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CHAPTER 1

INTRODUCTION

This text is an introduction to the study of NIP (or dependent) theories.
It is meant to serve two purposes. The first is to present various aspects of
NIP theories and give the reader sufficient background material to under-
stand the current research in the area. The second is to advertise the use
of honest definitions, in particular in establishing basic results, such as the
so-called shrinking of indiscernibles. Thus although we claim no originality
for the theorems presented here, a few proofs are new, mainly in chapters
3, 4 and 9.

We have tried to give a horizontal exposition, covering different, some-
times unrelated topics at the expense of exhaustivity. Thus no particular
subject is dealt with in depth and mainly low-level results are included. The
choices made reflect our own interests and are certainly very subjective. In
particular, we say very little about algebraic structures and concentrate on
combinatorial aspects. Overall, the style is concise, but hopefully all details
of the proofs are given. A small number of facts are left to the reader as
exercises, but only once or twice are they used later in the text.

The material included is based on the work of a number of model theo-
rists. Credits are usually not given alongside each theorem, but are recorded
at the end of the chapter along with pointers to additional topics.

We have included almost no preliminaries about model theory, thus we
assume some familiarity with basic notions, in particular concerning com-
pactness, indiscernible sequences and ordinary imaginaries. Those prereq-
uisites are exposed in various books such as that of Poizat [95], Marker
[81], Hodges [56] or the recent book [115] by Tent and Ziegler. The mate-
rial covered in a one-semester course on model theory should suffice. No
familiarity with stability theory is required.

1.0.0.1. History of the subject. In his early works on classification the-
ory, Shelah structured the landscape of first order theories by drawing
dividing lines defined by the presence or absence of different combinatorial
configurations. The most important one is that of stability. In fact, for
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8 1. Introduction

some twenty years, pure model theory did not venture much outside of sta-
ble theories. Shelah discovered the independence property when studying
the possible behaviors for the function relating the size of a subset to the
number of types over it. The class of theories lacking the independence
property, or NIP theories, was studied very little in the early days. How-
ever some basic results were established, mainly by Shelah and Poizat (see
[95, Chapter 12] for an account of those works).

As the years passed, various structures were identified as being NIP: most
notably, Henselian valued fields of characteristic 0 with NIP residue field
and ordered group (Delon [32]), the field Qp of p-adics (see Bélair [15])
and ordered abelian groups (Gurevich and Schmitt [50]). However, NIP
theories were not studied per se. In [91], Pillay and Steinhorn, building
on work of van den Dries, defined o-minimal theories as a framework for
tame geometry. This has been a very active area of research ever since.
Although it was noticed from the start that o-minimal theories lacked the
independence property, very little use of this fact was made until recently.
Nevertheless, o-minimal theories provide a wealth of interesting examples
of NIP structures.

In the years since 2000, the interest in NIP theories has been rekindled
and the subject has been expanding ever since. First Shelah initiated a
systematic study which lead to a series of papers: [107], [109], [102], [111],
[110]. Amongst other things, he established the basic properties of forking,
generalized a theorem of Baisalov and Poizat on externally definable sets,
defined some subclasses, so called “strongly dependent” and “strongly+

dependent”. This work culminates in [110] with the proof that NIP theories
have few types up to automorphism (over saturated models). Parallel to
this work, Hrushovski, Peterzil and Pillay developed the theory of measures
(a notion introduced by Keisler in [71]) in order to solve Pillay’s conjecture
on definably compact groups in o-minimal theories.

A third line of research starts with the work of Hrushovski, Haskell and
Macpherson on algebraically closed valued fields (ACVF) and in particular
on metastability ([52]). This lead to Hrushovski and Loeser giving a model
theoretic construction of Berkovich spaces in rigid geometry as spaces of
stably-dominated types, which made an explicit use of the NIP property
along with the work on metastability.

Motivated by those results, a number of model theorists became inter-
ested in the subject and investigated NIP theories in various directions. We
will present some in the course of this text and mention others at the end
of each chapter. It is not completely clear at this point how the subject
will develop and what topics will turn out to be the most fruitful.

Let us end this general introduction by mentioning where NIP sits with
respect to other classes of theories. First, all stable theories are NIP, as
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are o-minimal and C-minimal theories. Another well-studied extension of
stability is that of simple theories (see Wagner [122]), however it is in a
sense orthogonal to NIP: a theory is both simple and NIP if and only if it
is stable. Simple and NIP theories both belong to the wider class of NTP2

theories (defined in Chapter 5).

1.0.0.2. Organization of this text. Aside from the introduction and ap-
pendices, the text is divided into 8 chapters, each one focussing on a specific
topic. In Chapter 2, we present the classical theory as it was established by
Shelah and Poizat. We first work formula-by-formula giving some equiv-
alent definitions of NIP. We then move to invariant types and Morley se-
quences. Starting then, and throughout most of the text, we assume that
our ambient theory T is NIP. That assumption will be dropped only for
the first three sections of Chapter 5. Many results could be established for
an NIP formula (or type) inside a (possibly) independent theory, but for
the sake of clarity we will not work at this level of generality.

The end of Chapter 2 is a collection of appendices on different subjects.
We study dense trees in some detail as one can obtain from them a lot of
intuition on NIP theories, we recall basic facts on stable theories, discuss the
strict order property and give the original characterization of NIP theories
by counting types.

In Chapter 3 we define honest definitions. They serve as a substitute
to definability of types in NIP theories. We use them to prove Shelah’s
theorem on expanding a model by externally definable sets and the very
important results about shrinking of indiscernibles.

Chapter 4 deals with dp-rank and strong dependence. In the literature,
one can find up to three different definitions of dp-rank, based on how
one handles the problem of almost finite, non-finite rank. None of them
is perfect, but we have decided to use the same convention as in Adler’s
paper [2] on burden, although we refrain from duplicating limit cardinals
into κ− and κ. Instead, we define when dp-rk(p) < κ, and it may happen
that the dp-rank of a type is not defined (for example it can be < ℵ0 but
greater than all integers).

In Chapter 5, we study forking and dividing. The main results are
bdd(A)-invariance of non-forking extensions (Hrushovski and Pillay [61])
and equality of forking and dividing over models (Chernikov and Kaplan
[25]). The right context for this latter result is NTP2 theories, but here
again we assume NIP which slightly simplifies some proofs.

The next three chapters have a different flavor. In Chapter 6, we change
the framework to that of finite combinatorics. We are concerned with
families of finite VC-dimension over finite sets. The finite and infinite ap-
proaches come together to prove uniformity of honest definitions. In Chap-
ter 7, the two frameworks are combined with the introduction of Keisler
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measures. The most important class of examples of such measures is that of
translation-invariant measures on definable groups. Those are investigated
in Chapter 8. We also discuss there connected components of groups.

The last chapter addresses the problem of characterizing NIP structures
which are in some sense completely unstable. They are called distal struc-
tures.

Finally, two appendices are included. The first one gives some algebraic
examples and in particular records some facts about valued fields. Most of
the proofs are omitted, but we explain how to show that those structures are
NIP. The other appendix is very short and collects results about probability
theory for reference in the text.

Acknowledgments Part of the material presented here was exposed
in 2011 during a series of lectures in Paris. I would like to thank all the
participants of this seminar: Élisabeth Bouscaren, Zoé Chatzidakis, Pablo
Cubides Kovacsics, Françoise Delon, Martin Hils, Samaria Montenegro,
Françoise Point, Silvain Rideau and Patrick Simonetta. I have received
very helpful advice from a number of people: David Bradley-Williams,
Rafel Farré, Martin Hils, Udi Hrushovski, Itay Kaplan, Dugald Macpher-
son, Dave Marker and the two anonymous referees. Special thanks to Alex
Kruckman for his extensive list of comments and corrections.

1.1. Preliminaries

We work with a complete, usually one-sorted, theory T in a language
L. We have a monster model U which is κ̄-saturated and homogeneous. A
subset A ⊂ U is small if it is of size less than κ̄. For A ⊆ U , L(A) denotes
the set of formulas with parameters in A. In particular, φ(x) ∈ L means
that φ is without parameters.

We do not usually distinguish between points and tuples. If a is a tuple
of size |a|, we will write a ∈ A to mean a ∈ A|a|. Similarly, letters such as
x, y, z, . . . are used to denote tuples of variables.

We often work with partitioned formulas, namely formulas φ(x; y)
with a separation of variables into object and parameters variables. The
intended partition is indicated with a semicolon.

If A ⊂ U is any set, and φ(x) is a formula, then φ(A) = {a ∈ A|x| : U |=
φ(a)}. The set of types over A in the variable x is denoted by Sx(A). We
will often drop the x. If p ∈ Sx(A), we might write px or p(x) to emphasize
that p is a type in the variable x. We say that a type p concentrates on a
definable set φ(x) if p ` φ(x). If A ⊆ B and p is a type over B, we denote
by p � A, or by p|A the restriction of p to A.
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We will often write either |= φ(a) or a |= φ(x) to mean U |= φ(a), and
similarly for types.

We use the notation φ0 to mean ¬φ and φ1 to mean φ. If φ(x; y) is a
partitioned formula, a φ-type overA is a maximal consistent set of formulas
of the form φ(x; a)ε, for a ∈ A and ε ∈ {0, 1}. The set of φ-types over A is
denoted by Sφ(A).

A global type, is a type over U .
The group of automorphisms of U is denoted by Aut(U), whereas

Aut(U/A) refers to the subgroup of Aut(U) of automorphisms fixing A
pointwise.

1.1.1. Indiscernible sequences. We will typically denote sequences
of tuples by I = (ai : i ∈ I) where I is some linearly ordered set. The
order on I will be denoted by <I or simply < if no confusion arises. If
I = (ai : i ∈ I) and J = (bj : j ∈ J), then we write the concatenation of
I and J as I + J . It has I as initial segment and J as the complementary
final segment. We use the notation (a) to denote the sequence which has a
as unique element.

We say that the sequence I is endless if the indexing order I has no last
element.

Let ∆ be a finite set of formulas and A a set of parameters. A (possibly
finite) sequence I = (ai : i ∈ I) is ∆-indiscernible over A, if for every in-
teger k and two increasing tuples i1 <I · · · <I ik and j1 <I · · · <I jk,
b ∈ A and formula φ(x1, . . . , xk; y) ∈ ∆, we have φ(ai1 , . . . , aik ; b) ↔
φ(aj1 , . . . , ajk ; b). An indiscernible sequence is an infinite sequence
which is ∆-indiscernible for all ∆.

Let I = (ai : i ∈ I) be any sequence. We define the Ehrenfeucht-
Mostowski type (or EM-type) of I over A to be the set of L(A)-formulas
φ(x1, . . . , xn) such that U |= φ(ai1 , . . . , ain) for all i1 < · · · < in ∈ I,
n < ω. If I is an indiscernible sequence, then for every n, the restriction of
the EM-type of I to formulas in n variables is a complete type over A. If
A = ∅, then we can omit it. We will write I ≡EMA J to mean that I and
J are two A-indiscernible sequences having the same EM -type over A. If
I is any sequence and J is any infinite linear order, then using Ramsey’s
theorem and compactness, we can find an indiscernible sequence J indexed
by J and realizing the EM-type of I (see e.g., [115, Lemma 5.1.3]).

A sequence I is totally indiscernible (or set indiscernible) if every
permutation of it is indiscernible. If a sequence (ai : i ∈ I) is not totally
indiscernible, then there is some formula φ(x, y), possibly with parameters,
which orders it, that is such that φ(ai, aj) holds if and only if i ≤ j.

Most of the time, Ramsey and compactness will be sufficient for us to
construct indiscernible sequences. However, we will need once or twice
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a more powerful result which is an easy application of the Erdős-Rado
theorem.

Proposition 1.1. Let A be a set of parameters, κ > |T |+ |A| and λ =
i(2κ)+ . Let (ai : i < λ) be a sequence of tuples all of the same size ≤ κ.
Then there is an indiscernible sequence (bi : i < ω) such that for any
i1 < · · · < in < ω, there are some j1 < · · · < jn < λ with

ai1 . . . ain ≡A bj1 . . . bjn .

See e.g. [20, Proposition 1.6] for a proof.



CHAPTER 2

THE NIP PROPERTY AND INVARIANT TYPES

In this chapter, we introduce the basic objects of our study. We first de-
fine the notion of an NIP formula. The combinatorial definition is not very
handy, and we give an equivalent characterization involving indiscernible
sequences which is the one we will most often use. We then define NIP the-
ories as theories in which all formulas are NIP and give some examples. We
discuss invariant types and their relation to indiscernible sequences. In par-
ticular, we define generically stable types, which share some characteristics
with types in stable theories.

To illustrate the notions considered, we prove some results on definable
groups in NIP theories: the Baldwin-Saxl theorem, and Shelah’s theorem
on existence of definable envelopes for abelian subgroups.

In the “additional topics” section we introduce trees, which serve as a
paradigm for NIP theories. Many examples of NIP theories are either ex-
plicitly constructed as a tree with additional structure, or have an under-
lining tree-structure (valued fields for example). We discuss in more details
the theory of dense meet-trees, and in particular describe indiscernible se-
quences in it. The next subsection collects some facts about stable formulas
and theories. We then present the strict order property and finally give yet
another characterization of NIP in terms of counting types.

2.1. NIP formulas

Let φ(x; y) be a partitioned formula. We say that a set A of |x|-tuples is
shattered by φ(x; y) if we can find a family (bI : I ⊆ A) of |y|-tuples such
that

U |= φ(a; bI) ⇐⇒ a ∈ I, for all a ∈ A.
By compactness, this is equivalent to saying that every finite subset of A

is shattered by φ(x; y).

Definition 2.1. A partitioned formula φ(x; y) is NIP (or dependent) if
no infinite set of |x|-tuples is shattered by φ(x; y).

13
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If a formula is not NIP, we say that it has IP.

Remark 2.2. The acronym IP stands for the Independence Property and
NIP is its negation. Some authors (notably Shelah) use the terminology
dependent/independent instead of NIP/IP.

Remark 2.3. If φ(x; y) is NIP, then by compactness, there is some integer
n such that no set of size n is shattered by φ(x; y).

The maximal integer n for which there is some A of size n shattered by
φ(x; y) is called the VC-dimension of φ. If there is no such integer, that is
if the formula φ has IP, then we say that its VC-dimension is infinite.
Example 2.4.
• Let T be DLO: the theory of dense linear orders with no endpoints.

Then the formula φ(x; y) = (x ≤ y) is NIP of VC-dimension 1. Indeed, if
we have a1 < a2, then we cannot find some b{2} such that

U |= ¬φ(a1; b{2}) ∧ φ(a2; b{2}).

• If φ(x; y) is a stable formula, then it is NIP (see Section 2.3.2 if needed).
• If T is the theory of arithmetic, then the formula φ(x; y) = “x divides y”

has IP. To see this, take any N ∈ N and A = {p0, . . . , pN−1} a set of dis-
tinct prime numbers. For any I ⊆ N , set bI to be

∏
i∈I pi. We have

|= φ(pi, bI) ⇐⇒ i ∈ I. Thus the set A is shattered and φ(x; y) has infinite
VC-dimension.
• If T is the random graph in the language L = {R}, then the formula

φ(x; y) = xRy has IP. In fact any set of elements is shattered by φ.
• If T is a theory of an infinite Boolean algebra, in the natural language

{0, 1,¬,∨,∧}, then the formula x ≤ y (defined as x∧y = x) has IP. Indeed,
it shatters any set A with a ∧ b = 0 for a 6= b ∈ A.

If φ(x; y) is a partitioned formula, we let φopp(y;x) = φ(x; y). Hence
φopp is the same formula as φ, but we have exchanged the role of variables
and parameters. The following fact will be used throughout this text, often
with no explicit mention.

Lemma 2.5. The formula φ(x; y) is NIP if and only if φopp(y;x) is NIP.

Proof. Assume that φ(x; y) has IP. Then by compactness, we can find
some A = {ai : i ∈ P(ω)} which is shattered by φ(x; y) as witnessed
by tuples bI , I ⊆ P(ω). Let B = {bj : j ∈ ω} where bj := bIj and
Ij := {X ⊆ ω : j ∈ X}. Then for any J0 ⊆ ω, we have

|= φ(aJ0
, bj) ⇐⇒ j ∈ J0.

This shows that B is shattered by φopp. Therefore φopp has IP. a

Remark 2.6. The VC-dimension of a formula φ need not be equal to the
VC-dimension of the opposite formula φopp. For example, let T be the
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theory of equality, then the formula φ(x; y1y2y3) = (x = y1 ∨ x = y2 ∨ x =
y3) has VC-dimension 3, but the opposite formula only has VC-dimension
2.

See Lemma 6.3 for inequalities linking the VC-dimensions of φ and φopp.
For now, our only concern is whether they are finite or not.

We now give an equivalent characterization of NIP which is often the
most convenient one to use.

Lemma 2.7. The formula φ(x; y) has IP if and only if there is an indis-
cernible sequence (ai : i < ω) and a tuple b such that

|= φ(ai; b) ⇐⇒ i is even.

Proof. (⇐): Assume that there is a sequence (ai : i < ω) and a tuple
b as above. Let I ⊆ ω. We show that there is some bI such that φ(ai; bI)
holds if and only if i ∈ I. We can find an increasing one-to-one map
τ : ω → ω such that for all i ∈ ω, τ(i) is even if and only if i is in I.
Then by indiscernibility the map sending ai to aτ(i) for all i < ω is a
partial isomorphism. It extends to a global automorphism σ. Then take
bI = σ−1(b).

(⇒): Assume that φ(x; y) has IP. Let A = (ai : i < ω) be a sequence of
|x|-tuples which is shattered by φ(x; y). By Ramsey and compactness, we
can find some indiscernible sequence I = (ci : i < ω) of |x|-tuples realizing
the EM-type of A. It follows that for any two disjoint finite sets I0 and I1
of I, the partial type {φ(x; c) : c ∈ I0} ∪ {¬φ(x; c) : c ∈ I1} is consistent.
Then by compactness, I is shattered by φ(x; y). In particular, there is b
such that φ(ci; b) holds if and only if i is even. a

Let φ(x; y) be an NIP formula, then there is a finite set ∆ of formulas
and an integer nφ,∆ such that the following do not exist:
· (ai : i < nφ,∆) a ∆-indiscernible sequence of |x|-tuples;
· b a |y|-tuple, such that ¬(φ(ai; b)↔ φ(ai+1; b)) holds for i < nφ,∆ − 1.
Indeed, if we could not find such ∆ and nφ,∆, then the partial type in

variables (xi : i < ω)̂ y stating that (xi : i < ω) is an indiscernible sequence
and ¬(φ(xi; y) ↔ φ(xi+1; y)) holds for all i < ω would be consistent, con-
tradicting the previous lemma.

Let I = (ai : i ∈ I) be an indiscernible sequence and take an NIP
formula φ(x; y) ∈ L and a tuple of parameters b ∈ U . Then there is a
maximal integer n such that we can find i0 < . . . <I in with ¬(φ(aik ; b)↔
φ(aik+1

; b)) for all k < n. We call such an n the number of alternations of
φ(x; b) on the sequence I and write it as alt(φ(x; b), I). We let alt(φ(x; y))
denote the maximum value of alt(φ(x; b), I) for b ranging in U and I ranging
over all indiscernible sequences. Note that this maximum exists and is
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bounded by the number nφ,∆ of the previous paragraph. We sometimes
call alt(φ(x; y)) the alternation rank (or number) of φ(x; y).

Proposition 2.8. The formula φ(x; y) is NIP if and only if for any
indiscernible sequence (ai : i ∈ I) and tuple b, there is some end segment
I0 ⊆ I and ε ∈ {0, 1} such that φ(ai; b)

ε holds for any i ∈ I0.

Proof. If I has a last element i0, let I0 = {i0}. Otherwise, this follows
immediately from the discussion above. a

Of course the equivalence also holds if we restrict to sequences indexed
by ω, or in fact by any given linear order with no last element.

Lemma 2.9. A Boolean combination of NIP formulas is NIP.

Proof. It is clear from the definition that the negation of an NIP for-
mula is NIP.

Let φ(x; y) and ψ(x; y) be two NIP formulas and we want to show that
θ(x; y) = φ(x; y) ∧ ψ(x; y) is NIP. We use the criterion from Proposition
2.8. Let (ai : i ∈ I) be an indiscernible sequence of |x|-tuples and let b be a
|y|-tuple. Let Iφ ⊆ I be an end segment such that φ(ai; b)↔ φ(aj ; b) holds
for i, j ∈ Iφ. Define Iψ similarly and let I0 = Iφ ∩ Iψ. Then I0 is an end
segment of I and we have θ(ai; b) ↔ θ(aj ; b) for i, j ∈ I0. This shows that
θ(x; y) is NIP. a

2.1.1. NIP theories.

Definition 2.10. The theory T is NIP if all formulas φ(x; y) ∈ L are
NIP.

Note that if T is NIP, then also all formulas φ(x; y) with parameters are
NIP, since if φ(x; y, d) has IP, then so does φ(x; y ẑ).

Proposition 2.11. Assume that all formulas φ(x; y) ∈ L with |y| = 1
are NIP, then T is NIP.

Proof. Assume that all formulas φ(x; y) with |y| = 1 are NIP.

Claim: Let (ai : i < |T |+) be an indiscernible sequence of tuples, and
let b ∈ U , |b| = 1. Then there is some α < |T |+ such that the sequence
(ai : α < i < |T |+) is indiscernible over b.

Proof: If this does not hold, then for every α < |T |+, for some formula
δα(x1, . . . , xk(α); y), we can find

α < i1 < . . . < ik(α) < |T |+ and α < j1 < . . . < jk(α) < |T |+

such that |= δα(ai1 , . . . , aik(α)
; b) ∧ ¬δα(aj1 , . . . , ajk(α)

; b). There is some

formula δ(x1, . . . , xk; y) such that δα = δ for cofinally many values of α.
Then we can construct inductively a sequence I = (il1ˆ . . . î

l
k : l < ω) such

that il1 < . . . < ilk < il+1
1 for all l < ω and δ(ail1 , . . . , ailk , b) holds if and
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only if l is even. As the sequence (ail1 . . . ailk : l < ω) is indiscernible, this

contradicts the assumption that δ(x1, . . . , xk; y) is NIP .

Now let φ(x; y) be any formula, where y = y1ˆ . . . ŷn is an n-tuple.
Let (ai : i < |T |+) be any indiscernible sequence of |x|-tuples and let
b = b1ˆ . . . b̂n be an n-tuple. By the claim, there is some α1 < |T |+
such that the sequence (ai : α1 < i < |T |+) is indiscernible over b1. This
implies that the sequence (ai b̂1 : α1 < i < |T |+) is indiscernible. Therefore
another application of the claim gives some α1 < α2 < |T |+ such that the
sequence (ai b̂1 : α2 < i < |T |+) is indiscernible over b2. Iterating, we
find αn < |T |+ such that (a1 b̂1ˆ. . . b̂n : αn < i < |T |+) is indiscernible.
This implies that the truth value of φ(ai; b) is constant for i > αn. By
Proposition 2.8, the formula φ(x; y) is NIP. a

Example 2.12. We now give some examples of NIP theories and refer to
other sections, in particular the Appendix, for details.

• Any stable theory is NIP. [ See Section 2.3.2. ]
• Any o-minimal theory is NIP.

[ Recall that a one-sorted theory T is o-minimal if there is a de-
finable total order ≤ on the universe such that any definable set in
dimension 1 is a finite Boolean combinations of intervals and points.
To prove that T is NIP, we use Proposition 2.11 and symmetry to
reduce to the case of formulas φ(x; y), |x| = 1. By o-minimality and
compactness, there is some n such that any definable set φ(x; b) is a
Boolean combination of up to n intervals and points. Then by Lemma
2.9, it is enough to treat the case of a formula of the form x ≤ y. But
we have already seen that such a formula has VC-dimension 1. See
also Section A.1.3. ]

• Any theory of a pure linear order or of a pure tree—in particular Tdt
which is described in Section 2.3.1—is NIP. [ Section A.1.2 ]

• Any C-minimal theory is NIP. The most important example of such is
the theory ACVF of algebraically closed valued fields. [ Section A.1.4 ]

• The theory Th(Qp) of the p-adics is NIP (either in the pure field
language or in the valued field language). [ Section A.2 ]

As one can see from this list, most known NIP theories are either stable
or somehow built around a linear order or a tree. We do not know if this
is a general fact. A famous open question in this direction is whether any
unstable NIP theory interprets an infinite linear order.

To finish this section, we give an example where the NIP property is used
to deduce results about definable groups.

Theorem 2.13 (Baldwin-Saxl). Let G be a group definable in an NIP
theory T . Let Ha be a uniformly definable family of subgroups of G. Then
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there is an integer N such that for any finite intersection
⋂
a∈AHa, there

is a subset A0 ⊆ A of size N with
⋂
a∈AHa =

⋂
a∈A0

Ha.

Proof. The fact that Ha is a uniformly definable family of subgroups
means that there is a formula φ(x; y) such that eachHa is defined by φ(x; a).
Without loss, any instance φ(x; a′) of φ defines a subgroup of G.

Take any integer N and assume that the conclusion of the theorem does
not hold for N . Then we can find some set A = {a0, . . . , aN} of parameters
such that for every k ≤ N , we have

⋂
a∈A\{ak}Ha 6=

⋂
a∈AHa. Let Kk =⋂

a∈A\{ak}Ha and K =
⋂
a∈AHa. For every k ≤ N , pick a point ck ∈

Kk \K. For B ⊆ N + 1, define cB =
∏
k∈B ck, where the product is in the

sense of the group G. Then we have

cB ∈ Hak ⇐⇒ k /∈ B.

This shows that the formula φopp(y;x) := φ(x; y) has VC-dimension at
least N . Therefore there is a maximal such N . a

This theorem will be used in Chapter 8 to prove the existence of the
connected component G0 in NIP groups.

Exercise 2.14. Show that if T is NIP, then so is T eq.

2.2. Invariant types

Definition 2.15 (Invariant type). Let A ⊂ U be a small subset and
p ∈ Sx(U). We say that p is A-invariant if σp = p for any σ ∈ Aut(U/A).

We say that p is invariant, if it is A-invariant for some small A ⊂ U .

Another way to phrase the definition is to say that p is A-invariant if for
every formula φ(x; y) and tuples b, b′ ∈ U , if b ≡A b′, then

p ` φ(x; b) ⇐⇒ p ` φ(x; b′).

Example 2.16. A type p(x) over a set B is said to be definable if for every
formula φ(x; y) without parameters, there is some formula dφ(y) ∈ L(B)
such that p ` φ(x; b) ⇐⇒ b |= dφ(y) for all b ∈ B. We say that p is
definable over A ⊆ B if the formula dφ(y) can be taken to have parameters
in A. If the type p is definable, then it is definable over some A of size
≤ |T |.

Let p ∈ Sx(U) be definable. Then by the previous remark, it is definable
over some A ⊂ U of size ≤ |T |. In particular p is A-invariant.

Example 2.17. A type p(x) is said to be finitely satisfiable in a set A
if for every formula φ(x; b) ∈ p, there is a ∈ A such that φ(a; b) holds. If
p ∈ Sx(U) is finitely satisfiable in A, then it is A-invariant. Indeed if φ(x; y)
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is a formula and b ≡A b′ are two |y|-tuples, then for every element a of A,
a |= φ(x; b)↔ φ(x; b′). Hence also p ` φ(x; b)↔ φ(x; b′).

We present two constructions to obtain such types.
(1) Let A ⊂ U be any small set and let D be an ultrafilter on A|x|. We

define pD ∈ Sx(U) by:

pD ` φ(x; b) ⇐⇒ φ(A; b) ∈ D,

for every formula φ(x; b) ∈ L(U). Then pD is finitely satisfiable in A.
Conversely, every global type finitely satisfiable in A is equal to pD for
some (not necessarily unique) ultrafilter D. In particular note that if we
take D to be a principal ultrafilter, then we obtain a realized type.

(2) Assume that T is NIP and let I = (ai : i ∈ I) be an indiscernible se-
quence. Then by Proposition 2.8, the sequence (tp(ai/U) : i ∈ I) converges
in S(U) to some type, called the limit type of the sequence I and denoted
by lim(I). This type is finitely satisfiable in I, and indeed in any cofinal
subsequence of I.

If p0 ∈ Sx(M) is a type, then a coheir of p0 is a global extension of
p which is finitely satisfiable in M . Such a coheir always exists: extend
{φ(M ; b) : φ(x; b) ∈ p0} into an ultrafilter D on M |x| and consider pD. In
fact, the same proof shows that any type p finitely satisfiable in some set
A extends to a global type finitely satisfiable in A.

Let p be a global A-invariant type. Then to every formula φ(x; y) ∈ L, y
any finite tuples of variables, we can associate the set Dpφ ⊆ Sy(A) of types
q such that p ` φ(x; b) for some (any) b |= q. The family (Dpφ : φ ∈ L)
is called the (infinitary) defining schema of p. It completely determines
the A-invariant type p. Notice that the defining schema is an object of
small cardinality; in particular, the monster model U does not appear in
it in any way. Indeed given any bigger set V ⊇ U of parameters, we can
define the extension p|V of p over V by setting p ` φ(x; b) if and only if
tp(b/A) ∈ Dpφ. The reader should check that this construction depends
only on p and not on the choice of A.

This procedure can also work if we start with a type over a small model,
as long as enough saturation is present: Let A ⊂ M , and assume that
for all n, any type in Sn(A) is realized in M . Let p ∈ Sx(M) be A-
invariant in the following sense: if b ≡A b′ are in M and φ(x; y) ∈ L, then
p ` φ(x; b) ⇐⇒ p ` φ(x; b′). Then we can associate to p a defining schema
(Dpφ : φ(x; y) ∈ L) of p as above. In turn this schema defines a global type
p̃ = {φ(x; b) : φ ∈ L, tp(b/A) ∈ Dpφ}. The fact that we have taken M to
realize all finitary types over A ensures consistency of p̃. We see that p̃ is
the unique A-invariant global extension of p.
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In general if p ∈ S(M) is A-invariant in the sense of the previous para-
graph, but M does not realize all types over A (for example if M = A),
then p may have more than one global A-invariant extension.

Lemma 2.18. Let p ∈ S(U) be an A-invariant type:
1. if p is definable, then it is A-definable;
2. if p is finitely satisfiable in some small set, then it is finitely satisfiable

in any model M ⊇ A.

Proof. Assume that p is definable. Let φ(x; y) be any formula and let
dφ(y) ∈ L(U) be such that for any b ∈ U , p ` φ(x; b) ⇐⇒ b |= dφ(y). As p
is A-invariant, the definable set dφ(y) is invariant under all automorphisms
that fix A pointwise. It follows that it is definable over A and therefore so
is p.

Assume now that p is finitely satisfiable in some small model N . Let
M be any small model containing A. Let φ(x; b) be any formula in p and
let N1 realize a coheir of tp(N/M) over Mb. Then by invariance, p is
finitely satisfiable in N1 and in particular φ(N1; b) is non-empty. By the
coheir hypothesis, φ(M ; b) is non-empty. Therefore p is finitely satisfiable
in M . a

2.2.1. Products and Morley sequences. Let p(x), q(y) ∈ S(U) be
twoA-invariant types. We define the type p(x)⊗q(y) ∈ Sxy(U) as tp(a, b/U)
where b |= q and a |= p|Ub.

We use here the canonical extension p|Ub of p to Ub as defined before
Lemma 2.18.

If one wants to avoid realizing types over the monster, one can also
give the following equivalent definition: Given a formula φ(x; y) ∈ L(B),
A ⊆ B ⊂ U , we set p(x)⊗ q(y) ` φ(x; y) if p ` φ(x; b) for some (any) b ∈ U
with b |= q|B .

The following facts are easy to check from the definitions:

Fact 2.19. If p and q are both A-invariant, then so is the product p(x)⊗
q(y).

Fact 2.20. The relation ⊗ is associative: p(x)⊗ (q(y)⊗ r(z)) = (p(x)⊗
q(y)) ⊗ r(z). Indeed, both products are equal to tp(a, b, c/U) where c |= r,
b |= q|Uc and a |= p|Ubc.

However, ⊗ need not be commutative:

Example 2.21. Let T be DLO, and take p = q to be the type at +∞.
Then p(x)⊗ q(y) ` x > y whereas q(y)⊗ p(x) ` x < y.

Exercise 2.22. Check that in DLO, any two distinct invariant 1-types p
and q commute: p(x)⊗ q(y) = q(y)⊗ p(x).



2.2. Products and Morley sequences 21

This is no longer true in RCF: If p and q are two invariant 1-types which
concentrate on definable cuts (either ±∞ or a±), then they do not com-
mute.

Note that in the definition of p(x) ⊗ q(y), we did not actually use the
fact that q is invariant. Hence more generally, if p(x) is A-invariant and
q(y) ∈ S(U) is any type, then we can define p(x) ⊗ q(y) ∈ Sxy(U) as
tp(a, b/U) where b |= q and a |= p|Ub. The type p(x) ⊗ q(y) defined this
way is invariant if and only if q is.

Lemma 2.23. If p(x) is a global definable type and q(y) is a global type
finitely satisfiable in some small model, then p(x)⊗ q(y) = q(y)⊗ p(x).

Proof. Let M ≺ U be a model such that p is definable over M and
q is finitely satisfiable in M . Let φ(x, y; d) ∈ L(U). By definability of p,
there is a formula dφ(y; z) ∈ L(M) such that for every b, d′ ∈ U , we have
p ` φ(x, b; d′) ⇐⇒ |= dφ(b; d′). Let ε ∈ {0, 1} such that q ` dφ(y; d)ε.

Assume for example that q(y) ⊗ p(x) ` φ(x, y; d). Let a |= p. Then
q(y)|Ua ` φ(a, y; d) and as q is finitely satisfiable in M , there is b ∈ M
such that b |= φ(a, y; d) ∧ dφ(y; d)ε. Then p ` φ(x, b; d) ∧ dφ(b; d)ε and by
definition of dφ, this implies that ε = 1.

Therefore q ` dφ(y; d) and it follows that p(x)⊗ q(y) ` φ(x, y; d). a
If p(x) is an A-invariant type, we define by induction on n ∈ N∗:

p(1)(x0) = p(x0) and p(n+1)(x0, . . . , xn) = p(xn)⊗ p(n)(x0, . . . , xn−1).

Let also p(ω)(x0, x1, . . . ) =
⋃
p(n). For any B ⊇ A, a realization (ai : i < ω)

of p(ω)|B is called a Morley sequence of p over B (indexed by ω). It follows
from associativity of ⊗ that such a sequence (ai : i < ω) is indiscernible over
B (indeed for any i1 < · · · < in ∈ ω, we have tp(ai1 , . . . , ain/B) = p(n)|B).

More generally, any sequence indiscernible over B whose EM-type over
B is given by {p(n)|B : 1 ≤ n < ω} is called a Morley sequence of p over B.

Exercise 2.24. Let p, q be global A-definable types (resp. global types
finitely satisfiable in A), then p(x)⊗ q(y) is also A-definable (resp. finitely
satisfiable in A). In particular, so are p(n) and p(ω).

Exercise 2.25. (T is NIP) Let I = (at : t ∈ I) be an endless indiscernible
sequence. Recall the definition of the limit type p = lim(I) from Example
2.17. Let J be any linear order and J = (bt : t ∈ J) be a sequence such
that bt |= p � I b̄>t. So if we reverse the order of the sequence J , we obtain
a Morley sequence of p over I. Show that I + J is indiscernible.

