∈ M̄ : µ(φ(x, b,m)) > 0} is a Borel set over M,m of positive
λy-measure. By regularity of λ (as a Borel measure on Sy(M,m)) there is a closed over
M,m set Z say, with Z ⊆ Y and λ(Z) > 0. By compactness let b ∈ Z be weakly random
for λ|(M,m). As b ∈ Z ⊆ Y, µ(φ(x, b,m)) > 0. As µ is finitely satisfiable in M, there
is a ′ ∈ M such that |= φ(a ′, b,m). By choice of b, λ(φ(a ′, y,m)) > 0, so by finite
satisfiability of λ in M there is b ′ ∈ M such that |= φ(a ′, b ′,m). This completes the
proof.

In general, the product of measures is not commutative ; a measure need not even
commute with itself : we can have µx ⊗ µy 6= µy ⊗ µx. The question of commutativity
will become central later on. We note at this point that µx ⊗ λy = λy ⊗ µx iff the Borel
measure-zero sets of these two measures coincide. This will not be explicitly used in the
body of the paper. In the lemma below we take the point of view of a global Keisler
measure as a regular probability measure on the relevant Stone space of global types.
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Lemma 3.1.7. (NIP) Let µx, λy be global measures, invariant over some small set.

1. For any definable set φ(x, y) there is a Borel subset Uφ of the space Sx(M̄) ×
Sy(M̄) (so in the σ-algebra on Sxy(M̄) generated by rectangles Dx × Ey) such that
φ(x, y), Uφ are equal up to µx ⊗ λy-measure zero.

2. Commutativity can be checked at the level of the Borel measure-zero ideal : if µx⊗
λy(U) = 0 for any closed U such that λy ⊗ µx(U) = 0, then µx ⊗ λy = λy ⊗ µx.

Proof. We may write µ =
∫
a∈X p

a, λ =
∫
b∈Y q

b, where X, Y are the Stone spaces of
the Boolean algebra of global definable sets, modulo the measure zero sets of µ, λ res-
pectively ; made into measure spaces using the measures induced from µ, λ ; where for
a ∈ X, b ∈ Y, pa, qb are the corresponding invariant types.

1. Given a formula φ(x, y), let Uφ = {(a, b) ∈ X × Y : φ ∈ pa ⊗ qb}. We will show
below that Uφ is Borel up to a measure zero set. Clearly the stated equality holds.

2. The assumption extends from closed to Borel sets : if U ′ is any Borel set with
µx ⊗ λy(U ′) = 0, then µx ⊗ λy(U) = 0 for all closed U ⊆ U ′, so by assumption
λy ⊗ µx(U) = 0 for all such U, and since this measure is regular, λy ⊗ µx(U ′) = 0.
Now let φ(x, y) be any formula. By (1) there exists a Borel U with µx⊗λy(φ4U) =
0, so λy⊗µx(φ4U) = 0. But µx⊗λy(U) = λy⊗µx(U). So µx⊗λy(φ) = λy⊗µx(φ).

To show that Uφ is Borel up to measure 0, choose a finite set Lm of formulas φ(x, e)
such that for any parameter c, there exists a definable set D ∈ Lm with µ(φ(x, c)4D) <
2−m. Let L = ∪mLm, and fix some enumeration of L (or just of each Lm). All formulas
of L are defined over some small model M0, such that µ, λ are M0-invariant.

Any b ∈ Y determines a weakly random type for λ over M0, qb|M0. Since µ is
M0-invariant, for c, c ′ |= qb|M0 and D ∈ L(M) we have µ(φ(x, c)4D) < 2−m iff
µ(φ(x, c ′)4D) < 2−m ; so µ(φ(x, c)4φ(x, c ′)) = 0. Thus we will write φ(x, b) to denote
the class of any such φ(x, c), up to µ measure 0.

Let Dm(b) be the least D ∈ Lm such that µ(φ(x, b)4D) < 2−m.
By the usual proof of completeness of L1(µ), φ(x, b) differs by µ-measure zero from

the Borel set
D(b) = {x : (∃m0)(∀m ≥ m0)(x ∈ Dm(a))}

Since µ is a Borel measure,

{(b,m,D) : D ∈ Lm, µ(φ(x, b)4D) < 2−m}

is Borel, and so the map (b,m) 7→ Dm(b) is Borel.
So E = {(a, b) : (∃m0)(∀m ≥ m0)(∃D ∈ L)(D = Dm(b) and a ∈ D} is also Borel.

For all b, E(a) differs from Uφ(b) by µ-measure zero. This finishes the proof.

Definition 3.1.8. (Assume NIP.) Let µx be a global Keisler measure which is invariant
(i.e. A-invariant for some small A). Then µ(n)x1,..,xn is defined (inductively) by µ(1)x1 = µx1 ,
and µ(n+1)x1,..,xn,xn+1 = µxn+1 ⊗ µ

(n)
x1,..,xn . We put µωx1,x2,... to be the union.
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The following notation will be used repeatedly in the paper : If X is a space (usually of
types) and Y ⊂ X, then Fr(Y;p1, ..., pk) denotes |{i : pi ∈ Y}|/k. Similarly the notation
Fr(φ(x);a1, ..., ak) stands for |{i : ai |= φ(x)}|.

Finally we recall the weak law of large numbers in the form we will use it. Any basic text
on probability theory is a reference.

Fact 3.1.9. Let µ be a Borel probability measure on a space X. Let µk be the product
measure on Xk. Let Y be a measurable subset of X. THEN for any ε > 0, µk({(p1, .., pk) :
|Fr(Y, p̄) − µ(Y)| < ε})→ 1 as k→∞.

Thanks to the Wroclaw model theory group, in particular H. Petrykowski, for pointing
out some errors in an early version of [33], which we deal with in section 5 of the current
paper. Some of the results in sections 2 and 3 of the present paper appear in the third
authors Master’s Thesis [60]. However we do not follow the “formal points” formalism
from there.

§3.2 Smooth measures and indiscernibles

Here we discuss smooth measures, using and repeating some material from Keisler’s
paper [37], but also applying the results in the context of NIP theories to obtain useful
results about arbitrary measures as well as “indiscernible measures”.

We will NOT make a blanket assumption that T has NIP.

Definition 3.2.1. A global Keisler measure µx is said to be smooth if µ is the unique
global extension of µ|M for some small model M. We may also call µ smooth over M,
and also call µ|M smooth.

We should mention that Keisler’s notion of a smooth measure was somewhat weaker.
He called a Keisler measure over a small set (or even a fragment) if it had a unique global
extension modulo the “stable part”. Possibly “minimal” might be a better expression for
us, but we stick with our Definition above. A key result of Keisler is Theorem 3.16 from
[37] :

Lemma 3.2.2. (Assume T has NIP.) If µx is a Keisler measure over M then it has an
extension to a smooth global Keisler measure.

Note that a complete type (over M, or M̄) is smooth iff it is realized (in M, M̄
respectively). A key point of the current paper (also implicit in [33]), is that in an NIP
context, one can usefully view a smooth extension of µ as a “realization” of µ, and thus
deal effectively with technical issues around measures.

Lemma 3.2.3. Suppose µx is smooth over M. Let φ(x, y) ∈ L and ε > 0. Then there is
some n, formulas ν1i (x), ν

2
i (x) for i = 1, .., n, and ψi(y) for i = 1, .., n, all over M such

that
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(i) the formulas ψi(y) partition y-space,
(ii) for all i, if |= ψi(b), then |= ν1i (x)→ φ(x, b)→ ν2i (x), and
(iii) for each i, µ(ν2i (x)) − µ(ν

1
i (x)) < ε.

Proof. By smoothness of µ and Lemma 1.3 (iv) of [37] for example, for each b ∈ M̄
there are formulas ν1(x), ν2(x) over M, such that
(*) |= ν1(x)→ φ(x, b)→ ν2(x), and µ(ν2(x)) − µ(ν1(x)) < ε.
By compactness, there are finitely many such pairs, say, (ν1i (x), ν

2
i (x)) such that for

every b one of these pairs satisfies (*). It is then easy to find the ψi(y).

Note that it follows from Lemma 2.3 that if µ is a global smooth Keisler measure,
then µ is smooth over some modelM0 of cardinality at most |T |. Note also that Lemma
2.3 yields a direct way of seeing both the definability over M and finite satisfiability in
M of µ.

Definition 3.2.4. If µx and λy are both Keisler measures over M (with x, y disjoint
tuples of variables), then a Keisler measure ωx,y over M extending both µx and λy is
said to be a separated amalgam of µx and λy, if for any formulas φ(x), ψ(y) over M,
ω(φ(x)∧ψ(y)) = µ(φ(x)) · λ(ψ(y)).

This is the same thing as saying that ωx,y, as a regular Borel probability measure on
Sxy(M) extends the product measure µx × λy on the space Sx(M) × Sy(M). Note that
as soon as µx is not a complete type, there will be at least two extensions of µx ∪ µy to
Keisler measures overM ; one giving x = y measure 1, which will not be separated, and
one extending the product µx × µy which will be separated. On the other hand if µx is
a measure overM and q(y) a complete type over M then any amalgam ωxy of µ and q
will be separated.

We now give several corollaries of Lemma 2.3.

Corollary 3.2.5. Suppose µx is a smooth global Keisler measure. Then for any global
Keisler measure λy, there is a unique separated amalgam of µx and λy.

Proof. Assume µ is smooth overM. Let ωx,y be such an amalgam. Let φ(x, y) ∈ L and
ε > 0. Let ν1i (x), ν

2
i (x), ψi(y), for i = 1, .., n be as given by Lemma 2.3. Then for each i,

|= ν1i (x)∧ψi(y)→ φ(x, y)∧ψi(y)→ ν2i (x)∧ψi(y). Let ri = µ(ν
1
i (x)) and ti = λ(ψi(y)).

It follows from the assumptions that
∑
i riti ≤ ωxy(φ(x, y)) ≤

∑
i(ri+ε)ti =

∑
i riti+ε.

Hence ωxy(φ(x, y)) is determined.

Note in particular that a smooth measure µx has a unique amalgam with any complete
type. Note also that if µx is a Borel definable global measure, and λy arbitrary then
µx⊗λy is a separated amalgam. It follows that if µx is smooth and λy is Borel definable (in
the NIP case, invariant) then µx⊗λy = λy⊗µx. Namely a smooth measure “commutes”
with any other invariant measure.
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Corollary 3.2.6. Suppose µx is smooth over M. Let φ(x, y) ∈ L and X1, .., Xk a finite
collection of Borel overM sets . Then for any ε > 0, for all sufficiently large m, there is
a formula θm(x1, .., xm) such that limm→+∞µ(m)(θm) = 1 and for any (a1, .., am) |= θm,
(i) for each b ∈ M̄, µ(φ(x, b)) is within ε of Fr(φ(x, b), a1, .., am).
Also, we can find such (a1, .., am) such that furthermore :
(ii) µ(Xi) is within ε of Fr(Xi, a1, .., am) for each i, and
(iii) for each b ∈ M̄, µ(Xi ∩ φ(x, b)) is within ε of Fr(Xi ∩ φ(x, b), a1, .., am).

Proof. Note first that we can assume x = x is an instance of φ(x, y) and that x = x is
included among the Xi. Hence (iii) implies (i) and (ii).

Let ν1i (x), ν
2
i (x) (over M) for i = 1, .., n say be given by Lemma 2.3 for φ(x, y) and

ε/4. Consider the formula θm(x1, .., xm) that expresses that Fr(ν
j
i(x), x1, .., xm) is within

ε/4 of µ(νji(x)) for each i and j. The weak law of large numbers, Fact 1.8, applied to
X = Sx(M), µx|M (as a probability measure on X), to the Borel sets νji(x) (all i, j), and
ε/4 implies that limm→+∞µ(m)(θm(x1, .., xm)) = 1. (We here use the fact that µ(m)

(x1,..,xm)

is a separated amalgam of µx1 , .., µxm .)
Next apply the weak law of large numbers, this time to the Borels νji ∩Xr (all i, j, r)

and ε/4 to obtain suitable types p1, ..., pm ∈ Sx(M). Let a1, ..., am be realizations of
p1, .., pm respectively. Let λx be the average of the tp(ai/M̄). Let b ∈ M̄, and i be such
that ν1i (x) → φ(x, b) → ν2i (x). Then also for each r, ν1i (x) ∧ x ∈ Xr → φ(x, b) ∧ x ∈
Xr → ν2i (x)∧ x ∈ Xr. Also clearly |(µ(ν2i (x) ∩ Xr) − µ(ν1i (x) ∩ Xr)| < ε/4.

Now λ(νji(x) ∩ Xr) is within ε/4 of µ(νji(x) ∩ Xr) for j = 1, 2 from which it follows
that λ(φ(x, b)∩Xr) is within ε of µ(φ(x, b)∩Xr) giving (iii) (so also (i) and (ii), for (i) ;
note that only the fact that (a1, .., am) |= θm is needed).

Definition 3.2.7. We will call a global Borel definable Keisler measure µx fim (a
“frequency interpretation measure”) if : for every φ(x, y) ∈ L, and ε > 0, for arbitrary
sufficiently large m, there is θm(x1, .., xm) (with parameters) such that :
(i) limm→+∞µ(m)(θm) = 1,
(ii) for all (a1, .., am) |= θm(x1, .., xm), µ(φ(x, b)) is within ε of Fr(φ(x, b), a1, .., am).

So we have seen that smooth measures are fim.
Note that it follows, as in Corollary 2.6, that for any fim measure, any φ(x, y) and

any Borel set X, we can find (a1, .., am) such that (i) and (ii) of Corollary 2.6 hold. We
will see later on that we can also have (iii).

Corollary 2.6 plus Lemma 2.2 enables us to directly prove something about arbitrary
measures, for which in [33] we used the Vapnik-Chervonenkis Theorem.

Corollary 3.2.8. (Assume T has NIP.) Let µx be any measure overM. Let φ(x, y) ∈ L,
ε > 0, and let X1, .., Xk be Borel sets over M. THEN for all large enough n there are
a1, .., an such that for all r = 1, ..k and all b ∈ M, µ(Xr ∩ φ(x, b)) is within ε of
Fr(Xr ∩ φ(x, b), a1, .., an).

Proof. By Lemma 2.2, let µ ′ be global extension of µ which is smooth over someM ′ >
M. Apply Corollary 2.6 to µ ′ and M ′.
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We will often use the following consequence of this corollary (in a NIP context) :
If µ, λ are two global invariant measures, assume that µ commutes with every type p
weakly random for λ, then µ and λ commute.

To see this, given a formula φ(x, y), write (µ(x) ⊗ λ(y))(φ(x, y)) =
∫
f(y)dλy as

in the paragraph before Lemma 1.5, and approximate that integral by some finite sum
FN =

∑
j=1,..,N λ(Yj)cj. Use the corollary to find types p1, .., pn weakly random for λ such

that if ai |= pi for all i, Fr(Yj ∩ φ(x, b), a1, .., an) is within ε of λ(Yj ∩ φ(x, b)) for all j
and b ∈ M̄.

If λ̃ denotes the average of the types p1, .., pn then we leave it to the reader to check
that (µ(x)⊗ λ̃(y))(φ(x, y)) is close to (µ(x)⊗ λ(y))(φ(x, y)) and (λ̃(y)⊗µ(x))(φ(x, y))
is close to (λ(y)⊗ µ(x))(φ(x, y)). This is enough.

We now begin to discuss “indiscernibles” in the Keisler measure context.

Definition 3.2.9. Let µx1,x2,... be a Keisler measure overM, where x1, x2, ... are distinct
variables of the same sort.
(i) We say that µ(xi)i is indiscernible if for every formula φ(x1, .., xn) over M and all
i1 < i2 < .. < in, µ(φ(x1, .., xn)) = µ(φ(xi1 , .., xin)).
(ii) We say that µ is totally indiscernible if µ(φ(x1, .., xn)) = µ(φ(xi1 , .., xin)), whenever
i1, .., in are distinct.

So indiscernibility of a measure µ is with respect to a given sequence (xi)i of variables.
Likewise we can speak of an indiscernible measure in variables (xi : i ∈ I) where I is a
totally ordered index set. We can use compactness to “stretch” indiscernible measures in
the obvious manner.

We do not know any elementary proof of the following lemma, so we refer the reader
to [71]. The lemma is an equivalent formulation of Theorem 5.3 of that paper, the
equivalence being a consequence of Lemma 5.4 there.

Lemma 3.2.10. (Assume T has NIP.) If µ(xi:i<ω) over M is indiscernible, ν(y) is
a measure over M, and ω is an amalgam of these over M, and φ(x, y) ∈ L, then
limi→∞ω(φ(xi, y)) exists. Equivalently, for any such φ, µ, ν, and ω, and ε, it is not
the case that |ω(φ(xi, y)) −ω(φ(xi+1, y))| > ε for all i.

Remark 3.2.11. (NIP) In particular, given indiscernible measure µ(xi)i and an extension
µ ′ overM ′ then we obtain a unique Keisler measure in single variable x overM ′, which
we call Av(µ ′,M ′), whose measure of φ(x, c) (for c ∈M ′) is limi→∞(µ ′(φ(xi, c))).

Corollary 3.2.12. (NIP) For any formula φ(x, y) and ε there is N such that for any
indiscernible Keisler measure µ(xi:i<ω) over a model M (or set A), b ∈ M̄ and extension
µ ′ of µ over (M,b), there do not exist i1 < i2 < ... < iN such that |µ ′(φ(xij , b)) −
µ ′(φ(xij+1 , b))| > ε for all j = 1, ..,N− 1.

Proof. By compactness, in the space of measures over M in variables ((xi)i<ω, y).
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Corollary 3.2.13. (NIP) Given φ(x, y) and ε > 0 there is N such that for any totally
indiscernible Keisler measure µ(xi:i<ω) over a model M, and b ∈ M̄ and extension µ ′ of
µ over (M,b), for any r ∈ [0, 1] either {i : µ ′(φ(xi, b)) ≥ r+ ε} has cardinality < N, or
{i : µ ′(φ(xi, b) ≤ r− ε} has cardinality < N.

Proof. Let N be as given by Corollary 2.12 for φ(x, y) and ε. Then clearly it also works
for the present result.

Lemma 3.2.14. (NIP.) Let µ be a global invariant Keisler measure. Then
(i) µ(ω) is indiscernible,
(ii) if both µ and ν are A-invariant and µ(ω)|A = ν(ω)|A then µ = ν.

Proof. (i) Obvious and easily proved by induction.
(ii) This is as in the type case : namely suppose for a contradiction that µ(φ(x, b)) =
r 6= s = ν(φ(x, b)). Let λ1(x1) = µ(x1), and for even n, λn(x1, .., xn) = ν(xn) ⊗
λn−1(x1, .., xn−1) and for odd n, λn = µ(xn) ⊗ λn−1(x1, .., xn−1). Let λx1,x2,... be the
union. Then one checks that λ|A = µ(ω)|A = ν(ω)|A. But λ(φ(xi, b)) = r for odd i and
equals s for even i, contradicting Lemma 2.10.

§3.3 Generically stable measures

This section contains our main results. Namely Theorem 3.2 below which gives equi-
valent conditions for a measure to be generically stable in an NIP theory. We assume
NIP throughout, although it would not be uninteresting to develop the theory for arbi-
trary T . We give two proofs of that theorem, the first one follows very closely the proof
of the analogous result for types (Proposition 3.2 of [33]) while the second one is inspired
by the proof of the Vapnik-Chervonenkis theorem and avoids the use of Lemma 2.10.

We begin by giving a promised generalization of Lemma 3.4 of [33] to measures.

Lemma 3.3.1. Suppose that µx and λy are global Keisler measures such that µ is finitely
satisfiable (in some small model) and λ is definable. Then µx ⊗ λy = λy ⊗ µx.

Proof. We first note that using the remark following 2.8 it suffices to prove the lemma
when µ is a type p say. So assume M is a small model over which the TYPE p(x)
is finitely satisfiable and the measure λy is definable. Let φ(x, y) ∈ L. Suppose for a
contradiction that φ(x, y) ∈ L and (p(x) ⊗ λy)(φ(x, y)) = r, (λy ⊗ p(x))(φ(x, y)) = s,
and r 6= s. Let ε = |r − s|/4. Note that s is precisely λ(φ(a, y)) where a is some (any)
realization of p|M. By definability of λ over M, let θ(x) be a formula over M, which is
in p|M, and such that
(I) if |= θ(a ′) then λ(φ(a ′, y)) is strictly within ε of s.

By Borel definability of p over M, X = {b : φ(x, b) ∈ p} is Borel over M. Hence
r = λ(X). Apply 2.8 to λ|M to find b1, .., bn ∈ M̄ such that
(II) for all a ′ ∈M, λ(φ(a ′, y)) is within ε of Fr(φ(a ′, y), b1, .., bn) and
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(III) the proportion of bi’s in X is within ε of r. Suppose for simplicity that that bi ∈ X
for precisely i = 1, ..,m.

Let a realize p|(M,b1, ..., bn). Hence, by the definition of X, |= φ(a, bi) just if 1 ≤
i ≤ m. Also of course |= θ(a). By finite satisfiability of p in M there is a ′ ∈ M such
that |= θ(a ′), |= φ(a ′, bi) for i = 1, ..,m, and |= ¬φ(a ′, bi) for i = m + 1, .., n. By (II)
λ(φ(a ′, y)) is within ε of m/n. On the other hand by (I) λ(φ(a ′, y)) is within ε of s.
As m/n is within ε of r. we have a contradiction.

Theorem 3.3.2. Suppose that µ(x) is a global Keisler measure which is A-invariant.
Then the following are equivalent :
(i) µ is both definable (necessarily over A) and finitely satisfiable in a small model (ne-
cessarily in any model containing A),
(ii) µ(ω)

(x1,x2...)
|A is totally indiscernible,

(iii) µ is fim,
(iv) for any global A-invariant Keisler measure λy, µx ⊗ λy = λy ⊗ µx,
(v) µ commutes with itself : µx ⊗ µy = µy ⊗ µx.
(vi) for some small modelM0 containing A, for any Borel over A set X and any formula
φ(x) over M̄, if µ(X ∩ φ(x)) > 0 then there is a ∈M0 such that a ∈ X and φ(a).

Proof. (i) implies (ii) : Note that if µ and λ are both definable measures, then so is µ⊗λ.
So we see that each µ(n)x1,..,xn is definable. By Lemma 3.1 µ(n+1)x1,..,xn+1 =def µxn+1⊗µ

(n)
x1,..,xn =

µ
(n)
x1,..,xn ⊗ µxn+1 . It follows easily (using indiscernibility of each µ(n)) that each µ(n)x1,..,x(n)

is totally indiscernible, hence so is µ(ω).

(iii) implies (i) : For all φ(x, y) ∈ L, ε = 1/n and sufficiently large m, the definition of
fim supplies us with a formula θ(x1, .., xm). Take a modelM containing the parameters
of those formulas for all φ, n and m. Then µ is definable and finitely satisfiable overM.

(ii) implies (iii) : Without loss A =M is a small model. Assume µ(ω) totally indiscernible.
Claim. Suppose λx1,x2,.. is an extension of µ(ω)

x1,x2,..|M to a modelM ′ > M. ThenAv(λ,M ′)
is precisely µ|M ′.
Proof of Claim. Otherwise, we have some formula φ(x, c) overM ′ such that µ(φ(x, c)) =
r say, and Av(λ,M ′)(φ(x, c)) = s 6= r. Without loss s > r, and let ε = s − r. Let Nφ,ε
be given by Corollary 2.13. By Lemma 2.10, λ(φ(xi, c)) > s − ε for eventually all i.
However let α(xi:i<ω+ω) be µ

(ω)
(xi:ω≤i<ω+ω)|M

′ ⊗ λ(xi:i<ω), a measure over M ′. Then α is
clearly an extension of µ(ω+ω) to M ′. But α(φ(xi, c)) = r for all i ≥ ω, and we have a
contradiction to the existence of Nφ,ε. The claim is proved.

Let ε > 0 and φ(x, y) ∈ L. Let N be given by Corollary 2.13 for φ and ε and let
M = 4N. Then, by the Claim, for any two measures λ, λ ′ extending µ(ω), for any
b ∈ M̄, we have |{i : |λ(φ(xi, b)) − λ

′(φ(xi, b))| ≥ 2ε}| < 2N. By compactness, there is
a formula Φ(x1, .., xM) and a small r > 0 such that for any measure ν(x1,..,xM) such that
|ν(Φ) − µ(M)(Φ)| ≤ r, we have |{i : |ν(φ(xi, b)) − µ

(M)(φ(xi, b))| ≥ 2ε}| < 2N.
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For a sufficiently large integer k, let θkM(x1, .., xkM) be the formula which expresses
that Fr(Φ(x1, .., xM);y0, .., yk−1) is within r/2 of µ(M)(Φ), where yi denotes the tuple of
variables (xMi+1, .., xMi+M). If kM < n < (k+1)M, define θn(x1, .., xn) = θkM(x1, .., xkM).
Then by the weak law of large numbers, limn→+∞µ(ω)(θn) = 1. Futhermore, for suf-
ficiently large n, if (a1, .., an) |= θn and ν is the average of tp(a1/M̄), . . . , tp(an/M̄),
then ν(φ(x, b)) is within 3ε of µ(φ(x, b)) for every b ∈ M̄. This shows that µ is fim.

(iii) implies (iv). We have to prove that any fim measure commutes with any invariant
measure. As above it suffices to prove that an fim measure µx commutes with any
invariant type.

Let q(y) be such. Assume both µ and q are M-invariant. Let φ(x, y) ∈ L. Note
that (µx ⊗ q(y))(φ(x, y)) = µ(φ(x, b)) = r for some (any) b realizing q|M. And also
(q(y)⊗ µx)(φ(x, y)) = µ(X) = s where X = {a : φ(a, y)) ∈ q(y)} (a Borel set over M).
For given ε choose a set a1, ...., ak witnessing fim for µ with respect to φ(x, y) and such
that Fr(X;a1, .., ak) is within ε of µ(X). Let b realize q|(M,a1, .., ak). So µ(X) is within
ε of Fr(φ(x, b);a1, .., ak). But the latter is within ε of µ(φ(x, b)). So r = s and we are
finished.

(iv) implies (v). Obvious.

(v) implies (ii). This follows from associativity of ⊗ : for any k < n we have assuming
(v), µx1 ⊗ ...⊗µxk ⊗µxk+1 ⊗ ...⊗µxn = µx1 ⊗ ...⊗µxk+1 ⊗µxk ⊗ ...⊗µxn . This is enough.

(vi) is a form of ”Borel satisfiability”. It is analogous to (i) since Borel definability is
automatic. The proof of equivalence with the other conditions is postponed to Lemma
3.6 and Theorem 4.8 below.

We call a global Keisler measure µ generically stable if it satisfies the equivalent condi-
tions of Theorem 3.2. (Of course assuming T is NIP.)

Proposition 3.3.3. Suppose that µ is generically stable and A-invariant. Then µ is the
unique A-invariant extension of µ|A.

Proof. Suppose that ν is A-invariant and ν|A = µ|A. By property (iv) above we check
inductively that µ(n)|A = ν(n)|A for all n. By Lemma 2.14, µ = ν.

We give now a proof of Theorem 3.2 which does not use Lemma 2.10. That lemma
was used only in the implication (ii)→ (iii). So we give an alternative proof that if an
invariant measure µ is such that µ(ω) is totally indiscernible, then µ is fim.

By a symmetric measure on some Xn, X a definable set, we will now mean a measure
µ(x1,..,xn) such that µ(xi ∈ X) = 1 for all i and for any σ ∈ Sn and formula φ(x1, .., xn),
µ(φ(x1, .., xn)) = µ(φ(xσ.1, .., xσ.n)).

The following crucial lemma is related to the classical Vapnik-Chervonenkis theorem
(see [68]) and could be proved by similar methods. But it does not seem to be a direct
consequence of it.
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Lemma 3.3.4. Let φ(x, y) ⊆ X× Y be a formula over a model M. For n > 0, let µn be
any symmetric, M-invariant global measure on X2n. Given b ∈ Y and a = (a1, .., an) ∈
Xn, let f(a;b) = Fr(φ(x, b);a1, .., an). Let

δ0(a, a
′;b) = |f(a;b) − f(a ′;b)|,

δ(a, a ′) = sup
b∈M̄

δ0(a, a
′;b).

Finally, let E(n) be the µn-expectation of δ. Then limn→∞ E(n) = 0.
Proof. Note first that δ is measurable for the boolean algebra generated by the definable
subsets of X2n of the form : (∃y)(

∧2n
i=1φ(xi, y)

ν(i)) (where φ(xi, y)ν(i) is either φ(xi, y)
or ¬φ(xi, y)). In particular it makes sense to ask for the µn-expectation of δ.

Fix ε > 0, and let n be large compared to ε.
Let Z/2 act on the variables {xi, x ′i} by flipping them, and let (Z/2)n act on the set

{x1, . . . , xn, x
′
1, . . . , x

′
n} by the product action.

Given (a, a ′) and b, we have |δ0(a, a
′;b)| ≤ 1. Let

X(b) = {s ∈ (Z/2)n : δ0(s(a, a
′);b) > ε}

and let c(b) = {i : φ(ai, b) 6≡ φ(a ′i, b)}. If c(b) = ∅ then δ0(s(a, a ′);b) = 0 for all s.
Otherwise, we view δ(s(a, a ′);b) as a random variable of s (on a finite probability space).
More precisely, it is the absolute value of a sum of |c(b)| independent random variables
each of expectation 0 and variance 1/n2. Therefore δ0(s(a, a ′);b) has expectation 0, and
variance |c(b)|/n2. By Tchebychev’s inequality we have |X(b)| ≤ |c(b)|/(nε)2 ≤ ε−2. So
|X(b)|/2n ≤ ε−22−n.

Now X(b) depends only on {i : φ(ai, b)} and {i : φ(a ′i, b)} ; there are polynomially
many possibilities for these sets, by NIP. Hence, ∪bX(b) is an exponentially small sub-
set of (Z/2)n. If n is large enough, it has proportion < ε. Let s /∈ ∪bX(b). Then
|δ0(s(a, a

′), b)| ≤ ε for all b. If s ∈ ∪bX(b) we have at any rate |δ0(s(a, a
′);b)| ≤ 1.

Thus 2−n
∑
s supb δ(s(a, a

′);b) < 2ε.
By the symmetry of µn, E(n) equals the µn-expectation of supa δ(s(a, a ′)) for any

s ∈ (Z/2)n, hence it is also equal to the average 2−n
∑
s supa δ(s(a, a

′)). So E(n) < 2ε.

Corollary 3.3.5. Let µ be an M-invariant global measure, such that µ(ω) is totally
indiscernible, then µ is fim.

Proof. Let φ(x, y) be a formula, and take ε > 0. By the previous lemma, for large
enough n, the setW = {(a, a ′) : δ(a, a ′) < ε/4} satisfies µ(2n)(W) ≥ 1−ε. Note that this
is a definable set. Therefore there exists a such that µ(n)(W(a)) ≥ 1−2ε > 1/2. (Where
W(a) = {a ′ : (a, a ′) ∈W}.) Now fix a ∈ M̄. Then for all b ′, δ0(a, a ′;b) ≤ δ(a, a ′).

On the other hand letQ ′n(b) be the set of a ′ such that |f(a ′;b)−µ(φ(x, b))| ≥ ε/2. By
Tchebychev’s inequality, and since the variance of the truth value of φ(x, b) is at most 1,
we have µ(n)(Q ′n(b)) ≤ 1/(n(ε/2)2). LetQn(b) be the complement ofQ ′n(b), and assume
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n > 2(ε/2)−2 (note that this does not depend on b). Then µ(n)(Qn(b)) > 1/2. Hence
there exists a ′ ∈W(a) ∩Qn(b). So δ0(a, a ′;b) < ε/4 and |f(a ′;b) − µ(φ(x, b))| < ε/2.
Now for any a ′′ ∈W(a), we have δ0(a ′, a ′′;b) < ε/2, therefore |f(a ′′, b) −µ(φ(x, b))| <
ε.

So we have found, for large enough n a formula θ ′n =W(a) satisfying condition (ii) in
the definition of fim with µ(n)(θ ′n) ≥ 1− 2ε. As this is true for all ε, we can construct a
sequence of formulas θn(x1, .., xn) satisfying the same condition, but with µ(n)(θn)→ 1.
This proves that µ is fim.

Lemma 3.3.6. Let µ be an M-invariant global fim measure. Let φ(x, y) be a for-
mula over M and let X be a Borel over M set. Then for any ε > 0, for some m, we
can find (a1, .., am) such that for each b ∈ M̄, µ(X ∩ φ(x, b)) is within ε of Fr(X ∩
φ(x, b), a1, .., an).

Proof. We know that µ(ω) is totally indiscernible. The proof is then a slight modification
of the lemma above and its corollary. First, in the lemma, change the definition of f to
f(a;b) = Fr(φ(x, b) ∧ x ∈ X;a1, .., an). Define δ0 and δ accordingly. Then the proof
goes through without any difficulties. The corollary also goes through with the new
definitions of f, δ0 and δ, only W and W(a) are no longer definable. Still, W(a) is a
Borel set of measure greater than 1/2 and for any a ′ ∈ W(a), and any b, we have
|f(a ′, b) − (µ(φ(x, b) ∩ X))| < ε.

Finally we will point out how generically stable measures are very widespread in NIP
theories, in fact can be constructed from any indiscernible sequence. By an indiscernible
segment we mean (ai : i ∈ [0, 1]) which is indiscernible with respect to the ordering on
the real unit interval [0, 1]. For any formula φ(x, b), {i ∈ [0, 1] :|= φ(ai, b)} is a finite
union of convex sets, and hence intervals. (See [2] for example.) We define a measure
µx as follows : µ(φ(x, b)) is the Lebesgue measure of {i ∈ [0, 1] :|= φ(ai, b)} (i.e. just
the sum of the lengths of the relevant disjoint intervals). Clearly µx is a global Keisler
measure on the sort of x.

Proposition 3.3.7. The global Keisler measure µx constructed above is generically
stable.

Proof. Let A = {ai : i ∈ [0, 1]}. We show that µ is both finitely satisfiable in A and
definable over A. Finite satisfiability is clear from the definition of µ. (If µ(φ(x, b)) > 0
then the Lebesgue measure of C = {i :|= φ(ai, b)} is > 0 hence C 6= ∅.)

To show definability, we in fact note that µ is fim. First note that for any formula
φ(x, y), there is Nφ such that for all b {i ∈ [0, 1] :|= φ(x, b)} is a union of at most N
disjoint intervals. Hence, given ε > 0, if we choose 0 < δ < ε/N, and let ik = 0+ kδ for
k such that kδ ≤ 1, then for any b, µ(φ(x, b)) is within ε of the proportion of ik such
that |= φ(aik , b).
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§3.4 The fsg property for groups, types and measures

We will again make a blanket assumption that T has NIP (but it is not always
needed). In [32] and [33] definable groups G with finitely satisfiable generics (fsg) played
an important role. This fsg property asserted the existence of a global type of G every left
translate of which was finitely satisfiable in some given small model. By definition this is
a property of a definable group, rather than of some global type or measure. We wanted
to find adequate generalizations of the fsg notion to arbitrary complete types p(x) over
small sets, and even arbitrary Keisler measures over small sets. A tentative definition
of a complete type p(x) ∈ S(A) having fsg was given in [33]. We try to complete the
picture here, making the connection with generically stable global measures. We should
say that the subtlety of the fsg notion is really present in the case where the set A is
NOT bounded closed. In the group case this corresponds to the case where G 6= G00.

We first return to the group case, adding to results from [33].
Recall the original definition :

Definition 3.4.1. The definable group G has fsg if there is a global complete type p(x)
of G and a small model M0 such that every left translate of p is finitely satisfiable in
M0.

As pointed out in [32] M0 can be chosen as any model over which G is defined. In
[33] the notion was generalized to type-definable groups G.

Remark 3.4.2. The definable group G has fsg if and only if there is a global left invariant
Keisler measure µ on G which is finitely satisfiable in some (any) small model M0 over
which G is defined.

Proof. Assuming that G has fsg, Proposition 6.2 of [32] produces the required measure
µ. Conversely, supposing that µ is a global left invariant Keisler measure on G, finitely
satisfiable in M0, let p be some global type of G such that µ(φ) > 0 for all φ ∈ p.
Namely p comes from an ultrafilter on the Boolean algebra of definable subsets of G
modulo the equivalence relation X ∼ Y if µ(X4Y) = 0. Then every left translate of every
formula in p has µ measure > 0 so is realized in M0.

The following strengthens the “existence and uniqueness” of (left/right) G-invariant
global Keisler measures for fsg groups G, from [33]. But the proof is somewhat simpler,
given the results established in earlier sections.

Theorem 3.4.3. Suppose G has fsg, witnessed by a global left invariant Keisler measure
µ finitely satisfiable in small M0. Then
(i) µ is the unique left invariant global Keisler measure on G, as well as the unique right
invariant Keisler measure on G.
(ii) µ is both the unique left G00-invariant global Keisler measure, as well as the unique
right G00-invariant global Keisler measure on G, which extends Haar measure h on
G/G00.
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Proof. (i) This is precisely 7.7 of [33]. But note that we can use Lemma 3.1 of the present
paper and the relatively soft 5.8 of [33] in place of 7.3 and 7.6 of [33]. (Details : Suppose λ
is also global left invariant. By the Lemma 5.8 of [33], we may assume λ to be definable.
Given definable subset D of G, let Z = {(g, h) : g ∈ hZ}. By 3.1, µx ⊗ λy = λy ⊗ µx,
whence (µx⊗λy)(Z) = µ(D) and (λy⊗µx)(X) = λ(D−1). So λ = µ−1. This in particular
yields that µ = µ−1. So λ = µ and µ is also the unique right invariant Keisler measure.)
(ii) Note first that µx induces a left invariant measure on G/G00 which has to be (normali-
zed) Haar measure, and of course µ is (left/right) G00-invariant. Let λy be another global
left G00-invariant Keisler measure extending (or inducing) Haar measure on G/G00. As
in 5.8 of [33] we may assume that λ is definable.

Let X be a definable subset of G. Let r = λ(X). Choose ε > 0. As G00 stabilizes λ,
and λ is definable, there is a definable subset Y of G which contains G00 and such that
for all g ∈ Y, λ(gX) ∈ (r − ε, r + ε). Let π : G → G/G00 be the canonical surjective
homomorphism. Then {c ∈ G/G00 : π−1(c) ⊆ Y} is an open neighbourhood W of the
identity in G/G00. Let U = π−1(W) ⊆ Y ⊆ G. Note that µ(U) > 0 (as it equals the Haar
measure of the open subset W of G/G00). We have
(1) for all g ∈ U, λ(gX) ∈ (r− ε, r+ ε).
Whence
(2) (r− ε)µ(U) ≤

∫
g∈U λ(gX)dµ ≤ (r+ ε)µ(U).

Now let Z = {(h, g) : h ∈ gX and g ∈ G}. Then
(3) (λy ⊗ µx)(Z) =

∫
g∈U λy(gX)dµx.

On the other hand clearly
(4) (µx ⊗ λy)(Z) =

∫
h∈G µx(hX

−1 ∩U)dλy.
Note that the value of µx(hX−1∩U) depends only on h/G00, hence as λ and µ agree “on
G/G00”, we see that
(5) (µx ⊗ λy)(Z) = (µx ⊗ µy)(Z).
By 3.1 applied twice (to (µx ⊗ λy) AND to (µx ⊗ µy)) together with (5) we see that
(6) (λy ⊗ µx)(Z) = (µy ⊗ µx)(Z).
But (µy ⊗ µx)(Z) =

∫
g∈U µy(gX)dµx = µ(X)µ(U).

So using (2) and (3) we see that
(7) (r− ε)µ(U) ≤ µ(X)µ(U) ≤ (r+ ε)µ(U).
So r− ε ≤ µ(X) ≤ r+ ε. As this is true for all ε we conclude that µ(X) = r = λ(X).

Remark 3.4.4. The definable group G has fsg if and only if G has a global generically
stable left invariant measure.

We now consider the general situation. We first recall the definition from [33] :

Definition 3.4.5. p(x) ∈ S(A) has fsg if p has a global extension p ′ such that for any
formula φ(x) ∈ p ′ and |A|+-saturated modelM0 containing A, there is a ∈M0 realizing
p such that |= φ(a).

Lemma 3.4.6. p(x) ∈ S(A) has fsg iff there is a global A-invariant measure µx exten-
ding p such that whenever φ(x) is a formula over M̄ with µ-measure > 0, then for any
|A|+-saturated model M0 containing A, there is a ∈M0 realizing p such that |= φ(a).
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Proof. RHS implies LHS. This is trivial because any weakly random type for the mea-
sure µ will satisfy Definition 4.5.
LHS implies RHS : Let p ′ be as given by Definition 4.5. Then 7.12 (i) of [33] says that
p ′ is a nonforking extension of p. Moreover it is clear that any Aut(M̄/A)-conjugate
of p ′ also satisfies Definition 4.5. Let µ be the global A-invariant measure extending p,
constructed from p ′ in Proposition 4.7 of [33]. Then any formula with positive µ-measure
must be in some Aut(M̄/A)-conjugate of p ′ so is satisfied in any saturated model M0

containing A by a realization of p.

The last lemma motivates a definition of fsg for arbitrary measures over A.

Definition 3.4.7. Let µx be a Keisler measure over A. We say that µ has fsg, if µ has
a global A-invariant extension µ ′ such that for any Borel over A set X, formula φ(x)
over M̄, and |A|+-saturated model M0 containing A, if µ ′(X ∩ φ(x)) > 0 then there is
a ∈M0 such that a ∈ X and φ(a).

Theorem 3.4.8. Let µx be a measure over a set A, then the following are equivalent :
(i) µ has a unique A-invariant global extension µ ′ that is moreover generically stable.
(ii) µ has fsg.
(iii) µ has a global A-invariant extension µ ′ such that for any Borel over A set X,
formula φ(x) over M̄, and |A|+-saturated modelM0 containing A, if µ(X)+µ(φ(x)) > 1
then there is a ∈M0 such that a ∈ X and φ(a).

Proof. (i) implies (ii) : Follows from Lemma 3.3.6.
(ii) implies (iii) is clear.
(iii) implies (i) : We fix global A-invariant measure µ ′ extending µ and witnessing the
assumption. We will prove that µ ′ commutes with every A-invariant measure. It will
follow that µ ′(ω)|A is totally indiscernible, so µ ′ is generically stable. Uniqueness follows
from 3.3. The proof will be a bit like that of 3.1. In fact it is easy to see that µ commutes
with any A-invariant type. If A = bdd(A) this would suffice (as every measure non-
forking over A is “approximated” by types non-forking over A using Corollary 3.2.8,
which are bdd(A)-invariant). But for arbitrary A it does not seem to suffice.

So let us fix an A-invariant (thus Borel-definable over A) global measure λy.
Let P = (µx⊗λy)(φ(x, y)) =

∫
µ(φ(x, b))dλ and R = (λy⊗µx)(φ(x, y)) =

∫
λ(φ(a, y))dµ.

We want to show that P = R.
For any t ∈ [0, 1], let Ct = {q ∈ S(A) : µ(φ(x, b)) ≥ t for any b |= q} and Bt = {p ∈

S(A) : λ(φ(a, y)) ≥ t for any a |= p}. These sets are Borel over A.
Let ε > 0 and take N ≥ 1/ε such that∣∣∣∣∣P −

1

N

N−1∑
k=0

λ(Ck/N)

∣∣∣∣∣ ≤ ε.
Take a model M containing A and |A|+-saturated. By Corollary 2.8, there exist n

and p1, .., pn ∈ S(M) such that Fr(φ(a;y);p1, .., pn) is within ε of λ(φ(a;y)) for every
a ∈M and Fr(Ck/N;p1, .., pn) is within ε of λ(Ck/N) for every k < N. Realize p1, .., pn
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in M̄ by b1, .., bn respectively. Call λ̃ the average measure of b1, .., bn (seen as global
measures).

By construction, we have∣∣∣∣∣ 1N
N−1∑
k=0

λ(Ck/N) −
1

N

N−1∑
k=0

λ̃(Ck/N)

∣∣∣∣∣ ≤ ε.
On the other hand, for all k < N :

λ̃
(
Ck/N

)
=
1

n

∣∣{i : pi ∈ Ck/N}∣∣ = 1

n
|{i : µ (φ(x, bi)) ≥ k/N}| .

It follows that : ∣∣∣∣∣ 1N
N−1∑
k=0

λ̃
(
Ck/N

)
−
1

n

n∑
i=1

µ(φ(x, bi))

∣∣∣∣∣ ≤ 1

N
≤ ε.

Now, for k ≤ N let Θk(x) be the formula that says “There are at least k values of i
for which |= φ(x, bi) holds”. Then (looking at the Venn diagram generated by the sets
φ(x, bi) and counting each time each region appears in both sums) we see that

1

n

n∑
k=1

µ (Θk(x)) =
1

n

n∑
i=1

µ (φ(x, bi)) .

Call P ′ the value of those two sums.
By the construction of λ̃, we have the inclusions Bk/n+ε(M) ⊆ Θk(M) ⊆ Bk/n−ε(M),

and fsg for µ implies that µ(Bk/n+ε) ≤ µ(Θk(x)) ≤ µ(Bk/n−ε).
Then, choosing l such that l/n ≤ 2ε,

1

n

n∑
k=1

µ
(
Bk/n+l/n

)
≤ P ′ ≤ 1

n

n∑
k=1

µ
(
Bk/n−l/n

)
.

The difference between the two sums to the right and to the left of P ′ is at most 8ε.
We may assume that n was choosen large enough so that |R− 1

n

∑n
k=1 µ(Bk/n)| ≤ ε. This

latter sum satisfies the same double inequality as P ′. Therefore |P ′ − R| ≤ 8ε. Putting
everything together, we see that |P − R| ≤ 11ε.

As ε was arbitrary, we are done.

§3.5 Generic compact domination

In [32] the authors introduced the notion of “domination” or control of a type-
definable set X by a compact space C equipped with a measure (or ideal) µ : namely
there is a “definable” surjective function π : X → C such that for every (relatively)
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definable subset Y of X, for almost all c ∈ C in the sense of µ, either π−1(c) ⊆ Y or
π−1(c) ∩ Y = ∅. Here of course X, π are defined over a fixed set A of parameters, and Y
is definable with arbitrary parameters. There was also a “group version” where X = G

is a (type)-definable group, C is a compact group, π a homomorphism, and µ is Haar
measure on C.

In this section we will consider a weaker version of compact domination where X is
replaced by a suitable space of “generic” types, and we expand on and correct some results
which had appeared in a first version of [33]. We view this weak domination as a kind
of measure-theoretic weakening of the finite equivalence relation theorem (or even the
Open Mapping Theorem). Let us begin by explaining this interpretation. If T is a stable
theory, acl(A) is a small algebraically closed (in M̄eq) set, and p(x) ∈ S(acl(A)) a type,
then the finite equivalence relation theorem says that p has a unique global nonforking
extension. Let P denote the set of global complete types in x which do not fork over A,
then P is a closed subset of Sx(M̄) and the restriction map π taking p(x) ∈ P to p|acl(A)
is a continuous bijection between the compact spaces P and Sx(acl(A)), and therefore
a homeomorphism. We deduce (still in this stable context) that any Keisler measure
µx over bdd(A) has a unique global nonforking (bdd(A)-invariant) extension : For any
formula φ(x) over M̄ there is a formula ψ(x) over acl(A) such that the image under π
of the clopen subset of P determined by φ(x) is the clopen subset of Sx(acl(A)) given
by ψ(x). Defining µ ′(φ(x)) to be µ(ψ(x)) gives the required unique global nonforking
extension of µ.

The question we deal with is the following. Work in a NIP environment. Let bdd(A)
be now the “bounded closure” of a small set A, let P be the set of global complete
types p(x) which do not fork over A (equivalently are bdd(A)-invariant), C the set of
restrictions of types in P to bdd(A), and π the restriction map. Both P and C are
naturally, compact spaces and π is continuous, but not in general a homeomorphism.
Now suppose that µx is a Keisler measure over bdd(A) with a unique global nonforking
extension. What does it imply about π : P → C ? We will prove (5.4 below) that P is
dominated by (C, π, µ), in the sense that for any formula φ(x) over M̄, the collection
of p ∈ C such that π−1(p) intersects both (the clopen set determined by) φ and its
complement, has µ-measure 0. In fact we prove that domination of P by (C, π, µ) is
equivalent to µ having a unique global nonforking extension. We will then give the
analogous definable group versions. A global measure on G which is invariant under (left)
translation by G00 will be the analogue of a global measure which is bdd(∅) invariant.
Haar measure on G/G00 will be the analogue of a Keisler measure over bdd(∅) and the
analogue (5.7) of 5.4 will be the statement that Haar measure on G/G00 has a unique
lifting to a left G00-invariant global Keisler measure on G if and only if the collection of
left G00-invariant global types of G is dominated by (G/G00, π, h) where π is the natural
map and h is Haar measure.

We will again be assuming that T has NIP but it is not always needed.
The first two lemmas are not required for Theorem 5.4, but are worth noting and

may be relevant for versions of 5.4 over A rather than bdd(A).
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Lemma 3.5.1. Let µx a Keisler measure over A. Then there is a unique Keisler measure
µ ′x over bdd(A) which extends µx and is Aut(bdd(A)/A)-invariant.

Proof. We identify a Keisler measure on bdd(A) with a regular probability measure on
Sx(bdd(A)). Likewise identify µ with a measure on S(A). Now for each p(x) ∈ S(A),
there is a unique A-invariant Keisler measure on S(bdd(A)) extending p, which we call
µp : the space of extensions of p over bdd(A) is, as mentioned above, a homogeneous
space for the compact Lascar group Aut(bdd(A)/A) so has a unique A-invariant mea-
sure, which is precisely µp. Now define µ ′ as follows : for a Borel set B over bdd(A), put
µ ′(B) =

∫
p∈S(A) µp(B)dµ. µ

′ is clearly A-invariant and we leave to the reader to check
uniqueness.

Lemma 3.5.2. Suppose µx is a Keisler measure over A which does not fork over A.
Then µ has a global A-invariant extension.

Proof. Let λx be some global nonforking extension of µ. By [33], λ is bdd(A)-invariant
and moreover Borel definable over bdd(A). Fix a formula φ(x, b). Let Q be the set of
complete extensions of tp(b/A) over bdd(A). As above Q is a homogeneous space for
the compact Lascar group over A and inherits a corresponding measure h say. Define
µ ′′(φ(x, b)) =

∫
b ′∈Q λ(φ(x, b

′))dh.

Lemma 3.5.3. Suppose µx is a Keisler measure over A which has a unique global A-
invariant extension. Then for any closed subset B of Sx(A) of positive µ-measure, the
localization µB of µ at B also has a unique global A-invariant extension.

Proof. Let µ ′ be the unique global A-invariant extension of µ. Then µ ′B is clearly an
A-invariant extension of µB. If it is not the unique one, let λ be another A-invariant
extension of µB. Define a global measure µ ′′, by µ ′′(X) = λ(X).µ(B)+µ ′(X∩Bc) (where
Bc is the complement of B in S(A) and X a definable set). Note that µ ′′ also extends µ
and is A-invariant (as the two terms in the sum are A-invariant). However by choosing
X such that λ(X) 6= µ ′B(X) we see that µ ′′(X) 6= µ(X), contradicting our assumption.

Notation for Theorem 5.4 is as in the third paragraph of this section. A is a small
set of parameters, and µx a Keisler measure over bdd(A) (in fact the results will be
valid for any boundedly closed set of hyperimaginaries in place of bdd(A)). P is the set
of global complete types p(x) which are bdd(A)-invariant, equivalently do not fork over
A, C = {p|bdd(A) : p ∈ P}, and π : P → C the restriction map. P and C are closed
subspaces of the type spaces Sx(M̄) and Sx(bdd(A)) respectively, and π is a continuous
surjection. µ induces a regular probability measure on C which we also call µ. The only
assumption we will make is that P is nonempty. When appropriate we identify a definable
set (of sort x) with a clopen subset of P.

Theorem 3.5.4. µ has a unique global nonforking (bdd(A)-invariant) extension if and
only if P is dominated by (C, π, µ).
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Proof. Assume the right hand side. We will define a global Keisler measure λx extending
µ as follows : Let X be a definable set (of sort x). Let D0 = {c ∈ C : π−1(c) ∩ X 6= ∅ and
π−1(c)∩Xc 6= ∅}. Then D0 ⊆ C is closed and µ(D0) = 0 by the domination assumption.
C \D0 is the disjoint union of Borel sets D1 and D2, where π−1(c) ⊆ X for c ∈ D1 and
π−1(c) ∩ X = ∅ for c ∈ D2. We define λ(X) to be µ(D1). It is routine to check both that
λ extends µ and that λ is the unique bdd(A)-invariant extension of µ.

For the converse, assume that µ has a unique global bdd(A)-invariant extension, say
λ. If the domination statement fails, there is a closed subset D of C of positive µ-measure
and formula φ(x) over M̄, such that π−1(c) intersects both φ(x) and ¬φ(x) for all c ∈ D.
Hence for every p(x) ∈ D, both p(x) ∪ {φ(x)} and p(x) ∪ {¬φ(x)} do not fork over A.
Let µD be the localization of µ at D.
Claim. There are ν1, ν2, global nonforking extensions of µD such that ν1(φ(x)) = 1 and
ν2(φ(x)) = 0.
Proof of claim. Consider the fragment G generated by the partial types over bdd(A),
φ(x) and the set Ψ of formulas ψ(x) (over M̄) which fork over bdd(A). For each p ∈ D,
let rp = p(x) ∪ {φ(x)} ∪ {¬ψ(x) : ψ ∈ Ψ}. Then D ′ = {rp : p ∈ D} is a closed subset
of S(G) and f : D → D ′ defined by f(p) = rp is a homeomorphism. Using f to define
a measure ν ′1 supported on D ′ gives an extension of µ which assigns 1 to φ(x). Any
extension of ν ′1 to a global Keisler measure ν1 is a nonforking extension of µ assigning
1 to φ(x).

Likewise we find µ2.

So the claim is proved and gives a contradiction to Lemma 5.3. This completes the proof
of the Theorem.

We leave it as an open problem to find an equivalence to “µ has a unique global
A-invariant extension” where µ is a Keisler measure over an arbitrary (not necessarily
boundedly closed) set A. Note that in the stable case any Keisler measure µ over any
set A has a unique global A-invariant extension.

Finally in this section we return to definable groups. The relevant uniqueness statement
will be something like 4.3(ii). The domination statement will be roughly the domination
of a suitable family of “generic” types by G/G00 with its Haar measure. We start by
tying up a few loose ends.

If p is a global type, the (left) stabilizer of p denoted by Stabl(p) is the the set of g ∈ G
such that g.p = p (where of course g.p is the type of ga where a |= p).

Lemma 3.5.5. Let G be a definable group. Suppose there is a global type p of G with
Stabl(p) = G00. Then there is a global left G00-invariant measure µ on G which lifts
(extends) Haar measure on G/G00

Proof. Let h be Haar measure on G/G00 which we can think of as a Keisler measure
on a suitable fragment F (in fact the fragment consisting of the preimages of closed
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sets under π : G → G/G00). Let p(x) be as given by the assumptions. We may assume
that p concentrates on G00. Note that Stabl(ap) = G00 for every translate ap of p. In
particular for c ∈ G/G00 there is a unique translate of p by some a in the coset c, so
we just write it cp. Note that for each definable subset X of G, and g ∈ G00 we have
that X4gX /∈ cp for all c. It follows as in the proof of 5.4 that h extends to a Keisler
measure µ over the fragment generated by F and all definable sets X4gX (g ∈ G00),
such that µ(X4gX) = 0 for all such X, g, and so to a global Keisler measure which is
G00-invariant.

Lemma 3.5.6. Suppose µ is a global Keisler measure on G which is (left) G00-invariant.
Then µ(X4gX) = 0 for all definable X and g ∈ G00. In particular for all µ-weakly random
global p, Stabl(p) = G00.

Proof. This is a kind of group version of the fact that if a global Keisler measure is
bdd(A)-invariant (does not fork over bdd(A)) then µ(X4X ′) = 0 for any bdd(A)-
conjugate X ′ of X. The proof of the latter was easy, but there does not seem to be such a
straightforward proof of the new lemma. We have to prove that Stabl(p) = G00 for each
µ-weakly random global type p. Passing to a bigger monster model M̄ ′, and arguing as
in 5.8 of [33], µ has an extension to a definable left G00-invariant measure µ ′ over M̄ ′.
But then clearly there is a small M ′0 such that for all g ∈ G(M̄ ′), gµ ′ does not fork
over M ′0. Now our µ-weakly random type p of µ extends to a µ ′-weakly random type
p ′. By what we have just seen, p ′ is left f-generic (every left translate does not fork
over a fixed M ′0). By Proposition 5.6(i) of [33], Stabl(p ′) = G00(M̄ ′). It follows that
Stabl(p) = G

00.

Proposition 3.5.7. Let G be a definable group. Then the following are equivalent :
(i) There is a unique left G00-invariant global Keisler measure of G lifting Haar measure
on G/G00,
(ii) Let P be the family of global complete types of G such that Stabl(p) = G00. Let π be
the canonical surjective map from P to G/G00, and h Haar measure on G/G00. Then P

is nonempty and is dominated by (G/G00, π, h).

Proof. (i) implies (ii) : This is like LHS implies RHS in 5.4. The nonemptiness of P is
given by the previous Lemma. Write C for G/G00. For c ∈ C, let Pc be those members
of P which concentrate on π−1(c). Suppose for a contradiction that for some definable
subset X of G, the (closed) subset D of C consisting of c such that both Pc ∩ X and
Pc ∩ Xc is non empty, has positive Haar measure. Then, as in proofs of 5.4 and 5.5, h
lifts to two global left G00-invariant Keisler measures, one giving D∩X positive measure
(in fact that of D) and the other giving it 0 measure. Contradiction.
(ii) implies (i). The existence of µ is given by 5.5. So let us fix global left G00-invariant
µ which lifts Haar measure h on G/G00. Let P ′ be the set of family of µ-weakly random
global types. By Lemma 5.6, P ′ is a nonempty subset of P which clearly maps onto
G/G00 = C under π. So now write π for the map P ′ → C. The assumption (ii) implies
that also P ′ is dominated by (C, π, h). As in the proof of RHS implies LHS of Theorem
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5.4, we conclude that for any definable set X, µ(X) = h(D) where D = {c ∈ C : π−1(c) ⊆
X}. So µ is determined.

By 4.3, the previous proposition applies to any definable group with fsg. In fact the
class P of global types with stabilizer G00 can clearly be replaced by the subclass Pgen of
global generic types p of G. (Here generic is in the sense of [33].) Hence we have “generic
compact domination” for fsg groups :

Proposition 3.5.8. Suppose G has fsg. Let Pgen be the space of global generic types of
G, π : G→ G/G00 as before and h Haar measure on G/G00. Then Pgen is dominated by
(G/G00, π, h).

Finally we point out that under an additional hypothesis on G, we can slightly
strengthen the domination statement. Let us fix a definable group G, π : G→ G/G00 =
C, and definable subset X of G. We will say that X is left generic in π−1(c) if finitely
many left translates of X by elements of G00 cover π−1(c).

We will be interested in the following hypothesis on an fsg group G :
(H) : Let X ⊆ G be definable. Then X is generic in G if and only if for some small model
M every left translate gX of X does not divide over M.

The left hand side implies the right hand side in any fsg group. We do not know an
example of an fsg group G where (H) fails. It is true in any o-minimal expansion of
RCF.

Lemma 3.5.9. Suppose that the fsg group G satisfies (H). Let X be a definable subset
of G, and c ∈ C. The following are equivalent :
(i) X is generic in π−1(c),
(ii) X ∈ p for every p ∈ Pgen concentrating on c,
(iii) for some definable set Y containing π−1(c), Y \ X is not generic in G.

Proof. Without loss of generality let c be the identity of G/G00.
(i) implies (ii) holds without even assuming (H) as the stabilizer of any generic type is
G00. (See [32] or [33].)
(ii) implies (iii) also holds without assuming (H) : By (ii), ‘‘x ∈ G00” ∪ ‘‘x /∈ X” ∪ {¬ψ : ψ
over M̄,ψ nongeneric} is inconsistent, so by compactness, for some definable Y containing
G00, Y \ X is nongeneric (we use here that the set of nongenerics is an ideal).
(iii) implies (i) : Let Z = Y \ X. Let M be a model over which X and Y are defined.
By (H) there is some M-indiscernible sequence (ai : i < ω) of elements of G such that
∩i=1,..,naiZ = ∅ for some n. Let gi = a−11 ai for i = 1, .., n. So ∩i=1,..,ngiZ = ∅. All
elements of ai are in the same coset of G00, hence gi ∈ G00 for i = 1, .., n. As each giY
contains G00 it follows that g1X ∪ ... ∪ gnX ⊇ G00.

Corollary 3.5.10. Suppose that G is a group with fsg which satisfies (H), and π : G→
G/G00. Then for any definable subset X of G, for almost all c ∈ G/G00 in the sense of
Haar measure, either X is generic in π−1(c) or ¬X is generic in π−1(c).
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Proof. Clear.

§3.6 Borel measures over standard models

In this section we give a rich source of smooth measures in the case of theories of
o-minimal expansions of R, as well as Th(Qp). If M0 is the standard model, V ⊆ Mn

0

is definable, and µ∗ is a Borel probability measure on the topological space V , then by
restricting µ∗ to definable sets, we have a Keisler measure which we call µ, overM0. We
will show that any such µ is smooth : has a unique extension to a Keisler measure µ ′ over
a saturated model. It follows in particular that µ ′ will be “definable” ([32]), from which
one can easily obtain “approximate definability” of µ∗ in the sense of Karpinski and Ma-
cintyre [35], thereby considerably generalizing their results on approximate definability
of the real and p-adic Haar measures on unit discs.

For now, T is an arbitrary complete theory. It is convenient to formally weaken
the notion of a Keisler measure by allowing values in [0, r] for some r, but of course
maintaining finite additivity. Sometimes we may say that the Keisler measure µ is ON
the definable set X if µ(Xc) = 0.

Definition 3.6.1. Let µx be a Keisler measure over a model M. We will say that
µ is countably additive over M, if whenever X is definable over M, Yi are definable
over M for i < ω and pairwise disjoint and X(M) is the union of the Yi(M), then
µ(X) =

∑
i<ω µ(Yi).

Remark 3.6.2. (i) Of course the definition depends on M. When M is ω-saturated, any
Keisler measure overM is countably additive, because if X(M) is the union of the Yi(M)
then by compactness it will be a finite subunion.
(ii) If, as above,M0 is a structure whose underlying set is a topological space X say, and
such that all definable subsets of the universe are Borel, THEN any Borel measure µ∗

on X such that µ∗(X) 6= ∞ induces a countably additive Keisler measure over M0 (on
X), by restricting to definable sets.

Theorem 3.6.3. Let M0 be either an o-minimal expansion of (R,+, ·), or the structure
(Qp,+, ·). Let V be a definable set in M0, and µ a countably additive Keisler measure
on V over M0. THEN µ is smooth. That is, µ has a unique extension to a global Keisler
measure on V.

Proof. We will distinguish here between the definable set V (as a functor say) and the
set V(M0) ofM0-points. The proof is by induction on the o-minimal/p-adic dimension of
V (or V(M0)) which we take to be n. Clearly it suffices to partition V intoM0-definable
sets V1, .., Vk and prove the proposition for µi = µ|Vi for each i (where we stipulate that
µi is 0 outside Vi). So by cell-decomposition we may assume that V ⊆ In where I is
the closed unit interval [0, 1] in the o-minimal case, and the valuation ring in the p-adic
case. So in fact there is no harm in assuming that V = In.
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Let us fix an extension µ ′ of µ to a global Keisler measure. And let D be a definable
(over M̄) subset of V . We aim to show that µ ′(D) is determined, namely can be computed
in terms of µ.

Recall that we have the standard part map st from In(M̄) to In(M0), namely from
V(M̄) to V(M0). In both the o-minimal and p-adic cases all types over the standard
model are definable ([40], [17]). As explained in [43] for example, this implies that for any
definable in M̄ subset X of In, st(X) is a definable set in the structureM0. In particular
st(D), st(Dc), and the intersection st(D) ∩ st(Dc) are definable sets in the structure
M0. Hence we can write V(M0) as the disjoint union of Y(M0), D0(M0), and D1(M0),
where as the notation suggests Y,D0, D1 are definable overM0, Y(M0) = st(D)∩st(Dc),
D1(M0) = st(D) \ Y and D0(M0) = st(Dc) \ Y. Note also that D0, D1 are open M0-
definable subsets of V , and of course V is the disjoint union of Y, D0 and D1.

Claim 1. The M0-definable subset Y ∪ (cl(D0) ∩ cl(D1)) of V has dimension < n.
Proof of Claim 1. Otherwise it contains an openM0 definable set U say. But then either
D ∩U or Dc ∩U contains an open M0-definable subset (of V = In). (In the p-adic case
this is Theorem 2.2(ii) of [43]. It is well-known in the o-minimal case too, but formally
follows from 10.3 of [32] for example.) But this is clearly impossble. For if, for example,
W is an open M0-definable set contained in D, then for all w ∈W(M0), st−1(w) ⊆ D,
so for each w ∈W(M0), w /∈ Y(M0), and w /∈ cl(D0)(M0). The claim is proved.

Let D2 be the (closed,M0-definable) set Y ∪ (cl(D0)∩ cl(D1)). Let µ2 be µ|D2. Namely
µ2 agrees with µ on M0-definable subsets of D2 and is 0 on the complement of D2.
Likewise define µ ′2 to be equal to µ ′ on definable subsets of D2 and 0 on the complement
of D2. Then as µ2 is still countably additive, we see, by induction hypothesis and Claim
1, that µ ′2 is the unique global extension of µ2. In particular we have :
Claim 2. µ ′2(D) = µ ′(D ∩D2) is determined.