An application to definable groups.
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Lemma 2.26. (T is NIP) Let G be a definable group. Let p, q be invariant
types concentrating on G such that both p(x)⊗ q(y) and q(y)⊗ p(x) imply
x · y = y · x. Then a · b = b · a for any a |= p and b |= q.

Proof. By compactness, there is a small model M over which p and
q are invariant and such that a · b = b · a for any (a, b) realizing one of
p⊗ q �M or q ⊗ p �M

We try to build by induction a sequence (an · bn : n < ω) such that
an |= p �Ma<nb<n, bn |= q �Ma<nb<n and an · bn 6= bn · an. Assume that
we succeed. Then by hypothesis, an · bm = bm · an for n 6= m. For any
I ⊂ ω finite, define bI =

∏
n∈I bn. We have that an · bI = bI ·an if and only

if n /∈ I. This contradicts NIP.
Therefore the construction must stop and for some n, we cannot find an,

bn as required. Then if we let p0 = p � Ma<nb<n and q0 = q � Ma<nb<n,
we have p0(x) ∧ q0(y)→ (x · y = y · x). a

Proposition 2.27. (T is NIP) Let G be a definable group, and assume
that there is a small subset A ⊂ G such that any two elements of A com-
mute, then there is a definable abelian subgroup of G containing A.

Proof. Let SA ⊂ S(U) be the subset of global 1-types finitely satisfiable
in A. This is a closed set of the space of types, and as such it is compact.
For any p, q ∈ SA, the pair (p, q) satisfies the hypothesis of the previous
lemma. Hence by compactness, there are formulas φp,q(x) and ψp,q(y) such
that p(x) ` φp,q(x), q ` ψp,q(y) and φp,q(x) ∧ ψp,q(y)→ (x · y = y · x).

For a given p, the family (ψp,q(y) : q ∈ SA) of clopens covers SA. Hence
there is a finite subfamily ψp,q1(x), . . . , ψp,qn(x) which already covers it.
Set φp(x) =

∧
i≤n φp,qn(x) and ψp(y) =

∨
i≤n ψp,qn(y). Then again, p(x) `

φp(x) and we can find a finite family φp1
(x), . . . , φpk(x) which cover SA.

Set φ(x) =
∨
i≤k φpi(x) and ψ(y) =

∧
i≤k ψpi(y).

Then φ(x) ∧ ψ(y) → (x · y = y · x) and all types of SA concentrate on
both φ(x) and ψ(y). In particular this is true for realized types x = a,
a ∈ A. Let H be the subgroup of G defined by CG(CG(φ ∧ ψ)), where
CG(X) = {a ∈ G : a · x = x · a for all x ∈ X}. Then H is a definable
abelian subgroup of G containing A. a

Note that if A is finite, then the proposition is easy and does not require
NIP: take H = CG(CG(A)).

2.2.2. Generically stable types.

In this section and the following one we assume that T is NIP (except in
Proposition 2.43 where we give yet another characterization of NIP).

Lemma 2.28. (T is NIP) Let (ai : i ∈ I) be a totally indiscernible se-
quence of |x|-tuples, and φ(x; b) ∈ L(U) a formula, then the set Iφ = {i ∈
I :|= φ(ai; b)} is finite or cofinite in I.
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Proof. Otherwise, we can build a sequence (ik : k < ω) of pairwise
distinct members of I such that ik ∈ Iφ if and only if k is even. Then the
sequence (aik : k < ω) is indiscernible and the formula φ(aik ; b) holds if
and only if k is even. This contradicts Proposition 2.8. a

Note that it follows from the proof that the cardinality of either {i ∈
I :|= φ(ai; b)} or its complement is bounded by alt(φ(x; y))/2.

Theorem 2.29. (T is NIP) Let p be a global A-invariant type. Then the
following are equivalent:

(i) p = lim(I) for any I |= p(ω)|A;
(ii) p is definable and finitely satisfiable in some small M ;
(iii) px ⊗ py = py ⊗ px;
(iv) any Morley sequence of p is totally indiscernible.

Proof. (i) ⇒ (ii): Assume (i). Then p is finitely satisfiable in I. Also,
let φ(x; y) ∈ L and let b ∈ U . Then p ` φ(x; b) if and only if there is some
sequence (ak : k < ω) |= p(ω)|A such that φ(ak; b) holds for all k. Therefore
{b ∈ U : p ` φ(x; b)} is a type-definable set. The same holds for ¬φ instead
of φ, so the complement of that set is also type-definable. It follows that
it is definable. Therefore p is a definable type.

(ii) ⇒ (iii): Follows from Lemma 2.23.
(iii) ⇒ (iv): By associativity of ⊗, and writing any permutation as

a product of transpositions, we see that for every n and σ ∈ Sym(n),
p(xn−1) ⊗ . . . ⊗ p(x0) = p(xσ(n−1)) ⊗ . . . ⊗ p(xσ(0)). It follows that the
Morley sequence of p is totally indiscernible.

(iv)⇒ (i): Let φ(x; b) ∈ p and I |= p(ω)|A. Let J |= p(ω)|AIb. Then I+J
is a totally indiscernible sequence. Then all points of J satisfy φ(x; b).
Therefore by Lemma 2.28, at most a finite number of points of I satisfy
¬φ(x; b). Hence lim(I) ` φ(x; b) as required. a

Definition 2.30. (T is NIP) An invariant type satisfying the equivalent
conditions of Theorem 2.29 is called generically stable.

Example 2.31. 1. Consider the language L = {Rn(x, y) : n < ω} and the
L-structure M whose universe is Q and such that M |= Rn(x, y) if and
only if x < y and |x− y| < n. This is sometimes called a “local order”.

Let p(x) be the global ∅-invariant type satisfying ¬Rn(a, x) ∧ ¬Rn(x, a)
for all a ∈ U . Then this type is generically stable.

2. Consider the two-sorted theory of vector spaces over a real-closed
field: We have one sort R for the field equipped with the usual ordered
field structure and one sort V for the vector space equipped with the group
structure. Finally, there is an additional binary function symbol from R×V
to V for scalar multiplication. The axioms say that R is real closed and
that V is an infinite dimensional R-vector space. Let p be the generic
type of V , namely the type which does not lie in any U-definable proper
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sub-vector space. Then p is ∅-invariant and generically stable. Apart from
realized types, it is the only generically stable type in this structure.

3. In the theory Tdt of dense meet-trees, the generic type of a closed cone
is generically stable (see Section 2.3.1).

4. In the theory ACVF of algebraically closed valued fields, the generic
type of a closed ball is generically stable.

Remark 2.32. If p is generically stable, then it is definable and finitely
satisfiable over any one of its Morley sequences. (Because if I is a Morley
sequence of p, then p = lim(I) is finitely satisfiable in I, furthermore it is
I-invariant, so it is definable over I). We can write a definition explicitly.
Let φ(x; y) be a formula, and let N = alt(φ). If (ak : k < ω) is a Morley
sequence of p, and b ∈ U , then

p ` φ(x; b) ⇐⇒
∨

A⊂N+1
|A|>N/2

∧
k∈A

φ(ak; b).

Notice in particular that the form of the formula giving the φ-definition
depends only on φ and not on the type p.

Proposition 2.33. (T is NIP) Let p be generically stable and q any
invariant type. Then p(x)⊗ q(y) = q(y)⊗ p(x).

Proof. Assume for a contradiction that for some formula φ(x; y) ∈ L(U)
we have p(x) ⊗ q(y) ` φ(x; y) and q(y) ⊗ p(x) ` ¬φ(x; y). Let (ak : k <
ω) |= p(ω), b |= q|Ua<ω and (ak : ω ≤ k < ω2) |= p(ω)|Ua<ωb. Then for
k < ω, ¬φ(ak; b) holds and for k ≥ ω, we have φ(ak; b). As the sequence
(ak : k < ω2) is totally indiscernible, this contradicts Lemma 2.28. a

Lemma 2.34. (T is NIP) Let p be generically stable, then for any integer
n, p(n) is also generically stable.

Proof. This follows for example from Exercise 2.24. a

Proposition 2.35. (T is NIP) Let p be a generically stable, A-invariant
type. Then p is the unique A-invariant extension of p|A.

Proof. Notice that if q is any A-invariant type and r, s ∈ S(U) are such
that r|A = s|A, then (q ⊗ r)|A = (q ⊗ s)|A.

Let q be any A-invariant extension of p|A. First we show by induction
that q(n)|A = p(n)|A. The case n = 1 is the hypothesis on q. Assume that
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q(n)|A = p(n)|A. We have, using Proposition 2.33 on line 3:

q(n+1)(x1, . . . , xn+1)|A = (q(xn+1)⊗ q(n)(x1, . . . , xn))|A
= (q(xn+1)⊗ p(n)(x1, . . . , xn))|A
= (p(n)(x1, . . . , xn)⊗ q(xn+1))|A
= (p(n)(x1, . . . , xn)⊗ p(xn+1))|A
= p(n+1)(x1, . . . , xn+1)|A.

Hence q(ω)|A = p(ω)|A and therefore any Morley sequence of q is totally
indiscernible. It follows that q is generically stable and that q = lim(I) for
any I |= q(ω)|A. But also p = lim(I) for any I |= p(ω)|A = q(ω)|A. Hence
p = q. a

2.2.3. Eventual types. We have seen that any generically stable type
is the average of any one of its Morley sequences. This is no longer true
for general invariant types. We show now that we can nevertheless recover
an A-invariant type from its Morley sequence over A although in a slightly
more complicated way.

Proposition 2.36. (T is NIP) Let p, q ∈ Sx(U) be A-invariant types. If
p(ω)|A = q(ω)|A, then p = q.

Proof. By assumption, if I is a Morley sequence of p over A (indexed
by any linear order) then it is also a Morley sequence of q over A. Let
φ(x; d) ∈ L(U) be any formula and let I = (ai : i ∈ I) be a Morley
sequence of p over A such that alt(φ(x; d), I) is maximal. Let ε ∈ {0, 1}
be such that lim(I) ` φ(x; d)ε. Now let a |= p|AId. Then the sequence
I + (a) is also a Morley sequence of p over A. By maximality of I, we must
have alt(φ(x; d), I) = alt(φ(x; d), I + (a)). This implies that a |= φ(x; d)ε.
Therefore p ` φ(x; d)ε and as the roles of p and q are interchangeable, we
also have q ` φ(x; d)ε. Thus p = q. a

Definition 2.37. Let A ⊂ U and let I be an indiscernible sequence.
We say that I is based on A if I is indiscernible over A and if for any two
A-indiscernible sequences I1, I2 of same EM-type as I over A, there is some
tuple a such that I1 + (a) and I2 + (a) are both indiscernible over A.

Proposition 2.38. (T is NIP) Let I be any indiscernible sequence based
on A. There is a unique global type p with the following property: For any
sequence J ≡EMA I and any B ⊂ U , there is a ∈ U such that J + (a) is
A-indiscernible and a |= p|B. Moreover, p is invariant over A.

Proof. We first show uniqueness. Assume that there were two such
types p and q and pick a formula φ(x; b) ∈ L(U) such that p ` φ(x; b) and
q ` ¬φ(x; b). Now choose by induction tuples (ai : i < ω) such that:
· I + (ai : i < ω) is A-indiscernible;
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· for i even, ai |= p|Ab;
· for i odd, ai |= q|Ab.
This is possible by hypothesis. In the end, the formula φ(x; b) alternates

infinitely often on the sequence I + (ai : i < ω) contradicting NIP.
We now show existence. Let φ(x; d) ∈ L(U) be any formula. Let I1 ≡EMA

I and I2 ≡EMA I such that alt(φ(x; d), Ii) is maximal, for i ∈ {1, 2}. Let
εi, for i = 1, 2 be such that lim(Ii) ` φ(x; d)εi . As I is based on A, there
is some tuple a such that both I1 + (a) and I2 + (a) are indiscernible over
A. By maximality of I1, we have alt(φ(x; d), I1 + (a)) = alt(φ(x; d), I1) and
a |= φ(x; d)ε1 . Similarly we have a |= φ(x; d)ε2 therefore ε1 = ε2.

We now define a global type p as follows: pick some J ≡EMA I such
that alt(φ(x; d), J) is maximal, and set Ev(I/A) ` φ(x; d) if and only if
lim(J) ` φ(x; d). By the previous argument, this does not depend on the
choice of J . It is clear that this defines a consistent, complete type over
U . Also, p only depends on the type of I over A (indeed of its EM-type)
therefore p is an A-invariant type. a

Definition 2.39. The type p defined above is called the eventual type
of I over A. We will denote it by Ev(I/A).

Example 2.40. Let T be DLO, and consider an increasing sequence I =
(ai : i < ω). Let b2 < b1 be two points greater than all the ai’s. Set
A1 = {b1} and A2 = {b1, b2}, then I is indiscernible both over A1 and A2.
The type Ev(I/A1) is the definable type “b−1 ” whereas Ev(I/A2) is the
type “b−2 ”.

Now take A to be a set lying above all the ai’s with no smallest element.
Then Ev(I/A) is axiomatized by {x < a : a ∈ A} ∪ {x > b : b < A}. It
is not definable, but it is finitely satisfiable in any model containing A (or
indeed a coinitial segment of A).

We see from that example that the properties of the type Ev(I/A) really
depend on both I and A and not only on I. However the EM-type (over
∅) of a Morley sequence of Ev(I/A) does not depend on A:

Lemma 2.41. (T is NIP) If I is an indiscernible sequence based on A,
then I is a Morley sequence of Ev(I/A) over A.

Proof. Without loss, we may assume that I = (ai : i < ω). It is
enough to show that for each n < ω, we have an |= Ev(I/A) � Aa<n.
By definition of the eventual type, we can find a∗ such that J = I +
(a∗) is A-indiscernible and a∗ |= Ev(I/A) � AI. By indiscernibility of J ,
tp(an/Aa<n) = tp(a∗/Aa<n) = Ev(I/A) � Aa<n. a

Proposition 2.42. (T is NIP) There is a bijection between EM-classes
over A of indiscernible sequences based on A and A-invariant types.
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Proof. From left to right, we map an indiscernible sequence I to the
type Ev(I/A) which only depends on the EM-type of I over A. In the
other direction, we map an A-invariant type p to the EM-class of its Morley
sequence. a

Proposition 2.43. The theory T is NIP if and only if for all M |= T ,
for all p ∈ S(M), p has at most 2|M |+|T | global coheirs.

Proof. We show left to right. Assume that T is NIP and let M |= T ,
then by Proposition 2.36 an M -invariant type is determined by p(ω)|M .
There are at most 2|M |+|T | values for that type, so there are at most 2|M |+|T |

global M -invariant types. The result follows.
Conversely, assume that T has IP and set λ = |T |. Then there is a

set {ai : i < λ} of finite tuples and a formula φ(x; y) such that for any
A ⊆ λ, we can find some bA such that: φ(ai; bA) ⇐⇒ i ∈ A. Let M
be a model of size λ containing all the ai’s. For D an ultrafilter over λ,
we define pD as the average of tp(ai/U) along D. Then we have pD `
φ(x; bA) ⇐⇒ A ∈ D. This shows that for D 6= D′, the two types pD and
pD′ are distinct. Furthermore, pD is finitely satisfiable in M . As there are

22λ pairwise distinct ultrafilters on λ, we have obtained 22λ global types
finitely satisfiable in M . Since there are only 2λ types in variable x over

M , there is at least one such type which has 22λ global coheirs. a

Example 2.44. Let M be a model of DLO and let p ∈ S1(M) be a type
corresponding to a cut of M of infinite cofinalities from both sides (equiv-
alently, p is a non-definable type over M). Then p has exactly two global
coheirs: one sticking to the left of the cut and the other one sticking to the
right of the cut. In fact those are the only global M -invariant extensions
of p.

Exercise 2.45. Let (ai : i < ω2) be indiscernible. Show that (ai : i < ω)
is based on (ai : ω ≤ i < ω2). Conclude that any indiscernible sequence is
based on some set.

Exercise 2.46. Let I = (ai : i < ω) be a totally indiscernible sequence.
Define Cb(I) to be the intersection

⋂
F acleq({ai : i ∈ F}) where F ranges

over all infinite subsets of ω.
1. Show that lim(I) is definable over Cb(I) and that any automorphism

of U fixes the type lim(I) if and only if it fixes Cb(I) pointwise.
2. Show that I is based on a set A if and only if it is indiscernible over

A and Cb(I) ⊆ dcleq(A).

2.3. Additional topics
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2.3.1. Case study: dense trees. Trees—or structures built around
trees—are a major source of examples of NIP theories. In this section, we
concentrate on the theory of dense meet-trees which is the model companion
of finite meet-trees.

Definition 2.47 (Tree). A tree is a partially ordered set (M,≤) such
that for every a ∈M , the set {x ∈M : x ≤ a} is linearly ordered by ≤ and
for any a, b ∈M , there is some c smaller or equal to both a and b.

We say that (M,≤) is a meet-tree if in addition: for every two points
a, b ∈ M , the set {x ∈ M : x ≤ a ∧ x ≤ b} has a greatest element, which
we denote by a ∧ b. (In other words, (M,≤) is a meet-semilattice.)

A leaf of the tree M is a point in M which is maximal.

Note in particular that with this definition, a linearly ordered set is a
tree.

Exercise 2.48. Let (M,≤) be a tree. Then there is a meet-tree (M̂,≤)

which has M as a subtree, such that for every a < b ∈ M̂ , there is c ∈M ,
a ≤ c ≤ b. Furthermore, M̂ is interpretable (along with the embedding of
M into it) in the structure (M,≤).

Exercise 2.49. If (M,≤) is a meet-tree, then we have, for any a, b, c ∈M :

(a ∧ b) ∧ c = a ∧ (b ∧ c) = min(a ∧ c, b ∧ c).

Let (M,≤) be a meet-tree and c ∈M a point. The closed cone of center
c is by definition the set C(c) := {x ∈ M : x ≥ c}. We can define on C(c)
a relation Ec by: xEcy if x ∧ y > c. It follows from Exercise 2.49 that
this is an equivalence relation. We define an open cone of center c to be a
equivalence class under the relation Ec.

The theory of meet-trees in the language {≤,∧} has a model-companion,
namely the theory Tdt of dense meet-trees which is defined by the following
axioms:
· ≤ defines a meet-tree on the universe, and ∧ is the meet relation;
· for any point c, {x : x ≤ c} is dense with no first element;
· for any point c, there are infinitely many open cones of center c.

Exercise 2.50. The theory Tdt is complete and admits elimination of
quantifiers in the language {≤,∧}.

In fact, Tdt is ℵ0-categorical and the unique countable model is the Fräıssé
limit of finite meet-trees.

Proposition 2.51. The theory Tdt is NIP.

Proof. (Sketch) By quantifier elimination and Lemma 2.9, we only need
to check that the formulas x ≤ y, x ∧ y1 = y2, y1 ∧ y2 = x are NIP, where
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the names of the variables indicate the intended separation into variables
and parameters. We leave the verifications to the reader. a

We want to understand invariant 1-types in Tdt. We first study indis-
cernible sequences of points. So let I = (ai : i < ω) be an indiscernible
sequence of points. By inspection, we see that there are exactly 6 possibil-
ities for the EM-type of I over ∅ (the reader is strongly advised to make
drawings of the different configurations):

(0) The sequence I is constant: ai = aj , i, j < ω.

(Ia) The sequence I is increasing: ai < aj , i < j < ω.

(Ib) The sequence I is decreasing: aj < ai, i < j < ω.

(II) Fan: Elements of I are pairwise incomparable and there is some
c ∈ U such that ai ∧ aj = c for all i, j < ω.

(IIIa) Increasing comb: Elements of I are pairwise incomparable, ai∧aj ,
i < j, depends only on i and is increasing with i.

(IIIb) Decreasing comb: Elements of I are pairwise incomparable, ai∧aj ,
i < j, depends only on j and is decreasing with j.

We now study what types can appear as eventual types of those se-
quences. We treat two cases and leave the others as exercise.

(Ia) Let I = (ai : i < ω) be an increasing sequence and A any set of
parameters over which I is indiscernible. If A contains a point b greater
than all the ai’s, then I is based on A: Given some J ≡EMA I, both I and
J lie below b. As the points below b are linearly ordered, we can find some
a greater than all elements of both I and J and smaller than all elements
of A lying below b (a set which we will denote by A≤b). Then I + (a) and
J + (a) are both A-indiscernible. When this is the case, the eventual type
Ev(I/A) is axiomatized by {x < d : d ∈ A≤b} ∪ {x > d : d ≤ b, d < A≤b}.
We know that Ev(I/A) cannot be both definable and finitely satisfiable
in some small model since its Morley sequence is not totally indiscernible.
More precisely, if A≤b has a smallest element c, then Ev(I/A) is definable
over c and is not finitely satisfiable in any small model. If A≤b does not have
a smallest element, then Ev(I/A) is not definable, but is finitely satisfiable
in any model containing A (this is the same situation as for an increasing
sequence in DLO).

If A does not contain a point greater than all the ai’s, then I is not based
on A: Take a sequence J = (bi : i < ω) with b0 = a0, but b1 and a1 are
incomparable. The hypothesis on A implies that J is indiscernible over it
and has same EM-type as I. However, there is no a ∈ U which is above
both a1 and b1.

(II) If I is a fan centered at c, then it is a totally indiscernible sequence.
Its limit type lim(I) is generically stable: it is definable over c and finitely
satisfiable in any model containing c. We call it the generic of the closed
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cone centered at c. The sequence I is based on a set A if and only if it is
indiscernible over A and c ∈ dcl(A) (otherwise one can move I over A to a
fan centered on some c′ 6= c).

Exercise 2.52. Carry out a similar analysis for each of the remaining
cases: determine over which A the sequence I is based and describe the
eventual type Ev(I/A) whenever it is defined.

In particular, observe that for any indiscernible sequence I in Tdt, there
is some A such that Ev(I/A) is a definable type.

2.3.2. Stability.

Definition 2.53. We say that a formula φ(x; y) has the order property
if there are sequences (ai : i < ω) and (bi : i < ω) such that:

U |= φ(ai; bj) ⇐⇒ i ≤ j.

Observe that this property is invariant under changing φ to φopp.

Recall that if φ(x; y) is a formula, then a φ-type over A is a maximal
consistent set of formulas of the form φ(x; a) or ¬φ(x; a) with a ∈ A. A
φ-type p over A is definable if there is a formula dpφ(y; b) with b ∈ A such
that for any a ∈ A, we have p ` φ(x; a) ⇐⇒ U |= dpφ(a; b).

Definition 2.54. We say that a formula φ(x; y) has the binary tree
property if there are |y|-tuples (bf : f ∈ <ω2) such that for every f ∈ ω2,
the partial type

{φ(x; bf�i)
f(i) : i < ω}

is consistent.

Proposition 2.55. Let φ(x; y) be a formula. The following are equiva-
lent:

(i) for any infinite set |A|, |Sφ(A)| ≤ |A|;
(ii) for some infinite cardinal λ, for every set A of size λ, |Sφ(A)| ≤ |A|;
(ii) φ(x; y) does not have the order property;
(iii) φ(x; y) does not have the binary tree property;
(iv) Any φ-type over a set A is definable.

Proof. See e.g. [115, 8.2.3, 8.3.1]. a

Definition 2.56. A formula satisfying the equivalent conditions of Pro-
position 2.55 is called stable.

A theory T is stable if all formulas are.

Note that in the definition of a stable theory it does not matter if we
quantify over formulas with or without parameters since if the formula
φ(x; y, d) is unstable, then so is the formula φ(x; y ẑ). Also, it is easy to
see, using for example the order property, that a stable formula is NIP.
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Remark 2.57. It follows from the proof of Proposition 2.55 (iv) that if φ
is stable, there is a finite set d1φ(y; z), . . . , dnφ(y; z) such that any φ-type
over any set A is definable by an instance of one of the diφ’s.

The following proposition gives more details on the formula defining a
φ-type in the case where the type is finitely-satisfiable in the parameter set
A. This is always the case for example when A is a model.

Proposition 2.58. Let φ(x; y) be stable and let p ∈ Sφ(A) be a φ-type
which is finitely satisfiable in A. Then p is definable by a positive Boolean
combination of formulas of the form φ(a; y) for a ∈ A. Furthermore, the
size of this Boolean combination is bounded by an integer depending only
on φ.

Proof. See e.g. [20, Lemma 2.10]. Uniformity is not stated explicitly
there, but follows from the proof. a

Lemma 2.59. A theory T is stable if and only if all indiscernible se-
quences are totally indiscernible.

Proof. Assume that T is unstable and that φ(x; y) has the order prop-
erty as witnessed by I = (ai, bi : i < ω). Let I ′ = (a′i, b

′
i : i < ω) be

indiscernible and realize the EM-type of I. Then we have φ(a′i, b
′
j) if and

only if i ≤ j, hence I ′ is not totally indiscernible.
Conversely, assume that there is some I = (ai : i < ω) which is in-

discernible, but not totally. Then there is a formula φ(x, y) over some
parameters A such that φ(ai, aj) holds if and only if i ≤ j. Hence T is not
stable. a

Theorem 2.60. For any theory T , the following are equivalent:
(i) T is stable;
(ii) for some cardinal λ, for any model M of size λ, |S(M)| ≤ λ;
(iii) for any model M , |S(M)| ≤ |M ||T |;
(iv) every type over any model is definable.
(v) every type over any set is definable.

Proof. (i) ⇒ (v): Follows from Proposition 2.55.
(v) ⇒ (iv): Clear.
(iv)⇒ (iii): Given a formula φ(x; y), there can be at most |M | definitions

for a φ-type over M . Hence if all types are definable, there are at most
|M ||T | many types over M .

(iii) ⇒ (ii): Take λ such that λ|T | = λ.
(ii)⇒ (i): Assume that the formula φ(x; y) has the order property as

witnessed by (ai, bi : i < ω). Let λ be any cardinal. We can find a linear
order I of size λ such that its completion Ī has size > λ (Exercise 2.72). Let
I = (a′i, b

′
i : i ∈ I) be an indiscernible sequence realizing the EM-type of
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(ai, bi : i < ω) and let M be a model of size λ containing I. For any c ∈ Ī,
the partial type pc = {φ(x; b′i) : i < c} ∪ {¬φ(x; b′j) : j > c} is consistent.
Thus we obtain more than λ types over M . a

Example 2.61. Here are some classical examples of stable theories:

• Any theory of equivalence relations {Ei : i ∈ I} which eliminates
quantifiers in this language is stable.

• If R is a ring, an R-module can be seen as a structure (M ; 0,+, r)r∈R,
where r is a unary function symbol interpreted as scalar multiplica-
tion by r ∈ R. In this sense, any R-module is stable. In particular
the theory of pure abelian groups is stable (up to bi-definability, it
coincides with the theory of Z-modules).

• The theory ACF of algebraically closed fields and the theory SCFp of
separably closed fields of characteristic p are stable.

• The theory DCF of differentially closed fields is stable (see e.g. [115],
Section 3.3.7).

Definition 2.62. A partial type π(x) is said to be fully stable if we
cannot find a formula φ(x; y) and a sequence (ai, bi : i < ω) such that all
the ai’s realize π(x) and such that φ(ai; bj) holds if and only if i ≤ j.

Remark 2.63. A partial type π(x) is fully stable if and only if, for every
formula φ(x; y), there is some ψ(x) ∈ π(x) such that the formula ψ(x) ∧
φ(x; y) is stable. This follows from compactness.

We see that the definition of fully stable involves the whole structure, as
one can take the bi’s anywhere. In general this is stronger than for example
asking that all indiscernible sequences of π(x) are totally indiscernible (an
internal condition on the type). However, in NIP theories, the two coincide.

Proposition 2.64. (T is NIP) Let π(x) be a partial type. The following
are equivalent:

(i) π(x) is fully stable;
(ii) Any global extension of π(x) is generically stable;
(iii) Any indiscernible sequence of realizations of π(x) is totally indis-

cernible.

Proof. (iii) ⇔ (i): It is clear that if π(x) is fully stable, then any indis-
cernible sequence of realizations of π(x) is totally indiscernible. Conversely,
assume that π(x) is not fully stable. Then we can find a formula φ(x; y)
and an indiscernible sequence (ai, bi : i ∈ Q) such that φ(ai, bj) holds if
and only if i ≤ j. Then assuming (iii), the sequence (ai : i ∈ Q) is totally
indiscernible. However, the set {i ∈ Q :|= φ(ai, b0)} is finite and cofinite.
This contradicts Lemma 2.28.

(i) ⇒ (ii): If π(x) is fully stable, then by Remark 2.63 and Proposition
2.55, any extension of π(x) to a complete type over any set is definable.
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In particular any global extension of π(x) is definable (hence invariant).
As furthermore any indiscernible sequence of realizations of π(x) is totally
indiscernible, we conclude that any invariant type extending π(x) is gener-
ically stable.

(ii) ⇒ (iii): Let I be an indiscernible sequence of realizations of π(x).
Then the limit type lim(I) is a global invariant type extending π(x). It
is generically stable if and only if I is totally indiscernible. Hence the
result. a

2.3.3. The strict order property.

Definition 2.65. We say that a formula φ(x; y) has the strict order
property (SOP) if there exists a sequence (bi : i < ω) of |y|-tuples such
that for all i < ω,

φ(U ; bi) ( φ(U ; bi+1).

Assume that the formula ψ(x1, x2) defines a preorder (that is, is reflexive
and transitive). We say that ψ has infinite chains if we can find a sequence
(ai : i < ω) of tuples in U such that ψ(ai, ai+1) ∧ ¬ψ(ai+1, ai) holds for all
i < ω.

Observation 2.66. For a given theory T the following are equivalent:
· some formula has SOP;
· there is a formula in T defining a preorder with infinite chains;
· there is a formula in T eq defining a partial order with infinite chains.

Proof. Assume that the formula φ(x; y) has SOP as witnessed by a
sequence (bi : i < ω). Then the formula ψ(y1, y2) = ∀x(φ(x; y1)→ φ(x; y2))
defines a preorder for which the sequence (bi : i < ω) forms an infinite chain.

Now assume that the formula ψ(x1, x2) defines a preorder. Let E be the
equivalence relation given by x1Ex2 ⇐⇒ |= ψ(x1, x2)∧ψ(x2, x1). Then ψ
induces a definable partial order on the sort of E-equivalence classes which
has infinite chains if ψ does.

Finally, assume that E is a definable equivalence relation and ψ(u1, u2)
defines a partial order with infinite chains on the sort of E-equivalence
classes. Then the formula φ(x1;x2) = ψ(x̂1, x̂2) has the strict order prop-
erty, where x̂ denotes the E-class of x. a

Theorem 2.67. Assume that T is unstable. Then at least one of the
following holds:
· there is a formula φ(x; y) which has IP;
· there is a formula φ(x; y) which has SOP.

Proof. Let φ(x; y) be unstable and NIP. There is some indiscernible
sequence (ai : i < ω) and a sequence (bN : N < ω) such that φ(ai; bN ) holds
if and only if i < N . By NIP, there is some integer n and η : n → {0, 1}
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such that ∧
i<n

φ(ai; y)η(i)

is inconsistent. Starting with that formula, we change one by one instances
of ¬φ(ai; y) ∧ φ(ai+1; y) to φ(ai; y) ∧ ¬φ(ai+1; y). In the end, we arrive
at a formula of the form

∧
i<N φ(ai; y) ∧

∧
N≤i<n ¬φ(ai; y). The tuple bN

satisfies that formula. There is therefore one step in the process in which
we pass from an inconsistent formula to a consistent one. Namely, there is
some i0 < n, η0 : n→ {0, 1} such that∧

i<i0

φ(ai; y)η(i) ∧ ¬φ(ai0 ; y) ∧ φ(ai0+1; y) ∧
∧

i0+1<i<n

φ(ai; y)η(i)

is inconsistent, but∧
i<i0

φ(ai; y)η(i) ∧ φ(ai0 ; y) ∧ ¬φ(ai0+1; y) ∧
∧

i0+1<i<n

φ(ai; y)η(i)

is consistent. Write those formulas respectively as θ(ā; y) ∧ ¬φ(ai0 ; y) ∧
φ(ai0+1; y) and θ(ā; y) ∧ φ(ai0 ; y) ∧ ¬φ(ai0+1; y).

Increase the sequence (ai : i < ω) to an indiscernible sequence (ai : i ∈
Q). Then for i0 ≤ i, i′ ≤ i0 + 1, the formula θ(ā; y) ∧ φ(ai; y) ∧ ¬φ(ai′ , y)
is consistent if and only if i < i′. It follows that the formula ψ(y;x) =
θ(ā; y) ∧ φ(x; y) has the strict order property. a

Note that the formula we obtain in the proof has parameters. However
it is clear from the definition of SOP that if the formula φ(x, y; d) has SOP,
where d are parameters, then so does the formula φ(x; y ẑ).

2.3.4. Counting types. We give another characterization of NIP by
counting types. This characterization however relies on set-theoretic as-
sumptions, and will not be used later in this text.

Fix some formula φ(x; y). The stability function for φ is the function gφ
defined on cardinals by gφ(κ) = sup{|Sφ(A)| : A of size κ}. Recall that
Sφ(A) denotes the set of φ-types over A.

If φ(x; y) is stable, then for some polynomial f(X), gφ(κ) is bounded by
f(κ) for all finite or infinite κ. This follows from definability of types: Let n
and z be as in Remark 2.57, then one can take f(X) = nX |z|. Conversely,
if gφ(κ) = κ for some infinite cardinal κ, then φ is stable (Proposition 2.55).

If φ(x; y) has IP, it immediately follows from the definition that we have
gφ(κ) = 2κ for every cardinal κ. And conversely if gφ(κ) = 2κ for every
finite κ, then φ has IP.

The case of an unstable NIP formula φ(x; y) is trickier. We will see in
Chapter 6, that there is a polynomial f(X) such that for any finite cardinal
κ, we have gφ(κ) ≤ f(κ). If κ is infinite and 2κ = κ+, then as φ is unstable,
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we must have gφ(κ) = 2κ so there is no hope of separating IP from NIP by
counting types over infinite sets without extra set-theoretic assumptions.

Definition 2.68. For a cardinal λ, we define ded(λ) = sup{κ : there is
a linear order of size κ which has a dense subset of size λ}.

Proposition 2.69. Let φ(x; y) be a formula. Assume that there is some
infinite set A with |Sφ(A)| > ded(|A|), then φ(x; y) has IP.

Proof. Assume that |Sφ(A)| > ded(|A|) and that A is chosen such that
µ = |A| is minimal. Let λ = ded(|A|)+. Enumerate A as {ai : i < µ}
and for i < µ, set Ai = {aj : j < i}. For each i < µ, we then have
|Sφ(Ai)| ≤ ded(|Ai|) < λ.

Define the following sets:

Si = {p ∈ Sφ(Ai) : p has ≥ λ extensions to Sφ(A)}, for i < µ;

Sµ = {p ∈ Sφ(A) : p � Ai ∈ Si for all i < µ}.

Note that for every i < µ, as |Sφ(Ai)| < λ, we have |Sφ(Ai) \ Si| < λ and
as each type from that set has less than λ extensions to a type over A, the
cardinality of {p ∈ Sφ(A) : p � Ai /∈ Si} is less that λ. Summing over i < µ,
we see that

|Sφ(A) \ Sµ| < λ.

It follows that every type in Si has at least λ extensions to a type in Sµ.
Let S<µ =

⋃
i<µ Si and S≤µ = S<µ∪Sµ. We define a linear order on S≤µ

in the following way. For p, q ∈ S≤µ, if p ⊆ q (resp. q ⊆ p), we set p ≤ q
(resp. q ≤ p). Otherwise, let i < µ be maximal such that p � Si = q � Si.
Then set p < q if p ` ¬φ(x; ai) (which implies q ` φ(x; ai)) and p > q
otherwise. We leave it to the reader to check that this indeed defines a
linear order on S≤µ with S<µ as a dense subset.

We now show:
(∗) For all n < ω and q ∈ S<µ, there are tuples b0q, . . . , b

n−1
q ∈ A such

that for every η : n→ {0, 1}, the type q(x)∧
∧
k<n φ(x; bkq )η(k) is consistent.

This will imply that φ(x; y) has the independence property. We show (∗)
by induction on n. For n = 0, there is nothing to prove.

Assume the result is known for n, and we prove it for n+ 1. Let q ∈ Si
for some i < µ. Define Sq = {p ∈ S≤µ : p � Si = q}. Using the order
defined above, we see that Sq ∩S<µ is a dense subset of Sq. We know that
|Sq| ≥ λ, therefore by definition of ded, |Sq ∩ S<µ| > µ. It follows that
there is some i < µ such that |Sq ∩ Si| > µ. The induction hypothesis
gives, for every type p ∈ Sq ∩ Si, a tuple (b0p, . . . , b

n−1
p ). We can find two

distinct types p1, p2 ∈ Sq ∩ Si for which the corresponding tuples are the
same, equal to some (b0, . . . , bn−1). Let bn ∈ Ai be such that p1 ` φ(x; bn)
and p2 ` ¬φ(x; bn) (exchanging the roles of p1 and p2 if necessary). Then
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for every η : n + 1 → {0, 1}, the partial type q(x) ∧
∧
k≤n φ(x; bk)η(k) is

consistent. This finishes the induction step, and the proof. a
For any infinite cardinal κ, we have κ < ded(κ) ≤ 2κ (Exercise 2.72).

Hence if 2κ = κ+, then ded(κ) = 2κ and the hypothesis of the previous
proposition cannot be satisfied. However, Mitchell has shown in [83] that
if cf(κ) > ℵ0, then there is a cardinal-preserving forcing extension of the
set-theoretic universe on which ded(κ) < 2κ. In a such an extension, a
formula φ(x; y) is IP if and only if gφ(κ) = 2κ.

2.3.5. More exercises.

Exercise 2.70. (T is NIP) Let M |= T and let p be a global M -invariant
type. Let I be a Morley sequence of p over M . Assume that p � MI is
finitely satisfiable in M . Show that p is finitely satisfiable in M .

Exercise 2.71. (T is NIP) Let I be an indiscernible sequence such that
for any A over which I is based Ev(I/A) is definable. Show that I is totally
indiscernible.

Exercise 2.72. Prove that for any cardinal κ, we have κ < ded(κ) ≤ 2κ.

Exercise 2.73. 1. Let φ(x; y) be an NIP formula of VC-dimension d.
Show that we have alt(φ) ≤ 2d.

2. Give examples showing that one cannot conversely bound the VC-
dimension in terms of the alternation rank.

Exercise 2.74. (T is NIP) Let p ∈ S(M) be a definable type. Show that
p has a unique global coheir.

Exercise 2.75. (T is NIP) Let p, q be two global M -invariant types. As-
sume that p(ω)(x̄) ⊗ q(ω)(ȳ)|M = q(ω)(ȳ) ⊗ p(ω)(x̄)|M . Show that p(x) ⊗
q(y) = q(y)⊗ p(x) (as global types).

References and related subjects

The definition of NIP and most results in Section 2.1 are due to Shelah
and appeared first in [103] (see also [106, II.4]). Lemma 2.7 comes from
Poizat [93]. The characterization 2.43 also appears in that paper, but the
proof we give here is from [105]. Eventual types are defined in [94], although
the terminology was introduced by Adler in [4]. Proposition 2.11 was first
proved by Shelah using the ded(λ)-characterization and the fact that the
statement is absolute, see the discussion in [95, Chapter 12]. The proof
we give here is very close to Poizat’s approach in [95, 12.18], and was first
published by Adler in [4].

The Baldwin-Saxl theorem is from [14]. See also Poizat [96]. Proposition
2.27 was proved by Shelah in [109].
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Generically stable types are first defined by Shelah as ‘stable types’ in
[107]. They are renamed and studied systematically by Hrushovski and
Pillay in [61] and independently by Usvyatsov in [116]. This notion was
extended outside of the NIP setting by Pillay and Tanović in [92].

Stability theory is an extremely rich subject on which a large number
of papers have been written. We do not attempt to give an account of it
here, but refer the reader to classical texts such as Tent and Ziegler [115],
Marker [81], Poizat [95] for the basic theory, and Pillay [89], Baldwin [12]
and Shelah [106] for more advanced material.

Directionality measures how many coheirs a type can have. Let f(λ) be
the maximal number of coheirs that a type over a model of size λ can have.
In [68], Kaplan and Shelah show a trichotomy theorem for NIP theories:
either f is absolutely bounded (small directionality), or it grows essentially
like λ (medium directionality), or it grows like dedλ (large directionality).
Examples of each type are given. Results about extracting indiscernible
sequences in theories of small or medium directionality appear in Shelah
[110].

Little is known in general about Algebraic structures with NIP.
All known NIP fields are either algebraically closed, separably closed, real
closed, or admit a non-trivial definable Henselian valuation. A full clas-
sification seems out of reach for now; in fact even the stable case is not
known. In [66], Kaplan, Scanlon and Wagner show that NIP fields have
finitely many Artin-Schreier extensions, along with results about valued
fields.

Some theorems about definable groups related to the Baldwin-Saxl the-
orem will be presented in Chapter 8. A systematic study of such ‘chain
conditions’ can be found in Kaplan and Shelah [69]. Most results there re-
quire stronger conditions than NIP (in particular strongly dependent which
we will define in Chapter 4). In a completely different direction, Macpher-
son and Tent have studied pseudofinite NIP groups in [80].





CHAPTER 3

HONEST DEFINITIONS AND APPLICATIONS

A fundamental characteristic property of stable theories is definability
of types, namely the property that if A ⊂ U is any subset (big or small),
and φ(x; b) ∈ L(U), a formula, then the set φ(A; b) coincides with the
trace on A of some A-definable set: there is ψ(x; d) ∈ L(A) such that
φ(A; b) = ψ(A; d). In other words, we can internalize the parameters of
φ inside A (up to changing the formula). In this chapter, we show that
a weak form of definability of types holds in NIP theories. We do not
manage to find a definition of φ(A; b) with parameters inside A, but we do
with parameters in some elementary extension A′ of A. Furthermore, the
definition satisfies a property called honesty which says that, on A′, the
new formula lies inside the original one.

Associated with definability of types are so-called reflection principles
stating that if some (e.g., type-definable) set A is internally simple in some
sense, then it is also externally simple: its interactions with the rest of the
structure cannot be too complicated. We obtain some statements of this
kind using honest definitions. Note that the characteristic property 2.7 of
NIP is an example of such a phenomenon. It says that if a sequence I
is indiscernible (internal simplicity), then the intersection of I with some
unary U-definable set is a finite union of convex subsets of I (external
simplicity). We will in fact extend this result to definable sets of higher
arity and conclude that when we add parameters to the base, we can shrink
an indiscernible sequence to a subsequence which remains indiscernible over
the additional parameters.

3.1. Stable embeddedness and induced structure

3.1.1. Stable embeddedness.

Definition 3.1. Let π(x) be a partial unary type over ∅. We say that
π(x) is stably embedded if for every formula φ(x1, . . . , xn; b), b ∈ U , there

39
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is a formula ψ(x1, . . . , xn; z) and d ∈ π(U) such that φ(x1, . . . , xn; b) and
ψ(x1, . . . , xn; d) agree on tuples of realizations of π(x).

The following observation is a standard compactness argument.

Observation 3.2. If π(x) is stably embedded, then one can choose the
formula ψ(x1, . . . , xn; z) in a way that it depends only on φ(x1, . . . , xn; y)
and not on the parameters b.

It will be convenient for us to generalize the definition of stable embed-
dedness to arbitrary subsets of U . However, we have to be careful as the
previous observation may not hold any more, and thus we will distinguish
between weak and uniform stable embeddedness.

Definition 3.3. Let A ⊆ U be any subset (big or small). We say that
A is weakly stably embedded (in U) if given any formula φ(x1, . . . , xn; y)
and b ∈ U , there is some ψ(x1, . . . , xn; z) and d ∈ A such that for every
a ∈ An:

|= φ(a; b) ⇐⇒ |= ψ(a; d).

We say that A is uniformly stably embedded (or just stably embedded) if
the formula ψ(x1, . . . , xn; z) depends only on φ(x1, . . . , xn; y) and not on
the parameters b.

ByA being “big or small”, we mean that there is no cardinality restriction
on A: it could be a small subset, a definable set, a type-definable set etc.

Example 3.4. Let M = (R;≤), seen as a model of DLO. Then M is (uni-
formly) stably embedded in U .

More generally, a small set A is weakly stably embedded in U if and only
if all types over A are definable. The theory T is stable if and only if any set
A is weakly stably embedded if and only if any set A is stably embedded.

Example 3.5. In the theory ACVF of algebraically closed valued fields,
both the residue field and the value group are stably embedded. (See
Section A.2.)

3.1.2. Induced structure. Let A ⊆ U be a set big or small (as above,
the relevant cases are: A is a small set, A is a definable set or A is a
type-definable set). We would like to consider A as a structure in its own
right.

Definition 3.6. Let A ⊆ U be any subset and let B ⊂ U be a small
set of parameters. We define Aind(B) to be the structure in the language
LB = {Rφ(x̄)(x̄) : φ(x̄) ∈ L(B)} whose universe is A and where each Rφ(x̄)
is interpreted the obvious way: for every ā ∈ A, Aind(B) |= Rφ(ā) ⇐⇒
U |= φ(ā).
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For an arbitrary set A, the move from seeing A as a subset of U to seeing
it as an independent structure is often unnatural. In particular, even if A
is stably-embedded in U , the structure Aind(∅) may be intractable because
of quantifiers now ranging over A. In general, the structure Aind(B) is
meaningful only if A has some extra properties (notably if A is a model or
a definable set) or if we only pay attention to quantifier-free formulas.

Example 3.7. If D = φ(U) is a B-definable set, then the structure Dind(B)

eliminates quantifiers: The formula ∃x(Rψ(x, y)) is equivalent to Rψ′(y)
where ψ′(y) = ∃x(φ(x) ∧ ψ(x; y)). In particular Dind(B) is NIP (resp.
stable) if T is.

If D is a ∅-definable set, then D is stably embedded if and only if Dind(∅)
has the same definable sets as Dind(B), for any B ⊂ U .

If M ≺ U is a model, then Mind(∅) is just an expansion by definitions of
the structure M . However, if we replace ∅ by some B ⊂ U not included in
M , we might get new definable sets.

Definition 3.8. An externally definable subset of M is a subset D ⊆
Mk of the form φ(M ; b) for some b ∈ U .

The formula φ(x; b) is called an external definition of D.

In a stable theory, any externally definable subset of a model M is ac-
tually definable. An important intuition of Shelah is that in NIP theories,
externally definable sets are well-behaved and one should consider them
alongside definable sets. Contemplate for example the difference between
the following two situations:
· Let (M,R) be a model of the random graph. Then any subset of M (in

dimension 1) is externally definable.
· Let (M,≤) be a model of DLO, then externally definable sets in dimen-

sion 1 are exactly the finite unions of convex subsets of M .

Definition 3.9. Let M ≺ N , N is |M |+-saturated. Then Mind(N) is

called the Shelah expansion of M and is denoted by MSh.

Formally, MSh depends on the choice of N : taking different N yields
structures in different languages. However all those structures have the
same definable sets. This justifies talking about the Shelah expansion.
Note also that in MSh all elements of M are in dcl(∅) since any singleton
is a definable set.

We will say more in Section 3.3 about the Shelah expansion of an NIP
structure.

Our goal in this chapter is to understand the quantifier-free structure of
Aind(B) in terms of that of Aind(∅). As we have seen, if T is stable, then
A is stably embedded and the two structures are essentially equal. If T
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is NIP we will show that the quantifier-free definable sets of Aind(B) are
quantifier-free definable in the Shelah expansion of Aind(∅).

Exercise 3.10. Let M ≺ U and let N̂ be an elementary extension of MSh

with L-reduct N ≺ U . Show that up to a renaming of the language, N̂ is
equal to Nind(B) for some set B ⊂ U of parameters.

Observe that in general N̂ is a proper reduct of NSh.

3.1.3. Pairs. Another way to single out a subset A from U is to name
the set A by a new unary predicate. This creates what we will call a pair.

More precisely, let M be an L structure, A ⊆M . Let LP = L∪ {P(x)},
where P(x) is a new unary relation symbol. We will sometimes write x ∈ P
instead of P(x). The pair (M,A) is the LP-structure whose L-reduct is
M , and where P is interpreted by: P(a) ⇐⇒ a ∈ A.

The structure (M,A) is richer than M and Aind(M) in the sense that both
are interpretable in it. In many cases, one actually seeks to understand the
pair (M,A) in terms of the two simpler structures M and Aind(M) (or even
Aind(∅)). However, for us, the pair construction will be just a technical tool
and we will not study the properties of the pair per se.

Exercise 3.11. Let A ⊆ M , where M is |A|+-saturated. Then A is uni-
formly stably embedded if and only if for any elementary extension (M ′, A′)
of the pair (M,A) and any m ∈M ′, tpL(m/A′) is definable.

Exercise 3.12. Let I ⊂ M be an indiscernible sequence. Let (M ′, I ′) be
an elementary extension of the pair (M, I). Then there is an ordering on
I ′ making it into an indiscernible sequence.

3.2. Honest definitions

We now state the main theorem of this chapter.

Theorem 3.13. Let M |= T , A ⊆ M , φ(x; y) ∈ L and b ∈ M a |y|-
tuple. Assume that φ(x; y) is NIP. Then there is an elementary extension
(M,A) ≺ (M ′, A′), a formula ψ(x; z) ∈ L and a tuple d of elements of A′

such that
φ(A; b) ⊆ ψ(A′; d) ⊆ φ(A′; b).

Remark 3.14. The conclusion of the theorem is equivalent to saying that
there is a formula ψ(x; z) such that for any finite A0 ⊆ φ(A; b), there is a
tuple d of elements of A such that A0 ⊆ ψ(A; d) ⊆ φ(A; b).

Indeed, if this is true, then the theorem follows by compactness in the
structure (M,A). Conversely, if the conclusion of the theorem holds and
A0 ⊆ A is finite, then the formula ψ(x; d) given by the theorem satisfies
A0 ⊆ ψ(A′; d) and (M ′, A′) |= ∀x ∈ P(ψ(x; d)→ φ(x; b)). By elementarity
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of the extension (M,A) ≺ (M ′, A′), we can find some d′ ∈ A such that
ψ(x; d′) has the same two properties.

Example 3.15. Take T to be DLO, M = (R, <) and A = Q. Let φ(x; b) be

x ≤ b, where b =
√

2, say, and let ψ(x; z) = x ≤ z. We see that for any finite
A0 ⊂ φ(A; b), there is some point d ∈ A such that A0 ⊆ ψ(A; d) ⊆ φ(A; b):

Take d to be a rational smaller than
√

2, but greater than all the elements
of A0.

Proof of Theorem 3.13. Let SA ⊂ Sx(U) be the set of global types
(in the variable x), finitely satisfiable in A. It is a closed subset of Sx(U),
and therefore compact. Let (M ′, A′) � (M,A) be a |M |+-saturated ele-
mentary extension. Let p ∈ SA. We try to build a sequence (ai : i < ω)
such that for all i we have:
· ai ∈ A′;
· ai |= p � Aa<i;
· |= ¬(φ(ai; b)↔ φ(ai+1; b)).
If we succeed, then the sequence (ai : i < ω) is a Morley sequence of p

over A and as such it is L-indiscernible. Then the third condition implies
that φ has infinite alternation rank, contradicting NIP. We conclude that
the construction must stop at some finite stage. So assume we have built
(ai : i < n), and we cannot find a point an. Let εp ∈ {0, 1} be such that
p ` φ(x; b)εp . We first argue that φ(an−1; b)εp holds. The type p is finitely
satisfiable in A, therefore for every subset B ⊂ M ′ of size ≤ |M |, the LP-
type p|B(x) ∪ {P(x)} is finitely satisfiable in A and thus realized in A′.
Taking B = Aba<n we see that if we had |= ¬φ(an−1; b)εp , then we could
take an realizing p|B(x) ∪ {P(x)} and obtain an extra alternation.

By compactness, there is a formula θp(x) ∈ L(Aa<n) such that p ` θp(x)
and (M ′, A′) |= ∀x ∈ P(θp(x)→ φ(x; b)εp). As SA is compact, we can find
a finite set S0 ⊂ SA such that

⋃
p∈S0

θp(x) covers SA. Set

ψ(x) =
∨
p∈S0
εp=1

θp(x).

Write ψ(x) = ψ(x; d) where d ∈ A′ are the parameters appearing in ψ. We
show that ψ has the required properties. First, for all types p ∈ SA such
that p ` φ(x; b), we have p ` ψ(x; d). In particular, this is true for realized
types. It follows that φ(A; b) ⊆ ψ(A; d) ⊆ ψ(A′; d). Furthermore, we have
(M ′, A′) |= ∀x ∈ P(ψ(x; d)→ φ(x; b)), therefore ψ(A′, d) ⊆ φ(A′, b). a

Definition 3.16. We say that the formula ψ(x; d) in the previous the-
orem is an honest definition of φ(x; b) over A.

The following corollary is simply the weakening of the theorem obtained
by removing in the conclusion the “honesty” hypothesis ψ(A′; d) ⊆ φ(A′; b).
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We state it separately because it might seem more natural and because it
is sufficient for some applications.

Corollary 3.17. Let M |= T , A ⊂ M , φ(x; y) ∈ L and b ∈ M |y|. As-
sume that φ(x; y) is NIP. Then there is an elementary extension (M,A) ≺
(M ′, A′), a formula ψ(x; z) ∈ L and a |z|-tuple d ∈ A′ such that

φ(A; b) = ψ(A; d).

Corollary 3.18. (T is NIP) Let M |= T and A ⊆M . Let b ∈M be a
finite tuple. Let (M,A) ≺ (M ′, A′) be an |M |+-saturated extension. Then
there is A0 ⊆ A′ of size at most |T | such that for any two tuples a and a′

from A we have:

a ≡A0 a
′ =⇒ a ≡b a′.

Proof. For any formula φ(x; y), |y| = |b|, let ψφ(x; dφ) be an honest
definition of φ(x; b) over A where dφ ∈ A′. Take A0 to contain the union
of the parameters dφ for φ ranging over all formulas. a

Proposition 3.19. (T is NIP) Let A ⊆M . Assume that in Aind(∅), the
quantifier-free formulas are stable. Then A is (uniformly) stably embedded.

Proof. Let φ(x; b) be a formula with parameters in M . By Corollary
3.17, there is (M ′, A′) � (M,A) and ψ(x; d) ∈ L(A′) such that φ(A; b) =
ψ(A; d). Note that we have Aind(∅) ≺ A′ind(∅) and ψ(A; d) = Rψ(x;z)(A; d).

We work inside the structure A′ind(∅). The formula Rψ(x;z)(x; z) is stable

and by Proposition 2.58 the set Rψ(x;z)(A; d) is definable by a Boolean com-
bination of formulas of the form Rψ(x; c), c ∈ A. This translates into some
formula θ(x; c̄) ∈ L(A) such that θ(A; c̄) = φ(A; d) as required. Uniformity
follows from uniformity in 2.58. a

Exercise 3.20. (T is NIP) Let D ⊆ M be any subset. Let φ(x, y) be
a ∅-definable formula which defines a total order < on D. Assume that
Dind(∅) is o-minimal when equipped with that ordering. Then any subset
of D definable in M is a finite union of <-convex sets in D.

3.3. Naming a submodel

Assumption: Throughout this section, we assume that T is NIP.

Proposition 3.21. Let D ⊆ Mk be an externally definable set. Then
there is an external definition φ(x; b) ∈ L(U) of D with the following prop-
erty:

(∗) For every formula θ(x; a) ∈ L(M), |x| = k, such that D ⊆ θ(M ; a),
we have U |= φ(x; b)→ θ(x; a).
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Proof. Let M ≺ N and φ0(x; b0) ∈ L(N) an external definition of D.
Theorem 3.13 applied to the pair (N,M) and the formula φ0(x; b0) yields
an elementary extension (N,M) ≺ (N ′,M ′) and a formula φ(x; b) ∈ L(M ′)
such that D = φ(M ; b) and φ(M ′; b) ⊆ φ0(M ′; b0). Let θ(x; a) ∈ L(M) be
a formula such that D ⊆ θ(M ; a). Then (N,M) |= ∀x ∈ P(φ0(x; b0) →
θ(x; a)). Therefore the same sentence holds in the pair (N ′,M ′). We
conclude that φ(M ′; b) ⊆ φ0(M ′; b0) ⊆ θ(M ′; a). As M ′ is a model and
b ∈M ′, we have M ′ |= φ(x; b)→ θ(x; a) as required. a

Example 3.22. Let T be DLO, and let M |= T . Let a ∈ M and let
b ∈ U such that b > a, but b < m for any a < m ∈ M . Consider
the formula φ(x; b) = x > b. Then φ(M ; b) coincides with the definable set
x > a. The formula φ(x; b) has the property (∗) of the previous proposition.
However the formula ¬φ(x; b) which defines on M the set x ≤ a does
not. Indeed letting θ(x; a) = x ≤ a, we have ¬φ(M ; b) ⊆ θ(M ; a), but
U 2 ¬φ(x; b)→ θ(x; a).

Recall the construction of the Shelah expansion presented at the be-
ginning of this chapter. We will now show one way in which externally
definable sets are well behaved in NIP theories.

Proposition 3.23. The structure MSh admits elimination of quanti-
fiers.

Proof. We have to show that the projection of an externally definable
set is again externally definable. Let D ⊆Mk1+k2 be externally definable.
Let φ(x1, x2; b) ∈ L(U) be an external definition of D given by Propo-
sition 3.21 (where |x1| = k1 and |x2| = k2). Let π denote the projec-
tion Mk1+k2 → Mk1 and set ψ(x1; b) = ∃x2φ(x1, x2; b). We claim that
π(D) = ψ(M ; b).

It is clear that π(D) ⊆ ψ(M ; b). To show the other inclusion, take
some a ∈ Mk1 \ π(D). Let ζ(x1, x2) = (x1 6= a). Then D ⊆ ζ(M). By
hypothesis on φ(x1, x2; b), we have |= φ(x1, x2; b) → ζ(x1, x2), therefore
|= ψ(x1; b)→ x1 6= a. It follows that a /∈ ψ(M ; b) as required. a

It follows that we have (MSh)Sh ∼= MSh, in the sense that the former
is an expansion by definition of the latter. In other words, MSh is weakly
stably embedded in a monster model of its theory. However, it is not in
general uniformly stably embedded.

Corollary 3.24. The structure MSh is NIP.

Proof. This follows easily from Proposition 3.23: Let N �M be |M |+-
saturated and construct MSh using the model N so that MSh has quantifier
elimination in the language {Rφ(x; y) : φ ∈ L(N)}. By Lemma 2.9, we only
need to check that each formula Rφ(x; y) is NIP, but such a formula cannot
have alternation rank greater than that of φ(x; y). a
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Remark 3.25. There are structures with IP which satisfy Proposition
3.23. For example if M is a model of arithmetic, than any subset of any
Mk is externally definable.

One might wonder what happens if instead of naming all externally de-
finable sets of M , we name for example only those definable from a given
tuple in U . It turns out that quantifier elimination may fail, as the following
example shows.

Example 3.26. Let (Q; 0,+, <) be the additive group of rational numbers;
a model of the complete theory of ordered Q-vector spaces. It is an o-
minimal structure. In an elementary extension, find some ε > 0 which is
infinitesimal and let M = Q(ε); the vector space generated by Q and ε. Let
p ∈ S1(M) be a type of an element falling into the cut corresponding to an

irrational number (say
√

2) and take a |= p. We show that Mind(Ma) does
not admit elimination of quantifiers.

Consider the set D = {b ∈ M : ¬(∃c1, c2 ∈ M)(c1 < a ∧ c2 > a ∧ b =
c2 − c1)}. Then D is definable in Mind(Ma) and corresponds to the set
of infinitesimal elements. However, D is not definable without quantifiers
(because of o-minimality and the fact that there is no new infinitesimal in
Q(ε, a)).

It is an open problem to find general sufficient conditions which ensure
that the structure Mind(A) eliminates quantifiers. In particular it is not
known whether Mind(I) eliminates quantifiers when I is a Morley sequence
of an M -invariant type p. A partial result is obtained in [114, Theorem
3.36] where a positive answer is obtained when p(ω) is both an heir and a
coheir of its restriction to M .

Exercise 3.27. Show that Proposition 3.23 fails for the random graph.

Exercise 3.28. Show that there is a canonical homeomorphism between
the space of types over ∅ in the structure MSh and the set of L-types over
U which are finitely satisfiable in M (seen as a subspace of S(U)).

Exercise 3.29. Let M |= T , φ(x, y; b) ∈ L(U). Assume that φ(M ; b) is
the graph of a function. Then there is a formula ψ(x, y; d) ∈ L(U) such
that φ(M ; b) = ψ(M ; d) and U |= (∀x)(∃≤1y)ψ(x, y; d) (so ψ(U ; d) is the
graph of a partial function).

3.4. Shrinking of indiscernible sequences

Assumption: Throughout this section, we assume that T is NIP.

We are interested now in the case where A = I is an indiscernible se-
quence. We study the trace on In of definable sets in n variables. The
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case n = 1 has already been dealt with in Chapter 2: the trace on I of a
definable set is a finite union of <I -convex sets.

In particular, given some tuple b of parameters and an indiscernible se-
quence I, we are interested in ways to shrink the sequence I to a subse-
quence I ′ which is indiscernible over b. We have already seen during the
proof of Proposition 2.11 that if the sequence I has large cofinality, then
some end segment of it is indiscernible over b. We will generalize this re-
sult by showing that I can be broken into at most 2|T |+|b| segments, each
indiscernible over b. Moreover, this remains true working over any base set
of parameters or with a sequence of infinite tuples.

We will give several statements. Later results generalize previous ones,
so there is some redundancy.

Definition 3.30. Let (I,≤) be a linear order. A convex equivalence
relation ∼ on I is an equivalence relation all of whose classes are convex
sets. The equivalence relation ∼ is said to be finite if it has finitely many
classes.

If ∼ is a convex equivalence relation on (I,≤), we extend ∼ to cartesian
powers of I: if ī = (i1, . . . , in), j̄ = (j1, . . . , jn) ∈ In, then we set ī ∼ j̄ if
the tuples ī and j̄ have the quantifier-free type in the structure (I;≤) and
ik ∼ jk for all k.

For any family c̄ of elements of I, we define the convex equivalence re-
lation ∼c̄ by i ∼c̄ j if i and j have the same quantifier-free type in the
structure (I;≤, c̄) (elements of c̄ are named by constants).

We say that a convex equivalence relation ∼ is essentially of size κ if it
is the intersection of κ many finite convex equivalence relations. Note that
a relation essentially of size κ has at most 2κ many classes.

Remark 3.31. If I is a linear order, let J = compl(I) be the completion
of I. Let ∼ be any convex equivalence relation on I essentially of size κ.
Then there is c̄ ⊆ J of size ≤ κ such that the restriction of ∼c̄ to I refines
∼ and for every i, j ∈ I \ c̄, we have i ∼ j ⇐⇒ i ∼c̄ j.

If ∼ is finite, then c̄ can be taken to be finite.

Proposition 3.32. Let I = (ai : i ∈ I) be an indiscernible sequence.
Let φ(x1, . . . , xn; b) ∈ L(U) be a formula. Then there is a finite convex
equivalence relation ∼ on I such that for all ī, j̄ ∈ In, we have

ī ∼ j̄ ⇒ φ(aī; b)↔ φ(aj̄ ; b).

Proof. Without loss of generality, and for simplicity of notations, we
assume that I is a sequence of singletons (since we can work in T eq for
example).

Let M be a model containing I and b. We expand the pair (M, I) by
adding a binary predicate E(x, y) interpreted as E(M) = {(ai, aj) : i ≤I j}.
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Let (M ′, I ′) be an elementary extension of (M, I) which is |M |+-saturated.
Then we can write I ′ = (ai : i ∈ I′) where I′ ⊃ I is ordered such that
i <I′ j if and only if M ′ |= E(ai, aj). By elementarity of the extension, I ′

is an L-indiscernible sequence.
By Corollary 3.17, there is a formula ψ(x1, . . . , xn; d) ∈ L(I ′) such that

φ(I; b) = ψ(I; d). Write d = (ac1 , . . . , ack) and c̄ = (c1, . . . , ck). As I ′ is
indiscernible, the truth value of ψ(aī; d) depends only on the quantifier-free
type qftp(̄i/c̄) in (I′,≤), hence on the class of ī modulo ∼c̄. Now define ∼
to be the restriction of ∼c̄ to I. a

Theorem 3.33. Let A be a small set of parameters and I = (ai : i ∈ I)
an A-indiscernible sequence. Let φ(x̄, y; b) ∈ L(U) with x̄ = (x1, . . . , xn).
Then there is a finite convex equivalence relation ∼ on I such that for
ī, j̄ ∈ In, we have

ī ∼ j̄ ⇒ ∀e ∈ A, φ(aī, e; b)↔ φ(aj̄ , e; b).

Proof. The proof is similar to that of Proposition 3.32, except that
instead of naming the sequence I, we name the product A× I (as a subset
of Meq).

Take M a model containing A, I and b, and consider the pair (M,A ×
I). By Corollary 3.17, there is an elementary extension (M,A × I) ≺
(M ′, A′ × I ′) and a formula ψ(x1, . . . , xn, y; a, d), a ∈ A′, d ∈ I ′ such that
φ(In × A; b) = ψ(In × A; a, d). By the same argument as in the previous
proposition, we may assume that I ′ = (ai : i ∈ I′) with I′ ⊃ I is L-
indiscernible over A′. Write d = (ac1 , . . . , ack). One then checks that
the relation ∼ on I defined as the restriction of ∼c̄ to I′ has the required
property. a

Remark 3.34. It follows from the theorem and Lemma 3.31 that if I is
ordered by a complete order and if there is a formula θ(x, y) ∈ L(I) which
orders I, then I is stably embedded.

(Even if I is not totally indiscernible, such a formula θ(x, y) may not
exist. Take for example a circular order (M ;R(x, y, z)), where R(x, y, z) is
the betweenness relation and an indiscernible sequence I = (ai : i ∈ Q) of
points from it. Then the involution ak 7→ a−k is elementary, so we cannot
define the order on I without extra parameters. This is the only possible
obstruction; see [57].)

Corollary 3.35. Let A be a small set of parameters and I = (ai : i ∈ I)
an A-indiscernible sequence of finite tuples. Let b ∈ U be a finite tuple.
Then there is a convex equivalence relation ∼ on I essentially of size |T |
such that for any φ(x̄, y; z) ∈ L with x̄ = (x1, . . . , xn) for any ī, j̄ ∈ In, we
have

ī ∼ j̄ =⇒ ∀e ∈ A, φ(aī, e; b)↔ φ(aj̄ , e; b).
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We obtain what we announced in the introduction of this section: for
any (finite or infinite) tuple b and A-indiscernible sequence I, the sequence
I can be broken into at most 2|T |+|b| convex segments, each indiscernible
over Ab. To see this, let ∼ be the intersection of all the convex equivalence
relations given by Corollary 3.35 for finite subtuples of b and break I into
∼-equivalence classes.

It turns out that this result is also true when the sequence I is composed
of tuples of infinite length, although we need to redo the proof in that case.

Theorem 3.36. Let A be a small set of parameters and I = (āi : i ∈ I)
an A-indiscernible sequence of tuples of arbitrary length. Let b ∈ U be a
finite tuple. Then there is a convex equivalence relation ∼ on I essentially
of size |T | such that for any φ(x̄, y; z) ∈ L with x̄ = (x̄1, . . . , x̄n) for any
ī, j̄ ∈ In, we have

ī ∼ j̄ =⇒ ∀e ∈ A, φ(āī, e; b)↔ φ(āj̄ , e; b).

Proof. Let M be a model containing A, I and b. Write āi = (aji :
j < α). Let P(x) and A(x) be two new unary predicates, and E(x, y),
F(x, y), R(x, y) be new binary predicates. Set L′ = L ∪ {P,A,E,F,R}
and expand M into an L′-structure (M ;P,A,E, F,R) by setting P(M) =

{aji : j < α, i ∈ I} ∪ A, A(M) = A, E(M) = {(aji , a
j′

i ) : i ∈ I, j, j′ < α},
F(M) = {(aji , a

j
i′) : i, i′ ∈ I, j < α} and R(M) = {(aji , a

j′

i′ ) : i < i′ ∈
I, j, j′ < α}.

Let (M ;P,A,E, F,R) ≺ (M ′;P ′, A′, E′, F ′, R′) be some |M |+-saturated
elementary extension. Using the extra structure given by E, F and R, we
can write P ′ = A′ ∪ {aji : i ∈ I′, j < β} for some β ≥ α and I′ ⊃ I such

that the sequence ((aji )j<β : i ∈ I′) is indiscernible over A′. By Corollary
3.18, there is some set P0 ⊂ P ′ of size at most |T | such that for any two
tuples a, a′ ∈ P , we have

a ≡P0
a′ =⇒ a ≡b a′.

Let c̄ ⊂ I′ be the family of elements c ∈ I′ for which there is j < β such
that ajc ∈ P0. The equivalence relation ∼c̄ on I′ is a convex equivalence
relation essentially of size |T |. Let ∼ be its restriction to I. We check
that ∼ has the required property: let ī, j̄ ∈ In, be ∼-equivalent and let
e ∈ A. Set a = aī ê and a′ = aj̄ ê. Then as the sequence (āi : i ∈ I′) is
indiscernible over e, we have a ≡P0

a′ and hence a ≡b a′ as required.
a

Exercise 3.37 (Critical points). Let I = (ai : i ∈ I) be an A-indiscernible
sequence of finite tuples. Assume that the order I is dense complete without
end points. Let b ∈ U be a finite tuple. Let φ(x1, . . . , xn, y; z) be a formula
with |xk| = |ai| and |z| = |b|. Call an index i ∈ I φ-critical if there is
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k ∈ {1, . . . , n}, some e ∈ A and indices i1 < · · · < in in I such that in any
open interval around i we can find i′k, i

′′
k satisfying:

|= φ(ai1 , . . . , ai′k , . . . , ain , e; b) ∧ ¬φ(ai1 , . . . , ai′′k , . . . , ain , e; b).

Let c̄ denote the set of φ-critical points and define ∼c̄ as usual.