Claim 3. Let D3(M0) be an openM0-definable neighbourhood of the closed set D2(M0).
Then D \D3 = D1 \D3, hence µ ′(D \D3) = µ(D1 \D3).
Proof of Claim 3. Let a ∈ V = V(M̄), and suppose a /∈ D3. So
(*) st(a) /∈ D2(M0).
Case (i) : a ∈ D1. Then st(a) ∈ cl(D1)(M0). By (*), st(a) /∈ Y, and st(a) /∈ D0. Hence
st(a) ∈ D1 and we conclude that a ∈ D.
Case (ii) : a ∈ D0. As in Case (i) we conclude that st(a) ∈ D0 hence a /∈ D.
This proves Claim 3.

Claim 4. µ ′(D \D2) = µ(D1 \D2).
Proof. For small δ > 0 let Dδ(M0) be the δ neighbourhood of D2. Then ∩δDδ = D2. So
µ(Dδ \D2) → 0 as δ → 0, hence also µ ′(D ∩ (Dδ \D2) → 0 as δ → 0. It follows, using
Claim 3, that µ ′(D \D2) = limδ→0µ ′(D \Dδ = limδ→0µ(D1 \Dδ) = µ(D1 \D2).
Claims 2 and 4 show that µ ′(D) is determined.

Remark 3.6.4. (i) The key point about countably additive Keisler measures µ over the
standard model is that any global extension µ ′ must assign 0 to definable sets which are
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“infinitesimal”.
(ii) The inductive proof of Theorem 6.3 yields the following : for any definable subset D
of In(M̄), there is a partition of In intoM0-definable cells V1, .., Vk, such that for each i,
EITHER for all a ∈ Vi(M0) st

−1(a)∩Vi ⊆ D, OR for all a ∈ Vi(M0) st
−1(a)∩Vi∩D = ∅.



4
Constructions de mesures génériquement stables

§4.1 Introduction

A major theme in the study of NIP theories is the investigation of stable phenomena
in them. In [55] Shelah defines stable types as types that are both finitely satisfiable and
definable over a base. In [33], they are renamed generically stable types (and we will
use the latter terminology) and a systematic study is made. This notion was generalized
to Keisler measures in [29]. Keisler measures (introduced first in [37] and studied again
with a different approach in [32], [33] and [29]) are regular Borel probability measures
on the space of types. Equivalently, they are finitely additive probability measures on
the boolean algebra of definable sets. They can also be considered as types in continuous
logic (see [72]). Some basic facts about them are recalled in the first section.

After Keisler’s seminal work [37], measures were introduced again for the study of
NIP theories in Hrushovski, Peterzil and Pillay’s paper [32], focussing mainly on inva-
riant measures of groups. The notion of fsg group is introduced. Measures are studied
more at depth in [33] in order to prove compact domination for definably compact groups
in o-minimal theories. Again, applications use only invariant measures on groups, but a
general study is initiated. Also, the notion of generically stable type is defined and the
question is asked of a generalization to measures. This is done in [29] by Hrushovski,
Pillay and the author where generically stable measures are defined. A number of equi-
valent properties are given.

The following examples of generically stable measures are known :
- a generically stable type : this is the motivating example,
- the (translation) invariant measure of an fsg group,
- the A-invariant measure extending an fsg type over A ([29] Section 4),
- the average measure of an indiscernible segment ([29], Proposition 3.7),
- the Keisler measure induced by a σ-additive measure on the standard model, R or

Qp ([29], Section 6). In fact, those measures are proven to be smooth, a stronger property.

55
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In this paper, we generalize the last two constructions in this list. First, we show
how to symmetrize any measure, or equivalently to average an indiscernible segment
of measures. Second, we show that any σ-additive measure induces a generically stable
measure, under the assumption that externally definable sets in two variables are measu-
rable (so that Fubini applies). Smoothness of the induced measure is not true in general,
and to recover the full result of [29] we also include a proof that all generically stable
measures in R or Qp are smooth. In order to prove those results, we first establish in
Section 2 a criterion to recognize a product measure µx ⊗ λy when µx happens to be
finitely satisfiable over some small model. Our strategy for proving that a given mea-
sure µ is generically stable will then be to construct a symmetric measure ηx1x2... in ω
variables, and show using this criterion that it is the Morley sequence of µ.

We will use standard notation. We will work with a complete first order theory T
in some language L ; T is assumed to be NIP throughout the paper. For simplicity, we
assume that T is one-sorted and work in T eq. We have a monster model M̄ ;M, N... will
denote small submodels of M̄, and A,B,C... small parameter sets. We will not distinguish
between points and tuples ; they will be named by a, b, c... and x, y, z... will designate
variables of finite or infinite tuples. The notation Lx(A) denotes the set of formulas with
parameters in A and free variable x.

The space of types over A in variable x is designated by Sx(A). It is equipped with
the usual compact topology and the associated σ-algebra of Borel subsets. By “X is
Borel over A”, we mean that it is a Borel subset of some Sx(A). We write a ≡M b for
tp(a/M) = tp(b/M).

By a global type or measure, we mean a type or a measure over M̄.

§4.2 Preliminaries

We recall some basic facts about Keisler measures. We will be brief, and the reader
is refered to [33] and [29] for more details.

We make a blanket assumption that T is NIP.

Basic definitions

A Keisler measure (or simply a measure) over A in variable x is a finitely additive
probability measure on the boolean algebra Lx(A) of formulas with free variable x and
parameters in A. As in section 4 of [33], such a measure extends uniquely to a regular
Borel probability (σ-additive) measure on the type space Sx(A). (“Regular” means that
the measure of any Borel set X is the infimum of the measures of open sets O such
that X ⊆ O. Furthermore, in our situation, working on a totally disconnected space, the
measure of O is itself the supremum of measures of clopen sets inside it.)

Conversely, given a regular Borel measure on Sx(A), its restriction to the clopen sets
gives a Keisler measure.
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We will denote by Mx(A) the space of Keisler measures over A and often write
µx ∈M(A) for µ ∈Mx(A), keeping track of the variable in the name of the measure. We
can consider Mx(A) as a subset of [0, 1]Lx(A). It inherits the product topology making it
a compact Hausdorff space.

Lemma 4.2.1. Let Ω ⊆ Lx(A) be a set of formulas closed under intersection, union and
complement and containing >. Let µ0 be a finitely additive measure on Ω with values in
[0, 1] such that µ0(>) = 1. Then µ extends to a Keisler measure over A.

Proof. By compactness in the space [0, 1]Lx(A), it is enough to show that given formulas
ψ1(x), .., ψn(x) in Lx(A), there is a function f : 〈ψ1, .., ψn〉→ [0, 1] finitely additive and
compatible with µ0 (where 〈B〉 denotes the boolean algebra generated by B). We may
assume that ψ1, .., ψn are the atoms of the boolean algebra B that they generate.

The elements of Ω in B form a sub-boolean algebra. Let φ1, .., φm be its atoms. We
have say :

φ1 = ψi1(1) ∨ ...∨ψi1(l1) φ2 = ψi2(1) ∨ ...∨ψi2(l2) etc.

Then any finitely additive f satisfying f(ψi1(1))+ ...+f(ψi1(l1)) = µ0(φ1) etc. will do.

Here are some basic definitions :

Definition 4.2.2. Let M ≺ N, with N |M|+-saturated and let µx ∈M(N),
– µ is finitely satisfiable in M if for every φ ∈ Lx(N) such that µ(φ) > 0, there is
a ∈M such that N |= φ(a).

– µ is M-invariant if for every φ(x;y) ∈ L, and b ≡M b ′, µ(φ(x;b)) = µ(φ(x;b ′)).
– µ is definable over M if it is M-invariant and for every φ(x;y) ∈ L, and r ∈ [0, 1],

the set {p ∈ Sy(M) : µ(φ(x;b)) ≤ r for any b ∈ N,b |= p} is a closed set of Sy(M).
– µ is Borel-definable over M if the above set is a Borel set of Sy(M).

Proposition 4.2.3 ([33] 4.9). If µ ∈M(N) is M-invariant (N is |M|+-saturated), then
it is Borel definable over M.

The support of µ ∈M(N) is the set of types p ∈ S(N) satisfying p ` ¬φ(x) for every
φ(x) ∈ L(N) such that µ(φ(x)) = 0. We will denote the support of µ by S(µ) ; it is a
closed set of S(N). Note that if µ is finitely satisfiable in M then every type in S(µ) is
also finitely satisfiable in M.

The next proposition says that in NIP theories, measures can be well approximated
by averages of types. We use the notation Av(Ti : i = 1...n) which stands for 1

n |{i :
Ti holds }|.

Proposition 4.2.4 ([29] 2.8). Let µx be any measure over M. Let φ(x, y) ∈ L, ε > 0,
and let X1, .., Xk be Borel sets of Sx(M). Then for all large enough n there are p1, .., pn ∈
Sx(µ) such that for all r = 1, .., k and all b ∈M, µ(Xr ∩φ(x, b)) is within ε of Av(pi ∈
Xr and pi ` φ(x, b) : i = 1..n).

Note in particular that if µx is finitely satisfiable in some model N, then the types
pi’s are also finitely satisfiable in N.
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Invariant extensions

As in the case of types, the study of Keisler measures differs from measure theory in
that the space in two dimensions is not the product of the one dimensional spaces, and
there are in general different ways to amalgamate two measures in one variable to form
a measure in two variables. We recall here the basic construction of invariant extensions.

Let M ≺ N, N being |M|+-saturated, and µx ∈ M(N) be M-invariant. If λy ∈
M(N) is any measure, then we can define the invariant extension of µx over λy, denoted
µx⊗λy. It is a measure in the two variables x, y defined the following way. Let φ(x, y) ∈
L(N). Take a small model P ≺ N containing M and the parameters of φ. Define µx ⊗
λy(φ(x, y)) =

∫
f(p)dλy, the integral ranging over Sy(P) where f(p) = µx(φ(x, b)) for

b ∈ N, b |= p (this function is Borel-measurable by Borel-definability of µx). It is easy
to check that this does not depend on the choice of P.

If λy is also invariant, we can also form the product λy ⊗ µx. In general it will not
be the case that λy ⊗ µx = µx ⊗ λy.

If µx is a global M-invariant measure, we define by induction : µ(n)x1...xn by µ(1)x1 = µx1
and µn+1x1...xn+1

= µxn+1 ⊗ µ
(n)
x1...xn . We let µ(ω)

x1x2... be the union and call it the Morley
sequence of µx. It is an indiscernible sequence in the following sense.

Definition 4.2.5. A measure µx1x2... is indiscernible over A if for every φ(x1, .., xn) ∈
L(A) and indices i1 < ... < in, we have

µ(φ(x1, .., xn)) = µ(φ(xi1 , .., xin)).

We define in the same way µx1x2... to be totally indiscernible by removing in the
above definition the assumption that the indices i1, .., in are ordered.

Similarly, given I any linear order, we can define µ(I)x̄ , where x̄ = 〈xt : t ∈ I〉, the
Morley sequence of µx indexed by I.

We will need the following result from [71] (see also [29], 2.10).

Proposition 4.2.6. If µx1,x2,... ∈M(A) is indiscernible (over ∅), then for every formula
φ(x, y) ∈ L and b ∈ M̄, limi→ω µ(φ(xi, b)) exists.

Equivalently, for any φ(x, y) and ε > 0, there is N such that for any indiscernible
µx1,x2,..., we have |µ(φ(xi, y)) − µ(φ(xi+1, y))| ≥ ε for at most N values of i.

Generically stable measures

This paper is concerned with building generically stable measures. They are measures
that behave very much like types in a stable theory (at least as far as non-forking
extensions are concerned). Generically stable types are studied in [33] (and previously
by Shelah in [55]) and this notion was naturally extended to measures in [29]. We recall
here some equivalent definitions (a few others are given in [29], Theorem 3.3).

Theorem 4.2.7 (Generically stable measure). Let µx be a global M-invariant measure.
Then the following are equivalent :
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1. µx is both definable and finitely satisfiable (necessarily over M),

2. µ(ω)
x1,x2,...|M is totally indiscernible,

3. for any global M-invariant Keisler measure λy, µx ⊗ λy = λy ⊗ µx,
4. µ commutes with itself : µx ⊗ µy = µy ⊗ µx.

If µx satisfies one of those properties, we say it is generically stable.

Let µx be a measure, and f a definable map whose domain is in the sort of x. Then one
can consider the push-forward measure λy = f∗(µx) defined by λy(φ(y)) = µx(φ(f(x))).
This is again a Keisler measure. If µx is definable over M (resp. finitely satisfiable in
M) and f isM-definable, then f∗(µx) is again definable overM (resp. finitely satisfiable
in M). In particular, if µx is a global generically stable measure, then f∗(µx) is also
generically stable.

Smooth measures

Definition 4.2.8 (Smooth). A measure µ ∈ M(N) is smooth if µ has a unique global
extension. If M ⊂ N, we will say that µ is smooth over M is µ|M is smooth.

The following important properties are proved in [29].

Proposition 4.2.9 ([29], 2.3). Let µx be smooth over M and let φ(x, y) ∈ L and ε > 0.
Then there are formulas ν1i (x), ν

2
i (x) and ψi(y) for i = 1, .., n in L(M) such that :

1. The formulas ψi(y) form a partition of the y-space,

2. for all i and b ∈ M̄, if ψi(b) holds, then M̄ |= ν1i (x)→ φ(x, b)→ ν2i (x),

3. for each i, µx(ν2i (x)) − µx(ν
1
i (x)) < ε.

Note that conversely, if the conclusion holds for all φ(x, y) and ε, then µ is smooth.

Corollary 4.2.10. If µx is smooth over N, then :

1. there is M ≺ N of size |T | such that µx is smooth over M,

2. µx is definable and finitely satisfiable in N (in particular µx is generically stable),

3. if λy is a measure over N, then there is a unique separated amalgam ωxy of µx
and λy (see Definition 4.3.1).

Will also need the following fact (initially from [37]), that we consider as a way to
realize measures.

Lemma 4.2.11 ([29], 2.2). Let µx be a measure over M. Then there is an extension
M ≺ N and a measure µ ′x over N extending µx such that µ ′x is smooth.

Some additional facts about smooth measures can be found in Section 4.5.
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Two basic examples

We describe the canonical example of a generically stable measure we have in mind.
Consider the following theory : the signature is {≤, E}. The reduct to {≤} is a dense linear
order, and the theory says that E is an equivalence relation with infinitely many classes,
each of which is dense with respect to ≤. This theory has no generically stable type over
the main sort (because every type falls in some cut of the linear order). However, one
can build a generically stable measure over the main sort by averaging types that fall in
different cuts. More precisely, assume for example that we work over a model (M,≤, E)
and we have an increasing embedding f : ((0, 1),≤)→ (M,≤), where (0, 1) denotes the
standard unit open interval. Let λ0 denote the standard Lebesgue measure on (0, 1).
Define a Keisler measure µ on M by µ(a ≤ x) = λ0(f

−1([a,+∞))) and µ(aEx) = 0 for
all a ∈M. This measure is generically stable. Let π be the canonical projection fromM

to M/E, then the push-forward π∗(µ) is a type, namely the unique non-realized type p
of M/E (we say that µ lifts p). We will see that this phenomenon is general : we can
always lift generically stable types in an imaginary sort to generically stable measures
on the main sort (see Lemma 4.5.4). Note that in this example, it is not possible to lift
p to a generically stable type.

Of course this example is rather special in that the generic type ofM/E is stable and
not just generically stable. Here is an example where this is not the case. Start with the
structure with universe Q and with language {Pn(x, y) : n < ω} where Pn(x, y) holds
if and only if x < y ∧ |x − y| < n. Call M0 this structure. Then the set of formulas
{¬Pn(x, a) : a ∈ M0} defines a complete type p over M0 and this type is generically
stable. Now expand that structure with a linear order < such that every infinite definable
set of M0 is dense-co-dense with respect to <. Let M be the resulting structure. Then
the type p extends in many ways to a generically stable measure µ on M : the reduct
of µ to < can be any Lebesgue measure as above. Such a µ is a non-smooth generically
stable measure, but there are no generically stable types in the expanded theory, even
in Meq.

§4.3 Amalgams

We fix throughout this section the following objects : M ≺ N two models, with N
being |M|+-saturated, and µx, λy two measures over N. An amalgam of µx and λy is a
measure ωxy extending µx ∪ λy. We are interested in the characterization of different
possible amalgams, especially ‘free’ amalgams.

The most basic property an amalgam can have is independence in the sense of pro-
bability theory, which we call separation.

Definition 4.3.1 (Separated). The amalgam ωxy is separated if

ωxy(φ(x)∧ψ(y)) = µx(φ(x)).λy(ψ(y))

for all φ(x), ψ(y) ∈ L(N).
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Note that if µx is M-invariant, then µx ⊗ λy is separated. Also if µx or λy is a type,
then every amalgam is separated.

We now go on to define when the amalgamωxy is a finitely satisfiable extension of µx.
A natural attempt would be to ask for example that ωxy(θ(x, y)) ≤ supa∈M λy(θ(a, y)).
However, this seems to be too weak, and we will ask for something stronger, allowing to
‘localize’ on any clopen φ(x).

Definition 4.3.2 (fs extension). The amalgam ωxy is a fs extension inM of µx over λy
if the following holds for all θ(x, y), φ(x) ∈ L(N) :

ωxy(θ(x, y)∧ φ(x)) ≤ µx(φ(x)). sup
a∈φ(M)

λy(θ(a, y)).

First some basic observations.

Fact 4.3.3. 1. The existence of a fs extension in M of µx over λy implies that µx itself
is finitely satisfiable in M (hence M-invariant).

2. If ωxy is a fs extension in M of µx, then it is a separated amalgam.
3. Assume λy is a type realized by some b. We can view ωxy as ω ′x ∈M(Nb). Then

ωxy is a fs extension in M of µx if and only if ω ′x is finitely satisfiable in M.

Proof. 1. Assume there is such an amalgamωxy. Let φ(x) ∈ Lx(N) be such that φ(M) =
∅. Then applying Definition 4.3.2, with θ(x, y) = ‘‘x = x”, we obtain

µx(φ(x)) = ωxy(φ(x)) ≤ µx(φ(x)). sup
a∈φ(M)

λy(θ(a, y)) = 0.

2. Apply the definition with θ(x, y) = ψ(y) and then θ(x, y) = ¬ψ(y).
3. Assume ωxy is a fs extension of µx. Let θ(x, y) ∈ Lxy(N) be such that θ(M,b) = ∅.

Then
ω ′x(θ(x, b)) = ωxy(θ(x, y)) ≤ µx(φ(x)). sup

a∈φ(M)
λy(θ(a, y)) = 0.

This shows that ω ′x is finitely satisfiable in M.
Conversely, assume that ω ′x is finitely satisfiable inM and take θ(x, y), φ(x) ∈ L(N).

Assume ωxy(θ(x, y) ∧ φ(x)) > 0. Then by hypothesis, there is a ∈ M such that a |=
θ(x, b)∧ φ(x). For that a, we have λy(θ(a, y)) = 1. Therefore :

ωxy(θ(x, y)∧ φ(x)) ≤ ωxy(φ(x)) = µx(φ(x)). sup
a∈φ(M)

λy(θ(a, y)).

And ωxy is a fs extension of µx over λy.

As before, we use the notation Av(Ti : i = 1, .., n) to mean 1
n |{i : Ti holds }|.

Proposition 4.3.4. Assume that µx is finitely satisfiable in M, then ωxy = µx ⊗ λy is
a fs extension (in M) of µx over λy.
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Proof. We first assume that µ = p is a type. Let θ(x, y) ∈ L(N) and φ(x) ∈ L(N) such
that p ` φ(x), and take a small model P ⊂ N containing M and the parameters of θ.

Then ω(θ(x, y)) = λ(B) where B ⊆ S(P) is the Borel subset B = {q : p ` θ(x, b) for
some (any) b |= q}. Let ε > 0. By Proposition 4.2.4, there are points b1, .., bn ∈ N such
that :

|λ(B) −Av(tp(bi/P) ∈ B : i = 1..n)| ≤ ε,
∀a ∈ P, |λ(θ(a, y)) −Av(θ(a, bi) : i = 1...n)| ≤ ε.

As p is finitely satisfiable inM, there is a0 ∈ φ(M) such that for every i ∈ {1, .., n} :

p ` θ(x, bi)↔ N |= θ(a0, bi).

Now p ` θ(x, bi) ⇐⇒ tp(bi/P) ∈ B so :

λ(B) ≈ Av(tp(bi/P) ∈ B : i = 1..n)

= Av(p ` θ(x, bi) : i = 1..n)
= Av(θ(a0, bi) : i = 1..n)

≈ λ(θ(a0, y)).

(Where x ≈ y means |x− y| ≤ ε.)
So |λ(B) − λ(θ(a0, y))| ≤ 2ε. As this is true for all ε > 0, and remembering

λ(B) = ω(θ(x, y)), we deduce ω(θ(x, y)) ≤ supa∈φ(M) λ(φ(a, y)). This finishes the proof
in the case µ = p.

We now consider the general case. Let as above θ(x, y), φ(x) ∈ L(P). Let ε > 0.
By Proposition 4.2.4 and the remark after it, we can find p1, . . . , pn ∈ Sx(N) finitely
satisfiable in M and such that :

∀b ∈ N, |µ(θ(x, b)) −Av(pi ` θ(x, b))| ≤ ε

and
|µ(φ(x)) −Av(pi ` φ(x))| ≤ ε.

Let, for b ∈ M, f(b) = µ(θ(x, b) ∧ φ(x)) and fn(b) = 1
nCard{k : pk ` θ(x, b) ∧ φ(x)}.

Let m be the number of indices i for which pi ` φ(x).
Then,

ω(θ(x, y)∧ φ(x)) =

∫
f(y)dλ

≤
∫
fn(y)dλ+ ε

≤ m

n
sup
k
λ({b | pk ` θ(x, b)∧ φ(x)}) + ε

≤ m

n
sup

a∈φ(M)
λ(θ(a, y)) + ε

≤ µ(φ(x)) sup
a∈φ(M)

λ(θ(a, y)) + 2ε.
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(We use the first part of the proof to go from line 3 to 4).
As ε was arbitrary, we are done.

We now show that if µx is finitely satisfiable in M, then the invariant extension is
the only fs extension of µx over λy.

Proposition 4.3.5. Assume that µx is finitely satisfiable inM and ωxy is a fs extension
in M of µx, then ωxy = µx ⊗ λy.

Proof. Let θ(x, y) ∈ L(N) and let ε > 0. Let P ⊂ N be a small model containing M
and the parameters of θ. By Proposition 4.2.4 we can find b1, . . . , bn ∈ N such that

|λ(θ(a, y)) −Av(θ(a, bi))| ≤ ε, for all a ∈ P.

For all k ∈ {0, . . . , n}, let Bk(x) be the formula saying : “there are exactly k values of
i for which θ(x, bi) is true”.

Then :

ω(θ(x, y)) =
∑
k

ω(θ(x, y)∧ Bk(x))

≤
∑
k

µ(Bk(x)). sup
a∈Bk(M)

λ(θ(a, y))

≤
∑
k

k

n
µ(Bk(x)) + ε.

(We use finite satisfiability of µ on line 2).
Similarly,

ω(¬θ(x, y)) ≤
∑
k

(
1−

k

n

)
µ(Bk(x)) + ε,

and therefore ∣∣∣∣∣ω(θ(x, y)) −
∑
k

k

n
µ(Bk(x))

∣∣∣∣∣ ≤ ε.
Letting ε → 0, we see that ω(θ(x, y)) is uniquely determined by µ and λ and the

fact that ω is a fs extension of µ. By the previous proposition, we have ωxy(θ(x, y)) =
µx ⊗ λy(θ(x, y)).

§4.4 Symmetrizations

The following construction already appears in [29]. Let I = 〈at : t ∈ [0, 1]〉 be an
indiscernible sequence indexed by [0, 1] (we will call this an indiscernible segment). If
φ(x, y) is a formula and b ∈ M̄, then NIP implies that bφ(x, b)c := {t ∈ [0, 1] :|=
φ(at, b)} is a finite union of intervals and points. Let m denote the Lebesgue measure
on [0, 1]. Then we can define a global measure µ = Av(I) by µ(φ(x, b)) = m(bφ(x, b)c).
It is called the average measure of I.
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Lemma 4.4.1. For any indiscernible segment I ⊂ M, the average measure µ = Av(I)
is generically stable over M. Furthermore, for any n and φ(x1, .., xn) ∈ L(M̄),

µ(n)(θ(x1, .., xn)) =

∫
t1∈[0,1]

..

∫
tn∈[0,1]

θ(xa1 , .., xan)dt1...dtn.

Proof. First notice that µ is finitely satisfiable inM by construction. It is easy to check
directly from the definition that the formula given for µ(n) is valid. From this, it follows
that µ(n) is symmetric for all n, therefore µ is generically stable.

If p ∈ S(M) is any type. Let p̃ be anM-invariant global extension of p (for example,
a coheir). Let I be a Morley segment of p̃ (i.e., a Morley sequence indexed by [0, 1]).
Then Av(I) is a generically stable measure and extends p. Note that if p is already
generically stable, then µ = p. In general, by the previous lemma, the Morley sequence
of µ is a symmetrization of the Morley sequence of p, i.e. µ(n)|M is the average over all
permutation of variables of p(n)|M :

µ(n)(θ(x1, .., xn)) =
1

n!

∑
σ∈Sn

p(n)(θ(xσ(1), .., xσ(n))),

for θ(x1, .., xn) ∈ L(M). For this reason, we will call µ a symmetrization of p.

Our aim now is to define the same construction starting with a measure instead of a
type p. We start with µ ∈Mx(C) a global measure invariant over some small model M.
We consider its Morley segment µ([0,1])x̄ where x̄ stands for 〈xt : t ∈ [0, 1]〉 (µ([0,1]) is the
Morley sequence of µ indexed by [0, 1] with the usual order). Now let νx̄, be a smooth
extension of µ([0,1])x̄ |M (this is the analogue of taking a realization of a Morley segment of
p). For any b ∈ M̄, consider the function fφ(x,b) : t 7→ νx̄(φ(xt, b)). By Proposition 4.2.6,
this function has only countably many points of discontinuity. It is therefore integrable
on [0, 1].

Definition 4.4.2 (Symmetrization). Let µ, µΣ ∈ Mx(C) be two measures and M a
small model. We say that µΣ is a symmetrization of µ over M if there exists a measure
ν ∈Mx̄(C) where x̄ = 〈xt : t ∈ [0, 1]〉 such that :

– µ is invariant over M,
– ν is a smooth extension of µ([0,1])|M,
– for every θ(x;y) ∈ L and b ∈ C, we have :

µΣ(φ(x;b)) =

∫
t∈[0,1]

ν(φ(xt, b))dt.

In this case, we will say that µΣ is the symmetrization of µ over M built from ν.

Notice that the restrictions of µΣ and µ to the model M coincide.
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Proposition 4.4.3. If µΣ ∈Mx(M̄) is a symmetrization of a measure µ over M, then
µΣ is generically stable. Furthermore, for every n, and θ(x1, .., xn) ∈ L(M),

µ
(n)
Σ (θ(x1, .., xn)) =

1

n!

∑
σ∈Sn

µ(n)(θ(xσ(1), .., xσ(n))).

Proof. Assume that µΣ is a symmetrization of µ built from ν ∈Mx̄(C).
Let P be a small model containing M over which ν is smooth. Then ν is finitely

satisfiable in P, and it follows that µΣ is also finitely satisfiable in P. For n < ω, define
an n-ary global measure λnx1..xn by

λn(θ(x1, .., xn)) =

∫
t1∈[0,1]

..

∫
tn∈[0,1]

ν(θ(xt1 , .., xtn))dt1..dtn,

for any formula θ(x1, .., xn) ∈ L(M̄).
We will show by induction that λn = µ

(n)
Σ for all n. The second assertion of the

proposition will follow immediately by direct computation (remembering µ(ω)|M = ν|M).
Then the first assertion follows since the expression given for µ(n)Σ is symmetric. We
show that λn defines a fs extension in P of µΣ, and is therefore, by Proposition 4.3.5 and
induction equal to µ(n)Σ .

For simplicity of notations, we write the details only for n = 2 (the case n = 1 being
true by definition). Let θ(x, y), φ(x) ∈ L(M̄). The transformations are explained below.

λ2x,y(θ(x, y)∧ φ(x)) =

∫
t∈[0,1]

∫
t ′∈[0,1]

νx̄(θ(xt, xt ′)∧ φ(xt))dt
′dt

=

∫
t∈[0,1]

µΣ,y ⊗ νx̄(θ(xt, y)∧ φ(xt))dt

≤ sup
a∈φ(P)

µΣ,y(θ(a, y))×
∫
t∈[0,1]

νx̄(φ(xt))dt

≤ µΣ,x(φ(x)). sup
a∈φ(P)

µΣ,y(θ(a, y)).

Explanation : νx̄ is a smooth measure, so by Corollary 4.2.10, it admits a unique
separated amalgam with any other measure. In particular with µΣ,y. The measure ωx̄y
defined by ωx̄y(θ(x̄, y)) =

∫
t ′∈[0,1] νx̄(θ(x̄, xt ′))dt is such an amalgam. Therefore it is

equal to µΣ,y ⊗ νx̄. This justifies the second line.
As µΣ,y is finitely satisfiable in P, µΣ,y ⊗ νx is a fs extension of µΣ,y over νx (in P) ;

this explains the third line. The forth line is just the definition of µΣ.

Proposition 4.4.4. Let µ ∈ Mx(M̄) be a global M-invariant measure, and µΣ a sym-
metrization of µ overM. Let also f be anM-definable function whose domain and range
are in the same sort as the variable x.
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1. If µ is generically stable, then µΣ = µ,

2. f∗(µΣ) is a symmetrization of f∗(µ) over M,

3. If f∗(µ) = µ, then f∗(µΣ) = µΣ.

Proof. 1. If µ is generically stable, then µ(ω) is totally indiscernible. It follows by
Proposition 4.2.6 that for every φ(x, c) ∈ L(M̄) and ε > 0, the set {t ∈ [0, 1] :
|ν(φ(at, c))−µ(φ(a, c))| > ε} is finite. Therefore the definition of µΣ implies that µΣ = µ.

2. Clear : f∗(µΣ) is a symmetrization of f∗(µ) built using f∗(ν).
3. Let ν ∈ Sx̄(C) be such that µΣ is a symmetrization of µ built from ν. For I ⊆ [0, 1],

define the measure νI ∈ Sx̄(C) by νI(φ(xt1 , .., xtn)) = ν(φ(fIt1(xt1), .., f
I
tn(xtn))) where

φ(x1, .., xn) ∈ Lx̄(M̄) and fIt = f if t ∈ I and is the identity otherwise.

Claim 1 : For every I, νI is indiscernible.

Proof. The claim concerns only the restriction to M (indeed to ∅) of the measure νI.
Note that ν|M is just µ([0,1])|M, and as f is M definable, the property we need to check
does not depend on the choice of the smooth extension ν. Let θ(x1, .., xn) ∈ L(M) and
i1, .., in ∈ [0, 1]. We want to see that µ([0,1])(θ(xi1 , .., xin)) = µ

([0,1])(θ(fI(xi1), .., f
I(xin))).

To simplify notations, we note that µ([0,1])(θ(xi1 , ..., xin)) = µ
(n)(θ(x1, ..., xn)). So it is en-

ough to show that µ(n)(θ(x1, .., xn)) = µ(n)(θ(g1(x1), .., gn(xn))), for every θ(x1, ..., xn) ∈
L(M), where gi is either f or the identity. We check this by induction on n. For n = 1,
it is the hypothesis. Assume we know it for n and take θ(x1, ..., xn+1) ∈ L(M) and
some g1, ..., gn+1 as above. Let ḡ = (g1, .., gn), then the induction hypothesis says that
ḡ∗µ

(n) = µ(n). Equivalently, for any Borel function χ on Sn(M), we have∫
p∈Sn(M)

χ(p)dµ(n) =

∫
p∈Sn(M)

χ(ḡ∗p)dµ
(n).

In particular, taking χ(p) = µx(θ(a1, ..., an, x)) for some (any) (a1, ..., an) |= p, this
equation becomes

µ(n+1)(θ(x1, ..., xn, xn+1)) = µ
(n+1)(θ(g1(x1), ...., gn(xn), xn+1)).

As f∗µ = µ, we also have χ(p) = µx(θ(a1, ..., an, f(x))) for some (any) (a1, ..., an) |= p

and using this expression in the right side of the equation gives

µ(n+1)(θ(x1, ..., xn, xn+1)) = µ
(n+1)(θ(g1(x1), ..., gn(xn), f(xn+1))).

�

Claim 2 : For every φ(x) ∈ L(M̄) and ε, there are only finitely many values of
t ∈ [0, 1] for which |ν(φ(xt)) − ν(φ(f(xt)))| > ε.
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Proof. Assume not. Then without loss we can find a sequence of reals t0 < t1 < ... ∈
[0, 1] such that |ν(φ(xti)) −ν(φ(f(xti)))| > ε for every even i < ω. Let I be {t2i : i < ω}

and consider the measure ηx1,x2,... defined by

η(θ(x1, ..., xn)) = ν(θ(xt1 , ..., xtn))

for any θ ∈ L(M̄). Define also η ′x1,x2,... by

η ′(θ(x1, ..., xn)) = ν
I(θ(xt1 , ..., xtn)).

Then η and η ′ are indiscernible. By Proposition 4.2.6 and removing finitely many points
from the sequence (ti) if necessary, we may assume that for all i < ω, |η(φ(xi)) −
η(φ(xi+1))| ≤ ε/4 and same with η ′ instead of η. But this is a contradiction since
η(φ(xi)) and η ′(φ(xi)) are equal for odd i and differ by at least ε for even i. �

It follows that the average of ν is the same as the one of νI for each I. As f∗(µΣ) is
the average of νI for I = [0, 1], we have f∗(µΣ) = µΣ.

As an application, we give a short proof of a result from [33], Section 7. (It is not
stated explicitly there, as the notion of generically stable measure had not been intro-
duced yet, but is the content of the pages from Lemma 7.1 to Lemma 7.6.) If G is a
definable group and M a model, by a measure µx being G(M)-invariant, we mean that
µx concentrates on G (i.e. µx(x ∈ G) = 1) and for each g ∈ G(M) and φ(x) a formula,
µx(φ(x)) = µx(φ(g.x)).

Proposition 4.4.5. Let M be a model, and G a definable group. Assume there is µ ∈
Mx(M) a G(M)-invariant measure. Then µ extends to a global generically stable G(M)-
invariant measure.

Proof. First, find a global extension µ̃ of µ that is G(M)-invariant, and M1-invariant
for some small M1 ⊃M. This can be done with Keisler’s smooth measure construction,
see [33], Lemma 7.6. Let µ̃Σ be a symmetrization of it over M1. Then by the previous
propositions, µ̃Σ is generically stable and G(M)-invariant.

§4.5 Smooth measures

The goal of this section is to prove that generically stable measures in o-minimal
theories or in the theory of the p-adics are smooth.

We start by giving a characterization of smoothness which will be useful for proving
that measures are smooth. LetM |= T and let φ(x, y) ∈ L(M). For b ∈ M̄, we define the
border of φ(x, b) (over M) as ∂Mx φ(x, b) = {p ∈ Sx(M) : there are a, a ′ |= p such that
φ(a, b)∧¬φ(a ′, b) holds }. This is a closed subset of the space of types Sx(M). We will
often omit x andM in the notation. Note that ∂Mφ(x, b) depends only on q = tp(b/M),
so we will also sometimes write ∂Mφ(x, q) for ∂Mφ(x, b).
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Lemma 4.5.1 (Characterization of smoothness). Let µ ∈Mx(M). Then µ is smooth if
and only if µ(∂Mφ(x, b)) = 0 for all φ(x, y) ∈ L(M) and all b ∈ M̄.

Proof. Let φ(x, y) and b be as in the statement of the lemma. Let O ⊆ Sx(M) be the
set of types p such that p ` φ(x, b). And let F = ∂Mφ(x, b). Then for any extension ν
of µ, we have µ(O) ≤ ν(φ(x, b)) ≤ µ(O) + µ(F). Therefore if µ(F) = 0 for all such φ
and b, then µ is smooth.

Conversely, assume that µ is smooth and let φ(x, y) and b be as above. Let ε > 0
and take ν1i (x), ν

2
i (x), ψi(y), i = 1, .., n be as in Proposition 4.2.9. Let i be such that

ψi(b) holds. Then ∂φ(x, b) ⊆ ν2i (x) \ ν1i (x). Therefore µ(∂φ(x, b)) < ε. As this is true
for all ε > 0, µ(∂φ(x, b)) = 0.

To illustrate this, assume T is o-minimal, let M ≺ N be models of T and let φ(x) ∈
L(N) be a formula, x a single variable. By o-minimality, φ(x) is a finite union of (closed
or open) intervals. Let a0, .., an−1 denote those end points that lie in N \ M. Then
∂Mφ = {tp(ak/M) : k < n}. In particular, it is finite.

Lemma 4.5.2. Let µ ∈ Mx(C) be a global measure, smooth over M. Let f be an M
definable function whose range is the sort of the variable x. Then f∗(µ) is smooth.

Proof. Let λy = f∗(µ) and let φ(y) be anM-definable set. Let F = ∂Mφ(y). Define also
ψ(x) = φ(f(x)) and G = ∂Mψ(x). Then λ(F) = µ(G) = 0 as µ is smooth. By Lemma
4.5.1, f∗(µ) is smooth.

The following easy fact will be used implicitly in what follows.

Lemma 4.5.3. Let µ be a global smooth measure. Assume that µ is M-invariant, then
µ is smooth over M.

Proof. Proposition 4.2.9 gives us formulas ψi(y, d), ν1i (x, d) and ν2i (x, d) with d ∈ M̄
satisfying three properties as stated. It is enough to show that we can find d ′ ∈ M
such that the formulas ψi(y, d ′), ν1i (x, d

′), ν2i (x, d
′) satisfy the same properties. Now

the condition imposed on d ′ by the first 2 properties is clopen. By Corollary 4.2.10, µ
is definable. As it is M-invariant, it must be definable over M, therefore the condition
imposed by the third point is open. So we are looking for d ′ in some open set of S(M).
As we know that this set is non-empty, it must intersect the set of realized types, and
we find the required d ′.

Lemma 4.5.4. Let S1, S2 be two sorts and f : S1 → S2 a surjective definable map. Let
µ ∈Mx(M̄) be a generically stable measure on the sort S2. Then there is η ∈My(M̄) a
generically stable measure on the sort S1 such that f∗(η) = µ.

Proof. Let M be a small model such that µ is M-invariant. We first show that we can
find a global measure ν which is M-invariant and such that f∗(ν) = µ. To see this let
Ω1 be the boolean algebra of definable sets of the form f−1(D), D a M̄-definable set of
S2, and Ω2 the algebra of sets defined by a formula of the form φ(x, a)4φ(x, a ′) for
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a, a ′ ∈ C, a ≡M a ′. Define a partial measure ν0 on Ω = 〈Ω1,Ω2〉 by ν0 = f−1(µ) on Ω1
and µ0 = 0 on Ω2. By Lemma 4.2.1, ν0 extends to a global measure ν which satisfies
the requirement.

Now consider a symmetrization η of ν overM. Then η is generically stable. Further-
more, by Proposition 4.4.4, f∗(η) is a symmetrization of f∗(ν) overM. And as f∗(ν) = µ
is generically stable, again by Proposition 4.4.4, f∗(η) = µ.

Corollary 4.5.5. Let S1, S2 be two sorts and f : S1 → S2 a surjective definable map.
Assume that all generically stable measures on S1 are smooth, then it is also the case for
S2.

Proof. Let µ a generically stable measure on S2. Take η a generically stable measure on
S1 given by Lemma 4.5.4. By hypothesis, η is smooth. So µ = f∗(η) is also smooth.

We will use this ad-hoc criterion for smoothness.

Proposition 4.5.6. Assume T has definable Skolem functions. Let S be a set of ima-
ginary sorts containing the main sort M̄. Assume that for any model N, any formula
φ(x̄, y) ∈ L(N) (y a single variable from the main sort) is a boolean combination of
formulas of the form R(f(x̄), y) where R is a ∅-definable relation and f is an N-definable
function taking values in a sort from S. Assume that for each S ∈ S, all generically stable
measures over S are smooth.

Then any generically stable measure is smooth.

Proof. Let M ≺ N be two models of T . Assume that for all n, all n types over M
are realized in N. Let µ ∈ M(N) be an M-invariant generically stable measure in k
variables. It is enough to show that any formula of the form φ(x̄, c), c ∈ M̄ a 1-tuple
and φ(x̄, y) ∈ L(N), has the same measure in any extension of µ. (Because then N(c)
is a model of T over which µ has a unique extension, and we can replace N by it and
iterate.) By hypothesis, we may assume that φ(x̄, y) = R(f(x̄), y) for some R and f as
above.

If ν is a global extension of µ, then ν(φ(x̄, c)) = f∗(ν)(R(z, c)). Now f∗(ν) is gene-
rically stable and N-invariant. By hypothesis, it is smooth over N. Therefore ν(φ(x̄, c))
is determined.

Corollary 4.5.7. If T is o-minimal, then any generically stable measure is smooth.

Proof. We will check the hypothesis of the previous proposition for S = {M̄} (the main
sort). Let T be o-minimal. Every formula φ(x̄, y) is a boolean combination of formulas
of the form y < f(x̄) and y = f(x̄) where f is a definable function. So the first part of the
hypothesis is satisfied. Next, consider µx a global generically stable measure in dimension
1. Let φ(x) be a formula, x a single variable, with parameters in some extension N̄ � M̄.
As explained after the proof of Lemma 4.5.1, ∂M̄φ is a finite set of non-realized types.
Finiteness easily implies that all the types in ∂M̄φ are generically stable. As there are no
non-realized generically stable types in T , µ(∂M̄φ) = 0. By Lemma 4.5.1, µ is smooth.
Proposition 4.5.6 therefore applies.
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Corollary 4.5.8. Let T = Th(Qp), for some p, then any generically stable measure is
smooth.

Proof. This case is similar to the o-minimal one. Let Γ denote the value group. For
1 ≥ k, n < ω, let Bk,n be the set of canonical parameters of definable sets of the form
{x : val(x − a) ≡ k [n]}, a ∈ M̄ and B be the set of canonical parameters of balls
{x : val(x− a) = α} for a ∈ M̄, α ∈ Γ .

We will check that Proposition 4.5.6 applies with S =
⋃
k,nBk,n ∪ {M̄,B}.

We leave it to the reader to check that all generically stable measures in one variable
from M̄ or from Γ are smooth (this can be done as in the o-minimal case : check that
the border of a definable set is finite).

Next, let µx be a generically stable measure on B. Let val denote the natural map
from B to Γ . Then, val∗(µ) is generically stable and therefore is smooth. We may assume
that val∗(µ) is either a realized type or an atomless measure. Assume val∗(µ) = ‘‘x = α ′′

for some α ∈ Γ . Then µ is a measure concentrating on Bα : the sort of balls of radius
α. There is a surjective map π : M̄ → Bα, so by Corollary 4.5.5, µ is smooth. Now if
val∗(µ) is atomless, one can check by inspection that µ(∂φ(x)) = 0 for every definable
set φ(x).

Finally, for any k, n < ω, there is a surjective map from B to Bk,n, so all generically
stable measures there are also smooth.

Let φ(x) ∈ L(A) be a definable set in dimension 1. Then φ(x) can be written as a
finite boolean combination of formulas of the form x ∈ b with b in someBk,n, k, n < ω or
inB. We can choose the decomposition such that b is A-definable. Therefore Proposition
4.5.6 applies.

Theories in which all generically stable measures are smooth will be studied in a
subsequent work [61], where equivalent characterizations will be given along with some
properties. In particular, it will be shown that in a dp-minimal theory with no generically
stable type in the main sort, all generically stable measures are smooth, generalizing the
two corollaries above.

§4.6 σ-additive measures

Recall that if M |= T , an externally definable subset of M is a subset of the form
φ(M) where φ(x) ∈ L(M̄). Assume that the model M is equipped with a σ-algebra A

such that externally definable sets are measurable. Then if µ0 is a (σ-additive) probability
measure on (M,A), µ0 induces a global Keisler measure µ. Namely µ(φ(x)) = µ0(φ(M)),
for φ(x) ∈ L(M̄).

Theorem 4.6.1. Let T be NIP, M |= T equipped with a σ-algebra A. Assume that any
externally definable subset of M2 is measurable for the product algebra A⊗2. Let λ be
a probability measure on (M,A). Then λ induces a global Keisler measure µ and µ is
generically stable.
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Proof. Note first that by construction µ is finitely satisfiable in M (hence also M-
invariant).

We have at our disposal two different amalgams of µx by µy. The first one is µ(2)xy =
µx⊗µy from the model-theoretic world. The second one comes from probability theory :
we may form the product measure λ2 = λ×λ which is a σ-additive measure on (M2,A⊗2).
By hypothesis, λ2 induces a global Keisler measure µ2xy. Of course, µ(2)xy and µ2xy coincide
on products φ(x)∧ψ(y) (they are both separated amalgam of µx and µy). We will prove
that in fact µ2xy = µ

(2)
xy . For this, it is enough to check that µ2xy is a fs extension in M of

µx.
Let θ(x, y), φ(x) ∈ L(M̄). We have :

µ2xy(θ(x, y)∧ φ(x)) =

∫
(a,b)∈M2

θ(a, b)∧ φ(a)dλ2

=

∫
a∈φ(M)

∫
b∈M

θ(a, b)dλdλ

≤ λ(φ(M)). sup
a∈φ(M)

∫
b∈M

θ(a, b)dλ

= µx(φ(x)). sup
a∈φ(M)

µy(θ(a, y)).

By Proposition 4.3.5, this proves that µ2xy = µx ⊗ µy.
By the usual Fubini theorem, λ2 is a symmetric measure. Therefore it is also the

case for µ(2)xy : µ(2)xy (θ(x, y)) = µ
(2)
xy (θ(y, x)) for all θ(x, y) ∈ L(M̄). By Theorem 4.2.7, this

implies that µx is generically stable.

Remark 4.6.2. The assumption that externally definable sets are measurable for the
product σ-algebra is of course necessary. Consider for example an ω1-saturated model
M of RCF. Let p ∈ S(M) be the type at +∞ and p̃ the global co-heir of p. Then p̃ is
induced by a σ-additive measure on M (equipped with the Borel σ-algebra). It is not
generically stable, and note that the set {(x, y) ∈M2 : x ≤ y} is not measurable for the
product algebra.

As a corollary, we recover the following result from [29], Section 6.

Corollary 4.6.3. Let M be either R : the standard real numbers equipped with any o-
minimal structure expanding the field operations, or Qp : the standard p-adic field. Let
µ0 be a σ-additive measure on M, then µ0 induces a smooth Keisler measure µ.

Proof. Theorem 4.6.1 implies that µ is generically stable, then using Corollary 4.5.7 or
4.5.8, we deduce that it is smooth.

Question 4.6.4. More generally, if we assume that A is generated as a σ-algebra by
definable sets, is it the case that µ is smooth ?
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Proposition 4.6.5. LetM = R be an o-minimal expansion of the standard model. Let µ
be a smooth measure over Mk concentrating on [0, 1]k. Then there is a σ-additive Borel
measure λ on [0, 1]k such that λ induces µ as a Keisler measure.

Proof. Let Ωk be the subspace of Sk(M) of types that concentrate on [0, 1]k. Note that
the standard part application st induces an application st : Ωk → [0, 1]k. This is a Borel
map (as the inverse image of a closed set is closed). In particular, we can consider the
pushforward measure λ = st∗(µ). It is a σ-additive measure on [0, 1]k. We now show that
λ induces µ as a Keisler measure, i.e., that µ(X) = λ(X) for any definable set X.

Let X be a definable set of [0, 1]k. Assume first that X is closed. We have a definable
map dX : Mk → M such that dX(x̄) is the distance of x̄ to X. For ε > 0, let Xε be the
closed ε-neighborhood of X : Xε = {x̄ ∈ [0, 1]k : dX(x̄) ≤ ε}. It is also a definable set. We
have st−1(X) = ∩ε>0Xε. Let p be a type in st−1(X) \ X. Then (dX)∗(p) is the type 0+

of S(M). As µ is smooth, (dX)∗(µ) is also smooth and it is not possible that it has an
atom on 0+. Thus µ(st−1(X) \ X) = 0 and µ(X) = λ(X).

We treat the general case by induction on the dimension of X. The case of dimension
0 is trivial. So let X be any definable set. Let O be its interior and X̄ its closure. Then
D = X̄ \ O has lower dimension then X. We know that µ(X̄) = λ(X̄) and by induction
µ(X̄ \ X) = λ(X̄ \ X). Hence µ(X) = λ(X).



5
Théories distales

§5.1 Introduction

We study one way in which stability and order can interact in an NIP theory. More
precisely, we are interested in the situation where stability and order are intertwined.
We start by giving some very simple examples illustrating what we mean.

Consider M0 |= DLO. A type of S1(M0) is determined by a cut in M0 and two
types corresponding to different cuts are orthogonal. If we take now M1 a model of
some o-minimal theory, still a 1-type is determined by a cut, but in general, types that
correspond to different cuts are not orthogonal. However this is true over indiscernible
sequences in the following sense : assume 〈at : t < ω + ω〉 ⊂ M1 is an indiscernible
sequence. By NIP, the sequences of types 〈tp(at/M1) : t < ω〉 and 〈tp(aω+t/M1) :
t < ω〉 converge in S(M1). Then the two limit types are orthogonal (this follows from
dp-minimality, see 5.2.28). An indiscernible sequence with that property will be called
distal 1. A theory is distal if all indiscernible sequences are distal. So any o-minimal
theory is distal.

Distality for an indiscernible sequence can be considered as an opposite notion to
that of total indiscernibility.

Let nowM2 be a model of ACVF (or any other C-minimal structure) and consider an
indiscernible sequence (ai)i<ω of 1-tuples. Two different behaviors are possible : either
the sequence is totally indiscernible, this happens if and only if val(ai−aj) = val(ai ′−aj ′)
for all i 6= j, i ′ 6= j ′, or the sequence is distal. Again, this will follow from the results
in Section 2, but could be proved directly. So M2 is neither stable nor distal ; the two
phenomena exist but do not interact in a single indiscernible sequence of points.

Consider now a fourth structure (a ‘colored order’)M3 in the language L3 = {≤, E} :
M3 is totally ordered by ≤ and E defines an equivalence relation, each E class being dense

1. Thanks to Itay Kaplan for suggesting the name.
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co-dense with respect to ≤. Now an indiscernible sequence of elements from different E
classes is neither totally indiscernible nor distal. Given two limit types px and qy of
different cuts in such a sequence, the type px∪qy is consistent with xEy and with ¬xEy.
Here it is clear that the ‘stable part’ of a type should be its E-class.

The idea behind the work in this paper is that every ordered indiscernible sequence
in an NIP theory should look like a colored order : there is an order for which different
cuts are orthogonal and a something stable on top of it which does not see the order
(see Section 3).

A word about measures

Keisler measures will be used a little in this work, however the reader not familiar
with them can skip all parts referring to measures without harm. For this reason, we
will be very brief in recalling some facts about them and refer the reader to [33] and
[29]. They however give some understanding of the intuition behind some definitions and
results. We explain this now.

A Keisler measure (or simply a measure) is a Borel probability measure on a type
space Sx(A). Basic definitions for types (non-forking, invariance, coheir, Morley sequence
etc.) generalize naturally to measures (see [33] and [29]). Of interest to us is the notion
of generically stable measure. A measure is generically stable if it is both definable
and finitely satisfiable over some small set. Equivalently, its Morley sequence is totally
indiscernible. Such measures are defined and studied by Hrushovski, Pillay and the
author in [29]. Furthermore, it is shown in [62] that some general constructions give
rise to them, and in this sense they are better behaved than the more natural notion of
generically stable type.

This paper can be considered as an attempt to understand where generically stable
measures come from. What stable phenomena do generically stable measures detect ?
What does the existence of generically stable measures in some particular theory tell us
about types ? The first test question was : Can we characterize theories which have non-
trivial generically stable measures ? Here “non-trivial” means “non-smooth” : a measure
is smooth if it has a unique extension to any bigger set of parameters. This question
is answered in Section 2 : a theory has a non-smooth generically stable measure if and
only if it is not distal.

The main tool at our disposal to link measures to indiscernible sequences is the
construction of an average measure of an indiscernible segment (see [29] Lemma 3.4 or
[62] Section 3 for a more elaborate construction). Such a measure is always generically
stable. The intuition we suggest is that the ‘order’ component of the sequence is evened
out in the average measure and only the ‘stable’ component remains.

Organization of the paper and main results

The paper is organized as follows. The first section contains some basic facts about
NIP theories and Keisler measures. We give a number of definitions concerning indis-
cernible sequences and some basic results illustrating how we can manipulate them.
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Section 2 studies distal theories. They are defined as theories in which every indiscer-
nible sequence is distal, as explained above. We show that this condition can also be
seen through invariant types and generically stable measures. The main results can be
summarized by the following theorem.

Theorem 5.1.1. The following are equivalent :
– T is distal,
– Any two invariant types that commute are orthogonal,
– All generically stable measures are smooth.

Furthermore, it is enough to check any one of those conditions in dimension 1.

As a consequence, o-minimal theories and the p-adics are distal as are more generally
any dp-minimal theory with no generically stable type.

Section 3 can be read almost independently of the previous one : it contains a study
of the intermediate case of an NIP theory that is neither stable nor distal. We deal
with the problem of understanding the ‘stable part’ (or the ‘non-distal’) part of a type.
We define a notion of s-domination (s for stable), first for points inside an indiscernible
sequence and then for any point over some |T |+-saturated baseM. The intuition is that if
a∗ s-dominates a overM, then the stable part of a∗ dominates the stable part of a over
M. We then define a notion of s-independence denoted a |̂ s

M
b which says (intuitively)

that the stable parts of a and b are independent. This is a symmetric notion and is
implied by forking-independence. Also, it has bounded weight. We use it to show that
two commuting types behave with respect to each other like types in a stable theory (we
recover some definability and uniqueness of the non-forking extension). Note that in a
distal theory, all those notions are trivial.

As an application, we prove the following ‘finite-co-finite theorem’ (Theorem 5.3.30)
and give an application of it to the study of externally definable sets.

Theorem 5.1.2 (Finite-co-finite theorem). Let I = I1 + I2 + I3 be indiscernible, I1 and
I3 being infinite. Assume that I1 + I3 is A-indiscernible and take φ(x;a) ∈ L(A), then
the set B = {b ∈ I2 :|= φ(b;a)} is finite or co-finite.

The last section defines a class of theories (called sharp) in which the stable part
of types is witnessed by generically stable types. More precisely, over a |T |+-saturated
model M, every tuple is s-dominated by the realization of a generically stable type. We
give a criterion for sharpness which only involves looking at indiscernible sequences of
1-tuples. In particular, any dp-minimal theory is sharp.

Our Bible concerning NIP theories are Shelah’s papers [55], [56], [53], [58] and [57].
We will however use ideas only from the first two. All the basic insights about indis-
cernible sequences were taken from there (although the important result on shrinking
indiscernible sequences originates in [5]).

In fact, we realized after having done most of this work that the idea of ‘domination’
for indiscernible sequences was already in Shelah’s work : in Section 2 of [56] in a slightly
different wording and with a very different purpose. The main additional ingredient in
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Section 3 is the external characterization of domination (5.3.7) which allows us to say
something about points outside of the indiscernible sequence and then to generalize to
the invariant type setting.

An important property of stable theories sometimes referred to as the Shelah reflec-
tion principle says roughly that non-trivial relationships between a realization of a type
p and some other point are reflected inside realizations of p. Internal concepts (only
considering realizations of p) often imply external properties (involving the whole struc-
ture). For example regularity implies weight one. There is some evidence now that this
principle is already true in NIP. See [16] for an example (weak stable embeddedness).

In this paper we will use this principle on indiscernible sequences : a property invol-
ving only the indiscernible sequence itself or extensions of it usually implies properties
of the indiscernible sequence with respect to points outside (the same way total indis-
cernibitily implies that the trace of every definable set is finite or co-finite). See Lemma
5.2.7 and Proposition 5.3.7.
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5.1.1 Preliminaries

Basic things

We list here some terminology and basic properties of NIP theories that we will need.
We will often denote sequences of tuples by I, J, .... Index sets of families or sequence

might be named I, J, ....
Recall that a theory is NIP if every indiscernible sequence I has a limit type lim(I/A)

over any set A of parameters.

Assumption : From now on, until the end of the paper, we work in a NIP theory T , in
a language L.

Definition 5.1.3. Two types px, qy over the same domain A are orthogonal if px ∪ qy
defines a complete type in two variables over A.

If M is a κ-saturated model, A ⊆ M satisfying |A| < κ, a type p ∈ S(M) is A-
invariant if for a |= p and any tuples b, b ′ ∈ M, b ≡A b ′ → ba ≡ b ′a. We will
sometimes say simply that p is an invariant type, without specifying A. Note that an
invariant type has a natural extension to any larger set B ⊃ M that we will denote by
p|B.

Let I be a linear order. A Morley sequence indexed by I of an invariant type p
over some B ⊇ A is a sequence (at)t∈I such that at |= p|B∪a<t for every t. All Morley
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sequences of p over B indexed by I are B-indiscernible and have the same type over B ;
when B =M, we will denote that type by p(I).

If px and qy are two types over M and p is invariant, we can define the product
px ⊗ qy as the element of Sxy(M) defined as tp(a, b/M) where b |= qy and a |= px|Mb.
If q is also an invariant type, then px ⊗ qy is invariant. In this case, we can also build
the product qy ⊗ px. When the two products are equal, we say that p and q commute.

Note that ⊗ is associative. In particular if p and q commute with r, then r commutes
with p⊗ q.

Recall the notion of generically stable type from [55] and [33] : an invariant type
p ∈ S(M) is generically stable if it is both definable and finitely satisfiable in some small
model N ⊂M. Equivalently, its Morley sequence is totally indiscernible.

Measures

As we mentioned in the introduction, we will not recall all definitions concerning
measures. Instead, we refer the reader to [33] and [29]. The latter paper contains in
particular the definition of a generically stable measure. Also the introduction of [62]
contains a concise account of the definitions and basic results we will need, but without
proofs.

We however recall the following from [62] :
A measure µ ∈ Mx(M) is smooth if it has a unique extension to any N ⊃ M. For

any formula φ(x, d), d ∈ C, let ∂Mφ denote the closed set of Sx(M) of types p such that
there are a, a ′ two realizations of p satisfying φ(a, d)∧ ¬φ(a ′, d).

Fact 5.1.4 (Lemma 4.1 of [62]). The measure µ ∈ Mx(M) is smooth if and only if
µ(∂Mφ) = 0 for all formulas φ(x, d), d ∈ C.

Indiscernible sequences and cuts

The notation I = I1 + I2 means that the sequence I is the concatenation of the
sequences I1 and I2 : I1 is an initial segment of I and I2 the complementary final segment.
This operation is associative, and we will also use it to denote the concatenation of three
or more sequences. It may be the case that one of the sequences is finite. In particular,
when b is a tuple, we may write I1 + b + I2 to denote I1 + 〈b〉 + I2 where 〈b〉 is the
sequence of length 1 whose only member is b.

If I = I1 + I2, we will say that (I1, I2) is a cut of I.
By the EM-type (over A) of an indiscernible sequence I = 〈ai : i ∈ I〉, we mean the

family (pn)n<ω, where pn ∈ Sn(A) is the type of (aσ(k))k<n for σ : n→ I any increasing
embedding.

We now introduce a number of definitions that will be useful for handling indiscer-
nible sequences.
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Definition 5.1.5 (Cuts). If J ⊂ I is a convex subsequence, a cut c = (I1, I2) is said to
be interior to J if I1 ∩ J and I2 ∩ J are infinite.

A cut is Dedekind if both I1 and I∗2 (I2 with the order reversed) have infinite cofinality.
If c = (I1, I2) and d = (J1, J2) are two cuts of the same sequence I, then we write

c ≤ d if I1 ⊆ J1.
We write (I ′1, I

′
2) E (I1, I2) if I ′1 is an end segment of I1 and I ′2 an initial segment of

I2. A polarized cut is a pair (c, ε) where c is a cut (I1, I2) and ε ∈ {1, 2} is such that Iε is
infinite. We will write the polarized cut c− if ε = 1 and c+ if ε = 2.

Given a polarized cut c• = ((I1, I2), ε) and a set A of parameters, we can define the
limit type of c• denoted by lim(c•/A) as the limit type of the sequence I1 or I∗2 depending
on the value of ε.

If a cut c has a unique polarization, or if we know both polarizations give the same
limit type over A, we will write simply lim(c/A).

If c = (I1, I2) is a cut, we say that the tuple b fills the cut c if I1 + b + I2 is
indiscernible. Similarly, if b̄ is a sequence of tuples, we will say that b̄ fills c if the
concatenation I1 + b̄+ I2 is indiscernible.

The following definition is from [55].

Definition 5.1.6. Let c = (I1, I2) be a Dedekind cut. A set A weakly respects c if
lim(c+/A) = lim(c−/A). It respects c if for every finite A0 ⊆ A, there is I ′1 cofinal in I1
and I ′2 coinitial in I2 such that I ′1 + I

′
2 is indiscernible over A0.

Note that lim(c•/C) is an invariant type, in fact finitely satisfiable over the sequence
I. We will simply denote it by lim(c•).

If c1 and c2 are two distinct polarized cuts in an indiscernible sequence I then lim(c1)
and lim(c2) commute : lim(c1)x⊗ lim(c2)y = lim(c2)y⊗ lim(c1)x. More precisely φ(x, y) ∈
lim(c1)x ⊗ lim(c2)y if and only if for some J1 cofinal in c1 and J2 cofinal in c2, φ(a, b)
holds for (a, b) ∈ J1 × J2.

Definition 5.1.7 (Polycut). A polycut is a sequence (ci)i∈I of pairwise distinct cuts.
The definitions given for cuts extend naturally to polycuts : a polarized polycut is

a family of polarized cuts. If c = (ci)i∈I is a polarized polycut, then we define lim(c) =⊗
i∈I lim(ci). It is a type in variables (xi)i∈I. A tuple (ai)i∈I fills c if the sequence I with

all the points ai added in their respective cut is indiscernible. Note that this is stronger
than asking that each ai fills ci.

Definition 5.1.8 (I-independent). Let I be a dense indiscernible sequence, c1, .., cn
pairwise distinct cuts in I and a1, .., an filling those cuts, then a1, .., an are independent
over I (or I-independent) if the tuple (a1, ..., an) fills the polycut (c1, ..., cn).

We will use the notation a |̂
I
b to mean that a and b are independent over I, i.e.,

that I∪ {a}∪ {b} remains indiscernible (where I∪ {a}∪ {b} is ordered so that a and b fall
in their respective cuts). Note that this is a symmetric notion.

The proofs in this paper will involve a lot of constructions with indiscernible se-
quences. We list here the basic results and ideas we will need for that. We tried to
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encapsulate in lemmas some constructions that we will use often. However, in some
cases, the lemmas will not fit exactly our needs. The reader should therefore bear in
minds the principles of those constructions more than the statements themselves. The
constructions are grouped three parts : shrinking, expanding and sliding.

5.1.2 Shrinking

We start with the very important results concerning shrinking of indiscernibles. We
give the statement as in [55, Section 3]. See also [2].

Definition 5.1.9. A finite convex equivalence relation on I is an equivalence relation ∼

on I which has finitely many classes, all of which are convex subsets of I.

Proposition 5.1.10 (Shrinking indiscernibles). Let A be any set of parameters and
(at)t∈I be an A-indiscernible sequence. Let d be any tuple. Let φ(xd;y0, .., yn−1, t) be a
formula. There is a finite convex equivalence relation ∼ on I such that given :

– t0 < . . . < tn−1 in I ;
– s0 < . . . < sn−1 in I with tk ∼ sk for all k ;
– b ∈ A|t|,

we have φ(d;at0 , .., atn−1 , b)↔ φ(d;as0 , ..., asn−1 , b).
Furthermore, there is a coarsest such equivalence relation.

Often we will apply this with A = ∅, in which case b does not appear.
We elaborate a little bit on this statement. We fix some parameter set A, sequence

I, tuple d and formula φ(xd;y0, ..., yn−1, t) such that I is indiscernible over A. Consider
the coarsest equivalence relation ∼ satisfying the conclusion of Proposition 5.1.10.

The relation ∼ induces a partition of the sequence I into finitely many convex sets
I = I1+ . . .+ IT defined such that two points t and s are ∼-equivalent if and only if they
belong to the same Ik. We define also the corresponding partition of I as I = I1+ . . .+IT .

The T − 1 cuts (I1 + . . . + Ik−1, Ik + . . . + IT ), for k < T , will be called the cuts
induced by (d,φ) on I (over A). For the purpose of this section, we will denote them
by cutI(d,φ; 0) < . . . < cutI(d,φ; T − 1). Here A is implicit to simplify the notation. Let
also TI(d,φ) = T be the number of such cuts.

Let F(n, T) be the set of non-decreasing functions from n to T . For any f ∈ F(n, T)
and b ∈ A|t|, there is a truth value εd,φ;I(f, b) such that φ(d;at0 , . . . , atn−1 , b) has truth
value εd,φ;I(f, b) for any t0 < . . . < tn−1 with tk ∈ If(k) for all k < T .

To summarize, the tuple d the sequence I and the set A being fixed, we have asso-
ciated, to any formula φ(xd;y0, . . . , ynφ−1, t) an integer TI(d,φ), cuts cuti(d,φ; I) for
i < TI(d,φ) and a function εI(d,φ) : F(n,TI(d,φ))×A|t| → {>,⊥}. This data comple-
tely describes the type of d over IA.