1. For any two tuples ī, j̄ ∈ In and any e ∈ A, we have

(4) ī ∼c̄ j̄ =⇒ φ(aī, e; b)↔ φ(aj̄ , e; b).

2. For any convex equivalence relation ∼ satisfying (4), if i, j ∈ I are
not critical points, then i ∼ j =⇒ i ∼c̄ j.

3. There are finitely many φ-critical points.
4. Let M be a model containing I, A and b. The relation ∼c̄ is Ab-

definable in the pair (M, I) and each φ-critical point is in dcl(Ab) as
read in that structure.

Exercise 3.38. Let I = (ai : i ∈ I) be indiscernible, where (I;≤) is a
saturated model of DLO. The group of elementary automorphisms of I
naturally acts on the space of types over I. Show that the number of orbits
under this action is absolutely bounded in terms of |T |.
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CHAPTER 4

STRONG DEPENDENCE AND DP-RANKS

We introduce the notion of dp-rank, which is similar to weight in stable
theories. It is a measure of the complexity of a type in an NIP theory.
A theory is strongly dependent if all types have dp-rank < ℵ0. In such
theories, shrinking of indiscernibles can be done at once for all formulas,
using only finitely many cuts.

We assume NIP throughout this chapter.

4.1. Mutually indiscernible sequences

Definition 4.1. Let (It : t ∈ X) be a family of sequences and A a
set of parameters. We say that the sequences (It : t ∈ X) are mutually
indiscernible over A if for each t ∈ X, the sequence It is indiscernible over
A ∪ I6=t.

Lemma 4.2. Let (It : t < α) be a family of sequences and A a set of pa-
rameters. Inductively construct I ′t realizing the EM-type of It over AI ′<tI>t
and indiscernible over that set. Then the sequences (I ′t : t < α) are mutually
indiscernible.

Proof. Fix t < α. By construction I ′t is indiscernible over At :=
AI>tI

′
<t. We have to check that as we replace one by one the sequences

Is, s > t by I ′s in At, the sequence I ′t remains indiscernible over the result-
ing set. If some formula with parameters in I ′s ∪ AI>sI ′<s,6=t can be used

to contradict indiscernibility of I ′t, then by the EM-type assumption, such
parameters can also be found in Is ∪AI>sI ′<s,6=t; contradiction. a

Example 4.3. Let I = (ai : i ∈ I) be an A-indiscernible sequence. Let
(It : t ∈ X) be a family of pairwise disjoint convex subsets of I. For t ∈ X,
let It = (ai : i ∈ It). Then the sequences (It : t ∈ X) are mutually
indiscernible over A ∪ {ai : i ∈ I \

⋃
t∈X It}.

Example 4.4. Let (pt : t < α) be a family of global A-invariant types.
Build a family (It : t < α) of sequences such that for each t < α, It is a
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Morley sequence of pt over A∪{Il : l < t}. Then the sequences (It : t < α)
are mutually indiscernible over A.

[ Proof : Observe that if I is indiscernible over A, p is a global A-invariant
type and a |= p � AI, then I is indiscernible over Aa. This is immediate by
invariance of p. In particular it holds if a realizes a Morley sequence of p over
AI. More generally, if the sequences (It : t < β) are mutually indiscernible
over A, then they remain so over Aa where a |= p � A ∪ {It : t < β}. Thus
the result follows by induction. ]

Example 4.5. Let (pt : t < α) be a family of global A-invariant types
such that pt(x) ⊗ ps(y) = ps(y) ⊗ pt(x) for any t, s < α, t 6= s. Build
an array (atk : t < α, k < ω) such that atk |= pt � A ∪ {asl : (l < k) or
(l = k and s < t)}. For t < α, define It = (atk : k < ω). Note that it is a
Morley sequence of pt over A. Then the sequences (It : t < α) are mutually
indiscernible over A.

[ Proof : We show that for each t < α, It is a Morley sequence of pt over
I6=t. Let n < ω and pick pairs

(k0, t0) > · · · > (kn−1, tn−1) ∈ ω × α,
where ω × α is ordered lexicographically. Let c < n be minimal such that
tc = t (we assume such a c exists). We have

at0k0
ˆ · · · âtn−1

kn−1
|= pt0(x0)⊗ · · · ⊗ ptn−1

(xn−1)|A.

As the type ptc commutes with ptm for m < c, we have

at0k0
ˆ · · · âtn−1

kn−1
|= ptc(xc)⊗ pt0(x0)⊗ · · · ⊗ p̂tc(xc)⊗ · · · ⊗ ptn−1

(xn−1)|A.

Where p̂tc(xc) means that this term is omitted. Therefore atckc |= ptc �

A ∪ {atmkm : m 6= c}. It follows that the sequence It is a Morley sequence of

pt over A ∪ {Is : s 6= t} and we conclude as in the previous example. ]

Exercise 4.6. Let (It : t ∈ X) be a family of mutually indiscernible se-
quences. For t ∈ X, let pt = lim(It). Then for t, s ∈ X, t 6= s, the types pt
and ps commute (i.e., pt(x)⊗ ps(y) = ps(y)⊗ pt(x)).

Remark 4.7. Let (It : t ∈ X) be a family of sequences, with It = (ati :
i ∈ It). Assume that the sequences (It : t ∈ X) are mutually indiscernible
over A. Let J be a linearly ordered set, and for t ∈ X, let σt : J → It
be an increasing embedding. Then the sequence ((atσt(i))t∈X : i ∈ J) is

indiscernible over A.

Proposition 4.8. Let (It : t ∈ X) be a family of sequences mutually
indiscernible over A. Let b ∈ U be a finite tuple. Then there is a set
Xb ⊆ X of size at most |T | such that the sequences (It : t ∈ X \ Xb) are
mutually indiscernible over Ab.
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Proof. For simplicity assume that the sequences It are sequences of
finite tuples. (The case of infinite tuples can be taken care of as in the
proof of Theorem 3.36). By working in Meq, we may assume that they
are sequences of singletons. Write It = (ati : i ∈ It). Let P(x) and A(x)
be two new unary predicates, and R(x, y) a new binary predicate. Let
L′ = L ∪ {P,A,R}. We define an L′-expansion (M,P,A,R) of M by
interpreting P(x) as the set P = {ati : t ∈ X, i ∈ It} ∪ A, A(x) as the set
A, R(x, y) as the set R = {(ati, ati′) : t ∈ X, i < i′ ∈ It}.

Let (M,P,A,R) ≺ (M ′, P ′, A′, R′) be some |M |+-saturated elementary
extension. Using the extra predicates added to the language, we see that
there is some X ′ ⊇ X and sets I′t for t ∈ X ′, with It ⊆ I′t when t ∈ X such
that P ′ can be written as P ′ = A′ ∪ {ati : t ∈ X ′, i ∈ I′t} and such that the
sequences (I ′t = (ati : i ∈ I′t) : t ∈ X ′) are mutually indiscernible over A′.

By Corollary 3.18, there is some P0 ⊂ P ′ of size at most |T | such that
for any finite tuples a, a′ ∈ P we have a ≡P0 a

′ =⇒ a ≡b a′. Let Xb ⊆ X
be the set of elements t ∈ X such that some ati belongs to P0. Then Xb

has size at most |T | and we see that the sequences (It : t ∈ X \ Xb) are
mutually indiscernible over Ab. a

Exercise 4.9. Let (pt : t < |T |+) be a family of global A-invariant types
such that pi(x) ⊗ pj(y) = pj(y) ⊗ pi(x) for all i 6= j. Let q be any global
invariant type. Then there is t < |T |+ such that q(x)⊗pt(y) = pt(y)⊗q(x).

[ Hint : Build sequences (It : t < |T |+), each one being a Morley sequence
of pt over the previous ones. Then take b realizing q over those sequences.
Finally realize again a family (Jt : t < |T |+) of Morley sequences of the
pt’s over what has been constructed so far. Notice that the sequences
(It + Jt : t < |T |+) are mutually indiscernible and apply Proposition 4.8. ]

Exercise 4.10. Let (It : t ∈ X) be a family of mutually indiscernible
sequences, indexed by the same linear order I. Write It = (ati : i ∈ I).
Define I = ((ati : t ∈ X) : i ∈ I). If A is any set such that I is indiscernible
over A, then the sequences (It : t ∈ X) are mutually indiscernible over A.

Exercise 4.11. Let (It : t < α) be a family of mutually indiscernible
endless sequences. For t < α, let pt = lim(It). Let J be any linear order.
Construct sequences (Jt : t < α), Jt = (ati : i ∈ J) such that for each t < α
and i ∈ J, ati |= pt �

⋃
{Is : s < α} ∪ {asj : s < t or (s = t & i < j)}. Then

the sequences (It + Jt : t < α) are mutually indiscernible.
[ Hint : Let t < α and set At =

⋃
{Is : s < α, s 6= t} ∪

⋃
{Js : s < t}.

Show that It + Jt is indiscernible over At. Also, as Jt realizes some It-
invariant type over At, any sequence in At indiscernible over It remains
indiscernible over It + Jt. The result follows by induction on t < α. ]
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4.2. Dp-ranks

Definition 4.12. Let p be a partial type over a set A, and let κ be a
(finite or infinite) cardinal. We say dp-rk(p,A) < κ if for every family
(It : t < κ) of mutually indiscernible sequences over A and b |= p, there is
t < κ such that It is indiscernible over Ab.

If b ∈ U , then dp-rk(b/A) stands for dp-rk(tp(b/A), A).

We implicitly allow the sequences It to be sequences of infinite tuples.
This does not actually make any difference, because if an indiscernible
sequence I = (āi : i ∈ I) is not indiscernible over some b, then there are
finite a′i ⊆ āi such that the sequence (a′i : i ∈ I) is indiscernible, but not
indiscernible over b.

Observation 4.13. (Not assuming NIP) The following are equivalent:
· the theory T is NIP;
· for every finitary type p and set A, we have dp-rk(p,A) < |T |+;
· for every type p and A, there is some κ such that dp-rk(p,A) < κ.

Proof. The implication from the first dot to the second follows from
Proposition 4.8. The implication from the second dot to the third is im-
mediate.

For the last implication, assume that the formula φ(x; y) has IP. Let κ
be any cardinal and I = ω × κ ordered lexicographically. Then we can
find a |y|-tuple b and an indiscernible sequence (ai : i ∈ I) such that
φ(ai; b) holds if and only if i is of the form (0, α), α < κ. The sequences
It = (a(n,t) : n < ω) are mutually indiscernible, but none stays indiscernible
over b. Hence dp-rk(p, ∅) ≥ κ. a

We say that dp-rk(p,A) = κ if dp-rk(p,A) < κ+, but not dp-rk(p,A) < κ.
Note that it may happen that we have dp-rk(p,A) = κ for no value of κ. For
example, assume that for every integer n we can find a family (It : t < n)
of mutually indiscernible sequences over A, none of which is indiscernible
over Ab, but we cannot find such a family of size ℵ0. Then we would have
dp-rk(b/A) < ℵ0, but dp-rk(b/A) ≥ n for all n. One could probably write
“ dp-rk(b/A) = ℵ−0 ” in this situation (as done for example in [2]), but we
will not use that notation. See [65] for a concrete example of this behavior.

Lemma 4.14. Let p be a partial type over A and κ any cardinal. Let also
A ⊆ B. Then dp-rk(p,A) < κ ⇐⇒ dp-rk(p,B) < κ.

Proof. Assume that dp-rk(p,A) < κ. Let (It : t < κ) be mutually
indiscernible over B. Let b̄ enumerate B and let d |= p. For t < κ, write
It = (ati : i ∈ It) and define the sequence Jt = (atiˆ̄b : i ∈ It). Then the
sequences (Jt : t < κ) are mutually indiscernible over A. By hypothesis,
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there is t < κ such that Jt is indiscernible over Ad. This implies that It is
indiscernible over Bd.

Conversely, assume that we have a witness of dp-rk(p,A) ≥ κ. Namely,
we have some d |= p and a family (It : t < κ) of sequences, mutually
indiscernible over A such that no It is indiscernible over Ad. Using Lemma
4.2 over the base B, we can construct sequences (I ′t : t < κ) mutually
indiscernible over B such that tp((I ′t)t<κ/A) = tp((It)t<κ/A). Then any d′

such that tp(d′(I ′t)t<k/A) = tp(d(It)t<k/A) witnesses that dp-rk(p,B) ≥
κ. a

Remark 4.15. If p ⊆ q are partial types over B, then dp-rk(p,B) <
κ implies dp-rk(q,B) < κ. It follows that if A ⊆ B and b ∈ U , then
dp-rk(b/A) < κ implies dp-rk(b/B) < κ.

Example 4.16. In the theory Tdt of dense trees, the formula x = x has
dp-rank 1, as can easily be checked by inspection.

Let T be the model-companion of the theory of two linear orders in the
language L = {≤1,≤2}. Then x = x has dp-rank 2 in T and in fact no
type in T has dp-rank exactly 1.

Proposition 4.17. Let p be a partial type over A and let κ be any cardi-
nal. Then we have dp-rk(p,A) < κ if and only if for any family (It : t ∈ X)
of sequences, mutually indiscernible over A and any b |= p, there is X0 ⊆ X
of size < κ such that (It : t ∈ X \X0) are mutually indiscernible over Ab.

Proof. It is obvious that the property considered implies dp-rk(p,A) <
κ. We show the converse.

Case 1: κ is infinite.
Assume that dp-rk(p,A) < κ and assume that (It : t ∈ X) and b give

a counter-example to what we have to prove. Without loss, X = κ. We
can build an increasing sequence (δt : t < κ) of ordinals, and a sequence
(∆t : t < κ) of finite subsets of κ such that:
· for all t < κ, the sequence Iδt is not indiscernible over {b} ∪

⋃
{Is : s ∈

∆t};
· for all t < t′ < κ, (∆t ∪ {δt}) ∩ (∆t′ ∪ {δt′}) = ∅.
Let B = A ∪

⋃
{Is : s ∈ ∆t, t < κ}. Then the sequences (Iδt : t < κ) are

mutually indiscernible over B, and for each t < κ, Iδt is not indiscernible
over Bb. This contradicts dp-rk(p,B) = dp-rk(p,A) < κ.

Case 2: κ = n+ 1 is finite.
Assume that dp-rk(p,A) < n + 1 and let (It : t ∈ X) be mutually

indiscernible over A. We show the result by induction on |X|.
First we deal with the finite case. If |X| ≤ n, the result is obvious as we

may take X0 = X.
Assume that |X| = n + k + 1, and we have shown the result for sets of

cardinality ≤ n+ k. Let (It : t < n+ k+ 1) be mutually indiscernible over
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A and let b |= p. We may assume that the sequences It are endless. For
t < n + k + 1, let pt denote the limit type lim(It). Construct sequences
I ′t = (ctk : k < ω), such that ctk |= pt � Ab ∪ {It : t < n + k + 1} ∪ {I ′s :
s < t} ∪ {ctl : l > k} (so those are Morley sequences of each pt, but read
backwards).

Then the sequences (It + I ′t : t < n + k + 1) are mutually indiscernible
over A (see Exercise 4.11).

Let B = A ∪
⋃
{I ′t : t < n+ k + 1}.

As dp-rk(p,B) = dp-rk(p,A) ≤ n, there is some t < n+ k + 1 such that
It is indiscernible over Bb. Without loss, assume that t = 0.

By induction hypothesis, working over the base set AI0, there is some
X0 ⊂ {1, . . . , n+ k} of size at most n such that the sequences (It + I ′t : t ∈
{1, . . . , n + k} \X0) are mutually indiscernible over AI0b. Again, without
loss, X0 ⊆ {k+ 1, . . . , k+n} so that the sequences (It + I ′t : 0 < t < k+ 1)
are mutually indiscernible over AI0b. If I0 is indiscernible over Ab∪

⋃
{It :

0 < t < k+1} then the sequences (It : t < k+1) are mutually indiscernible
over Ab and we are done.

Otherwise, there is some formula φ(x1, . . . , xn, d̄) ∈ L(Ab ∪
⋃
{It : 0 <

t < k + 1}) which witnesses that I0 is not indiscernible over Ab ∪
⋃
{It :

0 < t < k + 1}. As the sequences (It + I ′t : 0 < t < k + 1) are mutually
indiscernible over AI0b, we can move the parameters in φ belonging to
some Ik to parameters in I ′k. Formally, there is some d̄′ ≡AI0b d̄ such that
d̄′ ∈ Ab ∪

⋃
{I ′t : 0 < t < k + 1}. Then φ(x1, . . . , xn, d̄

′) witnesses the fact
that I0 is not indiscernible over Bb. This contradicts the assumption on
I0.

Now assume that |X| = λ is infinite. Write X as an increasing union
X =

⋃
i<αX

i where each Xi has size < λ. By induction, for every i < α,

there is a subset Xi
0 of Xi of size ≤ n such that the sequences in (It : t ∈

Xi \ Xi
0) are mutually indiscernible over Ab. If the sequences (It : t ∈

X) are not mutually indiscernible over Ab, there is some finite ∆0 ⊂ X
such that already (It : t ∈ ∆0) are not mutually indiscernible over Ab.
Hence every Xi

0 must intersect ∆0 and there is some t0 ∈ ∆0 contained
in cofinally many of the Xi

0’s. If the sequences (It : t ∈ X \ {t0}) are
mutually indiscernible over Ab, we are done. Otherwise, we again find
some finite ∆1 ⊂ X \ {t0} witnessing it. There is some t1 ∈ ∆1 such that
{t0, t1} is included in cofinally many Xi

0’s. Iterating, we obtain t0, . . . , tn−1

which are in cofinally many Xi
0’s and one checks at once that the sequences

(It : t ∈ X \ {t0, . . . , tn−1}) are mutually indiscernible over Ab. a

We recall that the notation compl(I) is used to denote the completion
of the linear order I. Recall also the definition of the equivalence relation
∼c̄ as defined before Proposition 3.32. In the statement and proof of the
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next theorem, it will be convenient to also consider ∼c̄ as an equivalence
relation on I = (ai : i ∈ I) in the obvious way: ai ∼c̄ aj if i ∼c̄ j.

Theorem 4.18. Let p be a partial type over A and κ a cardinal (possibly
finite). The following are equivalent:

(i) dp-rk(p,A) < κ.

(ii)0 If (It : t ∈ X) are mutually indiscernible over A and b |= p, then
there is some X0 ⊆ X of size < κ such that for t ∈ X \X0, all the members
of It have the same type over Ab.

(ii)1 Same as above, but change the conclusion to: for t ∈ X \ X0, the
sequence It is indiscernible over Ab.

(ii)2 Same as above, but change the conclusion to: the sequences (It : t ∈
X \X0) are mutually indiscernible over Ab.

(iii)0 If I = (ai : i ∈ I) is an A-indiscernible sequence (of possibly infinite
tuples), there is some c̄ ∈ compl(I), |c̄| < κ such that i ∼c̄ j ⇒ tp(ai/Ab) =
tp(aj/Ab).

(iii)1 Same as above, with the conclusion that each ∼c̄-class of I is in-
discernible over Ab.

(iii)2 Same as above, with the conclusion that the ∼c̄-classes of I which
are infinite are mutually indiscernible over Ab.

Proof. (i) ⇒ (ii)2: This is exactly Proposition 4.17.

(ii)2 ⇒ (ii)1 ⇒ (ii)0: Clear.

(ii)0 ⇒ (i): Assume (ii)0 and assume for a contradiction that there is
some family (It : t < κ) of sequences, mutually indiscernible over A and
b |= p such that for each t, It is not indiscernible over Ab. Without loss, each
It is indexed by Q: It = (ati : i ∈ Q). Then for each t, there are αt < βt ∈ Q
such that tp(aαt/ACtb) 6= tp(aβt/ACtb) where Ct = {ati : i < αt or i > βt}.
Set I ′t = (atiˆCt : αt ≤ i ≤ βt). Then the family (I ′t : t < κ) contradicts
(ii)0.

(iii)2 ⇒ (iii)1 ⇒ (iii)0: Clear.

(ii)2 ⇒ (iii)2: Assume (ii)2 and let I = (ai : i ∈ I) be indiscernible over
A, and b |= p. Without loss, I is a dense complete order, so compl(I) = I.

For every i ∈ I, let p−i be the limit type of the sequence (aj : j ∈ I, j < i).
Similarly, let p+

i be the limit type of the sequence (aj : j ∈ I, j > i) read
in the reverse order.

Step 1: We blow up each point of I to an indiscernible sequence: For

each i ∈ I, set di0 = ai. Let (din : 0 < n < ω) be a Morley sequence of
q+
i over everything constructed so far and (di−n : 0 < n < ω) be a Morley

sequence of q−i over everything. Set Ai = (din : n ∈ Z). It is an indiscernible
sequence and so is the concatenation

∑
i∈IAi.
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Step 2: We apply (ii)2: The sequences (Ai : i ∈ I) are mutually in-
discernible, hence by (ii)2 there is some c̄ ⊆ I of size < κ such that the
sequences (Ai : i ∈ I \ c̄) are mutually indiscernible over Ab.

Step 3: We show that the family of ∼c̄ classes of I which are not reduced
to a point are mutually indiscernible. Assume this is not the case. Then
there is some formula φ(x) ∈ L(AIb), indices k < l ∈ I such that:
– ak ∼c̄ al;
– |= φ(ak) ∧ ¬φ(al);
– all the parameters in φ come from Ab∪ {ai : i < k} ∪ {ai : i > l} and are
disjoint from c̄.

Let i∗ = sup{i < l :|= φ(ai)} and ε ∈ {0, 1} such that ai∗ |= φ(x)ε. Then
k ≤ i∗ ≤ l and as k ∼c̄ l, i∗ does not lie in c̄. We look to the left and
to the right of ai∗ . Both limit types p−i∗ and p+

i∗
must satisfy φ(x)ε since

the sequence Ai∗ is indiscernible over the parameters of φ. Moreover, by
definition of i∗, if k < i∗, then p−i∗ ` φ(x) and if i∗ < l, then p+

i∗
` ¬φ(x).

In all cases, we obtain a contradiction.

(iii)0 ⇒ (ii)0: Let (It : t < α) be mutually indiscernible over A, and
let b |= p. Write It = (ati : i ∈ It), where the indexing orders It are
disjoint. Let J denote the linear order

∑
t<α It. We may expand the family

(It : t < α) into a family (Jt : t < α) of sequences, mutually indiscernible
over A such that Jt = (ati : i ∈ J) (in particular, It is a subsequence of
Jt). Let J = (a0

i â
1
iˆ · · · : i ∈ J). Then J is an indiscernible sequence. By

assumption (iii)0, there is some c̄ ⊆ compl(J) of size < κ such that

i ∼c̄ j =⇒ tp(a0
i â

1
iˆ · · · /Ab) = tp(a0

j â
1
jˆ · · · /Ab).

Let X0 ⊂ α be the set of t < α such that c̄ ∩ It 6= ∅. Then |X0| < κ and
c̄ satisfies the requirement of (ii)0. a

Remark 4.19. In (iii)2, we insist that the infinite classes are mutually
indiscernible. If the indiscernible sequence I is densely ordered, then all
classes are either infinite or reduced to a point. So the conclusion says
nothing about the latter ones. It may happen that c̄ can be chosen so
that the infinite classes are mutually indiscernible over (A and) the finite
ones. This is a stronger property, which we could call dp-rk+(p,A) < κ
(because it is linked with what Shelah calls strongly+-dependent). Here is
an example where this stronger property does not hold.

Let T be ACVF, the theory of algebraically closed valued fields (see Sec-
tion A.2). Let (ai : i ∈ Q) be an indiscernible sequence of elements such
that v(ai) < v(aj) for all i < j. Then we can find a point b such that
v(b − (a0 + · · · + an)) > v(an) for all n < ω. (We then necessarily have
v(b− (a0 + · · ·+ an)) = v(an+1). In other words, b is a pseudo-limit of the
sequence (a0 + · · ·+ an : n < ω)).
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The point b splits the sequence I into three pieces: (ai : i < 0), (a0)
and (ai : i > 0). The two infinite ones are mutually indiscernible over b.
However, the sequence (ai : i > 0) is not indiscernible over a0b. In fact
that tuple breaks it again into three pieces: (ai : 0 < i < 1), (a1) and
(ai : i > 1). And we can go on.

This shows that ACVF is not strongly+-dependent in Shelah’s termino-
logy. However it is strongly dependent, even dp-minimal (see definitions
below).

Proposition 4.20. Let a, b ∈ U , A a small set of parameters and κ1, κ2

two cardinals such that dp-rk(b/A) < κ1 and dp-rk(a/Ab) < κ2, then
dp-rk(a, b/A) < κ1 + κ2 − 1.

Proof. Here κ− 1 is equal to κ when κ is infinite.
We use condition (ii)2. Let (It : t ∈ X) be mutually indiscernible over A.

There is some X0 ⊆ X of size < κ1 such that the sequences It, t ∈ X \X0

are indiscernible over Ab. Then there is some X1 ⊆ X \ X0 of size < κ2

such that the sequences It, t ∈ X \(X0∪X1) are indiscernible over Aab. a
Note in particular that the hypothesis of the proposition are satisfied if

dp-rk(a/A) < κ1 and dp-rk(b/A) < κ2.

Another characterization of dp-ranks is by Shelah-style arrays.

Definition 4.21. Let p(y) be a partial type over a set A. We define
κict(p,A) as the minimal κ such that the following does not exist:
· formulas φα(xα; y);
· an array (aαi : i < ω, α < κ) of tuples, with |aαi | = |xα|;
· for every η : κ→ ω, a tuple bη |= p such that we have

|= φα(aαi ; bη) ⇐⇒ η(α) = i.

(Such a family of tuples and formulas will be called an ict-pattern for p.
The cardinal κ is the length of the pattern).

Proposition 4.22. For any partial type p over A and cardinal κ, we
have dp-rk(p,A) < κ if and only if κict(p,A) ≤ κ.

Proof. Assume there is an ict-pattern for p of length κ. By expanding
and extracting, we may assume that the rows (aαi : i < ω), α < κ, are mutu-
ally indiscernible over A. Then for any η, bη witnesses that dp-rk(p,A) ≥ κ.

Conversely, assume that dp-rk(p,A) ≥ κ. By condition (ii)0 of Theorem
4.18 we can find:
· sequences (It : t < κ), mutually indiscernible over A, without loss

It = (ati : i < ω) are sequences of finite tuples;
· formulas φt(xt; y);
· a tuple b |= p such that |= φt(a

t
0; b) ∧ ¬φt(at1; b).
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Let ψt(xt, x
′
t; y) = φt(xt; y) ∧ ¬φt(x′t; y). For t < κ, let Jt = (at2i â

t
2i+1 :

i < ω). By NIP, at most finitely many tuples â a′ in Jt satisfy ψt(xt, x
′
t; b).

Removing some if necessary, we may assume that at0 â
t
1 is the only element

of Jt for which that formula holds. By mutual indiscernibility of the se-
quences (Jt : t < κ), for every η : κ → ω, we can find some bη |= p such
that, for all t < κ,

|= ψt(a
t
2i, a

t
2i+1; bη) ⇐⇒ η(t) = i.

This shows that κict(p,A) > κ. a
The difference between dp-rk and κict is only due to the convention cho-

sen for the definition of dp-rank. One argument in favor of this definition,
as opposed to that of κict, is that we want x = x in the theory of equality
to have rank 1 and not 2.

4.3. Strongly dependent theories

Definition 4.23. The NIP theory T is strongly dependent if for any
finite tuple of variables x, we have dp-rk(x = x, ∅) < ℵ0.

Example 4.24. Let L = {Ei : i < ω} where the Ei’s are binary predicates.
Let T be the L-theory stating that each Ei defines an equivalence relation
with infinitely many classes, each of which is infinite. Consider T1 ⊃ T
stating that (∀xy)xEi+1y → xEiy, and each Ei-class is split into infinitely
many Ei+1 classes.

Consider also T2 ⊃ T stating that the Ei’s are cross-cutting, that is:
given a0, . . . , an−1, there is a such that aEkak for every k < n.

Then T1 is strongly dependent, but not T2 (and note that both are sta-
ble).

Remark 4.25. If T is a superstable theory, then it is strongly dependent,
but the converse does not hold, even assuming stability, as witnessed by T1

in the previous example. See Section 4.4.

Proposition 4.26. If dp-rk(x = x, ∅) < ℵ0 for every variable x with
|x| = 1, then T is strongly dependent.

Proof. This follows immediately from Proposition 4.20. a
An extreme case of strongly dependent theories are dp-minimal theories.

Definition 4.27. The theory T is dp-minimal if dp-rk(x = x, ∅) = 1,
for x a singleton.

Example 4.28. The following theories are dp-minimal (some proofs are
given in Appendix A. See also [35]):
· any o-minimal theory;
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· the theory Tdt of dense trees;
· any C-minimal theory, in particular ACVF, the theory of algebraically

closed valued fields;
· the theory Th(Qp) of the p-adics;
· the theory of (Z, 0, 1,+,≤).

We point out some link with honest definitions. First an easy lemma.

Lemma 4.29. Let A ⊂ U . Let (pi : i < ω) be a family of A-invariant
types and let (ci, di : i < ω) and b ∈ U be finite tuples such that:
· ci |= pi � Ac<id<i;
· di |= pi � Ac≤id<i;
· tp(ci/Ab) 6= tp(di/Ab).

Then T is not strongly dependent.

Proof. Build sequences Ii = (eij : j < ω) for i < ω such that Ii is a
Morley sequence of pi over AI<i. Then we see that tp((ci, di : i < ω)/A) =
tp((ei0, e

i
1 : i < ω)/A). Therefore, composing by an automorphism, we

may assume that ei0 = ci and ei1 = di for all i < ω. Then the sequences
(Ii : i < ω) are mutually indiscernible over A, but none of them remains
indiscernible over Ab. This implies that T is not strongly dependent. a

Proposition 4.30. Let T be strongly dependent. Let M |= T , A ⊆
M , b ∈ M a finite tuple, and (M,A) ≺ (M ′, A′) some |M |+-saturated
extension. Then there is A0 ⊆ A′ finite such that every formula φ(x; b) ∈
L(b) has an honest definition over A with parameters in AA0.

The conclusion means that we can find ψ(x; c) ∈ L(AA0) such that
φ(A; b) ⊆ ψ(A′; c) ⊆ φ(A′; b).

Proof. For x a finite tuple of variables, let SAx ⊂ Sx(U) be the set
of global types, finitely satisfiable in A. By Lemma 4.29, we can build a
maximal sequence (ci, di : i < N) such that there are types pi ∈ SAxi with:
· ci |= pi � Ac<id<i;
· di |= pi � Ac≤id<i;
· tp(ci/Ab) 6= tp(di/Ab).
Set A0 = {ci, di : i < N}.
Let now φ(x; b) be given. Then for any type q ∈ SAx , there is a truth

value εq ∈ {0, 1} such that for any realization a of q|AA0
in A′, we have

|= φ(a; b)εq . By saturation of the pair (M ′, A′), there is a formula ψq(x) ∈
q|AA0 such that (M ′, A′) |= (∀x ∈ P)ψq(x)→ φ(x; b)εq .

We then conclude exactly as in the proof of Theorem 3.13. (Namely, we
extract from {ψq(x) : εq = 1} a finite subcover, and take the union of those
formulas.) a
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Note that the converse does not hold since any stable theory satisfies
the conclusion of the proposition, but not all stable theories are strongly
dependent.

We end this section with an application to definable groups.
We say that a group G is of finite exponent if there exists n < ω such

that gn = e for all g ∈ G.

Proposition 4.31. Let G be a dp-minimal group. Then there is a de-
finable, abelian, normal subgroup H such that the quotient G/H is of finite
exponent.

Proof. Claim: For any two definable subgroups H and K of G, one of
[H : H ∩K] or [K : H ∩K] is finite.

Proof: Assume not. Then we can find two sequences (ai : i < ω) of points
of K and (bi : i < ω) of points of H such that the cosets {aiH : i < ω} are
distinct, as well as the cosets {Kbi : i < ω}. Note that for any i, j < ω,
there is a point in aiH ∩Kbj , namely aibj . As two distinct cosets of the
same group are disjoint, we have aibj ∈ ai′H ∩Kbj′ ⇐⇒ (i, j) = (i′, j′)
and we have obtained an ict-pattern of length 2. By Proposition 4.22, this
shows that dp-rk(x = x, ∅) ≥ 2, contradicting dp-minimality.

It follows that if H and K are two definable subgroups, a ∈ H and
b ∈ K, then there is n such that either an ∈ K or bn ∈ H. If a ∈ G,
we let C(a) = {g ∈ G : ga = ag}. Applying the previous observation to
the uniform family {C(a) : a ∈ G} and compactness yields: there is some
integer n such that for any two elements a, b ∈ G, there is k ≤ n such that
either ak ∈ C(b) or bk ∈ C(a). In particular, if N = n!, then aN and bN

commute.
Let H = C(C(GN )). Note that C(X) is normal whenever X is, therefore

H is normal. One easily checks that it is abelian, and the quotient G/H
has finite exponent bounded by N . a

4.4. Superstable theories

In this section, we say a few words about superstability and show the
difference with strong dependence. The only proof here assumes some
familiar with stability theory and forking. No part of this is used elsewhere
in the book. For more information, see any text on stability theory, e.g.
[95].

Definition 4.32. A theory T is superstable if it is stable and if for every
type p ∈ S(A) in finitely many variables there is some finite A0 ⊆ A such
that p does not fork over A0.
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Fact 4.33. A stable theory T is superstable if and only if there is no
sequence of finitary types (pt : t < ω) such that pt+1 extends pt and forks
over the domain of pt.

Lemma 4.34. (Not assuming NIP) A theory T is superstable if and only
if one cannot find a finite tuple b and a family (It : t < ω) such that:
· for each t < ω, the sequence It is indiscernible over {Is : s < t};
· for each t < ω, the sequence It is not indiscernible over b.

Proof. Assume that T is stable and one can find such b and (It : t < ω).
For t < ω, let pt = tp(b/I≤t). As the sequence It is indiscernible over I<t,
the type pt forks over I<t. Then by Fact 4.33, T is not superstable.

Conversely assume that one cannot find such b and (It : t < ω). First we
deduce that T is stable. Assume not, then we can find a finite tuple b, an
indiscernible sequence (ai : i ∈ R) and a formula φ(x; y) such that φ(b; ai)
holds if and only if i < 0. But then we contradict the hypothesis by setting

It =

(
ai : i ∈ (−1

t
,− 1

t+ 1
) ∪ (

1

t+ 1
,

1

t
)

)
.

If T is not superstable, we can find an increasing sequence (At : t < ω) of
sets and a sequence (pt : t < ω) of types such that pt is over At, pt+1 extends
pt and forks over At. Let b |=

⋃
t<ω pt. We build a sequence (It : t < ω) of

indiscernible sequences as follows. Assume we have built (It : t < s). Set
A′s−1 = As−1 ∪

⋃
{It : t < s}. The construction will ensure that for t ≥ s,

pt forks over A′s−1. As forking is equal to dividing in stable theories, there
is a formula φ(x; a) ∈ ps which divides over A′s−1. Let Is = (ai : i < ω) be
an A′s−1-indiscernible sequence witnessing dividing with a0 = a. Choose Is
such that Is |̂ A′s A<ω. Then by properties of forking, for t > s, the type

pt forks over A′s ∪ Is, and we can iterate. At the end, we contradict the
hypothesis. a

Corollary 4.35. If T is superstable, then it is strongly dependent.

Example 4.36. The theory T1 presented in Example 4.24 (refining equiv-
alence relations) is strongly dependent, stable, but not superstable.

The relation between dp-rank and weight in the stable context is ex-
plained in [86].

4.5. Exercises

Exercise 4.37. Let T be a one-sorted complete NIP theory which admits
elimination of quantifiers in some language L and such that acl(A) = A for
any A ⊂ U . Assume that the binary relation symbol ≤ does not appear
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in L and set L′ = L ∪ {≤}. Let T ′ be the L′-theory consisting of T along
with axioms saying that ≤ defines a dense linear order without endpoints.

0. Show that T ′ is complete, NIP, and admits quantifier elimination in
L′.

1. Show that dp-rkT ′(x = x) ≥ dp-rkT (x = x).
2. Show that if equality holds, then T is stable and dp-minimal.

Exercise 4.38 (dp-rank and acl-dimension). We say that acl satisfies ex-
change if for any two singletons a, b in U and any A ⊂ U , b ∈ acl(Aa)\acl(A)
implies b ∈ acl(Ab) \ acl(A). When this holds, we define the acl-dimension
of a set A as the smallest cardinality of an A0 ⊆ A such that A ⊆ acl(A0).

We say that dp-rank is additive if the equality

dp-rk(ā, b̄/A) = dp-rk(ā/A) + dp-rk(b̄/Aā)

holds for all ā, b̄, A.
Let T be a dp-minimal theory. Show that dp-rank is additive if and only

if acl satisfies exchange and that in this case dp-rank and acl-dimension
coincide.

Exercise 4.39 (Non-continuity of dp-rank). Give an example of a theory
T and a type p(x) in it such that dp-rk(p) = 1, but dp-rk(φ(x)) = 2 for
any formula in p.

(One can find T of dp-rank 2. It can be shown that this is the best
possible: no such type p or formula φ(x; y) can be found in a dp-minimal
theory.)

References and related subjects

Strong dependence was defined by Shelah in [109] as a tentative analog
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previously called burden in [2].

Proposition 4.17 and the additivity of dp-rank that follows from it is from
Kaplan, Onshuus and Usvyatsov [65]. (In which the convention for dp-rk(p)
is slightly different. To be precise, dp-rk(p) < κ for us is equivalent to
dp-rk(p) ≤ κ−1 in the sense of [65]. In particular, for infinite cardinals, that
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latter definition agrees with κict, but not for finite ones.) The equivalent
characterizations given in Theorem 4.18 are from Shelah [109], except for
(ii)2 and (iii)2 which make use of Proposition 4.17.

The notion of a dp-minimal theory originates in Shelah’s work, but was
precisely defined and studied by Onshuus and Usvyatsov in [86].

Proposition 4.30 is new. Proposition 4.31 is from Simon [112].

Shelah investigates in [102] a variety of other notions of strong de-
pendence, in particular one which is called strongly+-dependent (and was
alluded to in Remark 4.19). He conjectures that strongly+-dependent fields
are algebraically closed and gives a conjectural classification of strongly de-
pendent fields (algebraically closed, real closed or admitting a Henselian
valuation).

Shelah proves in [102] that if a theory is strongly dependent, then from
any long enough sequence, one can extract an indiscernible subse-
quence. Counterexamples in the general NIP case are given by Kaplan
and Shelah in [68] and [67].

Basic facts and examples about dp-minimal theories can be found in
Dolich, Lippel and Goodrick’s paper [35]. Concerning dp-minimal ordered
theories, Goodrick proves in [45] a monotonicity theorem on definable func-
tions. Further results about dp-minimal groups appear in Simon [112].

A stronger notion than dp-minimality is VC-minimality which was
introduced by Adler in [3]. It is studied by Guingona and Laskowski in [48],
where in particular reducts of VC-minimal theories are characterized as
being convexely orderable. Further work by Flenner and Guingona focussing
on groups and fields is done in [39].





CHAPTER 5

FORKING

Given two sets A ⊆ B and a type p ∈ S(A), we want to define a notion
of a free extension of p to a type over B. When A = M is a model, the
work done in Chapter 2 provides us with a natural option: an extension
of p is free if it extends to a global M -invariant type. However, it is not
immediately clear how to generalize this to arbitrary base sets.

The idea of forking is to give such a definition (or rather a definition of
the opposite: the free extensions are the non-forking ones). This defini-
tion makes sense in any theory, and satisfies different kinds of properties
depending on the characteristics of the theory. For example, in simple
theories, non-forking is an independence relation, which means in partic-
ular that it satisfies symmetry and transitivity (see for example [21]). In
NIP theories, this is not true, but other properties hold. For instance,
a type has only boundedly many non-forking extensions and over models
non-forking coincides with invariance. Over an arbitrary set A, it coincides
with bdd(A)-invariance, which we will define below.

Even though the general definition of forking is equivalent, for NIP the-
ories, with an apparently simpler one, experience shows that it is useful to
come back to it from time to time.

5.1. Bounded equivalence relations

In this section, we do not assume NIP. We consider relations on α-tuples,
where α is a fixed finite or infinite ordinal.

An equivalence relation E between α-tuples of U is A-invariant if when-
ever ab ≡A a′b′, then aEb ⇐⇒ a′Eb′. The relation xEy is type-definable
over A if it is defined by a partial type π(x; y) over A.

Proposition 5.1. (T any theory)
Let A ⊂ U and let E be an A-invariant equivalence relation on α-tuples

of U . Then the following are equivalent:
(i) the set Uα/E of E-equivalence classes is bounded (i.e., of size < κ̄);

67
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(ii) |Uα/E| ≤ 2|A|+|T |;
(iii) for any A-indiscernible sequence of α-tuples (ai : i < ω) and i, j < ω,

we have aiEaj;
(iv) for any model M ⊇ A and a ≡M b, we have aEb.

Proof. (ii) ⇒ (i): Clear.
(iv) ⇒ (ii): Clear by taking M of size |A|+ |T |.
(iii) ⇒ (iv): Let a ≡M b and take p to be a coheir of tp(a/M). In

particular, p is M -invariant. Let (ai : i < ω) be a Morley sequence of
p over Mab. Then both (a) + (ai : i < ω) and (b) + (ai : i < ω) are
indiscernible sequences. Therefore by (iii), we have aEa0Eb.

(i) ⇒ (iii): Assume there is some A-indiscernible sequence (ai : i < ω)
such that ¬(aiEaj) for i 6= j. Then we may increase the sequence to one
of size κ̄. This contradicts (i). a

An A-invariant equivalence relation E is bounded if it satisfies one of the
equivalent conditions above.

Definition 5.2. We say that two α-tuples a and b have the same Lascar
strong type (or are Lascar-equivalent) over A if we have aEb for any A-
invariant bounded equivalence relation E (on tuples of the right length).
We write Lstp(a/A) = Lstp(b/A).

Lemma 5.3. Lascar-equivalence over A is the finest bounded A-invariant
equivalence relation (on tuples of a fixed length α).

It is the transitive closure of the relation ΠA(a; b) defined to hold if there
is a model M ⊇ A such that a ≡M b.

It is also the transitive closure of the relation ΘA(a; b) defined to hold if
(a, b) is the beginning of some infinite A-indiscernible sequence.

Proof. It is clear from the definition that Lascar-equivalence over A is
A-invariant and finer than any A-invariant bounded equivalence relation.
It is bounded since for example it satisfies property (iii) of Proposition 5.1
(being the intersection of equivalence relations which satisfy it).

Let Π∗A(a; b) be the transitive closure of the relation ΠA(x; y). It is an
A-invariant equivalence relation and by Proposition 5.1 (iv), it is bounded.
Furthermore, if ΠA(a; b) holds, then again by Proposition 5.1 (iv) we have
Lstp(a/A) = Lstp(b/A). Hence Π∗A(a; b) implies Lstp(a/A) = Lstp(b/A)
and the two relations coincide.

The same argument goes through with ΘA instead of ΠA using Proposi-
tion 5.1 (iii). a

Note that if a and b are α-tuples and Lstp(a/A) = Lstp(b/A) then we
also have Lstp(a0/A) = Lstp(b0/A) where a0 is any subtuple of a and b0 is
the corresponding subtuple of b. However, one must beware that contrary
to types, Lascar strong type are truly infinitary: Knowing that any two
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finite subtuples of a and b are Lascar-equivalent does not in general imply
that a and b are Lascar-equivalent themselves. This will be apparent in the
discussion below.

Definition 5.4. We say that two α-tuples a and b are at Lascar-distance
≤ n over A if there exists a sequence (ai : i ≤ n) of α-tuples such that
a0 = a, an = b and we have ΘA(ai; ai+1) for every i < n. Two tuples are
at Lascar-distance n if they are at Lascar-distance ≤ n but not ≤ n− 1.

It follows from Lemma 5.3 that two tuples a and b are at finite Lascar-
distance over A if and only if they are Lascar-equivalent over A.

Fix the parameter set A for this discussion and let d≤n(x; y) be the
relation saying that x and y are at Lascar-distance ≤ n over A. As d≤1(x; y)
coincides with Θ(x; y), it is type-definable. It follows that each d≤n(x; y)
is type-definable and thus for a fixed n, we have d≤n(a; b) if and only if
we have d≤n(a0; b0) for any a0 ⊆ a finite and b0 ⊆ b the corresponding
subtuple in b. Hence we have shown the following lemma.

Lemma 5.5. Let a and b be two α-tuples. Then a and b are Lascar-
equivalent over A if and only if there is some bound n such that we have
d≤n(a0; b0) for any a0 ⊆ a finite and b0 ⊆ b the corresponding subtuple in
b.

Example 5.6. For n > 0, let Mn be the structure with universe the stan-
dard unit circle equipped with a relation Rn(x; y) which holds if and only
if the arc between x and y has length at most 2π/n. Then any two
points in Mn are Lascar-equivalent and two diametrically opposite points
have Lascar-distance bn/2c + 1. Let M be the many-sorted structure
(Mn : n < ω) and for each n, take two diametrically opposite points an, bn
in Mn. Then for each n, (a1, . . . , an) is Lascar-equivalent to (b1, . . . , bn),
but (ai : i < ω) is not Lascar-equivalent to (bi : i < ω).

We let Autf(U/A) be the set of automorphisms of U generated by the
groups Aut(U/M) for M a model containing A.

Lemma 5.7. Two tuples a and b have the same Lascar strong type over
A if and only if there is σ ∈ Autf(U/A) such that σ(a) = b.

Proof. This follows at once from Lemma 5.3. a

Exercise 5.8. The group Autf(U/A) is exactly the subgroup of Aut(U)
fixing all Lascar-strong types over A, that is the subgroup of automorphisms
σ such that Lstp(a/A) = Lstp(σ(a)/A) for any (finite or infinite) tuple a.

Definition 5.9. We say that a global type p is LstpA-invariant if it is
invariant under Autf(U/A).
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Hence a global type p is LstpA-invariant if and only if whenever a and
b have same Lascar strong type over A and φ(x; y) ∈ L, we have p `
φ(x; a)↔ φ(x; b). Equivalently and using Lemma 5.3, if and only if for any
A-indiscernible sequence (ai : i < ω) and d |= p, the sequence (ai : i < ω)
is indiscernible over Ad.

Definition 5.10. We say that two tuples a and b have the same compact
strong type over A (or Kim-Pillay strong type), written KP-stp(a/A) =
KP-stp(b/A), if aEb holds for every bounded type-definable over A equiv-
alence relation E (on tuples of the right length).

As in the case of Lascar strong types, we see that “equality of compact
strong types over A” is the finest type-definable over A bounded equivalence
relation.

We let Aut(U/bdd(A)) be the set of automorphisms σ of U such that
KP-stp(a/A) = KP-stp(σ(a)/A) for all a. We say that a global type p is
bdd(A)-invariant if it is invariant under Aut(U/bdd(A)).

Note that Lascar strong types refine compact strong types which refine
types. If A = M is a model, then by Lemma 5.3 two tuples having the
same type over A have the same Lascar strong type over A, hence all those
notions coincide.

Proposition 5.11. Let p be a type over A and let R(x; y) be an A-
invariant relation whose restriction to p(U)2 is an equivalence relation with
boundedly many classes, then:

(i) there is an A-invariant bounded equivalence relation E whose restric-
tion to p(U)2 coincides with R;

(ii) if furthermore R is type-definable, then there is a type-definable (over
A) bounded equivalence relation E whose restriction to p(U)2 refines R.

Proof. Point (i) is easy: simply take E(x; y) to be (R(x; y) ∧ p(x) ∧
p(y)) ∨ (¬p(x) ∧ ¬p(y)).

Assume now that R is type-definable. Let (ai : i < γ) be a family of
representatives of each class of p(U)/R. Let E(x; y) be the relation stating
that there are (a′i, a

′′
i : i < γ), all satisfying p such that R(a′i, ai)∧R(a′′i , ai)

holds for each i < γ and tp(x(a′i)i<γ/A) = tp(y(a′′i )i<γ/A). Then E is type-
definable over A(ai)i<γ . Choosing another set of representatives yields
the same relation E, therefore E is A-invariant and thus type-definable
over A. It is clear that E is reflexive and symmetric. To see that it is
transitive, assume that we have E(x; y) witnessed by (bi, b

′
i : i < γ) and

E(y; z) witnessed by (ci, c
′
i : i < γ). Then there are (di : i < γ) such

that tp(x(bi)i<γ(di)i<γ/A) = tp(y(b′i)i<γ(ci)i<γ/A), thus (di, c
′
i : i < ω)

witnesses E(x; z). Therefore E is an equivalence relation. If x and y
have the same type over A(ai)i<γ , then they are E-equivalent (take a′i =
a′′i = ai), therefore E is bounded. Finally, if x and y satisfy p and are
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E-equivalent, then this is witnessed by some (a′i, a
′′
i : i < γ). For some

i < γ, we have R(x; a′i), therefore also R(y; a′′i ) holds and then R(x; y)
holds. Thus E has the required properties. a

5.2. Forking

In this section, we again make no assumption on the theory T .

Definition 5.12. Let A ⊂ U .
(i) A formula φ(x; b) ∈ L(U) divides over A if there is an A-indiscernible

sequence (bi : i < ω) where b0 = b such that the partial type {φ(x; bi) : i <
ω} is inconsistent.

(ii) A partial type π(x) divides over A if it implies a formula which divides
over A;

(iii) A partial type π(x) forks over A if it implies a finite disjonction∨
i<n φi(x; bi) of formulas, such that φi(x; bi) divides over A for each i < n.

As the next lemma shows, dividing is a property of a definable set and
does not depend on the formula used to define it.

Lemma 5.13. If φ(x; b) implies a formula ψ(x; c) which divides over A,
then φ(x; b) divides over A.

Proof. Let (ci : i < ω) be A-indiscernible with c0 = c. Then one can
extend it to a sequence (bi ĉi : i < ω) which is A-indiscernible and where
b0 = b. In particular, we have |= φ(x; bi)→ ψ(x; ci) for all i. If the partial
type {ψ(x; ci) : i < ω} is inconsistent, then so is {φ(x; bi) : i < ω}. a

The advantage of forking over dividing lies in point 4 of the following
proposition.

Proposition 5.14. 1. If π(x) is a consistent partial type over A, then
it does not divide over A.

2. If the partial type π(x) divides (resp. forks) over A, then some finite
π0(x) ⊆ π(x) divides (resp. forks) over A.

3. Let A ⊂M , M is |A|+-saturated and let p(x) be a complete type over
M . Then p does not fork over A if and only if it does not divide over
A.

4. Let A ⊆ B and π(x) be a partial type over B, then π(x) does not fork
over A if and only if it has an extension to a global complete type
which does not divide (equiv. fork) over A.

5. If A ⊆ B ⊆ C and a ∈ U , then if tp(a/C) does not divide (resp. fork)
over A, it does not divide (resp. fork) over B and tp(a/B) does not
divide (resp. fork) over A.

6. If p(x) is a global LstpA-invariant type, then it does not divide (equiv.
fork) over A.
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Proof. 1. If π(x) implies a formula φ(x; b0) and (bi : i < ω) is an A-
indiscernible sequence, then π(x) implies all formulas φ(x; bi), i < ω. As
π(x) is consistent, so is {φ(x; bi) : i < ω} and it follows that φ(x; b0) does
not divide over A.

2. Clear by compactness.
3. Assume that p(x) implies a finite disjunction of formulas

∨
i<n φi(x; b),

each of which divides over A. There is some finite C0 ⊆ M such that
p′(x) = p(x)|C0 already implies this disjunction. Let C = C0 ∪A. We may
find a tuple b′ ∈ M , b′ ≡C b. Then p′(x) implies

∨
i<n φi(x; b′), hence one

of the formulas φi(x; b′) is in p(x), and p(x) divides over A.
4. Let π(x) be a partial type over A. Let Σ(x) be the set of formulas

¬φ(x; b) where φ(x; b) ∈ L(U) divides over A. If π(x) ∪ Σ(x) is consistent,
then it extends to a complete type over U which does not divide over A.
Otherwise, by compactness, there is some finite part Σ0(x) of Σ(x) such
that π(x) ∪ Σ0(x) is inconsistent. Hence π(x) forks over A.

5. Clear from the definition.
6. Assume that p(x) ` φ(x; b) for some φ(x; b) ∈ L(U), and let (bi : i <

ω) be an A-indiscernible sequence with b0 = b. Then as p(x) is LstpA-
invariant, p(x) ` φ(x; bi) for each i < ω. As p is consistent, so is the
conjunction

∧
i<ω φ(x; bi). a

Example 5.15. We give an example of a type p ∈ S(A) which forks over
A.

Let U be the usual unit circle in the plane and define a ternary relation
R(x, y, z) on U which holds if and only if either x and z are diametrically
opposite, or y lies in the (closed) small arc between x and z. Consider the
structure M = (U;R). Let p ∈ S1(∅) be the unique 1-type over ∅. We
claim that p forks over ∅.

To see this, let b, c, d ∈ U divide the circle into three small arcs. Then
p ` R(b, x, c)∨R(c, x, d)∨R(d, x, b). It is enough to show that say R(b, x, c)
divides over ∅. We can find an indiscernible sequence (bi, ci : i < ω) such
that (b0, c0) = (b, c) and the points b0, c0, b1, c1, . . . lie in that order on
the circle. Then the formula R(b0, x, c0) ∧ R(b1, x, c1) is inconsistent as
required.

Note that this theory is NIP, since it is interpretable in RCF.

Definition 5.16. An extension base is a set A ⊂ U such that no p ∈
S(A) forks over A.

Lemma 5.17. Let A, b ⊂ U and π a partial type over Ab. Then the
following are equivalent:

(i) π does not divide over A;
(ii) for every A-indiscernible sequence I = (bi : i < ω) with b0 = b, there

is a |= π such that I is indiscernible over Aa;
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Proof. It is clear that (ii) implies (i).
Conversely, assume (i) and let I = (bi : i < ω) with b0 = b be an A-

indiscernible sequence. Write π(x) = π(x; b0) where π has hidden parame-
ters from A. By the non-dividing assumption, the partial type

⋃
{π(x; bi) :

i < ω} is consistent. Let a′ realize it. By Ramsey, we may find an Aa′-
indiscernible sequence (b′i : i < ω) realizing the EM-type of (bi : i < ω)
over Aa′. Then tp(b′0/Aa

′) = tp(b0/Aa
′) so without loss b′0 = b0. Let

f ∈ Aut(U/Ab) send (b′i : i < ω) to (bi : i < ω) and set a = f(a′). Then
the sequence I is indiscernible over Aa. a

Lemma 5.18. Let A ⊆ B ⊂ U and a, b ∈ U . Assume that tp(a/B) does
not fork over A and tp(b/Ba) does not fork over Aa, then tp(a, b/B) does
not fork over A.

Proof. Note that during the proof, we may freely replace (a, b) by any
other pair which has the same type over B.

Let M be some |B|+-saturated model containing B. As the type tp(a/B)
does not fork over A, it has an extension p′ over M which does not fork over
A. Let a′ realize p′. There is an automorphism σ fixing B and sending a to
a′. Replacing (a, b) by (σ(a), σ(b)) we may assume that tp(a/M) does not
fork over A. Similarly, as the type tp(b/Ba) does not fork over Aa, it has
an extension q′ to a type over Ma which does not fork over Aa. Replacing
b by a realization of q′, we may assume that tp(b/Ma) does not fork over
Aa.

By Proposition 5.14 (3), it is enough to prove that tp(a, b/M) does not di-
vide over A. So assume that it does divide and take φ(x, y; c) ∈ tp(a, b/M)
and an A-indiscernible sequence (ci : i < ω), c0 = c such that {φ(x, y; ci) :
i < ω} is inconsistent. By Lemma 5.17, there is an automorphism f fix-
ing Ac pointwise such that (ci : i < ω) is indiscernible over f(a). Then
tp(f(b)/Af(a)c) does not divide (indeed does not fork) over Af(a). There-
fore there is an automorphism g fixing Af(a)c such that (f(a)ci : i < ω)
is indiscernible over g(f(b)). We then have |= φ(f(a), g(f(b)); ci) for all
i < ω. Contradiction. a

Corollary 5.19. Assume that for every A ⊂ U and p ∈ S1(A), p does
not fork over A, then every A is an extension base.

Proof. This follows immediately from the previous lemma by induction
on the arity of p. a

Corollary 5.20. Let p(x) and q(y) be two global invariant types, both
non-forking over A. Then p(x)⊗ q(y) is non-forking over A.

Proof. It is enough to show that p(x)⊗q(y)|B is non-forking over A for
any small B containing A. Take such a B; let b |= q|B and a |= p|Bb. Then
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tp(b/B) does not fork over A, nor does tp(a/Bb). Hence by the previous
lemma, tp(a, b/B) = p(x)⊗ q(y)|B does not fork over A. a

Proposition 5.21. (T is NIP) Let A ⊂ U , and let p ∈ S(U) be a global
type. Then p does not fork over A if and only if it is LstpA-invariant.

Proof. Right to left has already been observed and holds in any theory.
We show left to right. Let p ∈ S(U) and assume that p is not LstpA-

invariant. This implies that there is some A-indiscernible sequence (ci :
i < ω) and some formula φ(x; y) such that p ` φ(x; c0) ∧ ¬φ(x; c1). Con-
sider the A-indiscernible sequence of pairs (c2ic2i+1 : i < ω). The partial
type {φ(x; c2i ∧ ¬φ(x; c2i+1)} is inconsistent by NIP. This implies that the
formula φ(x; c0) ∧ ¬φ(x; c1) divides over A. a

Corollary 5.22. (T is NIP) Let M ≺ U , and p be a global type. Then
p does not fork over M if and only if p is M -invariant.

Let p ∈ S(U) be a global type. If p is M -invariant for some small M ,
then it does not fork over M . Conversely, if p does not fork over some
small A ⊂ U , then it is M -invariant for any model M containing A. So for
a global type p the properties “p is invariant over some small M ≺ U” and
“p does not fork over some small A ⊂ U” are equivalent.

Corollary 5.23. (T is NIP) Let p ∈ S(A) be a type in a finite number
of variables. Then p has at most 2|A|+|T | non-forking global extensions.

Proof. Take M a model containing A such that |M | = |A| + |T |. If q
is a non-forking extension of p, then q does not fork over M , therefore it is
M -invariant. We have seen in the proof of Proposition 2.43 that there are
at most 2|M | global M -invariant types. a

Readers familiar with simple theories know that forking satisfies addi-
tional properties in that context, in particular symmetry (if tp(a/Ab) forks
over A, then so does tp(b/Aa)) and transitivity (if A ⊆ B ⊆ C, tp(a/B)
does not fork over A and tp(a/C) does not fork over B, then tp(a/C) does
not fork over A). It is known that each one of these properties is actually
equivalent to simplicity of the theory, hence will hold in no unstable NIP
theory. We give a concrete example.

Example 5.24 (Failure of symmetry and transitivity). Let M be a model
of DLO and let p be any non-algebraic 1-type over M . Let a < b < c all
realize p. Then tp(b/Mac) forks over M , indeed an indiscernible sequence
(ai, ci : i < ω) of realizations of p with ai < ci < ai+1 witnesses dividing.
However tp(ac/Mb) does not fork over M since this type extends to a global
M -invariant type.

We obtain a failure of transitivity by observing that tp(b/Mac) does not
fork over Ma, tp(b/Ma) does not fork over M , but tp(b/Mac) does fork
over M .
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5.3. bdd(A)-invariance

Assumption: In this section, we assume that T is NIP.

Proposition 5.25. Let p ∈ S(U) be non-forking over A. Then the equiv-
alence relation Lstp(x/A) = Lstp(y/A) restricted to realizations of p|A is
type-definable.

Indeed, if c, d |= p|A, then: Lstp(c/A) = Lstp(d/A) if and only if there
is some sequence I such that both (c) + I and (d) + I realize p(ω)|A.

Proof. It is enough to prove the second statement.
(⇐) Clear; the condition implies that c and d are at Lascar-distance at

most 2.
(⇒) Let c, d realize p|A, and assume that Lstp(c/A) = Lstp(d/A). Let

M be a model containing A. The hypothesis and conclusion depend only
on tp(c, d/A), hence we may conjugate (c, d) by an automorphism over A
and assume that tp(c/M) = p|M . We let I |= p(ω)|Mcd. Then c + I is a
realization of p(ω)|A (indeed of p(ω)|M ). By Corollary 5.20, p(ω) does not
fork over A. By Proposition 5.21, it is Lascar-invariant over A, therefore
tp(cI/A) = tp(dI/A) and both (c) + I and (d) + I realize p(ω)|A. a

Corollary 5.26. If p ∈ S(A) does not fork over A and a, b |= p satisfy
KP-stp(a/A) = KP-stp(b/A), then Lstp(a/A) = Lstp(b/A).

In particular, if no type forks over its base, then compact strong types
coincide with strong types. (We say that T is G-compact.)

Proof. Let p ∈ S(A) be non-forking over A. By the previous propo-
sition, the relation R(c; d) defined as Lstp(c/A) = Lstp(d/A) is type-
definable on realizations of p. By Proposition 5.11, there is a type-definable
bounded equivalence relation E which refines R on p (and must therefore be
equal to R by definition of Lascar strong types). If c, d |= p have the same
KP-strong type, then they are E-equivalent and thus R-equivalent. a

We now prove an analog of Proposition 2.36 for types non-forking over
A. First a lemma.

Lemma 5.27. Let p be a global type, non-forking over A. Let b1, b2 ∈ U
have the same Lascar strong type over A and let a |= p � Ab1b2. Then
Lstp(ab1/A) = Lstp(ab2/A).

Proof. We might as well take a to realize p over U . First assume
that there is a model M ⊇ A such that tp(b1/M) = tp(b2/M). Then
p is M -invariant and we have tp(ab1/M) = tp(ab2/M), which implies
Lstp(ab1/A) = Lstp(ab2/M). In general there is a finite sequence of tuples
(ci : i ≤ n) and a sequence (Mi : i < n) of models containing A such
that c0 = b1, cn = b2 and tp(ci/Mi) = tp(ci+1/Mi) for each i < n. Then
Lstp(aci/A) = Lstp(aci+1/A) for each i and the result follows. a
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Proposition 5.28. Let p, q ∈ S(U) be two global types, both non-forking
over A and let ā |= p(ω) and b̄ |= q(ω). Assume that Lstp(ā/A) = Lstp(b̄/A),
then p = q.

Proof. The proof is essentially the same as that of Proposition 2.36,
replacing types over A by Lascar strong types over A.

Assume that there is some φ(x; d) ∈ L(U) such that p ` φ(x; d) and
q ` ¬φ(x; d). Pick any model M ⊇ A ∪ {d}. We build inductively two
sequences (an : n < ω) and (bn : n < ω) such that for all n:

– an |= p �Ma<nb<n;
– bn |= q �Ma≤nb<n.
It is enough now to show that the sequence (a0, b0, a1, b1, . . . ) is indis-

cernible, because the formula φ(x; d) alternates infinitely often on that
sequence, contradicting NIP.

We show by induction on n that In := (a0, b0, . . . , an) has the same
Lascar strong type over A as a realization of q(2n+1). For n = 0, it follows
from the hypothesis of the proposition. Assume we know it for n. Then
by Lemma 5.27 and induction hypothesis, In + (bn) has the same Lascar
strong type over A as q(2n+2). By hypothesis, this is the same as the Lascar
strong type of p(2n+2). We then apply the same argument to add an+1 and
this finishes the induction.

a
Corollary 5.29. Let p ∈ S(U) be non-forking over A, then p is bdd(A)-

invariant.

Proof. Let σ ∈ Aut(U/bdd(A)), ā |= p(ω)|M . Then

KP-stp(ā/A) = KP-stp(σ(ā)/A).

As ā and σ(ā) are both realizations of p(ω)|A, which is non-forking over
A, Corollary 5.26 implies that Lstp(ā/A) = Lstp(σ(ā)/A). Therefore by
Proposition 5.28, p = σ(p). a

5.4. NTP2 and the broom lemma

Definition 5.30. (T any theory) We say that a formula φ(x; y) has TP2

if there is an array (bti : i < ω, t < ω) of tuples of size |y| and k < ω such
that:
· for any η : ω → ω, the conjunction

∧
t<ω φ(x; btη(t)) is consistent;

· for any t < ω, {φ(x; bti) : i < ω} is k-inconsistent.

We say that φ(x; y) is NTP2 if it does not have TP2. We say that the
theory T is NTP2 if all formulas are NTP2.

Proposition 5.31. If T is NIP, then it is NTP2.
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Proof. Assume that some formula φ(x; y) has TP2, as witnessed by
some k < ω and array (ati : i < ω, t < ω). By compactness, we may
increase the array to (ati : i < ω, t < |T |+). Next, using Lemma 4.2,
we may assume that the rows (ati)i<ω are mutually indiscernible. Take b
realizing the partial type {φ(x; bt0) : t < |T |+}. Then by k-inconsistency of
the rows, no sequence (ati)i<ω remains indiscernible over b. This contradicts
Lemma 4.8. a

The class of NTP2 theories contains both NIP theories and simple the-
ories. Most of the content of this section and the next one goes through
(with some modifications) for NTP2 theories. However, we do not try to
be optimal here, hence:

Assumption: Until the end of the chapter, we assume that T is NIP.

Notation 5.32. a |̂
A
b means that tp(a/Ab) does not fork over A.

Beware that this is not in general a symmetric relation.

Definition 5.33. Let I = (ai : i < ω) be a sequence of tuples. We
say that it is a Morley sequence over A if there is some global type p,
non-forking over A such that I |= p(ω)|A.

Lemma 5.34. Let b̄ = (bi : i < ω) be an A-indiscernible sequence such
that p = tp(b̄/A) does not fork over A. Then there is some global non-
forking extension q(x0, x1, . . . ) of p which is the type of some U-indiscernible
sequence.

Proof. Let p′ be any non-forking extension of tp(b̄/A). Let (di : i <
ω) |= p′. We can find some U-indiscernible sequence (ei : i < ω) realizing
the EM-type of (di : i < ω) over U . Let q = tp(ei : i < ω). Then q does
not fork over A and its restriction to A is p. a

Lemma 5.35. Let A be an extension base, and φ(x; b) ∈ L(U) divide over
A. Then there is a Morley sequence (bi : i < ω) over A witnessing dividing
(i.e., b0 = b and the conjunction

∧
i<ω φ(x; bi) is inconsistent).

Proof. Let (b′i : i < ω) be some A-indiscernible sequence with b′0 = b
and such that {φ(x; b′i) : i < ω} is k-inconsistent. Let p = tp((b′i)i<ω/A).
By assumption on A, p does not fork over A, so by the previous lemma,
there is some q(x0, . . . ) ∈ S(U) a non-forking extension of p and some
r(x) ∈ S(U) such that the type q restricted to any one of its variable is
equal to r. Let (b̄t : t < ω) be a Morley sequence of q over A, where
b̄t = (bti : i < ω).

For each t < ω, the type {φ(x; bti) : i < ω)} is k-inconsistent. By NTP2,
there is some η : ω → ω such that

∧
t<ω b

t
η(t) is inconsistent. As the

sequence (btη(t) : t < ω) is a Morley sequence of r over A, we have what we

want. a
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Lemma 5.36 (Broom lemma). Let A ⊂ U be an extension base and π(x)
be a partial type over U which is LstpA-invariant. Assume that for some
formulas ψ(x; b) and φi(x; c), i < n in L(U) we have

π(x) ` ψ(x; b) ∨
∨
i<n

φi(x; c),

where b |̂
A
c and for each i < n, φi(x; c) divides over A. Then

π(x) ` ψ(x; b).

Proof. We prove the result by induction on n. The case n = 0 is trivial.
Assume we know it for n and let π(x) ` ψ(x; b) ∨

∨
i<n+1 φi(x; c). By

the previous lemma, there is a Morley sequence (cj : j < ω) over A with
c0 = c and such that {φn+1(x; cj) : j < ω} is k-inconsistent. Conjugating
by an automorphism, we may assume that b |̂

A
(cj)j<ω, thus the sequence

(cj)j<ω is indiscernible over Ab (since tp(b/A(cj)) is LstpA-invariant).
By LstpA-invariance of π(x), we have π(x) ` ψ(x; b) ∨

∨
i<n+1 φi(x; cj)

for all j < ω. In particular, we have

π(x) ` ψ(x; b) ∨
∧
j<k

∨
i<n+1

φi(x; cj).

By assumption on k, this implies

π(x) ` ψ(x; b) ∨
∨
j<k
i<n

φi(x; cj).

For any j < k, we have b |̂
A
c≥j , thus b |̂

Ac<j
cj . Also we have c>j |̂ A cj .

Therefore by left transitivity (Lemma 5.18) bc>j |̂ A cj .
By the induction hypothesis, and as

π(x) `

ψ(x; b) ∨
∨

0<j<k
i<n

φi(x; cj)

 ∨ ∨
i<n

φi(x; c0)

we have

π(x) ` ψ(x; b) ∨
∨

0<j<k
i<n

φi(x; cj).

Iterating this last step k − 1 times, we obtain π(x) ` ψ(x; b). a
The following corollary has the same hypothesis as the lemma, except

that we drop the condition b |̂
A
c.

Corollary 5.37. Let A ⊂ U be an extension base and π(x) be a partial
type over U which is LstpA-invariant. Assume that for some formulas
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ψ(x; b) and φi(x; c), i < n in L(U) we have

π(x) ` ψ(x; b) ∨
∨
i<n

φi(x; c),

and for each i < n, φi(x; c) divides over A.
Then we have π(x) `

∨
j<m ψ(x; bj), where the tuples bj are such that

Lstp(bj/A) = Lstp(b/A).

Proof. Consider the partial type

π′(x) = π(x) ∪ {¬ψ(x; b′) : Lstp(b′/A) = Lstp(b/A)}.

Then π′(x) is LstpA-invariant and by hypothesis on π(x), we have π′(x) `
x 6= x ∨

∨
φi(x; c). The previous lemma applies to give π′(x) ` x 6= x.

Therefore π′(x) is inconsistent and the conclusion follows by compactness.
a

Definition 5.38. Let p be a type over a model M and N �M . An heir
of p over N is a type q ∈ S(N) which extends p and such that whenever
q ` φ(x; b), with φ(x; y) ∈ L(M) and b ∈ N , then there is b′ ∈M such that
p ` φ(x; b′).