We now define a notion of similarity between types. Let d and d ′ two tuples of
the same length, and I and I ′ be two sequences indiscernible over the same set A of
parameters. We say that tp(d/I) and tp(d ′/I ′) are similar over A, if for every formula
φ and ψ as above we have :

– the EM-types of I and I ′ over A are the same ;
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– TI(d,φ) = TI ′(d ′, φ) ;
– εI(d,φ) = εI ′(d ′, φ) ;
– for all i < TI(d,φ), the cuts cutI(d,φ; i) and cutI ′(d ′, φ; i) are either both of infinite

cofinality from the left (resp. right) or both of finite cofinality from the left (resp. right) ;
– for all i < TI(d,φ) and j < TI(d,ψ), we have cutI(d,φ; i) < cutI(d,ψ; j) if and

only if cutI ′(d ′, φ; i) < cutI ′(d ′, ψ; j) ;
– there are infinitely many elements in I between the cuts cutI(d,φ; i) and cutI(d ′, ψ; j)

if and only if there are infinitely many elements in I ′ between the cuts cutI ′(d ′, φ; i) and
cutI ′(d ′, ψ; j) ; furthermore, if there are finitely many elements in both cases, then the
number of those elements is the same.

Note that in particular, if tp(d/I) and tp(d ′/I ′) are similar over A, then tp(d/A) =
tp(d ′/A).

Many notions defined in this paper concerning tp(d/I) only depend on the similarity
class of this type. So it is convenient to note ways in which we can modify I preserving
this similarity class.

Lemma 5.1.11. Let I be a dense indiscernible sequence over a set A, and d a tuple,
then there is I ′ ⊂ I of size at most |T | + |d| such that tp(d/I ′) and tp(d/I) are similar
over A.

Proof. Let I0 ⊂ I be a set consisting of :
– the extremal point of the cut cutI(d,φ; i) for every (φ, i) for which this cut is not

Dedekind ;
– two points between the two cuts cutI(d,φ; i) and cutI(d,ψ; j) whenever possible ;
– one point above the cut cutI(d,φ; i) whenever this is possible and one point below

this cut, when possible.
Thus I0 has size at most |T |+ |d|. Take I ′ to be a dense subsequence of I containing

I0 and of size at most |T |+ |d|. Then tp(d/I ′) is similar to tp(d/I).

Lemma 5.1.12. Let I = (at)t∈I be A-indiscernible with I of cofinality at least |T |+, then
for any finite tuple d, there is an end segment I ′ of I that is indiscernible over Ad.

Proof. Simply take I ′ to be to the right of all the cuts cutI(d,φ; i).

5.1.3 Expanding

Let I be an indiscernible sequence over some set A, and d any tuple. We now study
how one can extend I to some bigger sequence I ′ maintaining the similarity type of
tp(d/I) over A.

First, if I is endless, there is a limit type lim(I/Ad) as defined above. If J realizes
a Morley sequence of that type, then I + J∗ is indiscernible, where J∗ is the sequence J
with the opposite order. Also tp(d/I+ J∗) is similar to tp(d/I) over A.

Consider now a cut c = (I1, I2) of I. If I1 is endless, then we can similarly consider K a
Morley sequence of lim(I1) over IA. Then I1+K∗+I2 is indiscernible and tp(d/I1+K∗+I2)
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is similar to tp(d/I1 + I2). If I2 has no first element, then we can similarly extend by
realizing a Morley sequence in lim(I∗2). Note that unless the cut c is induced by (d,φ)
on I for some formula φ, then lim(I1/IAd) = lim(I∗2/IAd).

If we want to extend the sequence I by adding elements in different cuts, we can
iterate the above procedure. Note that the order in which we chose the cuts does not
matter since the different limit types commute with each other.

We therefore conclude the following lemma.

Lemma 5.1.13. Let I = (ei)i∈I be an indiscernible sequence over some set A. Assume
I is dense without endpoints. Let d be any tuple and let J ⊃ I be any linearly ordered
set extending I. Then there are tuples (ei)i∈J\I such that the sequence J = (ei)i∈J is
indiscernible over A and tp(a/J) is similar to tp(a/I) over A.

5.1.4 Sliding

We are now concerned with the situation where we have A, I and d as above, and
we want to produce some d ′ with the same similarity type as d, but such that the cuts
induced by d ′ are different from those induced by d. We see this as sliding the point d
along the sequence.

We state the result in a slightly more general form involving two different sequences.

Lemma 5.1.14. Let I, J be two dense sequences, indiscernible over some set A. Assume
they have no endpoints and have the same EM-type over A. Let d be any tuple. For any
formula φ such that cutI(d,φ; i) is well defined, pick a cut d(φ; i) of J such for any φ,
ψ, i, j for which this makes sense :

– the cuts cutI(d,φ; i) and d(φ; i) are either both of infinite cofinality from the left
(resp. right) or both of finite cofinality from the left (resp. right) ;

– we have d(φ; i) < d(ψ; j) if and only if cutI(d,φ; i) < cutI(d,ψ; j) ;
–there are infinitely many elements in J between the cuts d(φ; i) and d(ψ; j) if and only

if there are infinitely many elements in I between the cuts cutI(d,φ; i) and cutI(d ′, ψ; j).
Then there is a point e such that tp(e/J) is similar to tp(d/I) over A and cutJ(e,φ; i) =

d(φ; i) for any φ and i.

Proof. This translates into finding e with a prescribed type p(x) over AJ. Let θ(x; m̄) ∈
p(x), m̄ ⊂ J. Also we may assume that θ(x; m̄) is a conjunction of the form∧

j

φ
εj
j (x; m̄, b); b ∈ A, m̄ ∈ J,

where εj is either 0 or 1 depending on the position of the points in m̄ with respect to
the cuts d(φj; i). We can find an injection σ : m̄→ I such that :

– for every m0, m1 in m̄, if m0 <J m1, then σ(m0) <I σ(m1) ;
– for every index j andm0 ∈ m̄, the relative position of σ(m0) and the cut cutI(a,φj; i)

on I is the same as that of m0 and d(φ; i).
Then σ is a partial isomorphism and a |=

∧
jφj(x;σ(m̄)). Therefore θ(x; m̄) is

consistent and by compactness, p(x) is consistent.
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Corollary 5.1.15. Let I, J be two dense sequences with no endpoints indiscernible over
some set A of same EM-type over A. Let a and b be tuples of the same length such
that tp(a/I) and tp(b/J) are similar over A. Let a ′ be any tuple. Then there is an
indiscernible sequence J ′ ⊇ J and a tuple b ′ such that tp(bb ′/J ′) is similar to tp(aa ′/I)
over A.

Proof. By expanding, we can find a sequence J ′ extending J such that tp(b/J ′) is similar
to tp(b/J) and the sequence J ′ is indexed by a |T |+-saturated dense linear order. It it
then easy to find cuts d(φ; i) in J ′ as in the previous lemma corresponding to the cuts
cutI(aa ′, φ; i) in a way compatible with the cuts cutJ ′(b,φ; i) over J ′. Lemma 5.1.14
gives us a tuple b0b ′0 of same length as aa ′ such that tp(b0b ′0/J

′) is similar to tp(aa ′/I).
By assumption on the cuts d(φ; i), we have tp(b0/J ′) = tp(b/J ′) so by composing by an
automorphism over J ′, we obtain some b ′ as required.

Corollary 5.1.16. Let I, J be two dense sequences with no endpoints indiscernible over
A and of same EM-type over A. Let a and b be tuples of the same length such that
tp(a/I) and tp(b/J) are similar over A. Let I ′ ⊇ I be indiscernible and let a ′ be any
tuple. Then there is an indiscernible sequence J ′ ⊇ J and a tuple b ′ such that tp(bb ′/J ′)
is similar to tp(aa ′/I ′) over A.

Proof. Simply apply the previous corollary with a ′ there equal to a ′ ∪ (I ′ \ I) here.

5.1.5 Weight and dp-minimality

Let (Ii)i<α be a family of indiscernible sequences and A a set of parameters. We
say that the sequences (Ii)i<α are mutually indiscernible over A if for every i < α, the
sequence Ii is indiscernible over A ∪ {Ij : j < α, j 6= i}.

The following observations are from [55].

Proposition 5.1.17. Let (Ii)i<|T |+ be mutually indiscernible sequences (over some set
A) and let d be a tuple of size at most |T |. Then there is some i < |T |+ such that Ii is
indiscernible over Ad.

Proof. Assume not, then for every i < |T |+, we can find two tuples āi and b̄i of increasing
elements from Ii and a formula φi(x, ȳ) such that d |= φi(x, āi)∧¬φi(x, b̄i). Removing
some sequences from the family, we may assume that φi = φ does not depend on i. By
mutual indiscernibilty, we have tp(ai/{Ij : j 6= i}) = tp(bi/{Ij : j 6= i}) for all i < |T |+.
It follows that for every A ⊆ |T |+, we can find a tuple dA such that for all i < |T |+,
dA |= φ(x, āi) if and only if i ∈ A. This contradicts NIP.

Corollary 5.1.18. Let M be some κ-saturated model, and let (pi)i<|T |+ be a family of
pairwise commuting invariant types over M. Let p =

⊗
i<|T |+ pi and (ai)i<|T |+ |= p. Let

also q ∈ S(M) be any type and d |= q. Then there is i < |T |+ such that (ai, d) |= pi ⊗ q.

Proof. Build a Morley sequence 〈(aki )i<|T |+ : 0 < k < ω〉 of p over everything and set
a0i = ai for each i. Commutativity implies that the sequences (aki )k<ω, i < |T |+ are
mutually indiscernible. The result then follows by Proposition 5.1.17.
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Observe in particular that if q is an invariant type, taking b |= q|{ai : i < |T |+}, we
obtain that there is i < |T |+ such that pi and q commute.

We will occasionally mention dp-minimal theories. They are theories for which the
notion of weight suggested by Proposition 5.1.17 is equal to 1 on 1-types. This notion
was introduced by Shelah in [53].

Definition 5.1.19 (Dp-minimal). An theory T is dp-minimal if it is NIP and if for every
indiscernible sequence I and 1-tuple d, there is a subdivision I = I1+ I2+ I3 into convex
sets, where I2 is either reduced to a point or empty and I1 and I3 are both indiscernible
over d.

Equivalently, for every two mutually indiscernible sequences I and J and 1-tuple d,
one of I or J is indiscernible over d.

See [63] for the proof of the equivalence and [18] for additional information.
Examples of dp-minimal theories include o-minimal and C-minimal theories and the

p-adics.

§5.2 Distal theories

5.2.1 Indiscernible sequences

We now state the main definition of this paper.

Definition 5.2.1 (Distal). An indiscernible sequence I is distal if for every dense se-
quence J of same EM-type as I, every distinct Dedekind cuts c1 and c2 of J, if a fills c1
and b fills c2, then a |̂

J
b.

An NIP theory T is distal if all indiscernible sequences are distal.

Remark 5.2.2. Equivalently the two types lim(c1/J) and lim(c2/J) are orthogonal.

Lemma 5.2.3. If I is dense and has two distinct Dedekind cuts c1 and c2, then it is
distal if and only if lim(c1/I) and lim(c2/I) are orthogonal (i.e., there is no need for J in
the definition).

Proof. Left to right is obvious. We show the converse. If I is not distal, then there is
some dense sequence J of same EM-type, two distinct Dedekind cuts d1 and d2 of J,
some a1 filling d1 and a2 filling d2 such that a1 6 |̂ J a2. Let φ(a1, a2, m̄) be a formula
witnessing that, with m̄ ∈ I. Take a countable J ′ ⊆ J containing m̄ such that a1 and a2
fill Dedekind cuts of J ′. Replacing J by J ′, we may assume that J is countable.

Then by expanding, we can find some J0 ⊇ J and an automorphism σmapping J0 onto
I and such that the cut d1 (resp. d2) is mapped to c1 (resp. c2) and the types tp(a1, a2/J)
and tp(a1, a2, J0) are similar. Then, the points σ(a1) and σ(a2) fill repectively the cuts
c1 and c2 and φ(σ(a1), σ(a2), σ(m̄)) holds. Therefore σ(a1) 6 |̂ I σ(a2) and it follows that
the two limit types lim(c1/I) and lim(c2/I) are not orthogonal.
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Actually, it will follow from Lemma 5.2.7 that the hypothesis that I is dense can be
removed.

Example 5.2.4. Assume I is an indiscernible sequence, f a definable function such that
f(I) is totally indiscernible (non constant), then I is not distal. To see this, take a and
b in the definition such that f(a) = f(b). See 5.2.15 for a more general result.

Example 5.2.5. In DLO, any two 1-types concentrating on different cuts are orthogonal.
It is easy then to check that it is a distal theory. We will see (Corollary 5.2.28) that in
fact any o-minimal theory is distal.

Lemma 5.2.6. Assume I is a dense indiscernible distal sequence, and c0, ..., cn−1 are
pairwise distinct Dedekind cuts. If for each i < n, ai fills ci then the family (ai)i<n is
I-independent.

Proof. We prove it by induction on n. for n = 2, it is Lemma 5.2.3. Assume it holds for
n and consider a family (ci)i<n+1 and (ai)i<n+1 as in the hypothesis. Let I ′ = I ∪ {a0}

(where a0 is inserted in the cut c0). Each cut ci naturally induces a cut c ′i of I
′. By the

case n = 2, for each 0 < i < n + 1, ai fills c ′i. The sequence I ′ is also distal, so by
induction (ai)0<i<n+1 is I ′-independent. Therefore (ai)i<n+1 is I-independent.

Lemma 5.2.7 (External characterization of distality). A sequence I is distal if and only
if the following property holds : For every set A, tuple b and A-indiscernible sequence I ′ =
I1+ I2 (I1 and I2 without endpoints, EM-tp(I ′)=EM-tp(I)), if I1+b+ I2 is indiscernible,
it is A-indiscernible.

Proof. Assume that I is distal, but the conclusion does not hold. Then there is some
I ′ = I1 + I2 and formula φ(x) with parameters from A∪ I1 ∪ I2 which witnesses it. This
means φ(b) holds and there is (I ′1, I

′
2) E (I1, I2) such that ¬φ(a) holds for a ∈ I ′1 ∪ I ′2.

Restricting even more if necessary, we may assume that I ′1 + I
′
2 is indiscernible over the

parameters of φ. So replacing I ′ by that latter sequence, we may assume that all the
parameters are from A. Then, we may freely enlarge I ′, so assume that it is dense.

As I ′ is A-indiscernible, for every cut c of I ′, there is b ′ filling it such that φ(b ′)
holds. Fix an increasing sequence (ck)k<ω of such cuts. For every k < ω, let bk fill ck such
that φ(bk) holds. The sequence I ′ is distal (because I ′ and I have same EM-type) so by
Lemma 5.2.6, the sequence formed by adding all those points to I ′ is still indiscernible.
Therefore φ(x) has infinite alternation number, contradicting NIP.

The converse is easy.

The following technical lemma will be used repeatedly.

Lemma 5.2.8 (Strong base change). Let I be an indiscernible sequence and A ⊇ I a set
of parameters. Let (ci)i<α be a sequence of pairwise distinct polarized Dedekind cuts in
I. For each i < α let di fill the cut ci. Then there exist (d ′i)i<α such that tp((d ′i)i<α/I) =
tp((di)i<α/I) and for each i < α, tp(d ′i/A) = lim(ci/A).
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Proof. Assume the result does not hold. Then by compactness, we may assume that
α = n is finite and that there is a formula φ(x0, .., xn−1) ∈ tp((di)i<n/I) and formu-
las ψi(xi) ∈ lim(ci/m) for some finite m ∈ Ak such that φ(x0, .., xn−1) ∧

∧
iψi(xi) is

inconsistent. Let I0 denote the parameters of φ, and assume I0 ⊆ m.
Assume for simplicity that n = 2 (the proof for n > 2 is the same) and without

loss each ci is polarized as c−i . For i = 0, 1 take (Ji, J
′
i) E ci such that ψi holds on all

elements of Ji and Ji∪ J ′i contains no element of I0. Then J0+ J ′0 and J1+ J
′
1 are mutually

indiscernible over I0. So for every two cuts d0 and d1 respectively from J0+J
′
0 and J1+J

′
1,

we can find points e0 and e1 filling those cuts (even seen as cuts of I) such that φ(e0, e1)
holds.

Take two cuts d0 and d1 of I such that they are respectively interior to J0 and J1.
Fill d0 by e0 and d1 by e1 such that φ(e0, e1) holds. By hypothesis, either ¬ψ0(e0) or
¬ψ1(e1) holds. Assume ¬ψ1(e1) holds. Now forget about e0 and set I ′ = I ∪ {e1}. Then
I ′ is indiscernible and we take it as our new I. Set J ′0 = J0 and let J ′1 be an initial segment
of J1 not containing d1 and make the same construction. We obtain new points (e10, e

1
1)

that fill the cuts d10, d
1
1 of J

′
0 and J

′
1 such that ¬ψ0(e10)∨¬ψ1(e

1
1) holds. Without loss (as

we will iterate infinitely many times) again ¬ψ1(e
1
1) holds.

Iterate this ω time to obtain a sequence of points ek1 and cuts dk1 in J1 such that I
with all the points ek1 added in the cuts dk1 is indiscernible and ¬ψ1(e

k
1) holds for all n.

But ψ1(x) holds for all x ∈ J1 so ψ1 has infinite alternation rank, contradicting NIP.

Corollary 5.2.9 (Base change). The notion of being distal is stable both ways under
base change : If I is A-indiscernible, then I is distal in T(A) if and only if it is distal in
T .

Proof. Assume I is distal in T . Notice that the property stated in Lemma 5.2.7 is
preserved under naming parameters (because we can incorporate them in the set A).
This implies that I is distal in T(A).

Conversely, assume I is not distal in T . Increase I to some large A-indiscernible
sequence J1 + J2 + J3 and take a, b such that J1 + a + J2 + J3 and J1 + J2 + b + J3 are
indiscernible, but J1+a+ J2+b+ J3 is not. By strong base change, we may assume that
a and b realize the limit types over A of the cuts they define. Then J1 + a+ J2 + J3 and
J1 + J2 + b+ J3 are A-indiscernible, giving a counter-example to distality in T(A).

Lemma 5.2.10. If T is dp-minimal and I is an indiscernible sequence of 1-tuples, not
totally-indiscernible, then I is distal.

Proof. Write I = (di)i∈I and assume that it is not totally indiscernible. Working over
some base A if necessary, we may assume that there is a formula φ(x, y) ∈ L(A) which
orders the sequence I and such that I is indiscernible over A. So we have φ(di, dj) ⇐⇒
i < j.

Without loss I is a dense order and can be written as I1 + I2 + I3, the three pieces
being infinite without end points. Write I = I1+ I2+ I3 in the obvious way. Let a fill the
cut ca = (I1, I2+ I3) and b fill cb = (I1+ I2, I3). Assume that a and b contradict distality
of I. So there is a formula ψ(x, y) ∈ L(AI) such that ψ(a, b) holds and witnesses a 6 |̂

I
b.



86 CHAPITRE 5. THÉORIES DISTALES

Let d̄ = (di1 , ..., din) be the parameters of ψ coming from I with i1 < . . . < in. Let s be
such that exactly i1, ..., is are from I1 and t such that exactly is+1, ..., it are from I2. Let
I ′1 be an end segment of I1 above is and I ′3 an initial segment of I3 below it+1.

Let d̄1 = (di1 , ..., dis) and d̄3 = (dit+1 , ..., din). Consider the sequence J = 〈di^d̄1^d̄3 :
i ∈ I ′1 + I2〉 + 〈b^d̄1^d̄3〉 + 〈di^d̄1^d̄3 : i ∈ I ′3〉. It is an indiscernible sequence. By dp-
minimality applied to J and a, we know that J breaks into J1+ J2+ J3, J2 having at most
one element, and such that J1 and J3 are indiscernible over a. Considering the formula
φ(x, a), we know that J1 must be equal to 〈di^d̄1^d̄3 : i ∈ I ′1〉. And then J2 is empty
and J3 is the rest of the sequence. In particular the tuple b^d̄1^d̄3 lies inside J3 as do
all the parameters of ψ(x, y). As ψ(a, b) holds but ¬ψ(a, di) holds for i ∈ I3, we get a
contradiction to the indiscernability of J3 over a.

Lemma 5.2.11. Let T be distal, I and J are two mutually indiscernible sequences. Let
c (resp. d) be a cut in the interior of I (resp. J). Then lim(c/IJ) and lim(d/IJ) are
orthogonal.

Proof. Write I = (ai)i∈I and J = (bj)j∈J. Assume the conclusion does not hold. Then
there are a |= lim(c/IJ) and b |= lim(d/IJ) and a formula φ(x, y) ∈ L(IJ) such that
φ(a, b) holds, but lim(c) ⊗ lim(d) ` ¬φ(x, y). Let K be a countable dense linear order
without end points. Pick embedding τ1 : K→ I and τ2 : K→ J such that :
– c induces a Dedekind cut on τ1(K) and induces a Dedekind cut on τ2(K) ;
– identifying τ1(K) and τ2(K), those two Dedekind cuts are distinct ;
– the parameters of φ(x, y) belong to {ai : i ∈ τ1(K)} ∪ {bj : j ∈ τ2(K)}.

Let K be the sequence 〈aτ1(t)^bτ2(t) : t ∈ K〉. Let c ′ and d ′ denote the two cuts
naturally induced by c and d on K. There are tuples b∗ and a∗ such that a^b∗ fills c ′

and a∗^b fill d ′. By distality of K, a^b∗ |̂
K
a∗^b and φ(a, b) holds. This contradicts the

assumption.

Definition 5.2.12 (Weakly linked). Let 〈(ai, bi) : i ∈ I〉 be an indiscernible sequence
of pairs. We say that (ai)i∈I and (bi)i∈I are weakly linked if for every disjoint subsets I1
and I2 of I, (ai)i∈I1 and (bi)i∈I2 are mutually indiscernible.

Observation 5.2.13. 1. If 〈(ai, bi) : i ∈ I〉 is A-indiscernible and (ai)i∈I and (bi)i∈I
are mutually indiscernible, then they are mutually indiscernible over A.

2. If 〈(ai, bi) : i ∈ I〉 is A-indiscernible and (ai)i∈I and (bi)i∈I are weakly linked, then
they are weakly linked over A.

Lemma 5.2.14. Let 〈(ai, bi) : i ∈ I〉 be indiscernible.
1. If (ai)i∈I and (bi)i∈I are weakly linked and (ai)i∈I is distal, then (ai)i∈I and (bi)i∈I

are mutually indiscernible.
2. If (bi)i∈I is totally indiscernible, then (ai)i∈I and (bi)i∈I are weakly linked.

Proof. (1). Without loss, we may assume that I is dense. Pick some finite I2 ⊂ I. Then
(ai)i /∈I2 is indiscernible over B = (bi)i∈I2 . By applying repeatedly Lemma 5.2.7, we
obtain that (ai)i∈I is indiscernible over B. This is enough.
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(2). Assume I is dense and big enough, take I1 ⊂ I finite and let A = (ai)i∈I1 . By
shrinking of indiscernibles and using total indiscernability of (bi)i∈I, there is I2 ⊂ I

of size at most |T | such that (bi)i∈I\I2 is indiscernible over A. By indiscernability of
〈(ai, bi) : i ∈ I〉, we may take I2 = I1. Therefore (ai)i∈I and (bi)i∈I are weakly linked.

Corollary 5.2.15. Let 〈(ai, bi) : i ∈ I〉 be an indiscernible sequence. Assume (ai)i∈I is
totally indiscernible and (bi)i∈I is distal, then (ai)i∈I and (bi)i∈I are mutually indiscer-
nible.

5.2.2 Invariant types

We prove here a characterization of distality in terms of invariant types.
IfM is a κ-saturated model, by an invariant type overM, we mean a type p ∈ S(M)

invariant over some A ⊂ M, |A| < κ. If p and q are two invariant types over M, then
we can define the products px ⊗ qy and qy ⊗ px as explained in the introduction. The
types p and q commute if those two products are equal.

Lemma 5.2.16. Assume T is distal. Let M be κ-saturated and let p, q ∈ S(M) be
invariant types. If px ⊗ qy = qy ⊗ px, then p and q are orthogonal.

Proof. Let b |= q and let N ≺M a model of size < κ such that p and q are N-invariant.
Let I ⊂ M be a Morley sequence of p over N. Let a realize p, and build I ′ a Morley
sequence of p over Mab. The hypothesis implies that p(ω) and q commute (as ⊗ is
associative). In particular, I + I ′ is indiscernible over b. By distality, I + a + I ′ is also
b-indiscernible. This proves that tp(a, b/∅) is determined.

We can do the same thing adding some parameters to the base, and thus p and q
are orthogonal.

Proposition 5.2.17. The theory T is distal if and only if any two global invariant types
p and q that commute are orthogonal.

Proof. Lemma 5.2.16 gives one implication. Conversely, assume that T is not distal.
Then there is a dense indiscernible sequence I, two distinct Dedekind cuts c1 and c2 and
a and b filling them such that a 6 |̂

I
b. By Lemma 5.2.8 (strong base change), we may

assume that I ⊂M, forM a large saturated model, and a |= lim(c−1 /M), b |= lim(c−2 /M).
Then the types p = lim(c−1 /M) and q = lim(c−2 /M) have the required property.

Consider p, q ∈ S(M) and assume only that p is invariant. Then px ⊗ qy is well
defined, but qy⊗px does not make sense in general. We show now how to define qy⊗px.

Lemma 5.2.18. Let M be κ-saturated, κ ≥ |T |+. Let p, q ∈ S(M), p being A-invariant
for some |A| < κ. Then there is some B ⊂ M, |B| < κ, such that A ⊆ B and for b |= q

and any a, a ′ ∈M such that a, a ′ |= p|B, we have tp(a, b/A) = tp(a ′, b/A).
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Proof. Let b |= q.
We try to build inductively a sequence 〈Bα, a0α, a1α, c̄α, φα(x, y; z̄α) : α < |T |+〉 such

that :
– B0 = A ;
– Bλ = ∪α<λBα ;
– Bα+1 = Bα ∪ {a0α, a

1
α} ;

– a0α, a1α |= p|Bα ;
– c̄α ⊂ A ;
– |= φα(b, a

0
α; c̄α)∧ ¬φα(b, a

1
α; c̄α).

Assume we succeed. Then we may assume that φα(x, y; z̄α) = φ(x, y; z̄) for all α. For
n < ω, let η(n) = 0 if n is even and 1 otherwise. Then the sequence 〈a ′n = a

η(n)
n : n < ω〉

is indiscernible over A but φ(b, a ′n; c̄n) holds if and only if n is even. This contradicts
Proposition 5.1.10 (Shrinking of indiscernibles).

The construction must therefore stop at some Bα, and setting B = Bα, we have the
required property.

LetM, p, q as in the previous lemma. Let b |= q and A ⊂M, |A| < κ such that p is
A-invariant. Let B be given by the lemma. We define qy ⊗ px|A as tpx,y(a, b/A) where
a |= p|B, a ∈ M. By assumption, this does not depend on the choice of a. One sees
easily that it does not depend on B. Finally, define qy ⊗ px ∈ S(M) by gluing together
the various qy ⊗ px|A, A ⊂M.

Notice that if q was invariant to begin with, then the two definitions of qy ⊗ px
coincide. Note also that the associativity relation : px⊗ (qy⊗ rz) = (px⊗qy)⊗ rz holds
in all possible cases (each product is well defined if and only if at least two of p, q, r are
invariant).

In other words, associated to every suchM and p, there is a globalM-invariant type
p ′ with the following property : for every finite b ∈ C, there is a small B ⊂M such that
every realization of p|B in M satisfies p ′|Ab. Then qy ⊗ px as defined above is equal to
p ′x ⊗ qy. We will call p ′ the inverse of p over M.

The following generalizes Lemma 5.2.16, the proof is the same, using Lemma 5.2.18
to build the Morley sequence I of p inside M.

Lemma 5.2.19. Assume T is distal. Let M be κ-saturated (κ ≥ |T |+), p ∈ S(M) be
A-invariant for some A of size < κ and q ∈ S(M) be any type. If px ⊗ qy = qy ⊗ px,
then p and q are orthogonal.

5.2.3 Generically stable measures

We prove in this section that distal theories are exactly those theories in which
generically stable measures are smooth. We consider this as a justification that distality
is a meaningful notion. It was proved in [62] that o-minimal theories and the p-adics
have this property. This latter result will be generalized in the next section, where we
prove that distality can be checked in dimension 1.
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We have two tools at our disposal to link indiscernible sequences of tuples to mea-
sures. In one direction, starting with an indiscernible sequence of tuples, we can form
the average measure. This construction is defined in [29], extended in [62] and recalled
below. In the opposite direction, starting with a generically stable measure µ (or in fact
any invariant measure), we can consider the product µ(ω) in variables x1, x2, . . .. We then
want to realize it in some way. We do this by taking smooth extensions ; see the proof
of Proposition 5.2.23.

Let I = (at)t∈[0,1] be an indiscernible sequence. We can define the average measure µ
of I as the global measure defined by µ(φ(x)) = λ0({t ∈ [0, 1] : at |= φ(x)}), where λ0 is
the Lebesgue measure. That measure is generically stable (in fact definable and finitely
satisfiable over I).

The support of a measure µ ∈M(A) is the set of weakly-random types for µ, namely
the set of types p ∈ S(A) such that p ` ¬φ(x) for every formula φ(x) ∈ L(A) such that
µ(φ(x)) = 0. We will denote it by S(µ).

Lemma 5.2.20. Let µ be the average measure of the indiscernible sequence I = (at)t∈[0,1].
Then the support S(µ) of µ is exactly the set of limit types of cuts of I.

Proof. Let X be the set of limit types of polarized cuts of I. We first show that S(µ) = X̄,
the closure of X. Let φ(x) ∈ L(C) have positive measure. Then by definition of µ, there
is a non trivial open interval J of [0, 1] such that φ(at) holds for t ∈ J. So for any cut c
in that interval, the limit type associated contains φ. Conversely, if φ(x) is satisfied by
some lim(c), c a cut in I, then φ(x) holds on a subsequence, cofinal in c, and therefore
has positive measure.

To see that X is closed, take p ∈ X̄. If I is totally indiscernible, then X has one
element, so assume this is not the case. Therefore the sequence I is ordered by some
formula φ(x, y) ∈ L(C). For every t, p must satisfy φ(x, at)∨φ(at, x). We may therefore
associate to p a cut cp = (I1, I2) of I such that p satisfies

∧
a∈I1 φ(a, x)∧

∧
a∈I2 φ(x, a).

Without loss, assume that I1 has a maximal element at∗ . For every formula ψ(x) ∈ L(C)
such that lim(cp) ` ψ(x), there is some t0 > t∗ such that for t∗ < t < t0, we have
at |= ψ(x). Therefore for every q ∈ X, we have q ` ψ(x) ∨ φ(x, at∗) ∨ φ(at0 , x). It
follows that p satisfies the same formula, and therefore p ` ψ(x). We conclude that
p = lim(cp).

Proposition 5.2.21 (Smooth measures imply distality). Let I be an indiscernible se-
quence indexed by [0, 1], and µ be the average measure of I. Then µ is smooth if and only
if I is distal.

Proof. Assume µ is not smooth and I is distal. Then there exists a formula φ(x, a)
such that the set of p ∈ S(C) such that p neither implies φ(x, a) nor its negation has
positive measure (in other words, p ∈ ∂φ). We know that the support of µ is exactly
the limit types of cuts in I. Therefore, one can find ω such cuts (ci)i<ω in ∂φ. Remove
countably many points from I (thus not affecting any limit types) so that the cuts ci
become Dedekind.
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Restricting to some sub-interval of [0, 1], we may assume that φ(x, a) has constant
truth value on I. Without loss, it holds on all members of I. For each index i, as lim(ci) ∈
∂φ, there is bi filling the cut ci over I such that φ(bi, a) holds. As I is distal, the sequence
formed by adding all the bi to I is still indiscernible. But then the formula φ(x, a) has
infinite alternation number.

Conversely, assume that I is not distal. If J is an indiscernible sequence, we write J ′

for the sequence J with the endpoints removed. We can find a partition I = I1 + I2 + I3
and points b1, b2 such that I ′1 + b1 + I

′
2 + I

′
3 and I

′
1 + I

′
2 + b2 + I

′
3 are indiscernible, but

I ′1+b1+ I
′
2+b2+ I

′
3 is not. Without loss, assume that I1 and I2 have no last element. By

strong base change, we may assume that the types of b1 and b2 overM are respectively
lim(I1) and lim(I2). There is a formula φ, parameters ik ⊂ Ik and b ′1 realizing the same
type as b1 over M such that φ(i1, b1, i2, b2, i3) ∧ ¬φ(i1, b

′
1, i2, b2, i3) holds. Then the

border ∂φ of φ(i1, x, i2, b2, i3) contains all limit types of cuts between i1 and i2 and has
non zero measure. This proves that µ is not smooth.

Corollary 5.2.22. If all generically stable measures are smooth, then T is distal.

We now show the converse.

Proposition 5.2.23. If T is distal, then all generically stable measures are smooth.

Proof. Take µ a generically stable measure over some |T |+-saturated model N. The
unique global invariant extension of it will also be denoted by µ. Let a be a tuple. Let
µ ′ be an extension of µ to Na. Take a smooth extension µ ′′ of µ ′ to some B ⊇ Na. Let
〈(Bi, ai) : i < ω〉 be a coheir sequence in tp(B, a/N). Define the measures µixi such that
µi is smooth over Bi and defined over Bi the same way µ ′′ is over B.

Consider the measure λ〈xi,i<ω〉 defined as
⊗

i<ω µ
i
xi

(this does not depend on the
order of the factors since the µi are generically stable).

Claim : The measure λx1,x2,... is totally indiscernible over N.
Note that tp(B2/B1N) is non-forking over N. In particular µ2x2 |B1N does not fork

over N (as it is finitely satisfiable in B2) so by Proposition 3.3 of [29], it is the unique
invariant extension of µx2 over B1N. Therefore µ1x1 ⊗ µ

2
x2
|N is equal to µx1 ⊗ µx2 |N.

Iterating, λ|N = µ(ω)|N. As µ is generically stable, λx1,x2,... is totally indiscernible over
N.

Now define a measure η(x1,y1),(x2,y2)... over N, where yi is a variable of the same size as
B, by η(φ(x1, x2, ..;y1, y2, ..)) = λ(φ(x1, x2, ..;B1, B2, ..)). By construction, η is a measure
of an indiscernible sequence. Corollary 5.2.15 works equally well with measures instead
of points, with the same proof, and yields that for any increasing σ : ω → ω, and any
φ(x1, x2, ..;y1, y2, ..),

η(φ(x1, x2, ..;yσ1, yσ2, ..)) = η(φ(x1, x2, ..;y1, y2, ..)).

Therefore µ ′|Na = µ2|Na = µ|Na and tp(a/N) and µ|N are orthogonal. This proves that
µ is smooth.
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We end this section by giving some type-by-type versions of Proposition 5.2.23.

Proposition 5.2.24. Let M be a κ-saturated model (κ ≥ |T |+), p ∈ S(M) orthogonal to
all generically stable measures. Let q ∈ S(M) be an invariant type such that px ⊗ qy =
qy ⊗ px, then p and q are orthogonal.

Proof. By associativity of ⊗, p and q(ω) commute. Assume p and q are not orthogonal,
let (a, b) |= p × q such that tp(a, b/M) 6= p ⊗ q. Let φ(a, b) ∈ L(M) witness this.
Without loss, φ has parameters in A ⊂ M, |A| < κ, q is A-invariant and for every
I, I ′ ⊂M, Morley sequences of q over A indexed by ω, tp(I/Aa) = tp(I ′/Aa). Let I1 be
a dense countable Morley sequence of q over A insideM and I2 a dense Morey sequence
of q overMab. Then I1+ I2 is indiscernible over Aa and I1+b+ I2 is indiscernible over
A. Let t be a polarized cut inside I1 and r be the limit type of t over M.

Claim : r and p are not orthogonal, in fact, there is c |= r such that φ(a, c) holds.

Assume no such c exists. Then by compactness, there is ψ(y) ∈ r such that p(x) ∧
φ(x, y) ∧ ψ(y) is inconsistent. Let J be an interval of I1 on which ψ holds. Let c1 be a
cut interior to J. By sliding, there is c filling c1 (over A) such that φ(a, c) holds. Then
¬ψ(c) holds. By saturation, there is c1 ∈M filling c1 over A such that ¬ψ(c1) holds. By
assumption on A, I1 ∪ {c1} is indiscernible over Aa. We can then iterate with another
cut c2, and after ω steps, ψ(x) has infinite alternation rank, contradicting NIP, so the
claim is proved.

As this holds for any cut t, if I1 is an indiscernible segment of average µ, then ∂φ(a, y)
has µ-measure one, so µ and p are not orthogonal.

Proposition 5.2.25. Let p be a global invariant type, and I a Morley sequence of p.
Then I is distal if and only if p(ω) is orthogonal to all generically stable measures.

Proof. The proof of Proposition 5.2.23 shows that if p is non-orthogonal to a generically
stable measure, then I is not distal. (Take in the proof a realizing p and instead of
taking a coheir sequence (Bi) take a non-forking indiscernible sequence (Bi) such that
the corresponding sequence (ai) is a Morley sequence of p.)

Conversely, assume p is M-invariant and not distal. Let I be a Morley segment of p
overM and µ the average measure of I. Then by strong base change, p(ω) and µ are not
orthogonal.

5.2.4 Reduction to dimension 1

The goal of this section is to prove the following theorem.

Theorem 5.2.26. If all sequences of 1-tuples are distal, then T is distal.

We first give an informal (and incomplete) proof using measures. Assume all se-
quences of 1-tuples are distal and consider a generically stable measure µ. Then looking
at the proof of Proposition 5.2.23 we see that µ is orthogonal to all 1-types. Then by
induction, adding the points one-by-one, µ is orthogonal to every n-type. However, to
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be made rigorous this proof seems to require the fact that no type forks over its base.
To avoid this hypothesis and the use of measures, we give a purely combinatorial proof.

So we start with a witness of non-distality of the following form :
– a base set of parameters A, and it what follows we work over A (even when not

explicitly mentioned) ;
– an indiscernible sequence I = (ai)i∈I with I = (0, 1) (the usual interval of R) for

simplicity ;
– a tuple b = (bj)j<n, some l ∈ (0, 1) and tuple a such that :

– a fills the cut “l+” : ((ai : i ≤ l), (ai : i > l)) of I,
– I is b-indiscernible,
– I with al replaced by a is not indiscernible over b.

We make some simplifications. First letm < n be the first integer such that b ′ = b<m
satisfies the requirements in place of b. We can add b<m−1 as parameters to the base
(by base change, or equivalently we can replace ai by a ′i = ai^b<m−1) and replace b by
bm−1. Therefore, we may assume that |b| = 1. Next, adding again some parameters to
the base, we may assume that for i ∈ I, tp(a/b) 6= tp(ai/b).

The goal of the construction that follows is to reverse the situation of a and b, i.e.,
to construct an indiscernible sequence starting with b that is not distal, the non-distality
being witnessed by a (or a conjugate of it).

Step 1 : Derived sequence

Let r = tp(a, b). We construct a new sequence (a ′i)i∈I such that :
– a ′i fills the cut i+ of I ;
– tp(a ′i, b) = r for each i ;
– The sequence 〈(ai, a ′i) : i ∈ I〉 is b-indiscernible.

This is possible by indiscernability of (ai)i∈I over b (by sliding, we may choose the a ′is
filling the cuts and then extract).

Step 2 : Constructing an array

Using Lemma 5.2.8 we can iterate this construction to obtain an array 〈ani : i ∈ I, n < ω〉
and sequence 〈bn : n < ω〉 such that :

– a0i = ai for each i ;
– for each i ∈ I, 0 < n < ω, the tuple ani realizes the limit type of the cut i+ of I

over 〈bk, aki : i ∈ I, k < n〉 ;
– for each 0 < n < ω, tp(bn, (ani )i∈I/I) = tp(b, (a

′
i)i∈I/I).

Claim : For every η : I0 ⊂ I → ω injective, the sequence 〈aη(i)i : i ∈ I0〉 is indiscernible,
of same EM-type as I.

Proof. Easy, by construction.

Expanding and extracting, we may assume that the sequence of rows 〈bn + (ani )i∈I :
0 < n < ω〉 is indiscernible and that 〈(ani )0<n<ω : i ∈ I〉 is indiscernible over the
sequence (bn)n<ω.

Step 3 : Conclusion
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Claim : The sequences (bn)n<ω and 〈(ani )i∈I : 0 < n < ω〉 are weakly linked (Definition
5.2.12).

Proof. Assume for example that some φ(bn, aki ) holds for all i ∈ I and any (k, n) such
that k < n. Take n very large and take η as in the first claim such that the truth value
of “η(i) < n” alternates more times than the alternation number of φ. Then we see that
φ(bn, a

k
i ) must hold also for k > n (otherwise φ(bn, y) would alternate too much on the

sequence (a
η(i)
i )). We can do something similar if the formula φ has extra parameters

from the bn’s or ani ’s, thus it follows that the sequences are weakly linked.

Choose an increasing map η : ω → I, then the sequences (bn)n<ω and (anη(n))n<ω are
weakly linked but not mutually indiscernible. This contradicts Lemma 5.2.14 and finishes
the proof of Theorem 5.2.26.

Corollary 5.2.27. If all generically stable measures in dimension 1 are smooth, then
all generically stable measures are smooth.

This generalizes results of [62] where this was proved under additional assumptions.

Corollary 5.2.28. If T is dp-minimal and has no generically stable type (in M), then
it is distal. In particular o-minimal theories and the p-adics are distal.

Proof. Recall from 5.2.10 that in a dp-minimal theory, any indiscernible sequence of
1-tuples is either distal or totally indiscernible.

Appendix : types over finite sets

Perhaps the most fascinating conjecture about NIP theories is the conjecture of
uniform definability of types over finite sets. It says that for every formula φ(x, y) ∈ L
there is some formula ψ(x, z) ∈ L such that for any tuple a of size |y| and finite set B,
there is c ∈ B|z| satisfying |= φ(b, a) ↔ ψ(b, c) for any b ∈ B|x|. This conjecture was
stated by Laskowski and is linked with compression schemes arising in computational
geometry and learning theory. See [34]. This conjecture was be proved for dp-minimal
theories by Guingona in [23].

In the case of distal theories, we state a stronger conjecture :

Conjecture 5.2.29. Let T be distal, and let φ(x, y) ∈ L. Then there is an integer Nφ
such that for every finite B ⊂ C and tuple a ∈ C|y|, there is a subset B0 ⊂ B of size at
most Nφ such that tp(a/B0) ` tpφ(a/B).

Observe that the converse of the conjecture is easy. In fact, if we restrict ourselves
to finite subsets B that are the underlining sets of an indiscernible sequence of tuples,
then the property described in the conjecture is easily seen to be equivalent to distality
of T .

The conjecture has been checked by Guingona in the case of dp-minimal linearly
ordered theories (unpublished).
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§5.3 Domination in non-distal theories

We have now two extreme notions for indiscernible sequences : distality and total
indiscernability. We want to understand the intermediate case. This part is essentially
independent of the previous one but is of course motivated by it. We first concentrate on
indiscernible sequences, and then adapt the results to invariant types, where statements
become simpler. A last subsection gives an application to externally definable sets.

The reader might find it useful to have in mind the example of a colored order as
defined in the introduction while reading this section.

We will sometimes work with saturated indiscernible sequences, as defined below.

Definition 5.3.1 (Saturated sequence). An indiscernible sequence of α-tuples is satu-
rated if it is indexed by an (|T |+ |α|)+-saturated dense linear order without end points.

In this section, all cuts are implicitly assumed to be Dedekind (i.e., of infinite cofi-
nality from both sides).

If ā fills a cut c of I, an extension J ⊇ I is compatible with ā if ā also fills a cut of J.
We fix a global A-invariant type p ∈ Sα(C), for some small parameter set A. The

indiscernible sequences we will consider will be Morley sequences of p. This is not a
real restriction since every indiscernible sequence is a Morley sequence of some invariant
type.

The following is the main definition of this section.

Definition 5.3.2 (Domination). Let I be a dense indiscernible Morley sequence of p
over A, a |= p|AI and c a cut of I filled by a dense sequence ā∗ = 〈at : t ∈ I〉 of α-tuples.
We say that ā∗ dominates a over (I, A) if : For every cut d of I distinct from c, and b̄ a
dense sequence filling d, we have in the sense of T(A) :

b̄ |̂
I

ā∗ ⇒ b̄ |̂
I

a.

We say that ā∗ strongly dominates a over (I, A) if for every I ⊆ J compatible with
ā∗ over A and such that a |= p|AJ, ā∗ dominates ā over J.

Notice that in this context, b̄ |̂
I
a means a |= p|Ib̄.

Example 5.3.3. Let T be the theory of colored orders, as defined in the introduction.
Let p be an A-invariant type of an element of a new color. Let I+a be a Morley sequence
of p over A. Let c be a cut in I. If a∗ fills c, then a∗ dominates a over (I, A) if and only
if a and a∗ have the same color.

Lemma 5.3.4. The fact that ā∗ strongly dominates a over (I, A) only depends on the
similarity class of tp(a, ā∗/I) over A.
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Proof. The statement means that if J is a dense indiscernible sequence, b̄∗ and b are
tuples such that tp(b, b̄∗/J) is similar to tp(a, ā∗/I) over A, then b̄∗ strongly dominates
b over (J, A) if and only if ā∗ strongly dominates a over (I, A). Take such b̄∗, b and
J. Assume that tp(b̄∗, b/J) is similar to tp(ā∗, a/I) over A. In particular, J and I have
same EM-type over A, so J is also a Morley sequence of p over A. It also follows that
b |= p|JA so its makes sense to ask for domination.

Assume that b̄∗ does not strongly dominate b over (J, A). Then we can find a dense
sequence J ′ ⊇ J compatible with b̄∗ such that b |= p|J ′A, some cut d of J ′ and sequence
b̄ ′ filling d such that b̄ ′ |̂

J ′
b̄∗, but b̄ ′ 6 |̂ J ′ b (all over A). By Corollary 5.1.16 (sliding),

we may find I ′ ⊇ I and ā ′ such that tp(b̄ ′, b̄∗, b/J ′) is similar to tp(ā ′, ā∗, a/I ′) over A.
This implies the following facts :
– I ′ is compatible with ā∗ and a |= p|I ′A ;
– ā ′ fills a cut of I ′ distant from the cut of ā∗ ;
– ā ′ |̂

I ′
ā∗ and ā ′ 6 |̂ I ′ a.

Therefore ā∗ does not strongly dominate a over (I, A).

Lemma 5.3.5. If ā∗ strongly dominates a over (I, A), then there is a subsequence I ′ ⊆ I
of size at most |T |+ |α| such that ā∗ strongly dominates a over (I ′, A).

Proof. This follows from the previous lemma and Lemma 5.1.11 (shrinking).

Proposition 5.3.6. Let I be a dense Morley sequence of p over A and a |= p|AI, c a
cut of I then there is a sequence of α-tuples ā∗ of length at most |T | + |α| such that ā∗
fills c and ā∗ strongly dominates a over (I, A).

Proof. Recall the notation TI(a,φ) from Section 5.1.2. If J ⊆ J ′ are two sequences,
indiscernible over A, then for any formula φ for which this is well defined, we have :
TJ(a,φ) ≤ TJ ′(a,φ). We will write JC J ′ if for some φ, this inequality is strict.

Let I be the class of indiscernible sequences J such that one can find dense sequences
J1 and J2 satisfying :
– J1 + J+ J2 is a Morley sequence of p over A ;
– a |= p|AJ1J2 .

If we have a family (Ii)i<λ of indiscernible sequences such that Ii ⊆ Ij and IiC Ij hold
for all i < j, then taking Iλ to be

⋃
i<λ Ii, we have IiCIλ for all i. Notice in addition that if

each Ii belongs to I, then it is also the case for Iλ (we can find J1 and J2 by compactness).
As the numbers TJ ′(a,φ) are finite, it follows that we can find some sequence J in the
class I such that there is no J ′ ⊃ J in this class with JC J ′. By shrinking, we may assume
that J is of size |T | + |α|. Take J1 and J2 as in the definition of I. Write c = (I1, I2).
Without loss, J1 and J2 have same order types as I1 and I2 respectively. Composing by
an automorphism over Aa, we may assume that J1 = I1 and J2 = I2. Then J fits in the
cut c. Set ā∗ = J.

Assume that ā∗ does not strongly dominate a over (I, A). Then there is a dense
sequence I ′ ⊇ I a cut d of I ′ and a sequence b̄ filling d such that :
– ā∗ fills a cut c ′ of I ′ (over A) ;
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– a |= p|AI ′ ;
– b̄ |̂

I ′
ā∗, and b̄ 6 |̂ I ′ a.

The sequence K = I ′∪ ā∗∪ b̄ (where ā∗ and b̄ are placed in their respective cuts) belongs
to I. Also b̄ 6 |̂

I ′
a implies that ā∗ C K. This contradicts maximality of ā∗ and proves

that ā∗ strongly dominates a over (I, A).

External characterization and base change

Similarly to what we did in the distal case, we give an external characterization of
domination.

Proposition 5.3.7 (External characterization of domination). Let I be a dense Morley
sequence of p over A, a |= pAI. Let ā∗ fill a cut c of I over A such that ā∗ strongly
dominates a over (I, A). Let also d ∈ C. Assume :

d There is a partition I = J1+ J2+ J3+ J4 such that J2 and J4 are infinite, c in interior
to J2, J2 ∪ {ā∗} is indiscernible over Ad+ J1 + J3 + J4 and J4 is a Morley sequence
of p over Ad+ J1 + J2 + J3.

Then a |= p|AId.

Proof. Let I, a, ā∗, d, J1, ..., J4 as in the statement of the proposition. We may freely
enlarge the sequence J2, so we may assume that it is saturated (for example, add reali-
zations of limit types of cuts in J2 over everything. This maintains the hypothesis).

Assume a does not realize p over AId. So there is φ(d, ī; x) ∈ L(A), (̄i ⊂ I) a formula
satisfied by a that witnesses it. Incorporating ī in d and changing the partition so that
J2 ∪ J4 contains no point from ī, we may assume that ī = ∅. Pick a sequence of cuts of J2
c0 < c1 < . . .. Let 〈āk∗ : k < ω〉 fill the polycut 〈ck : k < ω〉 over Ad ∪ {Jl : l 6= 2}, where
each āk∗ is a sequence of same order type as ā∗. Let I ′ denote the sequence I with the
points āk∗, k > 0, placed in their respective cuts.

Then tp(ā0∗, d/I ′) is similar to tp(ā∗, d/I). By sliding (Corollary 5.1.15 ; note that
our sequence is already large enough, so we do not need to increase it), we find a0 such
that : a0 |= p|AI ′, φ(d;a0) holds and ā0∗ strongly dominates a0 over (I ′, A).

Let K1 realize an infinite Morley sequence of p over everything considered so far.
Let I1 = I ∪ {āk∗ : k > 1} + K1 (where the tuples āk∗ are placed in their respective cuts).
As above, we may find a1 |= p|AI1 such that ā1∗ strongly dominates a1 over (I1, A) and
φ(d;a1) holds. Now as a0 |̂

I1
ā1∗, by the domination assumption we have a0 |̂

I1
a1. We

iterate this construction building an indiscernible sequence Iω = I + K1 + K2 + .... and
points 〈ak : k < ω〉 filling the cuts between the Ki’s and independent over Iω such that
φ(d;ak) holds for each k. As by assumption ¬φ(d; x) holds for every x ∈ Iω, φ has
infinite alternation rank, contradicting NIP.

Proposition 5.3.8 (Base change). Let p be A invariant and A ⊂ B. If I is a dense
Morley sequence of p over B, a |= p|BI and ā∗ fills a cut of I in the sense of T(B), then
if ā∗ strongly dominates a over (I, A) it does so over (I, B).
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Proof. Assume that ā∗ fills a cut c of I in the sense of T(B) and dominates a over (I, A).
Then let d̄ fill a cut c ′ of I over B with c ′ distinct from c. Assume that d̄ |̂

I
ā∗ over B.

Thendholds with d there replaced by d̄B. By domination over (I, A) and the previous
proposition, a |= p|I ∪ d̄B. This proves that ā∗ dominates a over (I, B). This remains
true if we first increase I so ā∗ strongly dominates a over (I, B).

5.3.1 Domination for types

We now have all we need to state domination results for types over |T |+-saturated
models, instead of cuts in indiscernible sequences.

We work over a fixed κ-saturated model M. By an invariant type we mean here a
type over M, invariant over some A ⊂M of size less than κ.

For the following definition, recall the construction of px ⊗ qy when q is invariant
(Lemma 5.2.18 and the paragraph following it).

Definition 5.3.9 (Distant). Let p, q ∈ S(M) be two types, assume that at least one of
them is invariant, then we say that p and q are distant if they commute : px ⊗ qy =
qy ⊗ px 2. If a, b ∈ C, we wil say that a and b are distant over M if tp(a/M) and
tp(b/M) are.

Keep in mind that the notion “a and b are distant over M” only depends on
tp(a/M) ∪ tp(b/M) and does not say anything more about tp(a, b/M). In particu-
lar, in a stable theory, any a is distant from itself. So distant should not be confused
with independent as defined now.

Definition 5.3.10 (Independent). Given two distant types p, q ∈ S(M) and a |= p,
b |= q we say that a and b are independent over M if tp(a, b/M) = p ⊗ q. We write
a |̂

M
b. This is a symmetric relation.

Definition 5.3.11 (S-domination). Let p ∈ S(M) be any type, a |= p. A tuple b
s-dominates a over M if :

c For every invariant type r ∈ S(M) distant from p and q, and d |= r, if d |̂
M
b,

then d |̂
M
a.

The reader might be concerned by the fact that this definition depends on the choice
of κ (taking a smaller κ we have less invariant types to check). However, we will see later

that we get an equivalent definition if we add incthe condition that r is invariant over
a subset of size ℵ0.

Example 5.3.12. Taking again the example of a colored order, if p and q are two
invariant types (of tuples), ā |= p and b̄ |= q, then b̄ s-dominates ā over M if and only
if, for every point a0 in range(ā), there is a point b0 in range(b̄)∪M of the same color.

2. Recall the definition of commuting for non-invariant given after Lemma 5.2.18
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The moving-away lemma

Lemma 5.3.13. Let p ∈ S(M) be any type, and a |= p. Then there is some a∗ s-
dominating a over M and furthermore a∗ realizes some invariant type over M.

Proof. This is similar to Proposition 5.3.6. Start with some a∗ realizing an invariant
type. If it does not dominate a, there is an invariant type r distant from a∗ and a overM
and b |= r|Ma∗ such that b 6 |̂

M
a. Replace a∗ by a∗b and iterate. By Corollary 5.1.18,

this construction must stop after less than (|T |+ |a|)+ steps.

For applications we will also need to show that we can find such a dominating tuple
distant from any given type.

Lemma 5.3.14. Let I ⊂M be a dense indiscernible sequence of α-tuples and (Ii)i<λ a
family of distinct initial segments of I, with λ ≥ (|T |+|α|)+. For i < α, let pi = lim(Ii/M).
Then given a type q ∈ S(M), there is i < λ such that pi is distant from q.

Proof. Observe that the types pi pairwise commute. Then use Corollary 5.1.18 (and the
remark after it).

Lemma 5.3.15. Let p, q ∈ S(M), be types of α-tuples (|α| < κ) with p invariant over
some small A. Let a |= p. Then there is r ∈ S(M) invariant over some B of size ℵ0,
distant from p and q and b̄ |= r such that |b̄| ≤ |T |+ |α| and b̄ s-dominates a over M.

Proof. By Proposition 5.3.6 (and Lemma 5.3.5) we can find I ′0 a dense Morley sequence
of p over A of size |T | + |α| and ā ′∗ such that a |= p|AI ′0, ā

′
∗ fills a cut c of I ′0 and ā ′∗

strongly dominates a over (I ′0, A). Let b̄
′ be the sequence I ′0 ∪ ā ′∗ where ā ′∗ is placed in

its cut.
Let I ⊂ M be a saturated Morley sequence of p over A, let c be a polarized cut of

I of cofinality ℵ0 such that lim(c) is distant from q and p (using Lemma 5.3.14). We
may find some b̄ ≡Aa b̄ ′ such that b̄ fills the cut c of I. Let also I0, ā∗ be such that
(b̄, I0, ā∗) ≡ (b̄ ′, I ′0, ā

′
∗). So b̄ = I0 ∪ ā∗.

Let I∞ realize an infinite Morley sequence of p over everything. The strong base
change lemma (5.2.8) works equally well if instead of considering points di filling the
cuts ci, we take sequences d̄i. We apply this modified version withM as set of parameters,
I+ I∞ as indiscernible sequence, d̄0 = b̄ and d̄1 = a. We conclude that we may assume
that b̄ is a Morley sequence of lim(c) over M.

Set r = tp(b̄/M) and let B ⊂M be of size ℵ0 such that r is B-invariant. Note that
r is a power of lim(c), so it also commutes with p and q.

Let d realize any invariant type s ∈ S(M) distant from p and r. Assume that d |̂
M
b̄.

Let C ⊂M be a subset of size < κ such that p, s and r are invariant over C. Let I ′ ⊂M
be a Morley sequence of p over C indexed by some dense order I. Then d^b̄ realizes s⊗ r
over CI ′ (indeed over M). As p is distant from both r and s, by associativity of ⊗, p(I)
commutes with s ⊗ r. Therefore, I ′ realizes p(I) over Cdb̄. Similarly, b̄ realizes r over
CI ′d, and in particular, b̄ is indiscernible over CI ′d.
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Furthermore, as I ′ ⊂M, b̄ realizes r over CI ′. As r commutes with p, I ′ realizes p(I)

over Cb̄, a fortiori over Ab̄. But b̄ is a Morley sequence of p over A. Therefore b̄+ I ′ is
a Morley sequence of p over A.

The hypothesis of Proposition 5.3.7 are satisfied with J1 = J3 = ∅, J2 = I0, J4 = I ′

and d there equal to Cd. We conclude that a |= p|Cd. As this is true for every small C,
d and a are independent over M. This proves that b̄ s-dominates a over M.

Remark 5.3.16. The tuple b̄ constructed in the previous lemma has the following addi-
tional property :

(D) For every d ∈ C such that tp(d/Mb̄) does not fork over M, and such that
tp(b̄d/M) commutes with p, we have a |̂

M
d.

This assumption is satisfied in particular when d is distant from a and b̄, and b̄ |̂
M
d

(although d might not realize an invariant type).

Proof. We indicate how to modify the proof above. First, we take C such that p and
r are invariant over C. Next take C1, C ⊆ C1 ⊂ M, such that for any J, J ′ ⊂ M

Morley sequences of p over C1 indexed by ω, we have tp(J/Cb̄d) = tp(J ′/Cb̄d). This is
possible using Lemma 5.2.18. Build I ′ as a Morley sequence of p over C1. By definition
of commuting, I ′ is a Morley sequence of p over Cb̄d. Also because tp(d/Mb̄) does
not fork over M, b̄ is indiscernible over Md. Finally, the proof that b̄ + I ′ is a Morley
sequence of p over A does not change. So as above, we may apply Proposition 5.3.7 to
conclude that d and a are independent over M.

Corollary 5.3.17. Let p, q ∈ S(M) be any two types of α-tuples (|α| < κ) and let a |= p.
Then there is a∗ a tuple of length ≤ |T | + |α|, distant from q over M and such that a∗
s-dominates a over M. Furthermore, we may assume that tp(a∗/M) is invariant over a
subset of size ℵ0.

Proof. By Lemma 5.3.13, there is some a∗∗ s-dominating a over M and realizing some
invariant type. By Lemma 5.3.15, there is a tuple a∗ s-dominating a∗∗ over M with the
required size, whose type over M is invariant over a subset of size ℵ0 and distant from
q.

We check that a∗ s-dominates a over M. Let r ∈ S(M) be an invariant type distant
from a∗ and a. Let b |= r with b |̂

M
a∗. By Lemma 5.3.15, there is b∗ s-dominating b

and distant from q = tp(a^a∗^a∗∗/M). Furthurmore assume that b∗ satisfies property
(D). Composing by an automorphism overMb, we may further assume that b∗ |̂

M
a∗.

Then as a∗ s-dominates a∗∗ over M, we have b∗ |̂
M
a∗∗ and as a∗∗ s-dominates a over

M, b∗ |̂
M
a. By property (D) this implies b |̂

M
a.

Lemma 5.3.18 (Transitivity of s-domination). Let a ∈ C and let a∗ s-dominate a over
M. Let also a∗∗ s-dominate a∗ over M. Then a∗∗ s-dominates a over M.

Proof. Let d ∈ C be distant from a and a∗∗ with d |̂
M
a∗∗. By Corollary 5.3.17, let d∗

s-dominate d over M and distant from a^a∗^a∗∗. Composing by an automorphism over
Md, we may assume that d∗ |̂

M
a∗∗. Then we have d∗ |̂

M
a∗ and d∗ |̂

M
a and finally

d |̂
M
a.
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Example 5.3.19. If p ∈ S(M) is generically stable, and a |= p, then a is s-dominated
by itself. In the opposite situation, if p is invariant and its Morley sequence is distal,
then a is s-dominated by the empty set.

S-independence

Definition 5.3.20 (S-independence). Let p, q be any types over M, let a |= p and
b |= q. We say that a and b are s-independent over M and write a |̂ s

M
b if there is

a tuple a∗ realizing an invariant type, s-dominating a and distant from b such that
a∗ |̂

M
b.

Note that if a and b are distant, then a |̂ s
M
b if and only if a |̂

M
b.

Proposition 5.3.21 (Existence). Let p, q ∈ S(M) be any two types and a |= p. Then
there is b |= q such that a |̂ s

M
b.

Proof. Let a∗ be s-dominating a such that a∗ realizes some invariant type p∗ distant
from q. Take b such that tp(a∗, b/M) = p∗ ⊗ q. Then by definition a |̂ s

M
b.

Proposition 5.3.22 (Symmetry of s-independence). S-independence is symmetric : if
a and b are two tuples, then a |̂ s

M
b if and only if b |̂ s

M
a if and only if there are a∗,

b∗ s-dominating a and b respectively, distant from each other such that a∗ |̂
M
b∗.

Proof. It is enough to prove the last equivalence. To see right to left, let a∗∗ s-dominate
a∗ and be distant from b∗ and b overM. Assume also that a∗∗ |̂

M
b∗, then by Lemma

5.3.18, a∗∗ s-dominates a overM. As it is independent from b∗ overM, we have a∗∗ |̂
M
b

as required.
Conversely, assume that a |̂ s

M
b. Let a∗ be a tuple s-dominating a, realizing an

invariant type over M, and distant from b such that b |̂
M
a∗. We can find a tuple b ′∗

s-dominating b distant from a, a∗ and b. As a∗ |̂
M
b, there is b∗ ≡Mb b ′∗ such that

a∗ |̂
M
b∗.

Proposition 5.3.23 (Weight is bounded). Let (bi)i<|T |+ be a sequence of tuples such
that bi |̂ s

M
b<i for each i, and let a ∈ C. Then there is i < |T |+ such that a |̂ s

M
bi.

Proof. By Lemma 5.3.17, we can find a family (b∗i )i<|T |+ such that : For each i < |T |+, b∗i
realizes an invariant type ri distant from q := tp(a/M) and rj, j 6= i, b∗i s-dominates bi
over M and b∗i |̂

M
b∗<i. By Corollary 5.1.18, there is i < |T |+ such that tp(b∗i , a/M) =

ri ⊗ q. By definition, a |̂ s
M
bi.

The following special case of this proposition makes no reference to s-domination.

Corollary 5.3.24. Let q ∈ S(M) be A-invariant and, for i < |T |+, let pi ∈ S(M) be
an invariant type. Assume that pi commutes with q, for each i. Let (bi) |=

⊗
pi and

a |= q. Then there is i < |T |+ such that tp(bi, a/N) = pi ⊗ q.

Corollary 5.3.25. Let a, b ∈ C such that a 6 |̂ s
M
b, then tp(b/Ma) forks over M.
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Proof. Otherwise, we could find a global M-invariant extension p̃ of tp(b/Ma). Take
(ai)i<|T |+ to be a sequence of realizations of tp(a/M) with a0 = a and ai |̂ s

M
a<i for each

i. By invariance, if b∗ |= p̃ over everything, for each i < |T |+, tp(b∗, ai/M) = tp(b∗, a/M)
and b∗ 6 |̂ sM ai. This contradicts Proposition 5.3.23.

Corollary 5.3.26. Let a and b be distant over M, then tp(a/Mb) forks over M if and
only if tp(b/Ma) forks over M if and only if a 6 |̂

M
b.

Proposition 5.3.27. Let p ∈ S(M) be an invariant type and q ∈ S(M) be distant from
p. Let I = (ai)i<ω be a Morley sequence of p over M and b |= q. Then lim(I/Mb) =
p|Mb.

Proof. This follows easily from Proposition 5.3.23 by making the sequence I of large
cardinality.

Example 5.3.28 (ACVF). Take T to be ACVF, and M a model of T . Let p ∈ S(M)
be an invariant type of a field element. By [27], Corollary 12.14, there are definable
functions f and g respectively into the residue field k and the value group Γ such that
letting pk = f∗(p) and pΓ = g∗(p), we have :

For any a |= p and b ∈ C, tp(a/Mb) = p|Mb if and only if tp(f(a)/Mb) = pk|Mb
and tp(g(a)/Mb) = pΓ |Mb.

Take such an invariant type p and a |= p. Then a is s-dominated by f(a) since if
b ∈ C is distant from a over M, then by distality of Γ , tp(b/M) and tp(g(a)/M) are
orthogonal.

5.3.2 The finite-co-finite theorem and application

We prove now an analog of Proposition 5.3.23 which does not require to work over
a model. We prove it by reproducing the proof of that proposition in the context of
domination for indiscernible sequences.

Proposition 5.3.29. Let A be any set of parameters and let p be some global A-invariant
type. Let a ∈ C. Let I be an infinite Morley sequence of p over Aa and J be an infinite
Morley sequence of p over AI. Let φ(x;y) ∈ L(A), then the set {b ∈ J :|= φ(b, a)} is
finite or co-finite in J.

Proof. Assume not. Then we may expand I to a saturated sequence. Without loss, the
formula φ(x, b) is true for x ∈ I and pruning J, we may assume that it is false for x ∈ J.
Finally, we may expand J so that J = 〈bi : i < |T |+〉.