Note that if q ∈ S(N) is an heir of its restriction p to M and a |= q, then
tp(N/Ma) is finitely satisfiable in M and in particular we have N |̂

M
a.

It is a well known fact (that we will not use) that a type p ∈ S(M) is
definable if and only if it admits a unique global heir.

Proposition 5.39. Let M |= T and p ∈ S(M). Then p has a global heir
which is non-forking over M .

Proof. Assume not. Then the partial type π(x) = p(x)∪ π1(x)∪ π2(x)
is inconsistent where
· π1(x) = {ψ(x; b) ∈ L(U) : p ` ψ(x; b′) for all b′ ∈M} and
· π2(x) = {φ(x; c) ∈ L(U) : ¬φ(x; c) divides over M}.
By compactness, we find a formula ψ(x; b) from π1(x) and finitely many

formulas φi(x; c), i < n in π2(x) such that p(x) ` ¬ψ(x; b)∨
∨
i<n ¬φi(x; c).

By Corollary 5.37, we have p(x) `
∨
j<m ¬ψ(x; bj), where bj ≡M b. As p is

a type over M , by compactness, there is some formula θ(y0, . . . , ym−1) ∈
tp(b0, . . . , bm−1/M) such that

p(x) ` ∀y0, . . . , ym−1

θ(ȳ)→
∨
j<m

¬ψ(x; yj)

 .

Taking such y0, . . . , ym−1 in M , we obtain a contradiction to the fact
that ψ(x; b) is in π1(x). a
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5.5. Strict non-forking

We continue to assume that T is NIP.

Definition 5.40. Let A ⊆ B and a ∈ U . We say that p = tp(a/B) is
strictly non-forking over A if there is a global extension p′ of p such that
p′ is non-forking over A and such that for all C ⊇ B, if a0 |= p′|C , then
C |̂

A
a0.

We will write a |̂ st
A
b to mean that tp(a/Ab) is strictly non-forking over

A.

Remark 5.41. In particular, if tp(a/B) is strictly non-forking over A,
then we have a |̂

A
B and B |̂

A
a. It is an open question whether the

converse holds (assuming that A is an extension base).

Example 5.42. Let M be a model of DLO. As in Example 5.24, take
any non-algebraic type p ∈ S1(M) and a < b < c realizing p. Then
tp(a, c/Mb) does not fork over M . However it is not strictly non-forking
because tp(b/Mac) forks over M . There are two strictly non-forking ex-
tensions of tp(a, c/M) to a type over Mb obtained by placing a and c on
the same side of b.

Example 5.43. Let p ∈ S(M), then p is strictly non-forking over M : By
Proposition 5.39 and the remark before it we can take p′ to be any global
non-forking heir of p.

We now generalize this to types over arbitrary extension bases.

Proposition 5.44. Let A be an extension base and p ∈ S(A). Then p
is strictly non-forking over A.

Proof. Let a |= p. The proof is essentially the same as that of Propo-
sition 5.39. Namely, we consider the partial type p(x) ∪ {ψ(x; b) : b ∈
U ,¬ψ(a; y) forks over A}∪{φ(x; c) : c ∈ U ,¬φ(x; c) divides over A}. If this
type is inconsistent, then we can find some ψ(x; b) from the first set and
finitely many φi(x; c), i < n from the second set such that

p(x) ` ¬ψ(x; b) ∨
∨
i<n

¬φi(x; c).

By Corollary 5.37, we have p(x) `
∨
j<m ¬ψ(x; bj) where Lstp(bj/A) =

Lstp(b/A). Let b̄ = b0ˆ . . . b̂m−1 and take q ∈ S(U) a non-forking extension
of tp(b̄/A) (as A is an extension base). If b̄′ |= q|Aa, then by hypothesis on
ψ(x; y), ψ(a; bi) holds for all i. A contradiction. a

Definition 5.45. The sequence (ai : i < α) is a strict non-forking se-

quence over A if for any i < α we have ai |̂ stA a<i.
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Lemma 5.46. Let A be an extension base. Let (ai : i < α) be a strict
non-forking sequence over A and (Ii : i < α) a sequence of A-indiscernible
sequences such that Ii begins with ai. Then we can find sequences (Ji : i <
α) mutually indiscernible over A such that Ji ≡Aai Ii for each i < α.

Proof. Without loss, the sequences Ii are indexed by ω. We may as-
sume that α = n < ω and we show the result by induction on n. Assume
it is true for n and let (ai : i < n + 1) and (Ii : i < n + 1) be given. By
the induction hypothesis, we may assume that the sequences (Ii : i < n)

are mutually indiscernible over A. We have an |̂ stA a<n. Conjugating by

an automorphism fixing A and the family (ai : i < n+ 1), we may assume

that an |̂ stA a<nI<n. This implies:

(1) the sequences (Ii : i < n) are mutually indiscernible over Aan;
(2) a<nI<n |̂ A an.

By Lemma 5.17, tp(a<nI<n/Aan) has an extension q over AIn such that
In is indiscernible over a realization of q. Therefore moving In by an auto-
morphism over Aan, we may assume that In is indiscernible over Aa<nI<n.

For k < n+1, write Ik = (aki : i < ω). Let η : n+1→ ω be any function.
As In is indiscernible over AI<n, we have

a0
η(0) · · · a

n
η(n) ≡A a

0
η(0) · · · a

n−1
η(n−1)an.

Then by (1) above,

a0
η(0) · · · a

n
η(n) ≡A a0 · · · an.

For k from 0 to n − 1, construct a sequence I ′k which is indiscernible
over AInI>kI

′
<k and realizes the EM-type of Ik over that set. Then the

sequences (I ′k : k < n) are mutually indiscernible over AIn. Write I ′k =

(a′
k
i : i < ω). By the previous observation we have a′

0
0 · · · a′

n−1
0 ≡Aan

a0 · · · an−1. Therefore we may assume that a′
k
0 = ak for all k < n.

Then the sequences I ′0, . . . , I
′
n−1, In have the required properties. a

Proposition 5.47. Let A be an extension base, and let (ai : i < κ) be a
strict non-forking sequence over A. Let b such that dp-rk(b/A) < κ. Then
there is i < κ such that tp(b/Aai) does not divide over A.

Proof. Assume that tp(b/Aai) divides over A for all i < κ. Then, for
each i < κ we can find some φi(x; ai) ∈ tp(b/Aai) and an A-indiscernible
sequence Ii = (aij : j < ω) such that ai0 = ai and

∧
j<ω φi(x; aij) is incon-

sistent. By the previous proposition, we may assume that the sequences Ii
are mutually indiscernible over A. Then for i < κ, Ii is not indiscernible
over Ab, which contradicts the definition of dp-rank. a

We will show in Theorem 5.49 that forking equals dividing over extension
bases, therefore one can replace “does not divide” by “does not fork” in
the previous proposition.
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Proposition 5.48. Let A be an extension base and (ai : i < ω) indis-
cernible and strict non-forking over A. Assume that the formula φ(x; a0)
divides over A, then the partial type {φ(x; ai) : i < ω} is inconsistent.

We say the strict non-forking sequences witness dividing.

Proof. Assume that {φ(x; ai) : i < ω} is consistent. Then we may
increase the sequence to some A-indiscernible sequence (ai : i < |T |+),
strict non-forking over A such that there is b |=

∧
i<|T |+ φ(x; ai). Then

tp(b/Aai) divides over ai for each i, and this contradicts Proposition 5.47.
a

Theorem 5.49. Let A be an extension base and φ(x; a) a formula, then
φ(x; a) forks over A if and only if it divides over A.

Proof. If φ(x; a) divides over A, then it forks over A. Conversely, as-
sume that φ(x; a) forks over A. Then there are formulas ψi(x; c) ∈ L(U),
i < n, such that φ(x; a) `

∨
i<n ψi(x; c) and each ψi(x; c) divides over A.

Let q ∈ S(U) be a strict non-forking extension of tp(ac/A) (using Propo-
sition 5.44) and let (aici : i < ω) be a Morley sequence of q over A. If
φ(x; a) does not divide over A, then there is b |=

∧
i<ω φ(x; ai). Trimming

the sequence if necessary, we may assume that b |=
∧
i<ω ψ0(x; ci). This

contradicts Proposition 5.48. a
Lowness. Let A be any set of parameters and let φ(x; y) be a formula

over A. Let k be the alternation number of φopp where φopp(y;x) = φ(x; y).
So k is the maximal integer for which we can find an A-indiscernible se-
quence (bi : i < ω) such that

∧
i<k ¬(φ(x; bi) ↔ φ(x; bi+1)) is consistent.

Set also l = bk/2c+1. Let (bi : i < ω) be any A-indiscernible sequence and
assume that

∧
i<dk/2e φ(x; bi) is consistent. We claim that

∧
i<ω φ(x; bi) is

consistent.
To see this, increase the sequence to an A-indiscernible (bi : i < ω(l+1)).

By indiscernibility,
∧

1≤i≤l φ(x; bω·i) is consistent and let a realize it. Then

there is some i < l + 1 such that a realizes
∧
j<ω φ(x; bω·i+j), otherwise

the truth value of φ(a; bi) would alternate too often on the sequence. Thus
again by indiscernibility,

∧
i<ω φ(x; bi) is consistent.

Proposition 5.50. Let A be an extension base and φ(x; y) a formula
over A. Then the set of b’s such that φ(x; b) forks over A is type-definable
over A.

Proof. By the paragraph before the proof (and Theorem 5.49), we know
that φ(x; b) forks over A, if and only if it divides over A, if and only if there
is some A-indiscernible sequence (bi : i < ω) such that:
· b0 = b;
·
∧
i<balt(φopp)/2c+1 φ(x; bi) is inconsistent.

This is easily seen to be a type-definable condition on b. a
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Theories satisfying the conclusion of the previous proposition are called low
theories. Thus NIP theories are low.
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fsg rosy groups.





CHAPTER 6

FINITE COMBINATORICS

In this chapter we introduce tools from finite combinatorics and proba-
bility theory.

It was first observed by Laskowski in [74] that NIP formulas had an
analogue in combinatorics under the name finite VC-dimension. More pre-
cisely, a formula φ(x; y) is NIP if and only if the class {φ(M ; b) : b ∈ M}
of subsets of M |x| has finite VC-dimension. This is a central notion in
machine learning theory, as classes of finite VC-dimension coincide with
learnable classes. See [40]. This theory builds on the theorem of Vapnik
and Chervonenkis (from which the name VC originates) which states a
uniform law of large numbers for such classes.

We give a proof of that theorem and of the so-called (p,q)-theorem of
Alon-Kleitman and Matous̆ek. We will therefore change the framework in
this chapter and work first in a purely combinatorial setting. We come
back to first order structures at the end to present the proof of uniformity
of honest definitions, where the (p, q)-theorem plays an essential role.

6.1. VC-dimension

Let X be a set (finite or infinite) and S a family of subsets of X. Such a
pair (X,S) is called a set system. For most purposes, we can forget about
the base set X, or in other words, take X to be

⋃
S.

Let A ⊆ X. We say that the family S shatters A if for every A′ ⊆ A,
there is a set S in S such that S ∩A = A′.

The family S has VC-dimension at most n (written VC(S) ≤ n), if there
is no A ⊆ X of cardinality n + 1 such that S shatters A. We say that S
is of VC-dimension n if it is of VC-dimension at most n and shatters some
subset of size n.

If for each n we can find a subset of X of cardinality n shattered by S,
then we say that S has infinite VC-dimension (and write VC(S) =∞).

For a more careful analysis, we define the shatter function πS from N to
N as follows: πS(n) is the maximum over all A ⊆ X of cardinality ≤ n of

85
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|{C ∩A : C ∈ S}|. Note that πS(n) is bounded by 2n, and we have:

VC(S) < n ⇐⇒ πS(n) < 2n.

Given a set system (X,S), we define the dual set system as the set system
(X∗,S∗), where X∗ = S and S∗ = {Sa : a ∈ X} with Sa = {S ∈ S : a ∈
S}. We then define the dual VC-dimension of S (written VC∗(S)) as the
VC-dimension of S∗. We also define the dual shatter function π∗S as the
shatter function of S∗.

Example 6.1. Let X = R2 and S be the set of open half planes. Then
π∗S(n) is the maximal number of regions into which n lines can partition

the plane. One checks by induction that it is equal to n(n+1)
2 + 1.

Example 6.2. Let φ(x; y) be a formula and fix a model M . Then φ(x; y)
is NIP if and only if the class Sφ(M) = {φ(M ; b) : b ∈ M} is of finite VC-
dimension. The VC-dimension of φ(x; y) as defined in Section 2.1 coincides
with the VC-dimension of that class. In particular, it is independent of
the choice of M . We similarly define πφ and the dual objects. Note that
the dual VC-dimension of φ(x; y) is the VC-dimension of φopp(y;x) where
φopp(y;x) = φ(x; y).

Lemma 6.3. We have VC∗(S) < 2VC(S)+1 and VC(S) < 2VC∗(S)+1.
In particular, S has finite VC-dimension if and only if it has finite dual

VC-dimension.

Proof. Assume VC(S) ≥ 2n. Then there is some subset A ⊆ X of
size 2n shattered by S. Write A = {aC : C ⊆ n}. For each k < n, let
Sk ∈ S be such that Sk ∩A = {aC : {k} ⊆ C ⊆ n}. Then easily, the family
{Sk : k ≤ n} is shattered by S∗. It follows that VC∗(S) ≥ n. This proves
the second inequality. The first one is proved similarly. a

The following fundamental lemma states that the shatter function πS(n)
is either always equal to 2n, or has polynomial growth.

Lemma 6.4 (Sauer-Shelah lemma). Let S be a class of VC-dimension at

most k. Then, for n ≥ k, we have πS(n) ≤
∑k
i=0

(
n
i

)
.

In particular πS(n) = O(nk).

Proof. First notice that the bound is tight: take S to be the family of
subsets of X of cardinality ≤ k. Then S has VC-dimension exactly k and
we see that its shatter function is equal to the bound in the statement of
the lemma. The idea of the proof is to reduce the situation to this case
by modifying the elements of S, making them as small as possible without
changing neither the cardinality of the family nor its VC-dimension.

Fix an integer n ≥ k. If S contradicts the bound, then this is also
true of some finite subfamily of S, so without loss we may assume that S
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is finite. Similarly, we may assume that X is finite of cardinality n, say
X = {x1, . . . , xn}, so that πS(n) = |S|.

We define iteratively families S0, . . . ,Sn. Set S0 = S.
Let l < n and assume that Sl has been defined. Go through the sets in

Sl one by one. For each S ∈ Sl, if xl+1 ∈ S, and if S \ {xl+1} is not a
set in Sl, replace S by S \ {xl+1}. If not, leave S as it is. Let Sl+1 be the
resulting family.

The following three facts can be easily checked by induction on l:
(i) for each l, the cardinality of Sl is the same as that of S;
(ii) let S ∈ Sl and A = S ∩ {x1, ..., xl}; then for every A0 ⊆ A, the set

A0 ∪ (S \A) is in Sl;
(iii) any A ⊆ X shattered by Sl+1 is also shattered by Sl.
Fact (ii) implies in particular that if S ∈ Sn, then S is shattered by Sn.

It follows from (iii) that the VC-dimension of Sn is not greater than that
of S. Therefore no set in Sn can have cardinality greater than k. Hence∑k
i=0

(
n
i

)
≥ |Sn| = |S| = πS(n). a

We define the VC-density of S to be vc(S) = lim supn→∞
log(πS(n))

logn . In

other words, vc(S) is the smallest r ≥ 0 for which we have πS(n) = O(nr).
Similarly, we define the VC-codensity as vc∗(S) = vc(S∗).

We have vc(S) < +∞ ⇐⇒ VC(S) < +∞ and by the previous result,
we always have vc(S) ≤ VC(S). However, one cannot bound in general
the VC-dimension in terms of the VC-density. For many purposes, the
VC-density is a more appropriate notion than the VC-dimension.

Example 6.5. Let (X,S) be a set system with vc(S) < k. Set X ′ = X∪Y
where Y is a set of size k disjoint from X and let S ′ = S ∪ P(Y ). Then
VC(S ′) = k, but vc(S ′) = vc(S) < k.

We now state and prove the fundamental theorem of Vapnik and Cher-
vonenkis. It is a uniform version of the law of large numbers for set systems
of finite VC-dimension.

First, we fix a notation. For S ∈ S and (x1, . . . , xn) ∈ Xn, we define
Av(x1, . . . , xn;S) as being equal to 1

n |S ∩ {x1, . . . , xn}|. It is the mea-
sure of S estimated on the finite set {x1, . . . , xn}. The weak law of large
numbers (Proposition B.4) states that for fixed S ∈ S and ε > 0, we
have µn(|Av(x1, . . . , xn;S) − µ(S)| ≥ ε) ≤ 1

4nε2 . Hence with high prob-
ability, sampling on a tuple (x1, . . . , xn) selected at random gives a good
estimate of the measure of S. The VC-theorem states that if S is of finite
VC-dimension, then sampling on a random tuple (x1, . . . , xn) gives a good
estimate of the measures of all the sets in S.
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Theorem 6.6 (VC-theorem). Let (X,µ) be a finite probability space,
and S ⊆ P(X) a family of subsets, then for ε > 0 we have:

µn
(

sup
S∈S
|Av(x1, . . . , xn;S)− µ(S)| > ε

)
≤ 8πS(n) exp

(
−nε

2

32

)
.

Proof. Fix some integer n. For x̄ = (x1, . . . , xn), x̄′ = (x′1, . . . , x
′
n) and

S ∈ S, let f(x̄, x̄′;S) be equal to |Av(x1, . . . , xn;S)−Av(x′1, . . . , x
′
n;S)|.

Let x1, . . . , xn, x
′
1, . . . , x

′
n be mutually independent random elements

from X each with distribution µ. Let also σ1, . . . , σn be random vari-
ables independent from each other and from the previous ones such that
Prob(σi = 1) = Prob(σi = −1) = 1/2.

Claim 1: We have:

Prob

(
sup
S∈S

f(x̄, x̄′;S) > ε/2

)
≤ 2 Prob

(
sup
S∈S

1

n

∣∣∣∣∣∑
i

σi1S(xi)

∣∣∣∣∣ > ε/4

)
.

Notice that for fixed i and S, the random variable 1S(xi) − 1S(x′i) has
zero mean and a symmetric distribution (it takes the values 1 and -1 with
the same probability). Therefore its distribution does not change if we
multiply it by σi. We then compute:

Prob

(
sup
S∈S

f(x̄, x̄′;S) > ε/2

)
= Prob

(
sup
S∈S

1

n

∣∣∣∑(1S(xi)− 1S(x′i))
∣∣∣ > ε/2

)
= Prob

(
sup
S∈S

1

n

∣∣∣∑σi(1S(xi)− 1S(x′i))
∣∣∣ > ε/2

)
≤ Prob

(
sup
S∈S

1

n

∣∣∣∑σi1S(xi)
∣∣∣ > ε/4 or sup

S∈S

1

n

∣∣∣∑σi1S(x′i)
∣∣∣ > ε/4

)
≤ 2 Prob

(
sup
S∈S

1

n

∣∣∣∑σi1S(xi)
∣∣∣ > ε/4

)
.

The last inequality being just the union bound.

Claim 2: We have:

Prob

(
sup
S∈S

f(x̄, x̄′;S) > ε/2

)
≤ 4πS(n) exp

(
−nε

2

32

)
.

Proof: We start by fixing a tuple ā ∈ Xn and some S ∈ S. Let AS(ā) be
the event 1

n |
∑
i σi1S(ai)| > ε/4 (the only randomness left is in the σi’s).

By Chernoff’s bound (Theorem B.5 and the remark following it) we have:

Prob(AS(ā)) ≤ 2 exp

(
−nε

2

32

)
.
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Now note that the event AS(ā) depends only on S ∩ {a1, . . . , an}. As
S varies in S, there are at most πS(n) values for that set. Hence also at
most πS(n) events AS to consider. Thus the union bound shows that the
disjunction

⋃
S∈S AS(ā) has probability at most 2πS(n) exp(−nε2/32). By

Claim 1, we have

Prob

(
sup
S∈S

f(x̄, x̄′;S) > ε/2

)
≤ 2 Prob

(⋃
S∈S

AS(x̄)

)

≤ 4πS(n) exp

(
−nε

2

32

)
.

To conclude with the proof of the theorem, we may assume that n > 2/ε2,
since otherwise the right hand side is larger than 1. Let X0 ⊆ Xn be the
set of b̄ ∈ Xn such that Prob

(
supS∈S f(x̄, b̄;S) > ε/2

)
≥ 1/2. By Claim

2, we have µn(X0) ≤ 8πS(n) exp
(
−nε2/32

)
. Fix ā ∈ Xn \ X0 and some

S ∈ S. By the weak law of large numbers (Proposition B.4), we have

Prob
(
|Av(x1, . . . , xn;S)− µ(S)| > ε

2

)
≤ 1

nε2
<

1

2
.

It follows that there is x̄ ∈ Xn satisfying both:
· f(x̄, ā;S) ≤ ε/2;
· |Av(x̄;S)− µ(S)| ≤ ε/2.
Remembering the definition of f , this implies that |Av(ā;S) − µ(S)| ≤

ε. As S was arbitrary, we conclude that for any ā ∈ Xn \ X0, we have
supS∈S |Av(ā;S)− µ(S)| ≤ ε and the theorem follows.

a
In fact the theorem is still true if X is infinite, but we have to add the

following measurability assumptions:
(i) each set S ∈ S is measurable;
(ii) for each n, the function

(x1, . . . , xn) 7→ sup
S∈S
|Av(x1, . . . , xn;S)− µ(S)|

from Xn to R is measurable;
(iii) for each n, the function

(x1, . . . , xn, x
′
1, . . . , x

′
n) 7→ sup

S∈S
|Av(x1, . . . , xn;S)−Av(x′1, . . . , x

′
n;S)|

from X2n to R is measurable.
The first condition implies the other two when the family S is countable,

and of course they always hold when X is finite. The proof then goes
through unchanged.

Example 6.7. To see how the second and third hypothesis might fail, con-
sider the case of X = ω1. Let B be the σ-algebra generated by the intervals.
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Let µ be defined on B by µ(A) = 1 if A contains an end segment of X and
µ(A) = 0 otherwise. This defines a σ-additive measure on (X,B). Take S
to be the family of intervals of X. It has VC-dimension 2. We leave it to the
reader to check that the VC-theorem does not hold for S. (In view of Corol-
lary 6.9 below it is enough to check that there are no ε-approximations, for
ε < 1.)

Definition 6.8. If (X,S) is a set system, an ε-approximation for S is a
finite subset X0 = {x1, . . . , xn} of X such that for all S ∈ S, we have∣∣∣∣ 1n |S ∩ {x1, . . . , xn}| − µ(S)

∣∣∣∣ ≤ ε.
Corollary 6.9. Let k > 0 and ε > 0, then there is N such that any set

system S on a finite probability space (X,µ) with V C(S) ≤ k admits an
ε-approximation of size at most N .

Proof. By Sauer’s lemma 6.4, we know that there is some polynomial
Pk depending only on k such that πS(n) ≤ Pk(n). Take N such that

8Pk(N) exp
(
−Nε

2

32

)
< 1 and apply the VC-theorem 6.6. a

6.2. The (p, q)-theorem

Let p ≥ q be two integers. A set system (X,S) has the (p, q)-property
if out of every p sets of S, some q have non-empty intersection. Dually,
we will say that (X,S) has the (p, q)∗-property if for every X1 ⊆ X of
cardinality ≥ p, there is S ∈ S such that |X1 ∩ S| ≥ q.

The following theorem will be an important ingredient in the proof of
uniformity for honest definitions.

Theorem 6.10 ((p, q)-theorem). Let p ≥ q be two integers. Then there
is an integer N such that the following holds:

Let (X,S) be a finite set system where every S ∈ S is non-empty. As-
sume:

· V C∗(S) < q;
· (X,S) has the (p, q)-property.

Then there is a subset of X of size N which intersects every element of
S.

This theorem has the following model-theoretic consequence.

Corollary 6.11. (T is NIP) Fix a model M of T and let φ(x; y), ψ(y)
be two formulas such that φ(x; b) is non-forking over M for all b ∈ ψ(U).
Then there are finitely many global types p1, . . . , pN ∈ Sx(U) such that any
φ(x; b), b ∈ ψ(U) is in one of them.
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Proof. By assumption, one cannot find an indiscernible sequence (bi :
i < ω) of realizations of ψ(y) such that {φ(x; bi) : i < ω} is inconsistent.
Hence by compactness, for any q, there is some p such that for no subset
B0 ⊂ ψ(U) of size p is {φ(x; b) : b ∈ B0} q-inconsistent. This exactly means
that the family {φ(M ; b) : b ∈ ψ(U)} has the (p, q)-property. Take q large
enough so that Theorem 6.10 applies and let N be given by it. Consider
the partial type

q(x0, . . . , xN−1) =

{∨
i<N

φ(xi; b) : b ∈ ψ(U)

}
.

By the (p, q)-theorem, every finite subset of q(x0, . . . , xN−1) is consistent.
Hence the whole type is consistent and we obtain what we want. a

Exercise 6.12. Show that in the previous corollary, one can ask for the
types p1, . . . , pN to be M -invariant.

We will only need a special case of the (p, q)-theorem where p = q big
enough with respect to V C∗(S). We state this as a separate corollary,
which we phrase in the dual form for later reference. We will only prove
this corollary (without using the theorem) and refer the reader to [82] for
the proof of the full theorem.

Corollary 6.13. Let k ∈ N, then there are two integers q and N such
that for every finite X and S ⊆ P(X) a familiy of VC-dimension at most
k, if (X,S) has the (q, q)∗-property (that is, for every X0 ⊆ X of size ≤ q,
we can find S ∈ S containing X0), then there are S1, . . . , SN ∈ S whose
union is the whole of X.

Proof. (Of the corollary)
Let ε = 1/3.
By Corollary 6.9, there is some q such that for every set system S of

VC-dimension ≤ k on a finite set X and any probability measure µ on X,
there are x1, . . . , xq ∈ X such that for any S ∈ S,∣∣∣∣µ(S)− |{i : xi ∈ S}|

n

∣∣∣∣ ≤ ε.
Let (X,S) be a set system of VC-dimension ≤ k with X finite and having

the (q, q)∗-property. Then it follows that for any probability measure µ on
X, we can find some S ∈ S with µ(S) ≥ 1− ε.

We now need the following result, known as Farkas’s lemma. We refer
the reader to any introductory text on convex analysis or linear programing
for a proof. See for example [100, page 90].

Fact 6.14 (Farkas’s lemma). Let A be a matrix in Mm,n(R) and b ∈
Rm, then the following are equivalent:
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(i) ∃x ∈ Rn+ such that Ax ≤ b;
(ii) for all y ∈M1,m(R+), yA ≥ 0 implies yb ≥ 0.

Write X = {x1, . . . , xm−1} and S = {S1, . . . , Sn}. We define a matrix
A ∈Mm,n by:
· for all j ≤ n, Am,j = 1;
· for i ≤ m− 1, j ≤ n, Ai,j = −1 if xi ∈ Sj and 0 otherwise.

We also define b ∈ Rm by bi = −(1− ε) for i ≤ m− 1 and bm = 1.
We check that condition (ii) of Farkas’s lemma is satisfied. So let y =

(a1, . . . , am−1, am) ∈M1,m(R+) be such that yA ≥ 0. This means that for
any j ≤ n, we have

∑m
i=1 aiAij ≥ 0. Hence, for any j ≤ n,

∑
{i:xi∈Sj} ai ≤

am.
Let a∗ =

∑
i≤m−1 ai. Let µ̃ be the measure onX defined by giving weight

ai/a∗ to the point xi, for all i ≤ m−1. Then the previous inequality implies
that no set Sj has measure greater than am/a∗. On the other hand, by
what we have shown above, there is some S ∈ S such that µ̃(S) ≥ (1− ε).
It follows that am/a∗ ≥ 1− ε. And this gives exactly yb ≥ 0.

By Farkas’s lemma, we conclude that (i) above holds, namely that there
is some d = (d1, . . . , dn)T, with each di ≥ 0 such that Ad ≤ b. Decoding,
this gives that for i ≤ m − 1,

∑
{j:xi∈Sj} dj ≥ 1 − ε and

∑m
j=1 dj ≤ 1.

Increasing d1 if necessary, we may assume that actually
∑m
j=1 dj = 1.

We now consider the dual set system: to x ∈ X, we associate Ex = {S ∈
S : x ∈ S}. Let E = {Ex : x ∈ X}. Then VC(E) ≤ 2k+1. Equip the set S
with the measure µ∗ defined by the weights di. By Corollary 6.9 again, we
can find N depending only on k and ε, and S′1, . . . , S

′
N ∈ S such that for

all x ∈ X, ∣∣∣∣µ∗(Ex)− |{l : x ∈ S′l}|
N

∣∣∣∣ ≤ ε.
For any x ∈ X, we have µ∗(Ex) =

∑
{j:x∈Sj} dj ≥ 1 − ε > ε, thus

|{l : x ∈ S′l}| > 0. It follows that
⋃N
l=1 S

′
l = X. a

6.3. Uniformity of honest definitions

We come back to the model theoretic context. We assume that our
ambient theory T is NIP.

Recall from Theorem 3.13 (honest definitions) and the remark following
it that given M |= T , A ⊆M and φ(x; b) ∈ L(M), there is some ψ(x; z) ∈ L
such that for any finite A0 ⊆ φ(A; b) we can find d ∈ A with A0 ⊆ ψ(A; d) ⊆
φ(A; b).

We now address the question of uniformity of ψ with respect to φ. First,
compactness gives a weak uniformity statement.



6.3. Uniformity of honest definitions 93

Lemma 6.15. Let φ(x; y) ∈ L. For any formula ψ(x; z) (where x is the
same variable as in φ and z may vary), let an integer qψ be given. Then
there are finitely many formulas ψ0, . . . , ψn−1 such that:

For M |= T , A ⊆M , b ∈M , there exists j < n, such that for any A0 ⊆
φ(A; b) of size ≤ qψj there is some d ∈ A with A0 ⊆ ψj(A; d) ⊆ φ(A; b).

Proof. Consider the language L′ = L ∪ {P(x), cb}, where cb is a new
constant. Consider the L′-theory T ′ axiomatized by T along with the
sentences Θψ, for ψ(x; z) ∈ L, where

Θψ = ∃x0, . . . , xqψ−1 ∈ P ∧
i<qψ

φ(xi; cb) ∧ ¬∃d ∈ P

 ∧
i<qψ

ψ(xi; d) ∧ ∀x ∈ P (ψ(x; d)→ φ(x; cb))

 .

By Theorem 3.13 as recalled above, the theory T ′ is inconsistent. Therefore
by compactness there are finitely many formulas ψ0, . . . , ψn−1 such that
T ∪ {Θψ0

, . . . ,Θψn−1
} is inconsistent. This gives what we want. a

Theorem 6.16. Let φ(x; y) ∈ L. There exists ψ(x; z) ∈ L such that for
any M |= T , A ⊆ M of size ≥ 2, b ∈ M and A0 ⊆ φ(A; b) finite, there is
d ∈ A with

A0 ⊆ ψ(A; d) ⊆ φ(A; b).

Proof. For any formula ψ(x; z), let kψ be the VC-dimension of ψ and
let (qψ, N(ψ)) be given by Corollary 6.13 for k = kψ. Apply the previous
lemma with those qψ’s. It gives us formulas ψ0, . . . , ψn−1. For i < n, let

Ψi(x; z1, . . . , zN(ψi)) =

N(ψi)∨
j=1

ψi(x; zj).

Let now M |= T , A ⊆ M and b ∈ M . By the previous lemma, there is
some i < n such that for any A1 ⊆ φ(A; b) of size ≤ qψi , we can find d ∈ A
with A1 ⊆ ψi(A; d) ⊆ φ(A; b).

Let A0 ⊆ φ(A; b) be finite. Let

S = {ψi(A0; d) : d ∈ A and ψi(A; d) ⊆ φ(A; b)} ⊆ P(A0).

Then the VC-dimension of S is bounded above by VC(ψi). Furthermore,
the assumptions on ψi imply that S has the (qψi , qψi)

∗-property. Therefore
by Corollary 6.13, there are S1, . . . , SN(ψi) which cover the whole of A0.
Write Sj as ψi(A0; dj). Then

A0 ⊆ Ψi(A; d1, . . . , dN(ψi)) ⊆ φ(A; b).

If |A| ≥ 2, then by usual coding tricks, we can replace the finite set
{Ψ0, . . . ,Ψn−1} by a single formula and the theorem follows. a
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The following corollary is usually referred to as “uniform definability of
types over finite sets”, or UDTFS.

Corollary 6.17 (UDTFS). Let φ(x; y) ∈ L, then there is ψ(x; z) ∈ L
such that for any b ∈ U and A ⊂ U a finite set of size ≥ 2, there is d ∈ A
with

φ(A; b) = ψ(A; d).

Proof. Simply apply Theorem 6.16 with A0 = φ(A; b). a
Note that this implies that the number of φ-types over A is bounded by

|A||z|. One can thus see UDTFS as a model theoretic version of Sauer’s
lemma 6.4 which says that the number of φ-types is polynomial in the size
of A. However we do not have any explicit bound on |z|.

Remark 6.18. We have used the fact that the theory T is NIP to obtain
an honest definition for φ(x; b) and again to apply Corollary 6.13 to the
formulas ψ(x; z). In particular, the proof does not go through for an NIP
formula φ(x; y) in a possibly independent theory. It is an open question
whether or not UDTFS holds in that case.

Exercise 6.19 (Pseudofinite). Recall that is a theory T is pseudofinite if
it is elementarily equivalent to an ultraproduct of finite structures.

We have seen that over finite sets, the number of types in a fixed number
of variables n is polynomial in the size of the finite set. Furthermore,
types over finite set are uniformly definable. Hence it appears that over
finite sets, NIP theories behave like stable theories. It is then reasonable
to expect that pseudofinite NIP theories will share other properties with
stable theories.

1. Characterize pseudofinite linear orders.
Assume that T is NIP and pseudofinite.

2. Show that any definable set in T is stably embedded.
3. (Chernikov) Show that if T is moreover ω-categorical, then it is stable.

(It is an open question whether we can replace ω-categorical by elimination
of ∃∞.)

4. Show that if some formula φ(x; a) does not fork over a model M , then
it has a point in M .
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CHAPTER 7

MEASURES

In this chapter we study Keisler measures, which can be seen either as a
generalization of types that allow for truth values in the segment [0, 1] or
as ordinary probability measures on the compact space of types. The two
points of view are useful and we will often switch from one to the other.

Many properties of types generalize naturally to measures. In particular
one can define generically stable measures. As we will see, those are ubiq-
uitous in NIP theories, as opposed to generically stable types. One way
to obtain such a measure is to take a σ-additive probability measure on a
standard model (for example the Lebesgue measure on [0, 1] seen as subset
of the structure R).

The most important examples of measures are invariant measures on
groups. Those will be studied in the next chapter.

In this chapter, we again assume that T is NIP, although the basic defi-
nitions are of course valid in any theory.