We can find sequences 〈b̄i∗ : i < |T |+〉 such that :
– Each b̄i∗ fills some cut of I, the cuts being distinct from one another, and the b̄i∗ are
placed independently over I ;
– for each index i, b̄i∗ strongly dominates bi over (I, A).
(Why ? First take d̄0∗ strongly dominating b0 over (I, A). Let 〈b ′i : 0 < i < |T |+〉 be a
Morley sequence of p over everything. There is an automorphism σ fixing AIb0 sending
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〈b ′i : 0 < i < |T |+〉 to 〈bi : 0 < i < |T |+〉. Let b̄0∗ = σ(d̄0∗). Then take d̄1∗ strongly
dominating b1 over (I, A) with d̄1∗ |̂

I
b̄0∗. And iterate.)

Let I ′ be the sequence I with all the b̄i∗ added in their respective cuts. It is an
A-indiscernible sequence. By shrinking of indiscernibles, there is I ′′ ⊆ I obtained by
removing at most |T | of the tuples b̄i∗ from I ′ such that I ′′ is indiscernible over Aa.
Without loss, assume we have not removed the tuple b̄0∗. Then by Proposition 5.3.7
(External characterization), b0 |= p|Aa. This contradicts the hypothesis.

Theorem 5.3.30 (Finite-co-finite theorem). Let I = I1+ I2+ I3 be indiscernible, I1 and
I3 being infinite. Assume that I1 + I3 is A-indiscernible and take φ(x;a) ∈ L(A), then
the set B = {b ∈ I2 :|= φ(b;a)} is finite or co-finite.

Proof. This follows from the previous proposition by setting p to be the limit type of
I∗3 (I3 in reverse order).

Note that necessarily, B in the statement of the theorem is finite if ¬φ(b;a) holds
for b ∈ I1+ I3 and co-finite otherwise (because you can incorporate some parts of I1 and
I3 to I2, also it follows from the proof). This will be used implicitly in applications.

Corollary 5.3.31. Let I = I1 + I2 + I3 be indiscernible, I1 and I3 being infinite with
no endpoints and I2 densely ordered. Assume that I1 + I3 is A-indiscernible. Write I2 =
(ai)i∈I. Then given some linear order J ⊇ I, one can find tuples ai, i ∈ J \ I such that :
– I1 + 〈ai : i ∈ J \ I〉+ I3 is indiscernible over A,
– I1 + 〈ai : i ∈ J〉+ I3 is indiscernible.

Proof. We construct the points ai, i ∈ J \ I simply by realizing limit types of cuts of
I2 over everything. More precisely, given c a cut of I, identify c with the corresponding
cut of I2. Assume for simplicity that c has infinite cofinality from the right and let pc
be lim(c+) (seen a global type). Note that if c 6= c ′, then the types pc and pc ′ commute.
Let Jc be the convex subset of J formed by elements falling in the cut c. Finally take
〈ai : i ∈ J \ I〉 to realize

⊗
c p

(Jc)
c over IA.

The second condition is obviously satisfied, so we have to check the first one. We
start by considering a cut c, and show that I1 + 〈ai : i ∈ Jc〉+ I3 is indiscernible over A.
The fact that for i ∈ Jc, and a ∈ I1, tp(ai/A) = tp(a/A) follows immediately from the
finite-co-finite theorem 5.3.30. Now consider i < j ∈ Jc and φ(x1, x2) ∈ L(A) a formula.
Assume that for a ∈ I1, b ∈ I3 we have |= φ(a, b). Write c = (K1,K2), seen as a cut
of I. By construction of (ai)i∈Jc and shrinking of indiscernibles (Proposition 5.1.10), we
have :

|= φ(ai, aj) ⇐⇒ for some coinitial K ⊂ K2, φ(as, at) holds for s < t ∈ K.

Assume we have ¬φ(ai, aj). So easily, we can find points s1 < t1 < s2 < t2 < ... ∈ K2

such that ¬φ(ask , atk) holds for each k < ω. Let L2 = 〈ask^atk : k < ω〉. Take also L1 to
be any sequence of increasing pairs of members of I1, so that L1+L2 is indiscernible, and
pick similarly L3. Then the finite-co-finite theorem applied to the sequence L1 + L2 + L3
gives us a contradiction.
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We can do the same reasoning if φ(x1, x2) has parameters in AI1I2 (by adding parts
of I1I2 to A and decreasing them). Also one sees at once that the construction generalizes
to formulas φ(x1, ..., xn) with more variables and we obtain than I1 + 〈ai : i ∈ Jc〉 + I3
is indiscernible over A.

Next, we look at two cuts c1 < c2 and we want to see that I1+〈ai : i ∈ Jc1+Jc2〉+I3 is
indiscernible over A. We know that 〈ai : i ∈ Jc2〉 realizes p

(Jc2 )
c2 over everything else. We

may assume that Jc1 is without endpoints. Take some finite K0 ⊂ Jc1 and let K1 be {i ∈
Jc1 : i > K0}. Then the sequence 〈ai : i ∈ K1〉+ I3 is indiscernible over A ∪ {ai : i ∈ K0}.
The same reasoning as above shows that the sequence 〈ai : i ∈ K1〉 + 〈ai : i ∈ Jc2〉 + I3
is indiscernible over A ∪ {ai : i ∈ K0}. It follows that I1 + 〈ai : i ∈ Jc1 + Jc2〉 + I3 is
indiscernible over A.

Iteratively, we prove that I1+ 〈ai : i ∈ Jc1 + ...+ Jcn〉+ I3 is indiscernible over A and
finally, that I1 + 〈ai : i ∈ J \ I〉+ I3 is indiscernible over A.

Corollary 5.3.32. Let I1 + I2 + I3 be an indiscernible sequence of finite tuples, with I1
and I3 infinite without endpoints. Assume that I1 + I3 is indiscernible over A. Then we
can find some subsequence I ′2 ⊂ I2 with I2\I ′2 of size at most |T |+ |A| such that I1+I ′2+I3
is indiscernible over A.

Proof. Without loss, we may assume that I2 is densely ordered. Write I2 = 〈ai : i ∈ I〉
and take some |I|+-saturated linear order J ⊃ I. By Corollary 5.3.31 we can find tuples
〈ai : i ∈ J \ I〉 such that :
– I1 + 〈ai : i ∈ J \ I〉+ I3 is indiscernible over A,
– I1 + 〈ai : i ∈ J〉+ I3 is indiscernible.

By shrinking of indiscernibles, there is J0 ⊂ J of size at most |T | + |A| such that
I1 + 〈ai : i ∈ J \ J0〉+ I3 is indiscernible. Then set I ′2 = 〈ai : i ∈ I \ J0〉.

We now give an application of this result to externally definable sets.
We will use the following notation : if M |= T , M ≺ N is an elementary extension

and A ⊆ N containing M, then M[A] is the structure with universe M with language
composed of a predicate for every subset of Ml (any l) of the form φ(M; c̄), c̄ ∈ Ak for
any φ(x̄; ȳ) ∈ L(M), interpreted the obvious way.

Shelah proved in [56] that M[C] eliminates quantifiers. We refer the reader to [16]
for a slightly different approach, that we will use (and recall) here. If p ∈ S(M) is any
type and a |= p, then it is not true in general that M[a] eliminates quantifiers (see [16],
Example 1.8 for a counterexample). However it is conjectured in [16] that M[I] does,
where I is a coheir sequence starting with a. We prove a special case of this when p is
interior to M. See the definition below.

We will need some notions from [16] that we recall now. If X is an externally definable
subset of X (i.e., a subset of the form φ(M,c) for some tuple c ∈ C), then an honest
definition of X is a formula θ(x, d) ∈ L(C) such that (1) θ(M,d) = X and (2) for every
formula ψ(x) ∈ L(M) such that X ⊆ ψ(M) then C |= θ(x)→ ψ(x).

Lemma 5.3.33. If A ⊂ C containing M is such that for every formula φ(x; c) ∈ L(A),
φ(M; c) has an honest definition with parameters in A, thenM[A] eliminates quantifiers.
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Proof. Let φ(x, y; c) ∈ L(A) and let θ(x, y;d) ∈ L(A) be an honest definition of X :=
φ(M; c). Let π :M|x|+|y| →M be the projection on the first |x| coordinates. Let ψ(x;d) =
∃yθ(x, y;d). Then ψ(M;d) = π(X) : it is clear that ψ(M;d) ⊆ π(X), and if a ∈ M|x| \

π(X), then the set {(x, y) ∈M|x|+|y| : y 6= a} contains X and by honesty C |= θ(x, y;d)→
y 6= a which gives the reverse inclusion.

Definition 5.3.34. Let p be an M-invariant global type. We say that p is interior to
M if p(ω) is both an heir and a co-heir of its restriction to M.

An example of an interior type is given by the following situation : let I ⊂ M be
indiscernible and c a cut interior to I such thatM respects c. Then the type p = lim(c+)
is interior to M.

Lemma 5.3.35. Let p be a global M-invariant type interior to M. Let I0 + I1 + I2
be a Morley sequence of p over M. For i < 3 let āi ⊂ Ii be a finite tuple. Assume
that ā1 |= φ(x̄; ā0, ā2), φ ∈ L(M), then there are two tuples b̄0, b̄2 ⊂ M such that
ā1 |= φ(x̄; b̄0, b̄2).

Proof. First find b̄2 such that ā1 |= φ(x̄; ā0, b̄2) by the coheir hypothesis. Then find b̄0
by the heir hypothesis.

Theorem 5.3.36 (Shelah expansion for interior types). Let p be a global M-invariant
type interior to M. Let I be a Morley sequence of p over M. Then M[I] eliminates
quantifiers.

Proof. Take a saturated extensionM[I] ≺ N∗ of size κ > |M|. The model N∗ can be seen
as a reduct to the language of M[I] of some N[J] for M ≺ N and J ≡M I, J indiscernible
over N. Without loss I = J. Notice that N∗ and N[I] have the same definable sets.

Claim : There is an indiscernible sequence I1 + I2 ⊂ N such that N respects the cut
c = (I1, I2) and I |= lim(c+)(ω).

Proof : WriteN =
⋃
i<κAi with |Ai| < κ. Let i < κ. By Lemma 5.3.35 and saturation,

we can find sequences Ki, Li ⊂ N of order type ω such that Ki + I + Li is indiscernible
over Ai. Let I1 = K1 + K2 + ... and I2 = ... + L2 + L1, the sums ranging over i < κ. The
required property is then easy to check.

Let φ(x;y) be a formula and a0 |= p, a0 ∈ I. We consider the pair (M,N) and show
that φ(a0;M) has an honest definition with parameters in M+ I1 + I2.

By the Theorem 5.3.30 and compactness, there are integers n,N and a finite set of
formulas δ such that for every finite sequence J1 + J3 + J2, satisfying :
– J1 and J2 are of size at least n,
– J1 + J3 + J2 is indiscernible,
– J1 + J2 is δ-indiscernible over b and
– φ(x;b) holds on all elements of J1 and J2,
then ¬φ(x;b) holds on at most N elements of J3.

Let I ′1 ⊂ I1 and I ′2 ⊂ I2 be finite of size n such that I ′1 + I
′
2 is M-indiscernible.

Consider the formula θ(y) ∈ L(MI) such that if b |= θ(y), then I ′1 + I
′
2 is δ-indiscernible
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over a, and φ(ā0;y) holds on all elements of I ′1 + I
′
2. Define analogously θ1(y) using ¬φ

instead of φ.
Then, for every b ∈M, θ(b) holds if and only if φ(a0;b) holds. Also, if b ∈ N, and

θ(b) holds, then φ(a0;b) holds (Why ? Only finitely many elements a from I1+ I2, with
I ′1 < a < I ′2 can satisfy φ(a;b)). This easily implies that θ is an honest definition of
φ(a0;M).

To conclude the theorem, notice that we can do the same thing replacing p by p(n)

for any n, which takes care of formulas φ(ā;y) with ā a finite subset of I instead of one
element.

As a consequence of the proof, we obtain a uniformity result for honest definitions.

Porism 5.3.37. Let φ(x;y) be a formula, then there is a formula θ(x; z) such that : For
every model M, global M-invariant type p interior to M and a |= p|M, there is some
c ∈ C such that θ(x; c) is an honest definition of φ(M;a).

§5.4 Sharp theories

In this last section, we study theories in which the ‘stable part’ of types is controlled
by generically stable types. We give a definition, a criterion using indiscernible sequences
and show that it is enough to check that criterion in dimension 1. One could probably
introduce stronger notions, and ask for example that types are s-dominates by types
living in a stable sort, but we do not pursue this here.

Definition 5.4.1. The theory T is sharp if for every |T |+-saturated model M and p ∈
S(M) an invariant type realized by a, there is some generically stable type q ∈ S(M)
and a∗ |= q such that a∗ s-dominates a over M.

Definition 5.4.2. Let I = 〈ai : i ∈ I〉 be a dense indiscernible sequence. A decomposi-
tion of I is an indiscernible sequence K = 〈ai^bi : i ∈ I〉 where the sequence J = (bi)i∈I
is totally indiscernible and such that :

For every K ′ of same EM-type as K, c a Dedekind cut of K ′, d ∈ C such that K ′ is
indiscernible over d and a^b filling c ; if there is a ′ such that a ′̂ b fills c over dK ′, then
a^b fills c over dK ′.

By usual sliding argument, if K is dense and contains some Dedekind cut c, it is
enough to check the condition for K ′ = K.

An indiscernible sequence I = 〈ai : i ∈ I〉 is decomposable if it admits a decomposition
K = 〈ai^bi : i ∈ I〉. In this case, we will say that I is decomposable over 〈bi : i ∈ I〉.

Remark 5.4.3. There are two trivial cases of decomposability : If I is distal, then it
is decomposable over the sequence of empty tuples, if I is totally indiscernible, it is
decomposable over itself.
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Lemma 5.4.4 (Internal characterization). An indiscernible sequence I = (ai^bi)i∈I is a
decomposition, if and only if the following holds :
� For every J, K, L infinite indiscernible sequences without endpoints of same EM-

type as I and a^b, a ′^b ′, if J+a^b+K+L, J+K+a ′^b ′+L are indiscernible, and there
exist a0, a ′0 such that J+a0^b+K+a ′0^b

′+L is indiscernible, then J+a^b+K+a ′^b ′+L
is indiscernible.

Proof. Assume that I is a decomposition. Then taking d = a ′0^b
′ + L in the definition,

we see that J+ a^b+ K is indiscernible over a ′0^b
′ + L. Then taking d = J+ a^b, we get

that K+a ′̂ b ′+L is indiscernible over J+a^b, so J+a^b+K+a ′̂ b ′+L is indiscernible.
Conversely, assume � holds and without loss I is a dense order. Notice that the

analog of � where we fill n cuts instead of 2 follows from � by easy induction (as in
Lemma 5.2.6). Let d ∈ C, c, a^b and a ′ be as in the definition of decomposition. Assume
that a^b does not fill c over Ad. Adding parameters to d if necessary, we may assume
that for some formula φ(x, y), and all a∗^b∗ ∈ I, we have φ(a∗^b∗, d) ∧ ¬φ(a^b, d).
Fix some increasing sequence (ck)k<ω of Dedekind cuts of I. For each k < ω, we can
find ak, a ′k, bk such that tp(ak, a ′k, bk, d/I) is similar to tp(a, a ′, b, d/I) and ak^bk fills
the cut ck. By � and the remark above, the sequence obtained by adding all the tuples
ak^bk to I in their respective cuts is indiscernible. Then the formula φ(x, y) has infinite
alternation rank.

We will need the following strengthening of Lemma 5.2.8.

Lemma 5.4.5 (Strong base change 2). Let I = (ai^bi)i∈I be an indiscernible sequence
and A ⊃ I a set of parameters. Let (ci)i∈J be a sequence of pairwise distinct polarized
Dedekind cuts in I. Call c ′i the corresponding cut in the sequence (bi)i∈I. For each i let
di^ei fill the cut ci. Assume also that the sequence (ei)i∈J realizes

⊗
lim(c ′i) over I. Then

there exist (d ′i^e
′
i)i∈J such that

– tp(〈d ′i^e ′i : i ∈ J〉/I) = tp(〈di^ei : i ∈ J〉/I),
– for each i, tp(d ′i^e

′
i/A) = lim(ci/A),

– (e ′i)i∈J realizes
⊗

i lim(c ′i) over A.

Proof. The proof is essentially the same as that of Lemma 5.2.8.
Assume the result does not hold. Then by compactness, we may assume that J =

{1, .., n} and that there is a formula φ(x1^y1, .., xn^yn) ∈ tp(〈di êi : i〉/I), a formula
θ(y1, .., yn) ∈

⊗
lim(t ′i/m) and formulas ψi(xi, yi) ∈ lim(ci/m) for some finite m ∈ A

such that φ(x1^y1, .., xn^yn)∧θ(y1, .., yn)
∧
iψi(xi, yi) is inconsistent. Let I0 denote the

parameters of φ.
Assume for simplicity that n = 2 (the proof for n > 2 is the same) and without loss

ci is polarized as c−i . For i = 1, 2 take (Ii, I
′
i) E ci such that ψi holds on all elements of

Ii, θ(y1, y2) holds for each (x1^y1, x2^y2) ∈ I1 × I2, and Ii ∪ I ′i contains no element of I0.
Then I1 + I ′1 and I2 + I

′
2 are mutually indiscernible over I0. So for every two cuts d1 and

d2 respectively from I1 + I
′
1 and I2 + I

′
2, we can find points d1 ê1 and d2 ê2 filling those

cuts (even seen as cuts of I) such that φ(d1, e1, d2, e2) holds and there are d ′1, d
′
2 such

that (d ′1 ê1, d
′
2 ê2) fills the polycut (d1, d2) over I.
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Take a cut d1 inside I1 and d2 inside I2 and see them as cuts of I. Fill d1 by d1 ê1 and
d2 by d2 ê2 as above. By hypothesis, either ¬θ(e1, e2), ¬ψ1(d1, e1) or ¬ψ2(d2, e2) holds.
In one of the latter two cases, proceed as in Lemma 5.2.8. In the first case, keep e1 and
e2 and add points (d ′1, d

′
2) such that I with d ′1 ê1 and d

′
2 ê2 added is indiscernible. Then

iterate with I ∪ {d ′1 ê1, d
′
2 ê2} instead of I.

After iterating this ω times, either ψ1, ψ2 or θ has infinite alternation rank.

Lemma 5.4.6 (Base change). The notion of being a decomposition is stable both ways
under base change : If (ai^bi)i∈I is A-indiscernible, then it is a decomposition in T if
and only if it is a decomposition in T(A).

Proof. Assume I = (ai^bi)i∈I is a decomposition, then it follows immediately from the
definition that it is a decomposition from the point of view of T(A).

For the converse, use the internal characterization and strong base change 2 (Lemma
5.4.5) as in the proof of Cororllary 5.2.9.

Lemma 5.4.7. Assume that K = (ai^bi)i∈I is a decomposition of I = (ai)i∈I. Let c be
a cut of K filled by a sequence L and denote by c ′ the corresponding cut in (bi)i∈I. Let
L2 the projection on L on the second factor (so L2 is a totally indiscernible sequence).
Let d ∈ C be such that K is indiscernible over d and L2 is a Morley sequence of the limit
type of c ′ over Kd. Then K ∪ L is indiscernible over d (where L is placed in the cut c).

Proof. Assume L is dense of size |T | and using Corollary 5.3.31, increase L to some
saturated sequence L ′ filling c and such that the sequence K0 = K∪(L ′\L) is indiscernible
over d. Let now a1^b1 ∈ L. This tuple fills a Dedekind cut of K0. By domination in the
sequence K0, we see that K1 = K0∪{a1^b1} is indiscernible over d. Then we can take some
other a2^b2 ∈ L. It fills a Dedekind cut of K1 and by domination in K1, K2 = K1∪ {a1^b1}
is indiscernible over d. Iterating, we see that K∪ L ′ is indiscernible over d and therefore
K ∪ L is indiscernible over d.

Lemma 5.4.8. Let M be a |T |+-saturated model and p, q ∈ S(M) be two commuting
invariant types. Take I |= p(ω) and any b |= q. Then we may find two sequences I1, I2
such that I1 + I+ I2 is a Morley sequence of p over M and I1 + I2 is a Morley sequence
of p over Mb.

Proof. Let r be the inverse of p over M (recall the definition as stated after Lemma
5.2.18). We take I2 to be a Morley sequence of p over MIb and then I1 to be a Morley
sequence of r, indexed in the opposite order, over MII2b. Over M, the Morley sequence
of r is the opposite of the Morley sequence of p so the first statement follows. To see the
second statement, recall that if s ∈ S(M) is any invariant type, then rx⊗sy|M = sy⊗px|M.
In particular,

rx ⊗ (qy ⊗ p(n)x1,...,xn)|M = (qy ⊗ p(n)x1,...,xn)⊗ px|M = qy ⊗ p(n+1)x,x1,...,xn |M.

The result follows.
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Proposition 5.4.9. Assume that all sequences are decomposable, then T is sharp.

Proof. Let M be |T |+-saturated and p ∈ S(M) be an A-invariant type. Let a |= p. Let
I ⊂M be a small dense Morley sequence of p over A and let K ⊂M be a decomposition
of I. Let c be a Dedekind cut of K and c1 the corresponding cut of I. Construct some
dense sequence L realizing a power of lim(c+1 /M) as in the proof of the moving away
lemma 5.3.15(i.e., there is a convex L ′ ⊂ L such that L ′ strongly dominates a over
(L,A)). Extend L to V realizing a power of lim(c+/M). So V is the union of L and some
totally indiscernible sequence W. The type of W over M is generically stable.
Claim : W s-dominates a over M.
Proof : Let d ∈ C be distant from a and independent from W over M. Let d∗ realize an
invariant type distant from aV over M such that d∗ s-dominates d and is independent
from W over M. If we show that d∗ |̂

M
L, then as L s-dominates a it will follow that

d∗ |̂
M
a and therefore d |̂

M
a. Replacing d by d∗, we may now assume that d is distant

from aV over M and realizes an invariant type.
Call r = lim(c+) (a global invariant type). By Lemma 5.4.8, let I1 and I2 be two

sequences such that I1 + I2 is indiscernible over dM and I1 + V + I2 is indiscernible
over M. Also as d is independent from W over M, the hypothesis of Lemma 5.4.7 are
satisfied (where L2 there is W here). We conclude that d is independent from L over M
and therefore d is independent from a over M.

5.4.1 Reduction to dimension 1

We prove here the following proposition.

Proposition 5.4.10. Assume that all sequences of 1-tuples are decomposable, then every
sequence is decomposable.

Assume from now on that all indiscernible sequences of 1-tuples are decomposable.
We will take an arbitrary indiscernible sequence and build a decomposition for it adjoi-
ning totally indiscernible sequences to it one-by-one. The proof is an adaptation of the
one from Section 5.2.4. We start with a base set of parameters A that we allow to grow
freely during the construction. In what follows, we work over A, even when not explicitly
mentioned. We have an indiscernible sequence I = 〈ai^αi : i ∈ I〉, where I = (0, 1) for
simplicity and such that the sequence 〈αi : i ∈ I〉 is totally indiscernible.

For every i ∈ I, call ci the cut “i+” of I and c ′i the associated cut in the sequence
〈αi : i ∈ I〉.

Step 1 : Derived sequence

Assume we have a witness of non-decomposition in the following form :
– A tuple b ∈ C, some j ∈ (0, 1) and a pair (a, α) such that :
– a^α fills the cut cj of I,
– I is b-indiscernible,
– α realizes the type lim(c ′j) over Ib,
– I with aĵ αj replaced by a^α is not indiscernible over b.
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As in Section 5.2.4, adding parameters to the base, we may assume that b is a single
point, and that tp(a^α/b) 6= tp(aĵ αj/b). Let r = tp(a^α, b).

We construct a new sequence 〈a ′i^α ′i : i ∈ I〉 such that :
– a ′i^α

′
i fills the cut ci of I,

– tp(a ′i^α
′
i, b) = r for each i,

– The sequence (α ′i)i∈I realizes
⊗

i∈I lim(c ′i) over Ib,
– The sequence 〈ai^αi^a ′i^α ′i : i ∈ I〉 is b-indiscernible.

This is possible by indiscernability of (ai^αi)i over b (first pick the points α ′i then choose
the ai filling the cuts and then extract).

Step 2 : Constructing an array

Using Lemma 5.4.5, iterate this construction to obtain an array 〈ani ^αni : i ∈ I, n < ω〉
and sequence 〈bn : n < ω〉 such that :

– a0i^α
0
i = ai^αi for each i,

– For each i ∈ I, 0 < n < ω, the tuple ani ^α
n
i realizes lim(ci) over 〈bk, aki^αki : i ∈

I, k < n〉,
– For each 0 < n < ω, the sequence (αni )i∈I realizes the type

⊗
i∈I lim(c ′i) over

〈bk, aki^αki : i ∈ I, k < n〉,
– For each 0 < n < ω, tp(bn, 〈ani ^αni : i ∈ I〉/I) = tp(b, 〈a ′i^α ′i : i ∈ I〉/I).

Claim : For every η : I0 ⊂ I → ω injective, the sequence 〈aη(i)i ^α
η(i)
i : i ∈ I0〉 is

indiscernible, of same EM-type as I.
The sequence U = 〈αni : (i, n) ∈ I×ω〉, where I×ω is ordered lexicographically, is

totally indiscernible.

Proof. Easy, by construction.

Expanding and extracting, we may assume that the sequence of rows 〈bn+(ani ^α
n
i )i∈I :

0 < n < ω〉 is indiscernible. By assumption all sequences of points are decomposable.
So let (bn^βn)n<ω be an decomposition of (bn)n<ω. Expanding and extracting again,
we may assume that the new sequence of rows 〈bn^βn + (ani ^α

n
i )i∈I : 0 < n < ω〉 is

indiscernible and that the sequence of columns 〈(ani ^αni )0<n<ω : i ∈ I〉 is indiscernible
over {bn^βn : n < ω}.

Step 3 : Conclusion

Claim : The sequences (bn^βn)n<ω and 〈(ani ^αni )i∈I : 0 < n < ω〉 are weakly linked.
The sequences (bn^βn)n<ω and U are mutually indiscernible.

Proof. For the first statement, the proof is the same is in Section 5.2.4.
The second statement is similar. If for example we have φ(bn, βn, αni ), then the

formula φ(bn, βn, αnj ) must hold for all j ∈ I, and therefore by total indiscernability of
U and NIP, φ(bn, βn, αmj ) must hold for every (j,m) ∈ I×ω.

Let (cn, γn) = (an
1− 1

n

, αn
1− 1

n

), then :

1. The sequence (cn^γn)n<ω is indiscernible, with same EM-type as I ;
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2. The sequences (γn)n<ω and (bn^βn)n<ω are mutually indiscernible ;
3. The sequences (cn^γn)n<ω and (bn^βn)n<ω are weakly linked ;
4. We have tp(cn δ̂n, bm) = r if and only if n = m.
Consider the indiscernible sequence (cn^γn^bn^βn)n<ω. We may increase it to an

indiscernible sequence (cn^γn^bn^βn)n∈I. Take some n0 ∈ I and set I = I1 + {n0} + I2.
Then by point 3 above, the sequence 〈bn^βn : n ∈ I1 + I2〉 is indiscernible over cn0^γn0 .
Therefore point 4 and the definition of decomposition imply that βn0 does not realize
the limit type of 〈βn : n ∈ I1〉 over {bn^βn : n ∈ I1 + I2}∪ {cn0^γn0}. Adding parameters
to the base, we may assume that it does not realize that limit type over cn0^γn0 .

We then iterate the construction, starting with the sequence (cn^γn^βn)n∈I. Assume
that we can do this |T |+ steps. We have at the end some base set of parameters A, an
A-indiscernible sequence 〈cn (̂αin : i < |T |+) : n < ω〉 (we replaced the index set I by ω
for convenience) such that for each i < |T |+, the sequence (αin)n<ω is totally indiscernible
overA∪{αjn : n < ω, j 6= i} but not indiscernible overA∪{cn, n < ω}∪{αjn : n < ω, j < i}.
By Fodor’s lemma, removing some sequences (αin)n<ω and adding them to A, we may
assume that for every i, (αin)n<ω is not indiscernible over A ∪ {dn, n < ω}. But this
contradicts Proposition 5.1.17.

Therefore this construction must stop after less than |T |+ stages. At the end, we
obtain a decomposition of the sequence we started with. This proves Proposition 5.4.10.

Corollary 5.4.11. Every dp-minimal theory is sharp.

Example 5.4.12 (Non-sharp theory). Let L0 be the language {Rn(x, y) : n < ω} and
construct an L0 structure M0 as follows : the universe of M0 is Q, the ordinary rational
numbers, and for every x, y ∈ M0, M0 |= Rn(x, y) if and only if x < y ∧ |x − y| < n

holds in Q. Let T0 = Th(M0). Non-realized 1-types overM0 satisfying Rn(x, a) for some
n < ω and a ∈ M are in natural bijection with cuts of (Q, <). In addition to these,
there is just one non-realized type p ∈ S1(M0) which satisfies ¬Rn(x, a) for every n < ω
and a ∈ M. This type p is generically stable (and ∅-invariant). One can check easily
that T0 is dp-minimal.

Now consider L1 = L0 ∪ {≺} where ≺ is a new binary relation. We expand M0 to an
L1-structure M1 by making ≺ into a generic order (i.e., every L0-infinite definable set
of M1 is dense co-dense with respect to ≺. See for example [59]). A 1-type over M1 is
determined by its reduct to L0 plus its ≺-cut. Let T1 = Th(M1). Easily, T1 eliminates
imaginaries so there are no generically stable types (because the structure is linearly
ordered). However T1 is not distal : consider I = (ai)i∈I to be a dense ≺-increasing
sequence of points such that ¬Rn(ai, aj) holds for every n < ω and i, j ∈ I. Then this
sequence is indiscernible and not distal. To see this, take two cuts c1 and c2 of I. Then
there is a filling c1 and b filling c2 such that R1(a, b) holds. The generically stable type
p in the reduct is detected by the non-distality of I.

We see however, that there is a natural ultra-imaginary stable sort : the quotient ofM
by the

∨
-definable relation E =

∨
n<ω Rn. And every point is in some sense s-dominated

by its definable closure in that sort. It would be interesting to know if something like
this is always true.
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Théories dp-minimales ordonnées

§6.1 Introduction

One of the latest topics of interest in pure model theory is the study of dependent, or
NIP, theories. The abstract general study was initiated by Shelah in [55], and pursued
by him in [56], [53] and [58]. One of the questions he addresses is the definition of super-
dependent as an analog of superstable for stable theories. Although, as he writes, he has
not completely succeeded, the notion he defines of strong dependence seems promising.
In [53] it is studied in detail and in particular, ranks are defined. Those so-called dp-
ranks are used to prove existence of an indiscernible sub-sequence in any long enough
sequence. Roughly speaking, a theory is strongly dependent if no type can fork infinitely
many times, each forking being independent from the previous one. (Stated this way,
it is naturally a definition of “strong NTP2”). Also defined in that paper are notions of
minimality, corresponding to the ranks being equal to 1 on 1-types. In [45], Onshuus and
Usvyatsov extract from this material the notion of dp-minimality which seems to be the
relevant one. A dp-minimal theory is a theory where there cannot be two independent
witnesses of forking for a 1-type. It is shown in that paper that a stable theory is dp-
minimal if and only if every 1-type has weight 1. In general, unstable, theories, one can
link dp-minimality to burden as defined by H. Adler ([1]).

Dp-minimality on ordered structures can be viewed as a generalization of weak o-
minimality. In that context, there are two main questions to address : what do definable
sets in dimension 1 look like, (i.e. how far is the theory from being o-minimal), and
what theorems about o-minimality go through. J. Goodrick has started to study those
questions in [21], focussing on groups. He proves that definable functions are piecewise
locally monotonous extending a similar result from weak-o-minimality.

In the first section of this paper, we recall the definitions and give equivalent formu-
lations. In the second section, we make a few observations on general linearly ordered
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inp-minimal theories showing in particular that, in dimension 1, forking is controlled by
the ordering. The lack of a cell-decomposition theorem makes it unclear how to generalize
results to higher dimensions.

In section 3, we study dp-minimal groups and show that they are abelian-by-finite-
exponent. The linearly ordered ones are abelian. We prove also that an infinite definable
set in a dp-minimal ordered divisible group has non-empty interior, solving a conjecture
of A. Dolich.

Finally, in section 4, we give examples of dp-minimal theories. We prove that colored
linear orders, orders of finite width and trees are dp-minimal.

I would like to thank John Goodrick and Alf Dolich for introducing me to some of
the questions addressed in this paper. I also wish to thank Elisabeth Bouscaren and the
referee for their thorough reading of the paper and for suggesting various improvements.

§6.2 Preliminaries on dp-minimality

Definition 6.2.1. (Shelah) An independence (or inp-) pattern of length κ is a sequence
of pairs (φα(x, y), kα)α<κ consisting of a formula and a positive integer such that there
exists an array 〈aαi : α < κ, i < λ〉 for some λ ≥ ω such that :

– Rows are kα-inconsistent : for each α < κ, the set {φα(x, aαi ) : i < λ} is kα-
inconsistent,

– paths are consistent : for all η ∈ λκ, the set {φα(x, aαη(α)) : α < κ} is consistent.

Definition 6.2.2. – (Goodrick) A theory is inp-minimal if there is no inp-pattern
of length two in a single free variable x.

– (Onshuus and Usvyatsov) A theory is dp-minimal if it is NIP and inp-minimal.

A theory is NTP2 if there is no inp-pattern of size ω for which the formulas φα(x, y)
in the definition above are all equal to some φ(x, y). It is proven in [14] that a theory
is NTP2 if this holds for formulas φ(x, y) where x is a single variable. As a consequence,
any inp-minimal theory is NTP2.

We now give equivalent definitions (all the ideas are from [53], we merely adapt the
proofs there from the general NIP context to the dp-minimal one).

Definition 6.2.3. Two sequences (ai)i∈I and (bj)j∈J are mutually indiscernible if each
one is indiscernible over the other.

Lemma 6.2.4. Consider the following statements :

1. T is inp-minimal.

2. For any two mutually indiscernible sequences A = (ai : i < ω), B = (bj : j < ω)
and any point c, one of the sequences (tp(ai/c) : i < ω), (tp(bi/c) : i < ω) is
constant.
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3. Same as above, but change the conclusion to : one the sequences A or B stays
indiscernible over c.

4. For any indiscernible sequence A = (ai : i ∈ I) indexed by a dense linear order
I, and any point c, there is i0 in the completion of I such that the two sequences
(tp(ai/c) : i < i0) and (tp(ai/c) : i > i0) are constant.

5. Same as above, but change the conclusion to : the two sequences (ai : i < i0) and
(ai : i > i0) are indiscernible over c.

6. T is dp-minimal.
Then for any theory T , (2), (3), (4), (5), (6) are equivalent and imply (1). If T is NIP,
then they are all equivalent.

Proof. (2) ⇒ (1) : In the definition of independence pattern, one may assume that the
rows are mutually indiscernible. This is enough.

(2) ⇒ (3) : Assume A = 〈ai : i < ω〉, B = 〈bi : i < ω〉 and c are a witness
to ¬(3). Then there are two tuples (i1 < ... < in), (j1 < ... < jn) and a formula
φ(x;y1, ..., yn) such that |= φ(c;ai1 , ..., ain)∧¬φ(c;aj1 , ..., ajn). Take an α < ω greater
than all the ik and the jk. Then, exchanging the ik and jk if necessary, we may assume
that |= φ(c;ai1 , ..., ain)∧ ¬φ(c;an.α, ..., an.α+n−1). Define

A ′ = 〈(ai1 , ..., ain)〉^〈(an.k, ..., an.k+n−1) : k ≥ α〉.

Construct the same way a sequence B ′. Then A ′, B ′, c give a witness of ¬(2).
(3) ⇒ (2) : Obvious.
(3) ⇒ (5) : Let A = 〈ai : i ∈ I〉 be indiscernible and let c be a point. Then assuming

(3) holds, for every i0 in the completion of I, one of the two sequences A<i0 = 〈ai : i < i0〉
and A>i0 = 〈ai : i > i0〉 must be indiscernible over c. Take any such i0 such that both
sequences are infinite, and assume for example that A>i0 is indiscernible over c. Let
j0 = inf{i ≤ i0 : A>i is indiscernible over c }. Then A>j0 is indiscernible over c. If there
are no elements in I smaller than j0, we are done. Otherwise, if A<j0 is not indiscernible
over c, then one can find j1 < j0 such that again A<j1 is not indiscernible over c. By
definition of j0, A>j1 is not indiscernible over c either. This contradicts (3).

(5) ⇒ (4) : Obvious.
(4) ⇒ (2) : Assume ¬(2). Then one can find a witness of it consisting of two indis-

cernible sequences A = 〈ai : i ∈ I〉, B = 〈bi : i ∈ I〉 indexed by a dense linear order I
and a point c.

Now, we can find an i0 in the completion of I such that for any i1 < i0 < i2 in I, there
are i, i ′, i1 < i < i0 < i ′ < i2 such that tp(ai/c) 6= tp(ai ′/c). Find a similar point j0 for
the sequence B. Renumbering the sequences if necessary, we may assume that i0 6= j0.
Then the indiscernible sequence of pairs 〈(ai, bi) : i ∈ I〉 gives a witness of ¬ (4).

(6) ⇒ (2) : Let A, B, c be a witness of ¬(2). Assume for example that there is
φ(x, y) such that |= φ(c, a0) ∧ ¬φ(c, a1). Then set A ′ = 〈(a2k, a2k+1) : k < ω〉 and
φ ′(x;y1, y2) = φ(x;y1) ∧ ¬φ(x;y2). Then by NIP, the set {φ ′(x, ȳ) : ȳ ∈ A ′} is k-
inconsistent for some k. Doing the same construction with B we see that we get an
independence pattern of length 2.
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(5) ⇒ (6) : Statement (5) clearly implies NIP (because IP is always witnessed by
a formula φ(x, y) with x a single variable). We have already seen that it implies inp-
minimality.

Standard examples of dp-minimal theories include :
– O-minimal or weakly o-minimal theories (recall that a theory is weakly-o-minimal

if every definable set in dimension 1 is a finite union of convex sets),
– C-minimal theories,
– Th(Z,+,≤),
– The theory of the p-adics.

We refer the reader to [18] for more details and some proofs.
More examples are given in section 4 of this paper.

§6.3 Inp-minimal ordered structures

Little study has been made yet on general dp-minimal ordered structures. We believe
however that there are results to be found already at that general level. In fact, we prove
here a few lemmas that turn out to be useful for the study of groups.

We show that, in some sense, forking in dimension 1 is controlled by the order.

We consider (M,<) an inp-minimal linearly ordered structure with no first nor last
element. Let C be a monster model of Th(M).

Lemma 6.3.1. Let X = Xā be a definable subset of C, cofinal in C. Then X is non-forking
(over ∅).

Proof. If Xā divides over ∅, there exists an indiscernible sequence (āi)i<ω, ā0 = ā,
witnessing this. Every Xāi is cofinal in C. Now pick by induction intervals Ik, k < ω,
with Ik < Ik+1 containing a point in each Xāi . We obtain an inp-pattern of length 2 by
considering x ∈ Xāi and x ∈ Ik.

If Xā forks over ∅, it implies a disjunction of formulas that divide, but one of these
formulas must be cofinal : a contradiction.

A few variations are possible here. For example, we assumed that X was cofinal in
the whole structure C, but the proof also works if X is cofinal in a ∅-definable set Y, or
even contains an ∅-definable point in its closure. This leads to the following results.

For X a definable set, let Conv(X) denote the convex hull of X. It is again a definable
set.

Porism 6.3.2. Let X be a definable set of C (in dimension 1). Assume Conv(X) is A
definable. Then X is non-forking over A.

Porism 6.3.3. Let M ≺ N and let p be a complete 1-type over N. If the cut of p over
N is of the form +∞, −∞, a+ or a− for a ∈M, then p is non-forking over M.
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Proposition 6.3.5 generalizes this.

Lemma 6.3.4. Let X be an A-definable subset of C. Assume that X divides over some
model M, then :

1. We cannot find (ai)i<ω in M and points (xi)i<ω in X(C) such that a0 < x0 < a1 <
x1 < a2 < ....

2. The set X can be written as a finite disjoint union X =
⋃
Xi where the Xi are

definable over M ∪A, and each Conv(Xi) contains no M-point.

Proof. Easy ; (2) follows from (1).

Proposition 6.3.5. Let A ⊂ M, with M, |A|+-saturated, and let p ∈ S1(M). The
following are equivalent :

1. The type p forks over A,
2. There exist a, b ∈ M such that p ` a < x < b, and a and b have the same type

over A,
3. There exist a, b ∈M such that p ` a < x < b, and the interval Ia,b = {x : a < x <
b} divides over A.

Proof. (3) ⇒ (1) is trivial.

For (2) ⇒ (3), it is enough to show that if a ≡A b, then Ia,b divides over A. Let σ
be an A-automorphism sending a to b. Then the tuple (b = σ(a), σ(b)) has the same
type as (a, b), and a < b < σ(b). By iterating, we obtain a sequence a1 < a2 < ... such
that (ak, ak+1) has the same type over A as (a, b). Now the sets Ia2k,a2k+1 are pairwise
disjoint and all have the same type over A. Therefore each of them divides over M.

We now prove (1) ⇒ (2)
Assume that (2) fails for p. Let Xā be an M-definable set such that p ` Xā. Let

ā0 = a, ā1, ā2, ... be an A-indiscernible sequence. Note that the cut of p is invariant
under all A-automorphisms. Therefore each of the Xāi contains a type with the same
cut over M as p. Now do a similar reasoning as in Lemma 6.3.1.

Corollary 6.3.6. Forking equals dividing : for any A ⊂ B, any p ∈ S(B), p forks over
A if and only if p divides over A.

Proof. By results of Chernikov and Kaplan ([15]), it is enough to prove that no type
forks over its base. And it suffices to prove this for one-types (because of the general
fact that if tp(a/B) does not fork over A and tp(b/Ba) does not fork over Aa, then
tp(a, b/B) does not fork over A).

Assume p ∈ S1(A) forks over A. Then by the previous proposition, p implies a finite
disjunction of intervals

⋃
i<n(ai, bi) with ai ≡A bi. Assume n is minimal. Without loss,

assume a0 < a1 < .... Now, as a0 ≡A b0 we can find points a ′i, b
′
i, with (ai, bi) ≡A (a ′i, b

′
i)

and a ′0 = b0.
Then p proves

⋃
i<n(a

′
i, b
′
i). But the interval (a0, b0) is disjoint from that union, so

p proves
⋃
0<i<n(ai, bi), contradicting the minimality of n.
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Note that this does not hold without the assumption that the structure is linearly
ordered. In fact the standard example of the circle with a predicate C(x, y, z) saying
that y is between x and z (see for example [69], 2.2.4.) is dp-minimal.

Lemma 6.3.7. Let E be a definable equivalence relation onM, we consider the imaginary
sort S = M/E. Then there is on S a definable equivalence relation ∼ with finite classes
such that there is a definable linear order on S/ ∼.

Proof. Define a partial order on S by a/E ≺ b/E if inf({x : xEa}) < inf({x : xEb}). Let
∼ be the equivalence relation on S defined by x ∼ y if ¬(x ≺ y∨ y ≺ x). Then ≺ defines
a linear order on S/ ∼. The proof that ∼ has finite classes is another variation on the
proof of 6.3.1.

From now until the end of this section, we also assume NIP.
Recall that in an NIP theory, if a type p splits over a modelM, then it forks overM.

In other words, if a, a ′ have the same type over M, then the formula φ(x, a)4φ(x, a ′)
forks overM. (Note that the converse : “if p forks overM, then it splits overM” is true
in any theory.)

Lemma 6.3.8. (NIP). Let p ∈ S1(C) be a type inducing an M-definable cut, then p is
definable over M.

Proof. We know that p does not fork over M, so by NIP, p does not split over M.
Let M1 be an |M|+-saturated model containing M. Then the restriction of p to M1

has a uniqueM-invariant extension. Therefore by NIP, it has a unique global extension
that does not fork over M. This in turn implies by 6.3.5 that p|M1 has a unique global
extension inducing the same cut as p, in particular it has a unique heir.

Therefore p is definable, and being M-invariant, p is definable over M.

The next lemma states that members of a uniformly definable family of sets define
only finitely many “germs at +∞”.

Lemma 6.3.9. (NIP). Let φ(x, y) be a formula with parameters in some model M0, x
a single variable. Then there are b1, ..., bn such that for every b, there is α ∈ C and k
such that the sets φ(x, b)∧ x > α and φ(x, bk)∧ x > α are equal.

Proof. Let E be the equivalence relation defined on tuples by bEb ′ iff (∃α)(x > α →
(φ(x, b) ↔ φ(x, b ′))). Let b, b ′ having the same type over M0. By NIP, the formula
φ(x, b)4φ(x, b ′) forks over M0. By Lemma 6.3.1, this formula cannot be cofinal, so b
and b ′ are E-equivalent. This proves that E has finitely many classes.

If the order is dense, then this analysis can be done also locally around a point a
with the same proof :

Lemma 6.3.10. (NIP + dense order). Let φ(x, y) be a formula with parameters in
some model M0, x a single variable. Then there exists n such that : For any point a,
there are b1, ..., bn such that for all b, there is α < a < β and k such that the sets
φ(x, b)∧ α < x < β and φ(x, bk)∧ α < x < β are equal.
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§6.4 Dp-minimal groups

We study inp-minimal groups. Note that by an example of Simonetta, ([64]), not
all such groups are abelian-by-finite. It is proven in [39] that C-minimal groups are
abelian-by-torsion. We generalize the statement here to all inp-minimal theories.

Proposition 6.4.1. Let G be an inp-minimal group. Then there is a definable normal
abelian subgroup H such that G/H is of finite exponent.

Proof. Let A,B be two definable subgroups of G. If a ∈ A and b ∈ B, then there is
n > 0 such that either an ∈ B or bn ∈ A. To see this, assume an /∈ B and bn /∈ A for all
n > 0. Then, for n 6= m, the cosets amB and anB are distinct, as are A.bm and A.bn.
Now we obtain an independence pattern of length two by considering the sequences of
formulas φk(x) = ‘‘x ∈ akB” and ψk(x) = ‘‘x ∈ A.bk”.

For x ∈ G, let C(x) be the centralizer of x. By compactness, there is k such that for
x, y ∈ G, for some k ′ ≤ k, either xk ′ ∈ C(y) or yk ′ ∈ C(x). In particular, letting n = k!,
xn and yn commute.

Let H = C(C(Gn)), the bicommutant of the nth powers of G. It is an abelian
definable subgroup of G and for all x ∈ G, xn ∈ H. Finally, if H contains all n powers
then it is also the case of all conjugates of H, so replacing H by the intersection of its
conjugates, we obtain what we want.

Now we work with ordered groups.
Note that in such a group, the convex hull of a subgroup is again a subgroup.

Lemma 6.4.2. Let G be an inp-minimal ordered group. Let H be a definable subgroup
of G and let C be the convex hull of H. Then H is of finite index in C.

Proof. We may assume that H and C are ∅-definable. So without loss, assume C = G.
If H is not of finite index, there is a coset of H that forks over ∅. All cosets of H are

cofinal in G. This contradicts Lemma 6.3.1.

Proposition 6.4.3. Let G be an inp-minimal ordered group, then G is abelian.

Proof. Note that if a, b ∈ G are such that an = bn, then a = b, for if for example
a < b, then an < an−1b < an−2b2 < ... < bn.

For x ∈ G, let C(x) be the centralizer of x. We let also D(x) be the convex hull of
C(x). By 6.4.2, C(x) is of finite index in D(x). Now take x ∈ G and y ∈ D(x). Then xy
is in D(x), so there is n such that (xy)n ∈ C(x). Therefore (yx)n = x−1(xy)nx = (xy)n.
So xy = yx and y ∈ C(x). Thus C(x) = D(x) is convex.

Now if 0 < x < y ∈ G, then C(y) is a convex subgroup containing y, so it contains
x, and x and y commute.

This answers a question of Goodrick ([21] 1.1).
From now on, we will write groups additively.
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Now, we assume NIP, so G is a dp-minimal ordered group. We denote by G+ the set
of positive elements of G.

Let φ(x) be a definable set (with parameters). For α ∈ G, define Xα = {g ∈ G+ :
(∀x > α)(φ(x)↔ φ(x+g))}. Let Hα be equal to Xα ∪−Xα ∪ {0}. Then Hα is a definable
subgroup of G and if α < β, Hα is contained in Hβ. Finally, let H be the union of the
Hα for α ∈ G, it is the subgroup of eventual periods of φ(x).

Now apply Lemma 6.3.9 to the formula ψ(x, y) = φ(x−y). It gives n points b1, ..., bn
such that for all b ∈ G, there is k such that b−bk is in H. This implies that H has finite
index in G.

If furthermore G is densely ordered, then we can do the same analysis locally. This
yields a proof of a conjecture of A. Dolich : in a dp-minimal divisible ordered group, any
infinite set has non empty interior. As a consequence, a dp-minimal divisible definably
complete ordered group is o-minimal.

We will make use of two lemmas from [21] that we recall here for convenience.

Lemma 6.4.4 ([21], 3.3). Let G be a densely ordered inp-minimal group, then any
infinite definable set is dense in some non trivial interval.

In the following lemma, G stands for the completion of G. By a definable function
f into G, we mean a function of the form a 7→ inf φ(a;G) where φ(x;y) is a definable
function. So one can view G as a collection of imaginary sorts (in which case it naturally
contains only definable cuts of G), or understand f : G→ G simply as a notation.

Lemma 6.4.5 (special case of [21], 3.19). Let G be a densely ordered group, f : G→ G

be a definable partial function such that f(x) > 0 for all x in the domain of f. Then for
every interval I, there is a sub-interval J ⊆ I and ε > 0 such that for x ∈ J ∩ dom(f),
|f(x)| ≥ ε.

Theorem 6.4.6. Let G be a divisible ordered dp-minimal group. Let X be an infinite
definable set, then X has non-empty interior.

Proof. As before, Ia,b denotes the open interval a < x < b, and τb is the translation by
−b.

Let φ(x) be a formula defining X.
By Lemma 6.4.4, there is an interval I such that X is dense in I. By Lemma 6.3.10

applied to ψ(x;y) = φ(y + x) at 0, there are b1, ..., bn ∈ M such that for all b ∈ M,
there is α > 0 and k such that |x| < α→ (φ(b+ x)↔ φ(bk + x)).

Taking a smaller I and X, if necessary, assume that for all b ∈ I ∩ X, we may take
k = 1.

Define f : x 7→ sup{y : I−y,y ∩ τb1X = I−y,y ∩ τxX}, it is a function into M, the
completion of M. By Lemma 6.4.5, there is J ⊂ I such that, for all b ∈ J, we have
|f(b)| ≥ ε.

Fix ν < ε
2 and b ∈ J such that Ib−2ε,b+2ε ⊆ J (taking smaller ε if necessary).

Set L = Ib−ν,b+ν and Z = L ∩ X. Assume for simplicity b = 0. Easily, if g1, g2 ∈ Z,
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then g1 + g2 ∈ Z ∪ (G \ L) and −g1 ∈ Z (because the two points 0 and g1 in Z have
isomorphic neighborhoods of size ε). So Z is a group interval : it is the intersection with
Ib−ν,b+ν of some subgroup H of G. Now if x, y ∈ L satisfy that there is α > 0 such that
I−α,α∩τxX = I−α,α∩τyX, then x ≡ y modulo H. It follows that points of L lie in finitely
many cosets modulo H. Assume Z is not convex, and take g ∈ L \ Z. Then for each
n ∈ N, the point g/n is in L and the points g/n define infinitely many different cosets ;
a contradiction.

Therefore Z is convex and X contains a non trivial interval.

Corollary 6.4.7. Let G be a dp-minimal ordered group. Assume G is divisible and
definably complete, then G is o-minimal.

Proof. Let X be a definable subset of G. By 6.4.6, the (topological) border Y of X is
finite.

Let a ∈ X, then the largest convex set in X containing a is definable. By definable
completeness, it is an interval and its end-points must lie in Y. As Y is finite, X is a finite
union of (closed or open) intervals.

§6.5 Examples of dp-minimal theories

We give examples of dp-minimal theories, namely : linear orders, order of finite width
and trees.

We first look at linear orders. We consider structures of the form (M,≤, Ci, Rj) where
≤ defines a linear order on M, the Ci are unary predicates (“colors”), the Rj are binary
monotone relations (that is x1 ≤ xRjy ≤ y1 implies x1Rjy1).

The following is a (weak) generalization of Rubin’s theorem on linear orders (see
[51], or [50]).

Proposition 6.5.1. Let (M,≤, Ci, Rj) be a colored linear order with monotone relations.
Assume that all ∅-definable sets in dimension 1 are coded by a color and all monotone ∅-
definable binary relations are represented by one of the Rj. Then the structure eliminates
quantifiers.

Proof. The result is obvious ifM is finite, so we may assume (for convenience) that this
is not the case.

We prove the theorem by back-and-forth. Assume that M is ω-saturated and take
two tuples x̄ = (x1, ..., xn) and ȳ = (y1, ..., yn) from M having the same quantifier free
type.

Take x0 ∈ M ; we look for a corresponding y0. Notice that ≤ is itself a monotone
relation, a finite boolean combinations of colors is again a color, a positive combination of
monotone relations is again a monotone relation, and if xRy is monotone φ(x, y) = ¬yRx

is monotone. By compactness, it is enough to find a y0 satisfying some finite part of the
quantifier-free type of x0 ; that is, we are given



120 CHAPITRE 6. THÉORIES DP-MINIMALES ORDONNÉES

– One color C such that M |= C(x0),
– For each k, monotone relations Rk and Sk such that M |= x0Rkxk ∧ xkSkx0.

Define Uk(x) = {t : tRkxk} and Vk(x) = {t : xSkt}. The Uk(x) are initial segments of M
and the Vk(x) final segments. For each k, k ′, either Uk(xk) ⊆ Uk ′(xk ′) or Uk ′(xk ′) ⊆
Uk(xk). Assume for example Uk(xk) ⊆ Uk ′(xk ′), then this translates into a relation
φ(xk, xk ′), where φ(x, y) = (∀t)(tRkx → tRk ′y). Now φ(x, y) is a monotone relation
itself. The assumptions on x̄ and ȳ therefore imply that also Uk(yk) ⊆ Uk ′(yk ′).

The same remarks hold for the final segments Vk.
Now, we may assume that U1(x1) is minimal in the Uk(xk) and Vl(xl) is minimal in

the Vk(xk). We only need to find a point y0 satisfying C(x) in the intersection U1(y1)∩
Vl(yl).

Let ψ(x, y) be the relation (∃t)(C(t)∧ tR1y∧xRlt). This is a monotone relation. As
it holds for (x0, xl), it must also hold for (y0, yl), and we are done.

The following result was suggested, in the case of pure linear orders, by John Goo-
drick.

Proposition 6.5.2. Let M = (M,≤, Ci, Rj) be a linearly ordered infinite structure with
colors and monotone relations. Then Th(M) is dp-minimal.

Proof. By the previous result, we may assume that T = Th(M) eliminates quantifiers.
Let (xi)i∈I, (yi)i∈I be mutually indiscernible sequences of n-tuples, and let α ∈M be a
point. We want to show that one of the following holds :

– For all i, i ′ ∈ I, xi and xi ′ have the same type over α, or
– for all i, i ′ ∈ I, yi and yi ′ have the same type over α.

Assume that I is dense without end points.
By quantifier elimination, we may assume that n = 1, that is the xi and yi are

points of M. Without loss, the (xi) and (yi) form increasing sequences. Assume there
exists i < j ∈ I and R a monotone definable relation such that M |= ¬αRxi ∧ αRxj. By
monotonicity of R, there is a point iR of the completion of I such that i < iR → ¬αRxi
and i > iR → αRxi.

Assume there is also a monotone relation S and an iS such that i < iS → ¬αSyi and
i > iS → αSyi.

For points x, y define I(x, y) as the set of t ∈M such that M |= ¬tRx∧ tRy. This is
an interval of M. Furthermore, if i1 < i2 < i3 < i4 are in I, then the intervals I(xi1 , xi2)
and I(xi3 , xi4) are disjoint. Define J(x, y) the same way using S instead of R.

Take i0 < iR < i1 < i2 < ... and j0 < iS < j1 < j2 < .... For k < ω, define
Ik = I(xi2k , xi2k+1) and Jk = J(yj2k , yj2k+1). The two sequences (Ik) and (Jk) are mutually
indiscernible sequences of disjoint intervals. Furthermore, we have α ∈ I0∩J0. By mutual
indiscernibility, Ii ∩ Jj 6= ∅ for all indices i and j, which is impossible.

We treated the case when α was to the left of the increasing relations R and S. The
other cases are similar.

An ordered set (M,≤) is of finite width, if there is n such that M has no antichain
of size n.
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Corollary 6.5.3. Let M = (M,≤) be an infinite ordered set of finite width, then Th(M)
is dp-minimal.

Proof. We can define such a structure in a linear order with monotone relations : see
[52]. More precisely, there exists a structure P = (P,≺, Rj) in which ≺ is a linear order
and the Rj are monotone relations, and there is a definable relation O(x, y) such that
the structure (P,O) is isomorphic to (M,≤).

The result therefore follows from the previous one.

We now move to trees. A tree is a structure (T,≤) such that ≤ defines a partial order
on T , and for all x ∈ T , the set of points smaller than x is linearly ordered by ≤. We will
also assume that given x, y ∈ T , the set of points smaller than x and y has a maximal
element x ∧ y (and set x ∧ x = x). This is not actually a restriction, since we could
always work in an imaginary sort to ensure this.

Given a, b ∈ T , we define the open ball B(a;b) of center a containing b as the set
{x ∈ T : x∧ b > a}, and the closed ball of center a as {x ∈ T : x ≥ a}.

Notice that two balls are either disjoint or one is included in the other.

Lemma 6.5.4. Let (T,≤) be a tree, a ∈ T , and let D denote the closed ball of center a.
Let x̄ = (x1, ..., xn) ∈ (T \ D)n and ȳ = (y1, ..., ym) ∈ Dm. Then tp(x̄/a) ∪ tp(ȳ/a) `
tp(x̄ ∪ ȳ/a).

Proof. A straightforward back-and-forth, noticing that tp(x̄/a)∪tp(ȳ/a) ` tpqf(x̄∪ȳ/a)
(quantifier-free type).

We now work in the language {≤,∧}, so a sub-structure is a subset closed under ∧.

Proposition 6.5.5. Let A = (a0, ..., an), B = (b0, ..., bn) be two sub-structures from T .
Assume :

1. A and B are isomorphic as sub-structures,

2. for all i, j such that ai ≥ aj, tp(ai, aj) = tp(bi, bj).
Then tp(A) = tp(B).

Proof. We do a back-and-forth. Assume T is ω-saturated and A, B satisfy the hypothe-
sis. We want to add a point a to A. We may assume that A ∪ {a} forms a sub-structure
(otherwise, if some ai ∧ a is not in A ∪ {a}, add first this element).

We consider different cases :
1. The point a is below all points of A. Without loss a0 is the minimal element of A

(which exists because A is closed under ∧). Then find a b such that tp(a0, a) = tp(b0, b).
For any index i, we have : tp(ai, a0) = tp(bi, b0) and tp(a, a0) = tp(b, b0). By Lemma
6.5.4, tp(ai, a) = tp(bi, b).

2. The point a is greater than some point in A, say a1, and the open ball a := B(a1;a)
contains no point of A.

Let A be the set of all open balls B(a1;ai) for ai > a1. Let n be the number of
balls in A that have the same type p as a. Then tp(a1) proves that there are at least
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n + 1 open balls of type p of center a1. Therefore, tp(b1) proves the same thing. We
can therefore find an open ball b of center b1 of type p that contains no point from B.
That ball contains a point b such that tp(b1, b) = tp(a1, a). Now, if ai is smaller than
a1, we have tp(ai, a1) = tp(bi, b1) and tp(a1, a) = tp(b1, b), therefore by Lemma 6.5.4,
tp(a, ai) = tp(b, bi).

The fact that we have taken b in a new open ball of center b1 ensures that B ∪ {b}

is again a sub-structure and that the two structures A∪ {a} and B∪ {b} are isomorphic.
3. The point a is between two points of A, say a0 and a1 (a0 < a1), and there are

no points of A between a0 and a1.
Find a point b such that tp(a0, a1, a) = tp(b0, b1, b). Then if i is such that ai > a,

we have ai ≥ a1 and again by Lemma 6.5.4, tp(ai, a) = tp(bi, b). And same if ai < a.

Corollary 6.5.6. Let A ⊂ T be any subset. Then
⋃

(a,b,c)∈A3 tp(a, b, c) ` tp(A).

Proof. Let A0 be the substructure generated by A. By the previous theorem the follo-
wing set of formulas implies the type of A0 :

– the quantifier-free type of A0,
– the set of 2-types tp(a, b) for (a, b) ∈ A20, a ≤ b.

We need to show that those formulas are implied by the set of 3-types of elements of A.
We may assume A is finite.

First, the knowledge of all the 3-types is enough to construct the structure A0. To
see this, start for example with a point a ∈ A maximal. Knowing the 3-types, one knows
in what order the b ∧ a, b ∈ A are placed. Doing this for all such a, enables one to
reconstruct the tree A0.

Now take m1 = a∧ b, m2 = c∧ d for a, b, c, d ∈ A such that m1 ≤ m2. The points
m1 and m2 are both definable using only 3 of the points a, b, c, d, say a, b, c. Then
tp(a, b, c) ` tp(m1,m2).

The previous results are also true, with the same proofs, for colored trees.

It is proven in [46] that theories of trees are NIP. We give a more precise result.

Proposition 6.5.7. Let T = (T,≤, Ci) be a colored tree. Then Th(T) is dp-minimal.

Proof. We will use criterion (3) of 6.2.4 : if (ai)i∈I and (bj)j∈J are mutually indiscernible
sequences and α ∈ T is a point, then one of the sequences (ai) and (bj) is indiscernible
over α.

We will always assume that the index sets (I and J) are dense linear orders without
end points.

1) We start by showing the result assuming the ai and bj are points (not tuples).
We classify the indiscernible sequence (ai) in 4 classes depending on its quantifier-free

type.

I The sequence (ai) is monotonous (increasing or decreasing).
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II The ai are pairwise incomparable and ai ∧ aj is constant equal to some point β.

If (ai) is in none of those two cases, consider indices i < j < k. Note that it is not
possible that ai ∧ aj < ai ∧ ak, so there are two cases left to consider :

III ai ∧ ak = ai ∧ aj. Then let a ′i = ai ∧ aj (this does not depend on j, j > i). The a ′i
form an increasing indiscernible sequence.

IV ai ∧ ak < ai ∧ aj. Then a ′j = ai ∧ aj is independent of the choice of i (i < j) and
(a ′j) is a decreasing indiscernible sequence.

Assume (ai) lands in case I. Consider the set {x : x < α}. If that set contains
a non-trivial subset of the sequence (ai), we say that α cuts the sequence. If this is
not the case, then the sequence (ai) stays indiscernible over α. To see this, assume for
example that (ai) is increasing and that α is greater than all the ai. Take two sets of
indices i1 < ... < in and j1 < ... < jn and a k ∈ I greater than all those indices. Then
tp(ai1 , ..., ain/ak) = tp(aj1 , ..., ajn/ak). Therefore by Lemma 6.5.4, tp(ai1 , ..., ain/α) =
tp(aj1 , ..., ajn/α).

In case II, note that if (ai) is not α-indiscernible, then there is i ∈ I such that α lies
in the open ball B(β;ai) (we will also say that α cuts the sequence (ai)). This follows
easily from Proposition 6.5.5.

In the last two cases, if (ai) is α-indiscernible, then it is also the case for (a ′i).
Conversely, if (a ′i) is α-indiscernible, then α does not cut the sequence (a ′i). From 6.5.5,
it follows easily that (ai) is also α-indiscernible. We can therefore replace the sequence
(ai) by (a ′i) which belongs to case I.

Going back to the initial data, we may assume that (ai) and (bj) are in case I or
II. It is then straightforward to check that α cannot cut both sequences. For example,
assume (ai) is increasing and (bj) is in case II. Then define β as bi ∧ bj (any i, j). If
α cuts (bj), then α > β. But (ai) is β-indiscernible. So β does not cut (ai). The only
possibility for α to cut (ai) is that β is smaller that all the ai and the ai lie in the same
open ball of center β as α. But then the ai lie in the same open ball of center β as one
of the bj. This contradicts mutual indiscernability.

2) Reduction to the previous case. We show that if (ai)i∈I is an indiscernible sequence
of n-tuples and α ∈ T such that (ai) is not α-indiscernible, then there is an indiscernible
sequence (di)i∈I of points of T in dcl((ai)) such that (di) is not α-indiscernible.

First, by 6.5.6, we may assume that n = 2. Write ai = (bi, ci) and definemi = bi∧ci.
We again study different cases :

1. The mi are all equal to some m.
As (ai) is not α-indiscernible, necessarily, α > m and the ball B(m;α) contains one bi
(resp. ci). Then take di = bi (resp. di = ci) for all i.

2. The mi are linearly ordered by < and no bi nor ci is greater than all the mi.
Then the balls B(mi;bi) and B(mi; ci) contain no other point from (bi, ci,mi)i∈I. Then,
α must cut the sequence (mi) and one can take di = mi for all i.

3. The mi are linearly ordered by < and, say, each bi is greater than all the mi.
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Then each ball B(mi;ai) contains no other point from (bi, ci,mi)i∈I. If α cuts the se-
quence mi, than again one can take di = mi. Otherwise, take a point γ larger than all
the mi but smaller than all the di. Applying 6.5.4 with a there replaced by γ, we see
that (bi) cannot be α-indiscernible. Then take di = bi for all i.

4. The mi are pairwise incomparable.
The the sequence (mi) lies in case II, III or IV. The open balls B(mi;bi) and B(mi; ci)
cannot contain any other point from (bi, ci,mi)i∈I. Considering the different cases, one
sees easily that taking di = mi will work.

This finishes the proof.
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