7.1. Definitions and basic properties

If A is a set of parameters and x a variable, we let Lx(A) denote the
algebra of A-definable sets in the variable x. Equivalently, it is the Boolean
algebra of formulas with parameters in A and free variable x, quotiented
by the equivalence relation φ(x) ∼ ψ(x) ⇐⇒ U |= φ(x) ↔ ψ(x). By
an abuse of notations, φ(x) will be used to denote a formula as well as its
image in Lx(A).

Definition 7.1. Let A ⊂ U be a set of parameters. A Keisler measure
(or simply a measure) µ over A in the variable x is a finitely additive
probability measure on Lx(A). In other words it is a function µ : Lx(A)→
[0, 1] such that:
· µ(x = x) = 1;
· µ(¬φ(x)) = 1− µ(φ(x));
· µ(φ(x) ∧ ψ(x)) + µ(φ(x) ∨ ψ(x)) = µ(φ(x)) + µ(ψ(x)).

97
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We will sometimes write µ as µx or µ(x) to emphasize that µ is a measure
on the variable x. If A ⊆ B and µ is a measure over B, we define the
restriction of µ to A denoted µ|A or µ � A as the restriction of µ to Lx(A).
As in the case of types, we say that µ is an extension to B of µ|A.

Example 7.2. • A type p ∈ Sx(A) can (and will) be identified with the
Keisler measure µp(x) over A defined by µp(φ(x)) = 1 if p ` φ(x) and
µp(φ(x)) = 0 otherwise. Thus a (complete) type is a special case of
a Keisler measure. We will usually not distinguish between p and µp
and write for example p(φ(x; b)) instead of µp(φ(x; b)).

• Given a0, a1, . . . in [0, 1] such that
∑
ai = 1, and types p0, p1, . . .

over A in the same variable x, we can define the average measure
µ =

∑
aipi.

• Take T to be the theory of real closed fields and let R be the stan-
dard model. Let µ0 be any Borel probability measure on R. Then
µ0 induces a Keisler measure over U in one variable x defined by
µ(φ(x)) = µ0(φ(R)).

• Let I = (ai : i ∈ [0, 1]) be an indiscernible sequence. Let λ0 denote the
usual Lebesgue measure on the interval [0, 1]. We can define the aver-
age measure Av(I) as the measure µ defined by µ(φ(x; b)) = λ0({i ∈
[0, 1] :|= φ(ai; b)}). Note that NIP ensures that the set in question is
Lebesgue measurable (it is in fact a finite union of intervals).

• Let (Mn : n < ω) be a sequence of finite structures. For each n < ω,
let µn denote the normalized counting measure on Mn. Let D be
an ultrafilter on ω and consider the ultraproduct M =

∏
DMn. We

define a measure µ on M in the following way. Let φ(x; b) ∈ L(M)
be a formula. Let (bn : n < ω) be a representative of b in

∏
n<ωMn.

Then set µ(φ(x; b)) = limD µn(φ(Mn; bn))1.
• Here is an example with IP which does not have all the nice properties

that we will establish for measure in NIP theories. Let T be the theory
of the random graph in the language {R}. Let M |= T . Define a
Keisler measure µ on M by µ

(⋂
i<n(xRai)

η(i)
)

= 2−n for any choice
of pairwise distinct ai’s in M and η : n→ {0, 1}.

Let Mx(A) denote the set of Keisler measures over A. It is a closed
subset of [0, 1]Lx(A), equipped with the product topology. We equip Mx(A)
with the induced topology, making it a compact Hausdorff space. The
identification of a type with the measure it defines gives an identification
of Sx(A) as a closed subspace of Mx(A).

1We recall that the limit limD ai of a sequence (ai)i<ω of elements of a compact set
C is the unique l ∈ C such that for any neighborhood U of l, the set {i < ω : ai ∈ U} is

in D.
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Borel measures. Let µ ∈ Mx(A) be a Keisler measure. It assigns a
measure to every clopen set of the space Sx(A). We show how to extend
that measure to a σ-additive Borel probability measure. First, if O ⊆ Sx(A)
is open, we define µ(O) = sup{µ(D) : D ⊆ O,D clopen}. Similarly, the
measure of a closed set F is the infimum of the measures of clopen sets
which contain it. If F ⊆ O are respectively closed and open, then there
is a definable set between them. This implies that if X is either closed or
open, we have

(Reg) sup{µ(F ) : F ⊆ X,F closed} = inf{µ(O) : X ⊆ O,O open}.

The next step is to show that the set of subsets X ⊆ Sx(A) satisfing
(Reg) is closed under complement and countable union. Complement is
clear. For countable union: let X =

⋃
i<ωXi and fix ε > 0. For each

i < ω, take Fi ⊆ Xi ⊆ Oi with µ(Oi) − µ(Fi) ≤ ε2−i. Let O =
⋃
i<ω Oi.

Then we can find some finite N such that µ(O) − µ(
⋃
i<N Oi) ≤ ε. Let

F =
⋃
i<N Fi. Then we have F ⊆ X ⊆ O and µ(O)− µ(F ) ≤ 3ε.

It follows that every Borel subset of Sx(A) satisfies (Reg). We can there-
fore define µ on all such sets by µ(X) = sup{µ(F ) : F ⊆ X,F closed} =
inf{µ(O) : X ⊆ O,O open}. It is easy to check that this defines a σ-
additive measure on Sx(A). Property (Reg) is refered to as regularity of
the measure µ.

To a Keisler measure on A, we have associated a regular probability mea-
sure on Sx(A). Conversely, if µ is a regular probability measure on Sx(A),
then it defines a Keisler measure by restriction to the clopens. Regular-
ity ensures that µ is entirely determined by that restriction. We therefore
obtain a bijection:

{Keisler measures on A} ←→ {Regular Borel prob. measures on Sx(A)}.

We will always use the same notation for the Keisler measure and for
the associated Borel measure on the type space. This gives meaning to the
notation µ(X), where µ is a Keisler measure on A and X is a Borel subset
of Sx(A).

We define the support of µ as the set S(µ) ⊆ Sx(A) of types p ∈ Sx(A)
such that for any φ(x; b) ∈ L(A), if p(φ(x; b)) = 1 then µ(φ(x; b)) > 0. The
support of µ is thus a closed set of Sx(A). A type in the support of µ is
called weakly random for µ.

If X is a Borel set of positive µ-measure, the localization of µ at X is the
measure µX(x) defined by µX(φ(x)) = µ(φ(x) ∩X)/µ(X).

Extending measures. The next lemma says that any partial measure
in a suitable sense extends to a full Keisler measure. In the statement, >
denotes the true formula x = x.
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Lemma 7.3. Let Ω ⊆ Lx(A) be a set of (equivalence classes of) formulas
closed under intersection, union and complement, and containing >. Let µ0

be a finitely additive measure on Ω with values in [0, 1] such that µ0(>) = 1.
Then µ extends to a Keisler measure over A.

Proof. By compactness in the space [0, 1]Lx(A), it is enough to show
that given ψ1(x), . . . , ψn(x) definable sets in Lx(A), there is a function
f = 〈ψ1, . . . , ψn〉 → [0, 1] finitely additive and compatible with µ0. (Here
〈X〉 denotes the Boolean algebra generated by X.) We may assume that
ψ1, . . . , ψn are the atoms of the Boolean algebra B that they generate.

The elements of Ω in B form a sub-Boolean algebra. Let φ1, . . . , φm be
its atoms. We have say:

φ1 = ψi1(1) ∨ · · · ∨ ψi1(l1) φ2 = ψi2(1) ∨ · · · ∨ ψi2(l2) etc.

No ψi appears in more than one such expression since the φi’s are disjoint.
Then any finitely additive f satisfying f(ψi1(1)) + · · ·+ f(ψi1(l1)) = µ0(φ1)
etc. will do. a

Lemma 7.4. Let µ ∈ Mx(M) be a measure and let φ(x; b) ∈ L(U).
Let r1 = sup{µ(ψ(x)) : ψ(x) ∈ L(M), |= ψ(x) → φ(x; b)} and r2 =
inf{µ(ψ(x)) : ψ(x) ∈ L(M), |= φ(x; b)→ ψ(x)}.

Then for any r1 ≤ r ≤ r2, there is an extension ν ∈ Mx(U) of µ such
that ν(φ(x; b)) = r.

Proof. It is enough to find some ν1, ν2 such that νi(φ(x; b)) = ri for
i ∈ {1, 2}, since we can then consider averages of ν1 and ν2. We build
ν2. Let Ω ⊆ Lx(U) be the Boolean algebra generated by Lx(M) and the
definable set φ(x; b). By Lemma 7.3 it is enough to define ν2 on Ω.

First assume that r2 = 0. Then for any θ(x) ∈ L(M), set ν2(θ(x)) =
µ(θ(x)) and ν2(φ(x; b)) = 0. This extends uniquely to a finitely additive
measure on Ω. A similar argument works for r2 = 1.

If r2 > 0, then let µ′ be the localization of µ on the closed set C =
∧
θ(x)

where θ(x) ranges over elements of Lx(M) such that |= φ(x; b)→ θ(x). Let
µ′′ be the localization of µ on the complementary open set. Then we have
µ = r2µ

′ + (1 − r2)µ′′. By the previous paragraph, we can extend µ′ and
µ′′ respectively to ν′ and ν′′ such that ν′(φ(x; b)) = 1 and ν′′(φ(x; b)) = 0.
Then set ν2 = r2ν

′ + (1− r2)ν′′.
The construction of ν1 follows by taking ¬φ(x; b) instead of φ(x; b). a
When manipulating types, it is often convenient to be able to realize

them as points in a structure. The same thing cannot be done so easily with
measures, but there are a couple of techniques that can be used instead.
One of them is smooth measures which we will describe later. Another one
consists in adding the interval [0, 1] as a new sort and coding the measure
inside the new structure via definable maps.
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More precisely, let M be a structure and let µ(x) be a Keisler measure
over M . We encode this data as a structure

M̃µ = (M, [0, 1], <,+, fφ : φ(x; y) ∈ L),

where M is equipped with its full structure, [0, 1] is the standard unit
interval endowed with the ordering and addition modulo 1. For each for-
mula φ(x; y) ∈ L the function fφ(y) sends b to µ(φ(x; b)) ∈ [0, 1]. Let

now Ñ = (N, [0, 1]∗, . . . ) be an elementary extension of M̃µ, where [0, 1]∗

a (possibly) non-standard interval. Let st : [0, 1]∗ → [0, 1] be the standard
part map, that is the map sending any element of [0, 1]∗ to the unique real

number infinitesimally close to it. From Ñ we recover a Keisler measure
µ′(x) over N by setting µ′(φ(x; b)) = st(fφ(b)).

7.2. Boundedness properties

Lemma 7.5. Let µ ∈ Mx(M) be a measure and (bi : i < ω) an indis-
cernible sequence in M . Let φ(x; y) be a formula and r > 0 such that
µ(φ(x; bi)) ≥ r for all i < ω. Then the partial type {φ(x; bi) : i < ω} is
consistent.

Proof. First we show that we can assume that the sequence (bi)i<ω is
µ-indiscernible, by which we mean that if i1 < · · · < in < ω and j1 < · · · <
jn < ω, then µ(φ(x; bi1)∧ · · · ∧φ(x; bin)) = µ(φ(x; bj1)∧ · · · ∧φ(x; bjn)). To

see this, expand M to M̃µ = (M, [0, 1], . . . ) as described after Lemma 7.4.

Then in an elementary extension of M̃µ, we can find a sequence (b′i)i<ω,

indiscernible over M̃µ in the extended language and realizing the EM-type
of (bi)i<ω. As (bi)i<ω is L-indiscernible, the two sequences have the same
L-type. Therefore we may replace (bi)i<ω by (b′i)i<ω, which has the desired
property.

Now assume for a contradiction that {φ(x; bi) : i < ω} is inconsistent.
Then there is some N such that µ(φ(x; b0) ∧ · · · ∧ φ(x; bN−1)) = 0. Take
a minimal such N and let N ′ = N − 1. For any integer m, let ψm(x) =
φ(x; bmN ′)∧· · ·∧φ(x; bmN ′+N ′−1). By minimality of N and indiscernibility
of the sequence, there is some t > 0 such that we have µ(ψm(x)) = t for all
m. Also by the property of N , we have µ(ψm(x)∧ψm′(x)) = 0 for m 6= m′.

But then we have µ(ψ0(x) ∨ · · · ∨ ψm−1(x)) = mt, for all m. This con-
tradicts the fact that the measure of the whole space is 1. a

Until now we have not used the assumption that T is NIP. It comes
into play in the following lemma which implies that measures are bounded
objects.



102 7. Measures

Lemma 7.6. Let µ ∈Mx(M). We cannot find a sequence (bi : i < ω) of
tuples of M , a formula φ(x; y) and ε > 0 such that µ(φ(x; bi)4φ(x; bj)) > ε
for all i, j < ω, i 6= j.

Proof. Assume otherwise. Then by Ramsey and compactness, we may
assume that the sequence (bi : i < ω) is indiscernible. By NIP, the partial
type {φ(x; b2k)4φ(x; b2k+1) : k < ω} is inconsistent. This contradicts the
previous lemma. a

Let µ ∈ Mx(U) be a global measure. If φ(x) and ψ(x) are two M -
definable sets, set φ(x) ∼µ ψ(x) if µ(φ(x)4ψ(x)) = 0. Then the previous
lemma implies that the set of ∼µ -equivalence classes has small cardinality
(bounded by some κ depending only on |T |). In particular, the support
S(µ) of µ has small cardinality.

7.3. Smooth measures

We now define and investigate the notion of a smooth measure, which
can be considered as an analog of a realized type.

Definition 7.7. Let µ ∈Mx(M). We say that µ is smooth if for every
N ⊇M , µ has a unique extension to an element of Mx(N).

More generally, if µ ∈Mx(N) and M ⊆ N , we say that µ is smooth over
M if µ|M is smooth.

Lemma 7.8. Let µ ∈Mx(M) be a smooth measure. Let φ(x, y) ∈ L and
ε > 0. Then there are formulas θ1

i (x), θ2
i (x) for i = 1, . . . , n and ψi(y) for

i = 1, . . . , n, all over M such that:
(i) the formulas ψi(y) partition y-space;
(ii) for all i, if |= ψi(b), then |= θ1

i (x)→ φ(x, b)→ θ2
i (x);

(iii) for each i, µ(θ2
i (x))− µ(θ1

i (x)) < ε.

Proof. Let b ∈ U . Then by smoothness of µ and Lemma 7.4, there are
formulas θ1

i (x), θ2
i (x) over M , such that

(*) |= θ1
i (x)→ φ(x, b)→ θ2

i (x), and µ(θ2
i (x))− µ(θ1

i (x)) < ε.
By compactness, there are finitely many such pairs, say, (θ1

i (x), θ2
i (x)) such

that for every b, one of these pairs satisfies (*). It is then easy to find the
ψi(y)’s. a

Note that conversely, the existence of formulas θti(x) and ψi(y) with the
above properties implies that the measure µ is smooth.

Proposition 7.9. Let µ ∈Mx(M) be any measure. Then there is M ≺
N and an extension µ′ ∈Mx(N) of µ which is smooth.

Proof. Assume not. We build an increasing sequence (Mα : α < |T |+)
of models and an associated increasing sequence of measures µα ∈Mx(Mα).
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Set M0 = M . At limit stages, take the union. Assume Mα, µα are defined.
By hypothesis, µα is not smooth, so we can find some φα(x; bα) ∈ L(U)
and µ1, µ2 two extensions of µα such that µ2(φα(x; bα))− µ1(φα(x; bα)) =
4εα > 0. Then take Mα+1 an extension of Mα containing bα and set
µα+1 = 1/2(µ1 +µ2). Observe that for any θ(x) ∈Mα, either the µ1 or the
µ2 measure of θ(x)4φα(x; bα) is ≥ 2εα, hence µα+1(θ(x)4φα(x; bα)) ≥ εα.

Having done the construction, we may assume that φα = φ, and εα =
ε > 0 are both constant. Let µ′ be the measure

⋃
α<|T |+ µα. Then we have

µ′(φ(x; bα)4φ(x; bβ)) ≥ ε
for any α < β. This contradicts Lemma 7.6. a

We now show that smooth measures in NIP theories can be approximated
by averages of points.

If µ0, . . . , µn−1 are measures and φ(x; b) is a formula, then the notation
Av(µ0, . . . , µn−1;φ(x; b)) stands for 1

n

∑
k<n µk(φ(x; b)).

Similarly, if a0, . . . , an−1 are tuples, then Av(a0, . . . , an−1;φ(x; b)) stands
for 1

n |{i :|= φ(ai; b)}|. We extend this notation naturally to the case where
φ(x; b) is replaced by an arbitrary Borel subset of some type space.

Proposition 7.10. Let µ(x) be a global measure, smooth over M . Let
X be a Borel subset of Sx(M), and φ(x; y) a formula. Fix ε > 0. Then
there are a0, . . . , an−1 ∈ U such that for any b ∈ U ,

|µ(X ∩ φ(x; b))−Av(a0, . . . , an−1;X ∩ φ(x; b))| ≤ ε.

Proof. Fix formulas ψi(y), θ0
i (x) and θ1

i (x), i < m as given by Lemma
7.8. Consider µ as a probability measure on the space Sx(M). We can
find types (pi : i < n) in Sx(M) such that if λ = 1

n

∑
i<n pi then for all

i < m, λ(θ0
i (x) ∩ X) and λ(θ1

i (x) ∩ X) are within ε of µ(θ0
i (x) ∩ X) and

µ(θ1
i (x)∩X) respectively. (For example, pick types pi at random according

to µ and apply the weak law of large numbers.)
Now take points (ai : i < n) in U such that ai |= pi. Set λ′ =

1
n

∑
i<n tp(ai/U). Let b ∈ U and let i < n be such that |= ψi(b). Then

we have |= θ0
i (x) → φ(x; b) → θ1

i (x) and µ(θ1
i (x)) − µ(θ0

i (x)) ≤ ε. This
implies that λ(θ1

i (x)∩X)−λ(θ0
i (x)∩X) ≤ 3ε and therefore λ′(φ(x; b)∩X)

is within 3ε of λ(φ(x; b) ∩X) and thus within 4ε of µ(φ(x; b) ∩X). a
We conclude that we can approximate any measure by averages of types.

Proposition 7.11. Let µ ∈Mx(A) be any Keisler measure; let φ(x; y) ∈
L be a formula and fix X1, . . . , Xm ⊆ Sx(A) Borel subsets. Let ε > 0. Then
there are types p0, . . . , pn−1 ∈ Sx(A) such that, for every b ∈ A and every
k ≤ m:

|µ(φ(x; b) ∩Xk)−Av(p0, . . . , pn−1;φ(x; b) ∩Xk)| ≤ ε.
Furthermore, one can impose that pk ∈ S(µ) for all k.
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Proof. Let νx be a smooth extension of µ over a model N ⊃ A. The
previous proposition works equally well with finitely many Borel subsets
instead of one and gives points a0, . . . , an−1 ∈ N such that

|ν(φ(x; b) ∩Xk)−Av(a0, . . . , an−1;φ(x; b) ∩Xk)| ≤ ε

for all b ∈ N and k ≤ m. Then set pi = tp(ai/A).
To prove the “furthermore” part, apply the theorem with S(µ) as one

of the Borel sets and assume without loss that one instance of φ(x; b) is
equivalent to x = x. Then at most an ε fraction of the pi’s are not in S(µ).
We can safely remove them: this adds at most an extra error of ε to the
approximation. a

Exercise 7.12. Give another proof of Proposition 7.11 using the VC-
theorem instead of smooth measures. Deduce that the number n of types
can be chosen so as to depend only on VC-dim(φ(x; y)) and ε (see [61,
Lemma 4.8]).

7.4. Invariant measures

We now extend a number of definitions from types to measures.

Definition 7.13. Let µ ∈ Mx(U) be a measure, and let A ⊂ U . We
say that µ is A-invariant if for every b ≡A b′, and φ(x; y) ∈ L, we have
µ(φ(x; b)) = µ(φ(x; b′)).

We define Lstp(A)-invariant measures similarly.

Definition 7.14. Let A ⊆ B and µ ∈ Mx(B). Then µ does not fork
(resp. divide) over A if µ(φ(x; b)) = 0 for every formula φ(x; b) ∈ L(B)
which forks (resp. divides) over A.

Proposition 7.15. Let µ ∈ Mx(U) and A ⊂ U . Then µ does not fork
over A if and only if it is Lstp(A)-invariant.

Proof. Let µ ∈Mx(U) be Lstp(A)-invariant. As it is a global measure,
it is enough to show that it does not divide over A. Let φ(x; b) ∈ L(M) be
such that µ(φ(x; b)) > 0. Let (bi : i < ω) be an A-indiscernible sequence
with b0 = b. Then by assumption µ(φ(x; bi)) = µ(φ(x; b)) for all i < ω. By
Lemma 7.5, the partial type {φ(x; bi) : i < ω} is consistent. It follows that
φ(x; b) does not divide over A.

Conversely, assume that µ does not fork over A. Then if Lstp(b/A) =
Lstp(b′/A), the formula φ(x; b)4φ(x; b′) forks over A. We conclude that
µ(φ(x; b)4φ(x; b′)) = 0. a

Definition 7.16. Let M |= T and let µ ∈Mx(U):
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• µ is finitely satisfiable in M if for every φ(x; b) ∈ L(U) such that
µ(φ(x; b)) > 0, there is a ∈M such that U |= φ(a; b).

• µ is definable over M if it is M -invariant and for every φ(x; y) ∈ L, and
r ∈ [0, 1], the set {q ∈ Sy(M) : µ(φ(x; b)) < r for any b ∈ U , b |= q} is
an open subset of Sy(M).

• µ is Borel-definable over M if it is M -invariant and the above set is a
Borel set of Sy(M).

If µ is finitely satisfiable in M then it is M -invariant. Also µ is definable
overM if and only if it isM -invariant and for any open (resp. closed) subset
X of [0, 1], the set {q ∈ Sy(M) : µ(φ(x; b)) ∈ X for any b ∈ U , b |= q} is an
open (resp. closed) subset of Sy(M).

A measure µ is M -invariant (resp. finitely satisfiable in M), if and only
if all types in S(µ) are M -invariant (resp. finitely satisfiable in M). This
uses the fact that if µ is M -invariant, then µ(φ(x; b)4φ(x; b′)) = 0 when-
ever b ≡M b′, which follows from Proposition 7.15. On the other hand,
definability of measures is a new phenomenon that does not translate to
types.

Lemma 7.17. Let µ ∈Mx(U) and M ≺ U .
(i) If µ is smooth over M , then µ is finitely satisfiable and definable in

M .
(ii) If µ is M -invariant and smooth, then it is smooth over M .

Proof. (i): Let φ(x; b) be such that µ(φ(x; b)) > 0. Then by Lemma
7.8, taking ε small enough, there is a formula θ0(x) ∈ L(M) such that
|= θ0(x)→ φ(x; b) and µ(θ0(x)) > 0. In particular, θ0(x) is consistent, and
therefore has a point in M . It follows that also φ(x; b) has a point in M .

Let r ∈ [0, 1] be such that µ(φ(x; b)) < r. Take ε > 0 so that µ(φ(x; b)) <
r−2ε. Lemma 7.8 applied to φ(x; y) and ε gives us formulas ψεi (y) ∈ L(M),
i < n which partition of y-space. One of them, say ψεi (y), is satisfied by b.
Then for any b′, ψεi (b

′) implies that µ(φ(x; b′)) ≤ r − ε < r. This proves
definability of µ.

(ii): Assume that µ is M -invariant and smooth. Let N � M be |M |+
saturated such that µ is smooth over N . Fix a formula φ(x; y) and r > 0.
Then the set {q ∈ Sy(N) : µ(φ(x; b)) ≤ r for any b |= q} is an closed set of
Sy(N). Its projection to Sy(M) is also closed, hence µ is definable over M .

Take now some ε > 0. Lemma 7.8 applied to φ(x; y) and ε gives us
formulas ψi(y; d), θ0

i (x; d) and θ1
i (x; d), i < n, where we have made the pa-

rameters explicit. By definability of µ, there is an M -formula ζ(z) satisfied
by d and such that for any d′ ∈ ζ(U), the formulas ψi(y; d′), θ0

i (x; d′) and
θ1
i (x; d′), i < n also satisfy the conclusion of the lemma. Then we can find

such a d′ in M . It follows that µ is smooth over M . a
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Lemma 7.18. Let p ∈ S(U) be some M -invariant type, then p is Borel-
definable over M .

Proof. Let φ(x; y) be a formula. We need to see that the set {b ∈ U :
p ` φ(x; b)} is Borel over M . Let b ∈ U . Take a maximal N such that there
is a sequence (ai : i < N) |= p(N)|M with

(∗) ¬(φ(ai; b)↔ φ(ai+1; b)) for i < N − 1.

By the discussion on eventual types in Section 2.2.3, the formula φ(aN−1; b)
holds if and only if p ` φ(x; b).

Let AN (b) say that there are (ai : i < N) such that (∗) holds and
|= φ(aN−1; b). Similarly define BN (b) to hold if there is (ai : i < N) such
that (∗) holds and |= ¬φ(aN−1; b). Then both AN (x) and BN (x) are type-
definable sets. We have p ` φ(x; b) if and only if there is some integer
N ≤ alt(φ) + 1 such that AN (x) ∧ ¬BN+1(x) holds.

This shows that {b ∈ U : p ` φ(x; b)} is a finite Boolean combination of
type-definable (over M) sets. a

Proposition 7.19. Let µ ∈ M(U) be M -invariant, then µ is Borel-
definable over M .

Proof. This follows easily from the previous lemma and Proposition
7.11 which says that a measure can be approximated by types in its support.

a
We now have all we need to define the product of an invariant measure

over another, similarly as we did for types. So let µ(x) ∈ M(U) be M -
invariant and let λ(y) ∈ M(U) be any measure. We define ω(x, y) =
µ(x)⊗ λ(y) as a global measure in two variables by the formula:

ωxy(φ(x, y; b)) =

∫
q∈Sy(N)

f(q)dλy|N ,

where N is a small model containing Mb and f : q 7→ µ(φ(x, d; b)) for some
(any) d |= q. Note that f is a measurable function by Borel-definability of µ.
We need to see that this definition does not depend on the choice of N . So
let N1 ⊆ N2 be two models containing Mb and let f1, f2 be the associated
functions. Let π : S(N2)→ S(N1) be the canonical restriction map. Then
f2 = π∗(f1). For any clopen set B ⊆ N1, λ|N1

(B) = λ|N2
(π−1(B)), hence

this holds also when B is Borel and then by approximating f1 by step
functions, we deduce that the integrals of f1 and f2 are the same.

Note that if µ = p and λ = q are types, then we recover the usual product
p(x)⊗ q(y).

If λ is itself M -invariant, then µ(x)⊗λ(y) is M -invariant (since the whole
construction is invariant under automorphisms fixing M).
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Exercise 7.20. If both µ and λ are finitely satisfiable in M (resp. M -
definable), then µ(x)⊗λ(y) is finitely satisfiable in M (resp. M -definable).

We now argue that the product of measures is associative. Let µ(x), η(y)
and λ(z) be three global measures, and assume that µ and η are both M -
invariant. Let φ(x, y, z) ∈ L(M), let v = ((µx ⊗ ηy)⊗ λz) (φ(x, y, z)) and
w = (µx ⊗ (ηy ⊗ λz)) (φ(x, y, z)). We want to show that v = w.

First assume that µ = p is a type. Let dφ(y, z) denote the Borel subset
of Syz(M) defined by r ∈ dφ ⇐⇒ p ` φ(x, b, c) where (b, c) |= r. Then
w = ηy ⊗ λz(dφ(y, z)) =

∫
q∈Sz(M)

f(q)dλy, where f : q → η(dφ(y, c)), for

some c |= q. But this is exactly v.
Now if µ is an arbitrary invariant measure, then given a formula φ(x, y, z)

and ε, we can find a measure µ̃, which is an average of types such that
|µ(φ(x, b, c)) − µ̃(φ(x, b, c))| ≤ ε for all b, c. Let ṽ, w̃ be the corresponding
v and w with µ replaced by µ̃. Then ṽ and w̃ are respectively at distance
ε from v and w. By the previous paragraph, ṽ = w̃, and we conclude that
v = w.

If µ is an M -invariant global measure, then we can define by induction
µ(1)(x) = µ(x) and µ(n+1)(x0, . . . , xn) = µ(x0) ⊗ µ(n)(x1, . . . , xn). And of
course µ(ω)(x0, x1, . . . ) is the union of µ(n)(x0, . . . , xn−1) for n < ω.

This construction is different from the product measure in probability
theory in that the space of n-types is not the n-fold product of the space
of 1-types. Hence µ(n) is not defined on the same space and carries more
information than a usual product measure would. However, µ(n) and the
measure-theoretic n-fold product of µ agree on sets which are measurable
for the product algebra. In other words, they agree on formulas which are
Boolean combinations of formulas in one variable. This will allow us to use
probability theoretic methods (mainly the law of large numbers) with µ(n)

playing the role of the product measure.

We now prove that a finitely satisfiable measure and a definable one
commute (the case of types was done in Lemma 2.23).

Lemma 7.21. Let µ(x), λ(y) be two global M -invariant measures. As-
sume that µ(x) ⊗ p(y) = p(y) ⊗ µ(x) for any p ∈ Sy(U) in the support of
λ. Then µ and λ commute.

Proof. Let φ(x, y) be a formula, and write as in the definition (µx ⊗
λy)(φ(x, y)) =

∫
q∈Sy(M)

f(q)dλx. Fix ε > 0. Approximate that integral

up to ε by a finite sum
∑
i=1,...,n λ(Xi)ci, where Xi = {q ∈ Sy(M) :

µ(φ(x, b)) ∈ [ri, ti], for some b |= q} with ri, ti ∈ [0, 1]. By Proposition

7.11, we can find types q1, . . . , qm weakly random for λ, such that if λ̃
denotes the average 1

m

∑
qj , then:

· λ̃(Xi) is within ε of λ(Xi), for all i ≤ n;
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· λ̃(φ(a, y)) is within ε of λ(φ(a, y)) for all a ∈ U .

The first condition ensures that µx ⊗ λ̃y(φ(x, y)) is within ε of µx ⊗
λy(φ(x, y)) and the second one ensures that λ̃y ⊗ µx(φ(x, y)) is within ε of

λy ⊗ µx(φ(x, y)). As µ commutes with λ̃, the result follows. a

Proposition 7.22. Let µ(x) ∈ M(U) be definable and λ(y) ∈ M(U) be
finitely satisfiable, then µ(x)⊗ λ(y) = λ(y)⊗ µ(x).

Proof. By the previous lemma, we may assume that λ(y) = q(y) is
a type. Let M such that both µ and q are M -invariant. Assume for a
contradiction that there is r ∈ [0, 1] and ε > 0 such that µx⊗ qy(φ(x; y)) <
r − 2ε whereas qy ⊗ µx(φ(x; y)) > r + 2ε. By definability of µ, there is a
formula ψ(y) ∈ L(M) such that q ` ψ(y) and for all b ∈ ψ(U), we have
µ(φ(x; b)) < r − ε. Also, by Borel-definability of q, there is a Borel set
X ⊆ Sx(M) such that q ` φ(a; y) if and only if tp(a/M) ∈ X.

Pick p1, . . . , pn ∈ Sx(M) such that for all b ∈ M , Av(p1, . . . , pn;φ(x; b))
is within ε of µ(φ(x; b)) and also Av(p1, . . . , pn;X) is within ε of µ(X).
Realize each pi by ai ∈ U . By finite satisfiability of q, find some b0 ∈ ψ(M)
such that |= φ(ai; b0) ⇐⇒ q ` φ(ai; y) for all i.

By choice of pi’s and ψ(y), we have Av(p1, . . . , pn;φ(x; b0)) < r. On the
other hand, by the choice of b0, that quantity is equal to 1

n

∑
i q(φ(ai; y)) =

1
n |{i : ai ∈ X}| which is within ε of µ(X) = qy ⊗ µx(φ(x; y)) > r + 2ε.
Contradiction. a

7.5. Generically stable measures

Similarly as we did for types, we define a generically stable measure as
being a global measure which is both definable and finitely satisfiable (in
some small model M). We will prove an analog of Theorem 2.29. First we
define a new notion.

Definition 7.23. Let µ(x) be a global M -invariant measure. We say
that µ is fim (frequency interpretation measure) if for any formula φ(x; y) ∈
L and ε > 0, there is a family (θn(x1, . . . , xn) : n < ω) of formulas in L(M)
such that:
· limµ(n)(θn(x1, . . . , xn)) = 1;
· for any (a1, . . . , an) ∈ θn(U), and any b ∈ U , Av(a1, . . . , an;φ(x; b)) is

within ε of µ(φ(x; b)).

We will see later that a measure is fim if and only if it is generically
stable. Left to right is easy, but the converse requires more work.

The main result needed is an adaptation of the VC-theorem from measure
theory to the context of Keisler measures.
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VC-type results. We call a measure µ(x1, . . . , xn) over A symmetric if
for any permutation σ of {1, . . . , n} and any formula φ(x1, . . . , xn) ∈ L(A),
we have µ(φ(x1, . . . , xn)) = µ(φ(xσ1, . . . , xσn)). This definition extends
naturally to measures in infinitely many variables.

Let φ(x; y) be a formula. We fix some integer n and write x̄ = (x1, . . . , xn)
and x̄′ = (x′1, . . . , x

′
n). We define

f ′n(x̄, x̄′; b) = |Av(x1, . . . , xn;φ(x; b))−Av(x′1, . . . , x
′
n;φ(x; b))|

and

fn(x̄, x̄′) = sup
b∈U

f ′n(x̄, x̄′; b).

Note that for any ε > 0 the statement f ′n(x̄, x̄; b) > ε can be expressed as a
first order formula θn,ε(x̄, x̄

′; b). Similarly, the statement fn(x̄, x̄′) > ε can
be expressed as (∃b)θn,ε(x̄, x̄′; b).

Lemma 7.24. Fix a formula φ(x; y) and ε > 0. Let µn(x1, .., xn, x
′
1, .., x

′
n)

be a symmetric measure over ∅. Then with notations as above we have

µn(fn(x̄, x̄′) > ε) ≤ 4πφ(n) exp

(
−nε

2

8

)
.

Proof. This is the analogue of Claim 2 inside the proof Theorem 6.6.
The proof is exactly the same: we just have to make the necessary trans-
lations and check that everything still makes sense.

Let G = {−1, 1}n. If φ(x; y) is a formula, we let pφ(a; b)q be equal to 1
it the sentence φ(a; b) holds and 0 otherwise.

Claim: We have

µn(fn(x̄, x̄′) > ε) ≤ 1

2n−1

∑
σ∈G

µn

({
x̄ : sup

b

1

n

∣∣∣∣∣
n∑
i=1

σipφ(xi; b)q

∣∣∣∣∣ > ε/2

})
.

Call Dσ the set of which we take the µn-measure on the right-hand
side. Note that it is ∅-definable. For σ ∈ G let θ′σ(x̄, x̄′; y) be the formula
expressing that ∣∣∣∣∣ 1n

n∑
i=1

σi (pφ(xi; y)q− pφ(x′i; y)q)

∣∣∣∣∣ > ε

and let θσ(x̄, x̄′) = (∃b)θ′σ(x̄, x̄′; b). By symmetry of µn, for any σ ∈ G we
have µn(θσ(x̄, x̄′)) = µn(fn(x̄, x̄′) > ε). Hence

µn (fn(x̄, x̄′) > ε) =
1

2n

∑
σ∈G

µn (θσ(x̄, x̄′)) .

The claim then follows exactly as Claim 1 in Theorem 6.6.
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The translation of the rest of the proof poses no difficulty either. For a
fixed tuple ā of length n and b ∈ U , we let Ab(ā) be the set of σ ∈ G for
which we have 1

n |
∑
i σipφ(ai; b)q| > ε/2. Then Chernoff’s bound gives

1

2n
|Ab(ā)| ≤ 2 exp

(
−nε

2

8

)
.

The tuple ā being fixed, there are only πφ(n) possible values for the set
Ab(ā) as b varies. Hence the cardinality of the set A∗ =

⋃
bAb(ā) is at most

e = 2n+1πφ(n) exp
(
−nε2/8

)
. This means that a tuple ā can be in at most

e many sets Dσ; thus we can bound the sum
∑
σ∈G µn(Dσ) by 2ne and the

lemma follows.
a

Corollary 7.25. Let µ(x1, . . . ) be a Keisler measure in ω variables over
some set A. Assume that µ|∅ is symmetric. Let φ(x; y) ∈ L and fix ε > 0.
Then there is n such that µ(∃y(f ′n(x1, . . . , xn, xn+1, . . . , x2n; y) > ε)) ≤ ε.

Proof. Apply Lemma 7.24 letting µn(x1, . . . , x2n) be the restriction of
µ to the variables (x1, . . . , x2n). a

Proposition 7.26. Let µ be a global M -invariant measure and assume
that µ(ω)(x1, . . . )|∅ is symmetric. Then µ is fim.

Proof. Fix a formula φ(x; y) and ε > 0 small enough. Write ā =
(a1, . . . , an) and ā′ = (a′1, . . . , a

′
n). Define θn(ā, ā′) to say that for all b,

Av(a1, . . . , an;φ(x; b)) is within ε/4 of Av(a′1, . . . , a
′
n;φ(x; b)). By the pre-

vious corollary, for n big enough we have µ(2n)(θn(x1, . . . , x2n)) > 1− ε. In
particular, there is ā ∈ U , such that we have µ(n)(θn(ā, x1, . . . , xn)) > 1−ε.

Now fix b ∈ U and let ζn(x1, . . . , xn) say that Av(x1, . . . , xn;φ(x; b)) is
within ε/4 of µ(φ(x; b)). The law of large numbers (B.4) gives

µ(n)(ζn(x1, . . . , xn)) ≥ 1− 4/nε2.

Taking n large enough, we have µ(n)(ζn(x1, . . . , xn)) ≥ 1/2. It follows
that µ(n)(θn(ā, x1, . . . , xn) ∧ ζn(x1, . . . , xn)) > 0. In particular the value
Av(a1, . . . , an;φ(x; b)) is within ε/2 of µ(φ(x; b)).

To conclude observe that for any ā′ satisfying θn(ā, x1, . . . , xn) and any b,
Av(a′1, . . . , a

′
n;φ(x; b)) is within ε of µ(φ(x; b)). As µ(n)(θn(ā, x1, . . . , xn)) >

1− ε, we have what we want. a
We can do the same incorporating a Borel set X.

Proposition 7.27. Let µ be a global M -invariant measure, and assume
that µ(ω)(x1, . . . )|∅ is symmetric. Then for any Borel set X, formula
φ(x; y) and ε > 0, there are a1, . . . , an ∈ U such that for all b ∈ U ,
Av(a1, . . . , an;φ(x; b) ∩X) is within ε of µ(φ(x; b) ∩X).
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Proof. We need to go through the proof of Lemma 7.24 and of Proposi-
tion 7.26 replacing everywhere φ(x; b) by φ(x; b)∩X. Sets which were pre-
viously definable are now Borel, but this does not create any difficulty. a

Remark 7.28. The statements above imply that if µ is A-invariant and
µ(ω) is symmetric, then µ is equal to the average of any realization of µ(ω)|A.
More precisely, let λ(x1, . . . ) be a global measure which extends µ(ω)|A. Let
φ(x; b) ∈ L(U) be a formula and let r = µ(φ(x; b)). Fix ε > 0, then for all
but finitely many values of n, we have λ(φ(xn; b)) ∈ (r − ε, r + ε).

This implies in particular that µ is determined by µ(ω)|A. (This is also
true for arbitrary invariant measures, but we do not have the tools to prove
it.)

Proof. Assume that we have λ(φ(xn; b))−r > ε for infinitely many val-
ues of n. Without loss, this is true for all n. Now set ω = µ(ω)(x′1, x

′
2, . . . )⊗

λ(x1, x2, . . . ). Then ω|∅ is symmetric. By Corollary 7.25, for n large
enough, we have ω(f ′n(x1, . . . , xn, x

′
1, . . . , x

′
n; b) < ε/4) > 1/2.

Let θn(x1, . . . , xn) say Av(x1, . . . , xn;φ(x; b)) − r > ε/2. Then by the
weak law of large numbers, we have λ(θn(x1, . . . , xn)) → 1. Letting the
formula θ′n(x′1, . . . , x

′
n) say |Av(x′1, . . . , x

′
n;φ(x; b)) − r| < ε/4, then we

also have µ(ω)(θ′n(x′1, . . . , x
′
n)) → 1. It follows that ω(θn(x1, . . . , xn) ∧

θ′n(x′1, . . . , x
′
n)) → 1. But this contradicts what we established in the pre-

vious paragraph. a
Properties of generically stable measures.

Theorem 7.29. Let µ be a global M -invariant measure. Then the fol-
lowing are equivalent:

(i) µ is generically stable;
(ii) for any formula φ(x; y) ∈ L and ε > 0, there are a1, . . . , an ∈ M

such that for any b ∈M , Av(a1, . . . , an;φ(x; b)) is within ε of µ(φ(x; b)).
(iii) µ is fim;
(iv) µ(ω)(x1, . . . )|M is symmetric;
(v) µ commutes with itself: µ(x)⊗ µ(y) = µ(y)⊗ µ(x).

Proof. (i) ⇒ (v): Follows from Proposition 7.22.
(v) ⇒ (iv): Clear by associativity of ⊗.
(iv) ⇒ (iii) is Proposition 7.26.
(iii) ⇒ (ii): Clear.
(ii) ⇒ (i): Easy. a

Proposition 7.30. Let µ(x) be a generically stable measure, then for
any invariant measure λ(y), we have µ(x)⊗ λ(y) = λ(y)⊗ µ(x).

Proof. By Lemma 7.21, we may assume that λy = qy is an invariant
type. Let M be such that both µ and q are invariant over M and let N ⊃M
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be |M |+-saturated. Take some b |= q|N in U and let φ(x, y) ∈ L(M) be a
formula. Let X ⊆ Sx(M) be the set of types p such that q ` φ(a, y) for some
(any) a |= p. Then, by definition, we have µx ⊗ qy(φ(x, y)) = µ(φ(x, b))
and qy ⊗ µx(φ(x, y)) = µ(X).

Fix ε > 0. By Proposition 7.27 there are a1, . . . , an ∈ N such that
for all b′ ∈ U , Av(a1, . . . , an;φ(x; b′)) is within ε of µ(φ(x; b′)) and also
Av(a1, . . . , an;X) is within ε of µ(X). Then µx ⊗ qy(φ(x, y)) is equal to
Av(a1, . . . , an;X) hence within ε of Av(a1, . . . , an;φ(x; b)), which by defi-
nition of X is within ε of qy ⊗ µx(φ(x, y)).

As this holds for all ε > 0, the result follows. a
Proposition 7.31. Let µ(x) be generically stable and A-invariant. Then

µ is the unique A-invariant extension of µ|A.

Proof. Assume that λ(x) is a global A-invariant extension of µ. As in
the proof of Proposition 2.35, we show that µ(ω)|A = λ(ω)|A. It follows
that λ is also generically stable, and by the remark after Proposition 7.27,
µ = λ. a
Example 7.32. Recall the examples of measures given in Example 7.2. We
go through them again, and see that most of them are generically stable.

• If p ∈ Sx(U) is a global type, then p is generically stable as a measure
if and only if it is generically stable as a type. More generally, an
average

∑
i<ω aipi of types is generically stable if and only if all the

pi’s are generically stable (assuming of course ai > 0 for all i).
• Any Borel probability measure on R induces a smooth Keisler mea-

sure. See [63]. In fact, more generally, under mild assumptions, if M
is a model equipped with a σ-algebra making externally definable sets
measurable and µ0 is a σ-additive measure on M , then µ0 induces
a generically stable Keisler measure. See [113, Theorem 5.1] for a
precise statement and a proof.

• The average measure of an indiscernible sequence I = (ai : i ∈ [0, 1])
is always generically stable. It is easy for example to check fim. It
is smooth if and only if the sequence I satisfies a property called
distality. See Proposition 9.30.

• Let M =
∏
DMn be an ultraproduct of finite structures. Define µn as

the normalized counting measure on Mn and let µ be an ultralimit of
the µn’s. Then µ is generically stable. Indeed the VC-theorem implies
that property (ii) in Theorem 7.29 holds for µn where the number of
points in the approximation depends only on φ(x; y) and ε. Hence
this is also true at the limit.

Exercise 7.33. Let µ be the average of the indiscernible sequence I =
(ai : i <∈ [0, 1]). Given n < ω and a formula φ(x1, . . . , xn) ∈ L(U)
give an explicit formula for µ(n)(φ(x1, . . . , xn)) in terms of the sequence
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(ai). Check that µ(n) is symmetric, which gives another proof that µ is
generically stable.

Exercise 7.34. Let µ(x) beM -invariant and generically stable. Let φ(x) ∈
L(U) such that µ(φ(x)) > 0. Then there is some ψ(x) ∈ L(M) such that
ψ(M) ⊆ φ(M) and µ(ψ(x)) > 0.

References and related subjects

Keisler measures were introduced in the context of NIP theories by
Keisler in [71]. There, he defines a notion of smooth measure which is
weaker than the one we consider here. In [60], Hrushovski, Peterzil and
Pillay revive those ideas and use measures to study groups definable in
o-minimal theories; in particular, the concept of an invariant measure of a
group is central in their approach. The boundedness properties come from
that work. Those ideas are developed further in Hrushovski and Pillay
[61], where in particular Borel definability is observed. Finally, generically
stable measures are defined and studied in Hrushovski, Pillay and Simon
[63].

Ben Yaacov proves in [125] that the randomization of an NIP theory
is NIP. This statement is equivalent to the following: Let ω(x1, . . . ) be a
measure such that for any formula θ(x1, . . . , xn), and tuples i1 < · · · <
in, j1 < · · · < jn, ω(θ(xi1 , . . . , xin)) = ω(θ(xj1 , . . . , xjn)). Then for any
formula φ(x; b) and ε, there can be only finitely many indices n for which
|ω(φ(xn; b))− ω(φ(xn+1; b))| ≥ ε. This result is thus the analog of Lemma
2.7 for measures and could be used to translate in a uniform way proofs
from types to measures. We have done without it here in order to keep this
text self-contained.

Further results about generically stable measures can be found in
Hrushovski, Pillay and Simon [62] and Simon [113].





CHAPTER 8

DEFINABLY AMENABLE GROUPS

An important class of examples of Keisler measures are translation-
invariant measures on definable groups. They can serve as a substitute
for generic types used in the stable setting. However, unlike in the stable
situation, not all NIP groups admit an invariant measure. Groups that do
are called definably amenable. The class of definably amenable groups is
very diverse, as the following three examples illustrate: The free group F2

is definably amenable because it is stable. Any solvable group is definably
amenable, because any such group is amenable as a discrete group. The
group SO3(R) is definably amenable because it admits a normalized Haar
measure for which all definable sets are measurable.

As we will see, properties of the invariant measure—generic stability and
smoothness—translate into properties of the group.

NIP is assumed throughout this chapter.

8.1. Connected components

Our main interest is in definable groups. However, everything in this
section generalizes without difficulties to type-definable groups, so we will
work in that context.

A type-definable group is a type-definable set G =
⋂
i φi(x) equipped

with a definable map ·G such that (G, ·G) is a group (when interpreted
in the monster model, or equivalently in any sufficiently saturated model
containing the required parameters). When no confusion can arise, we will
drop the index G in the notation ·G.

By compactness, we see that:
i) there is some formula φ(x) containing G such that for any a, b, c sat-

isfying φ(x), we have (a · b) · c = a · (b · c) and a · 1G = 1G · a = a;
ii) for every formula φ0(x) containing G, there is some formula φ1(x)

containing G such that for any a, b in φ1(x), a · b |= φ0(x) and for all a in
φ0(x) there is a unique b in φ1(x) which is an inverse for a.

115
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Iterating this last point to obtain φ2(x), φ3(x), . . . , we see that the inter-
section

⋂
k<ω φk(x) is a type-definable group containing G. This shows that

G is the intersection of type-definable groups each defined by a countable
intersection of formulas.

Let M be a model over which G is defined. The space of types p(x) over
M which concentrate on G (that is such that p ` x ∈ G) will be denoted by
SG(M). Similarly,MG(M) is the space of measures µ(x) which concentrate
on G, i.e., such that µ(G) = 1.

The group G(M) acts on the left onMG(M) by g ·µ(φ(x)) = µ(φ(g ·x)).
This action restricts to an action on SG(M): for p ∈ SG(M) and a |= p,
g · p = tp(g · a/M). A measure µ ∈MG(M) is said to be (left) G-invariant
if g · µ = µ for all g ∈ G(M).

There is also an action on the right of G(M) on MG(M) defined by
(µ · g)(φ(x)) = µ(φ(x · g)).

Example 8.1. A typical example of a type-definable group is the subgroup
of (Z,+) of elements divisible by every positive integer n. In the standard
model, this group reduces to the identity, but in a saturated model it is
infinite.

Another example is the group of infinitesimal elements in (a saturated
model of) (R; +, <) defined as the intersection of the intervals [−1/k, 1/k]
for k ∈ N∗.

Assumption: Throughout this section, G is some ∅-type-definable group
(we will repeat this assumption in the statement of some theorems). Recall
that NIP is always assumed.

The reader is welcome to think of G as a definable group. She will not
lose much by doing so.

8.1.1. Bounded index subgroups. By a relatively definable subset
of G, we mean the intersection of G with a definable set X. Let H be
a relatively definable subgroup of G and we are interested in the index
[G : H].

Consider first the case where G is definable. If the index [G(M) : H(M)]
is finite for some model M , then this index does not depend on the model
M we take (as long as H is defined over it). We say that H has finite index
in G. If this is not the case, then by compactness, the index [G(M) : H(M)]
can be as big as we want, and we say that H has infinite index in G.

When G is type-definable, there is a caveat: it may happen that the index
[G(M) : H(M)] is abnormally small for some model M (in fact, it may well
be that over M , G(M) reduces to the identity). Hence one must take M to
be sufficiently saturated. Then the same dichotomy holds: either for some
sufficiently saturated M the index [G(M) : H(M)] is finite, in which case
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its value does not depend on the choice of M , or this index is infinite in
which case it may be made as large as we want by increasing M .

Let us now consider the case of a type-definable subgroup H. There are
again two cases: either the index [G(M) : H(M)] can be made as large
as we want by increasing M , in which case we say that H has unbounded
index in G, or for some model M , the quotient G/H(M) does not increase
as we increase M . We then say that H has bounded index in G.

In fact the same dichotomy is true if H is merely invariant over some
set A (meaning that for any a, b ∈ U , if a ≡A b, then a ∈ H ⇔ b ∈ H).
In this case, the equivalence relation a ≡H b defined on G by ab−1 ∈ H is
A-invariant. The subgroup H has bounded index in G if and only if the
relation ≡H is a bounded equivalence relation in the sense of Section 5.1
(when restricted to G). In particular, H has unbounded index if and only
if there is an indiscernible sequence (ai : i < ω) of elements of G which lie
in pairwise distinct H-cosets.

Exercise 8.2. Show that if H is a type-definable subgroup of G of finite
index, then it is relatively definable.

8.1.2. G0. A family (Hi)i∈A of subgroups of G is uniformly (relatively)
definable if for some formula φ(x; y), for every i, there is bi such that
Hi = G ∩ φ(x; bi).

We recall the Baldwin-Saxl theorem 2.13. The statement was made in
the case of a definable group G, but the proof works just as well if G is
type-definable.

Theorem 8.3 (Baldwin-Saxl). Let G be a type-definable group and let
(Hi)i∈A be a uniformly definable family of subgroups of G. Then there is
an integer N such that for any finite intersection

⋂
i∈AHi, there is a subset

A0 ⊆ A of size N with
⋂
i∈AHi =

⋂
i∈A0

Hi.

So for any formula φ(x; y) ∈ L, x a variable of the same sort as G, there
is an integer Nφ such that any finite intersection of subgroups of the form
G∩φ(x; b) is equal to a subintersection of size N . Given k, this implies that
any finite intersection of subgroups of the form G∩φ(x; b) and of index ≤ k
in G has index ≤ kN . But then this is also true for an infinite intersection.
Therefore there is a definable subgroup G0

φ,k of index at most kN which is
the intersection of all subgroups of index ≤ k definable by an instance of
φ(x; y). The subgroup G0

φ,k is relatively definable and invariant under all

automorphisms. Therefore it is relatively definable over ∅. (One could also
give an explicit definition over ∅.)

Let G0
φ =

⋂
k<ω G

0
φ,k. It is a type-definable (over ∅) subgroup of G of

bounded index. Finally, we let G0 =
⋂
φG

0
φ. It is again a type-definable

over ∅ subgroup of bounded index and is equal to the intersection of all
relatively definable subgroups of finite index. As the class of definable
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groups of finite index is stable under conjugation, G0 is a normal subgroup
of G.

In stable theories, G0 is called the connected component of G. The ter-
minology originates from algebraic geometry, where G0 denotes the small-
est algebraic subgroup of G of finite index. For groups definable in NIP
theories, G0 plays a less central role as there are two other connected com-
ponents which come into play: G00 and G∞ which we define below.

8.1.3. G00. Let A be a small set of parameters. We denote by G00
A the

intersection of all type-definable over A subgroups of bounded index. It
is itself a type-definable over A subgroup of bounded index and hence is
the smallest such. It may happen that G00

A does not depend on A, and
hence is equal to G00

∅ . In this case, we call it G00 and say that G00 exists.

Hence G00, when it exists, is the smallest type-definable (over any set of
parameters) subgroup of bounded index in G. Like G0, it is a normal
subgroup of G.

It turns out that G00 always exists in NIP theories.

Theorem 8.4. Let G be an ∅-type-definable group, then G00 exists.

Proof. Assume that G00 does not exist. Then we can find an arbitrarily
large collection (Hi : i < κ) of pairwise distinct type-definable subgroups of
bounded index. We may assume that each Hi is defined as an intersection
of at most ℵ0 formulas. By Ramsey and compactness, there is such a
sequence (Hi : i < ω) which is indiscernible, by which we mean that there
is a type-definable set Φ(x; ȳ) and an indiscernible sequence (b̄i : i < ω)
such that Hi = Φ(x; b̄i). Without loss, for any b̄, Φ(x; b̄) is a type-definable
subgroup.

Claim: Hi does not contain the intersection
⋂
j 6=iHj .

Proof: Assume it did and insert in place of Hi a very long sequence
(H ′l : l < κ′) such that the whole sequence is still indiscernible. Then each
H ′l contains the intersection

⋂
j 6=iHj . But that intersection has bounded

index, hence there are only boundedly many subgroups of G containing it.
Taking κ′ large enough, we have a contradiction.

For each i < ω, let ai ∈ ∩j 6=iHj \Hi chosen so that the sequence (ai, b̄i :
i < ω) is indiscernible. Then there is a formula φ(x; ȳ) implied by Φ(x; ȳ)
such that φ(ai; b̄j) holds if and only if i 6= j. Let θ(x; ȳ) be a formula
in Φ(x; ȳ) such that |=

∧
i<3 θ(xi; ȳ) → φ(x0 · x1 · x2; ȳ), where · is the

group operation. For I = {i1, . . . , in} ⊂ ω a finite subset, define aI =
ai1 · ai2 · . . . · ain . Then we have θ(aI ; b̄i) if and only if i /∈ I. (If i /∈ I, this
is clear, otherwise observe that any aik can be written as c0 · aI · c1 with
c0, c1 ∈ Hik .) This shows that the formula θ(x; y) has IP. a
Example 8.5. Let R be a real closed field and consider the usual circle
group S1 ⊂ R2 of elements (x, y) such that x2 + y2 = 1. Then S0

1 = S1
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and S00
1 is the set of infinitesimal of S1, that is the set of points (x, y) ∈ S1

infinitely close to (1, 1).
The quotient G/G00 is in canonical bijection with the standard group

S1(R). We will see later that it is in fact homeomorphic to it, when endowed
with an adequate topology.

8.1.4. G∞. Finally, we consider invariant subgroups of bounded index.
Given a set A of parameters, we define G∞A as the smallest A-invariant

subgroup of G of bounded index. If this group does not depend on A,
then we call it G∞ and say that G∞ exists. Hence G∞, when it exists,
is a ∅-invariant subgroup of bounded index which for any A contains all
A-invariant subgroups of bounded index. It is also a normal subgroup of
G.

As observed earlier, if H is any A-invariant subgroup then the relation
x ≡H y defined by xy−1 ∈ H is an A-invariant equivalence relation. If
H has bounded index, then ≡H is a bounded equivalence relation. This
implies that if a and b have the same Lascar strong type over A, then
a ≡H b and hence ab−1 ∈ H. Hence H contains the subgroup generated
by {a · b−1 : Lstp(a/A) = Lstp(b/A)}. Conversely that latter subgroup is
A-invariant and has bounded index. Hence it is equal to G∞A . In particular,
if M is a model, then G∞M is precisely the subgroup generated by

X≡M := {a · b−1 : tp(a/M) = tp(b/M)}.
If Φ(x; ȳ) is a set of formulas, where ȳ has the size of M , we will write

X≡Φ
M

= {a · b−1 : φ(a;M) = φ(b;M), for any φ ∈ Φ}, where we assume

that we have fixed an enumeration of M .
We also use the standard notation Xn = {x1 · . . . · xn : x1, . . . , xn ∈ X}.

Lemma 8.6. Let A be any set of parameters and c ∈ G(U), then we have

c (X≡A) c−1 ⊆ (X≡A)
2
.

Proof. Let a ≡A b and consider cab−1c−1. There is d ∈ G(U) such that

tp(a, c/A) = tp(b, d/A). Then cab−1c−1 = (ca)(db)−1 · dc−1 ∈ (X≡A)
2
. a

Theorem 8.7. Let G be a ∅-type-definable group, then G∞ exists.

Proof. Assume not. Then for some small model M , G∞M 6= G∞∅ . Let
λ = |M |. The intersection

⋂
M ′ G

∞
M ′ , where M ′ ranges over all models of

size λ is a ∅-invariant subgroup of G. If it has bounded index, then G∞M
contains G∞∅ , hence is equal to it, which contradicts the hypothesis. It
follows that we can find an arbitrary long sequence (Mi : i < κ), each Mi

being of size λ such that G∞Mi
does not contain the intersection

⋂
j<iG

∞
Mj

.

By Erdős-Rado, we can find such a sequence (Mi : i < ω) which is moreover
indiscernible (where we have implicitly fixed an enumeration of each Mi).
For each i < ω, let ci ∈ ∩j 6=iG∞Mj

\G∞Mi
and assume that (Mi, ci : i < ω) is
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indiscernible. In particular, for some m < ω, for all j < i, ci ∈
(
X≡Mj

)m
.

By compactness, find some finite set Φ(x; ȳ) of formulas such that
(1) ci /∈ (X≡Φ

Mi

)m+4.

By the previous lemma, for some finite set Φ′(x; ȳ), for all c ∈ G(U), we

have c
(
X≡Φ′

Mi

)
c−1 ⊆

(
X≡Φ

Mi

)2

.

Now to any finite sequence I = (i1, . . . , in) of distinct elements of ω, we
associate
cI,0 = c2i1+1 · . . . · c2in+1;
cI,1 = c2i1 · . . . · c2in .

Let j < ω.

Claim 1: If j /∈ I, then cI,0 · c−1
I,1 ∈ X≡M2j

⊆ X≡Φ′
M2j

.

Proof: If j /∈ I, then by indiscernibility of our sequence, cI,0 ≡M2j cI,1
and hence cI,0 · c−1

I,1 ∈ X≡M2j
.

Claim 2: If j ∈ I, then cI,0 · c−1
I,1 /∈ X≡Φ′

M2j

.

Proof: Assume that j ∈ I and the conclusion does not hold. Write
I = I1 + (j) + I2. We then have:

cI,0 · c−1
I,1 = cI1,0 · c2j+1 · cI2,0 · c−1

I2,1
· c−1

2j · c
−1
I1,1

cI,0 · c−1
I,1 · cI1,1 · c2j = cI1,0 · c2j+1 · cI2,0 · c−1

I2,1

c2j = c−1
I1,1
· cI,1 · c−1

I,0 · cI1,0 · c2j+1 · cI2,0 · c−1
I2,1

= [c−1
I1,1

(cI,1c
−1
I,0)cI1,1] · (c−1

I1,1
cI1,0) · c2j+1 · (cI2,0c−1

I2,1
).

By assumption, c2j+1 ∈
(
X≡M2j

)m
. We also know that c−1

I1,1
(cI,1c

−1
I,0)cI1,1 ∈

c−1
I1,1

X≡Φ′
M2j

cI1,1 ⊆
(
X≡

MΦ
2j

)2

and both c−1
I1,1

cI1,0 and cI2,0c
−1
I2,1

are inX≡M2j
.

So in total, we have c2j ∈
(
X≡Φ

M2j

)m+4

which contradicts (1).

By claims 1 and 2, the formula

Ψ(x; ȳ) = ∃x1x2

 ⋂
φ∈Φ′

(φ(x1; ȳ)↔ φ(x2; ȳ)) ∧ x = x1x
−1
2


has IP. a

Exercise 8.8. Show that in an arbitrary theory, if G∞ exists then so does
G00.

To summarize, given a ∅-type-definable group G, we have defined three
connected components: G ⊇ G0 ⊇ G00 ⊇ G∞. In general, all of these
inclusions can be strict. We have given examples when G 6= G0 and G00 6=



8.1. Compact quotients 121

G0. It is more difficult to give an example where G∞ 6= G00. For that, we
refer to Conversano and Pillay [30].

8.1.5. Compact quotients. Let E be a type-definable over ∅ equiva-
lence relation on U (for simplicity on singletons). Recall from Section 5.1
that E is said to be bounded if U/E has small cardinality, equivalently if
for some (every) small model M , a ≡M b implies aEb. Assume from now
on that this holds. Let π : U → U/E be the quotient map. We endow U/E
with the logic topology defined as follows: a set F ⊆ U/E is closed if and
only if π−1(F ) is type-definable over some (any) model M .

Lemma 8.9. The space U/E equipped with the logic topology is a compact
Hausdorff space.

Proof. Let M be any small model, then we have a map f : S(M) →
U/E which assigns to each type p the unique E-class on which it con-
centrates. By definition of the topology on U/E, this map is continuous.
Hence U/E is the image of a compact space, and as such it is compact.

We are left with showing that the space is Hausdorff. Let a, b ∈ U such
that ¬aEb. Then for every two points x and y, we have xEa ∧ yEb =⇒
¬xEy. By compactness, there is a formula φ(x, y) such that |= xEy →
φ(x, y) and U |= φ(x, a)∧φ(y, b)→ ¬xEy. Let Oa = {x ∈ U/E : π−1(x) ⊆
φ(U , a)} and Ob = {y ∈ U/E : π−1(y) ⊆ φ(U , b)}. Then Oa and Ob are
disjoint open neighborhoods of π(a) and π(b) respectively. a

If G is a definable, or type-definable, group then we have on G the
equivalence relation xG00 = yG00 of being in the same G00 coset. It is
type-definable and bounded. As above, we equip the quotient space G/G00

with the logic topology, making it a compact Hausdorff space. In fact the
topology is even compatible with the group structure.

Lemma 8.10. The group G/G00 equipped with the logic topology is a com-
pact topological group.

Proof. One has to check that the group operation and the inverse map
are continuous. We leave the verification as an exercise to the reader. a

Hence to any type-definable group G, we have associated a canonical
compact group G/G00.

Example 8.11. • If G00 = G0 then G/G00 is a profinite group: it is the in-
verse image of the groups G/H, where H ranges over all relatively definable
subgroups of finite index.

• If G = (Z,+), then G00 = G0 is the set of elements divisible by all n.

The quotient G/G00 is isomorphic as a topological group to Ẑ = lim←−Z/nZ.

• If G = S1 is the circle group defined in a real closed field R, then G00 is
the set of infinitesimal elements of G and G/G00 is canonically isomorphic
to the standard circle group S1(R).
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• More generally, if G = G(R) is a compact matrix group defined over
R, then again G/G00 is isomorphic to the standard Lie group G(R). (Even
more generally, if G is any definably compact group defined in an o-minimal
structure, then G/G00 is a Lie group: this is part of the content of Pillay’s
conjecture—now a theorem. See Peterzil [88] for a survey.)

• This does not hold any more if G is a non-compact Lie group. For
example if G = (R,+), then G00 = G and G/G00 is trivial.

8.2. Definably amenable groups

From now on, we assume that G is a ∅-definable group (and not merely
type-definable as before).

Recall that a discrete group G0 is amenable if there is a finitely additive
probability measure defined on all subsets of G0. It is well known that any
solvable group is amenable.

Definition 8.12. The definable group G is definably amenable if there
is a global Keisler measure µ(x) concentrating on G which is left invariant,
that is such that µ(φ(g · x)) = µ(φ(x)) for all g ∈ G(U).

A few important observations:

• If G is definably amenable, then it also admits a global measure which
is right invariant. In fact, if µ(x) is left invariant, then ν(x) defined by
ν(φ(x)) = µ(φ(x−1)) is right invariant. However it is not true in general
that a left invariant measure is also right invariant (Exercise 8.24).

• If for some model M there is a left invariant Keisler measure µ0 on M -
definable sets, then G is definably amenable. This can be seen for example
by taking a saturated elementary extension of M̃µ0

as defined after Lemma
7.4 and letting µ be the measure obtained from it.

• If G admits a left invariant type, that is a global type p such that
g · p = p for all g ∈ G, then it is definably amenable. This is the case for
example for G = (R; +) which has two invariant types at ±∞. If for some
model M , there is a left invariant type p0 over M , then there is one over
any model and in particular over U (to go down, take a restriction, and to
go up, take an heir).

Example 8.13 (Amenable groups). If for some model M , the group G(M)
is amenable as a discrete group, then G is definably amenable. In particu-
lar, any abelian group and more generally any solvable group is definably
amenable.

Example 8.14 (Stable groups). Let G be a stable definable group. A de-
finable set X ⊆ G is left generic if finitely many left translates of X cover G.
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Similarly for right generic. One shows that left generic sets coincide with
right generic sets and that there always are generic types, that is types that
concentrate only on generic sets. In fact the natural map SG(U) → G/G0

induces a homeomorphism between G/G0 and the set T of global generic
types. In particular, any generic type is invariant by translation by ele-
ments of G0.

It follows that G is definably amenable: If G is connected, that is G0 = G,
then it admits a unique generic type, which is left and right invariant. In
general, the Haar measure on G/G0 translates to a left invariant Keisler
measure concentrating on T .

For example, the free group F2, which is known to be stable by the work
of Sela, is definably amenable. However F2 is not amenable as a pure group.

Example 8.15 (Matrix groups). Let G(R) be a compact matrix group.
Then, seen as a definable group in RCF, G is definably amenable: the com-
pact group G(R) admits a normalized Haar measure h, and all definable
subsets of G are measurable with respect to h.

In particular, the group SO3(R) is definably amenable, although it is
known not to be amenable as a discrete group (essentially the content of
the Banach-Tarski paradox).

This does not work if G is non-compact since then the Haar measure has
infinite weight. In fact we show in Example 8.22 that the definable group
G = SLn(R) is not definably amenable. A characterization of definably
amenable groups in o-minimal expansions of RCF is given in Conversano
and Pillay [30].

Proposition 8.16. If G is definably amenable and A is an extension
base over which G is defined, then there is a global measure µ which is
left-translation invariant and does not fork over A.

Proof. Assume not. Let InvG be the subset of MG(U) consisting of
left invariant measures. It is a non-empty closed subspace, and therefore
compact. If it does not contain a measure which is non-forking over A,
then by compactness, there are formulas ψ0(x; b), . . . , ψn−1(x; b) ∈ L(U),
each forking over A, and ε > 0 such that for every µ ∈ InvG(U), for some
i, µ(ψi(x; b)) > ε. In particular, if ψ(x; b) denotes the disjunction of the
ψi’s, then for every µ ∈ InvG, µ(ψ(x; b)) > ε.

As A is an extension base, the formula ψ(x; b) divides over A. Let (bi : i <
ω), b0 = b, be A-indiscernible such that {ψ(x; bi) : i < ω} is inconsistent.
As InvG ⊂ MG(U) is setwise invariant under automorphisms of U fixing
A, every µ ∈ InvG satisfies µ(ψ(x; bi)) > 0 for each i < ω. By Lemma 7.5
the partial type {ψ(x; bi) : i < ω} is consistent, contradicting dividing. a

Definition 8.17. A global type p ∈ SG(U) is (left) f -generic over A if
no left translate of p forks over A.
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Lemma 8.18. Assume that G admits a global f -generic type p (over some
set A). Then G∞ = G00 and p is G00-invariant (by translation on the left).

Proof. Let M be such that p is f -generic over M . Let Stabl(p) be the
left stabilizer of p, that is the set of g ∈ G such that g · p = p. It is an
M -invariant subgroup of G. We will show that Stabl(p) = {g1 ·g−1

2 : g1 ≡M
g2}.

Assume that g1, g2 ∈ G have the same type over M and we show that
g1 · p = g2 · p. Let φ(x; b) ∈ L(U) and f ∈ Aut(U/M) mapping g1 to g2.
Then g1 · p ` φ(x; b) ⇐⇒ f(g1) · p ` φ(x; f(b)) ⇐⇒ g2 · p ` φ(x; b).
The last equivalence uses the fact that g2 · p is M -invariant. It follows that
g1 · g−1

2 ∈ Stabl(p).
Conversely, let h ∈ Stabl(p) and let a |= p|Mh. Then h · a ≡M a and

h = (h · a) · a−1 as required.
We conclude that Stabl(p) = {g1 · g−1

2 : g1 ≡M g2}. In particular the
latter set is a subgroup. We know that it generates G∞, hence it is equal
to it. Since it is also type-definable, we conclude that Stabl(p) = G∞ =
G00. a

We now present a very useful construction used to turn a definable group
G into an automorphism group. So let G be ∅-definable and fix some model
M . We add to the structure M a new sort S. The universe of S is a copy
of G(M). We do not put any structure on S except for a relation R(x; y, z)
which holds for x ∈ G and y, z ∈ S if and only if z−1 · y = x. Fixing some
b ∈ S, the function associating to any x ∈ G the unique y ∈ S such that
|= R(x; y, b) is then a definable bijection between G and S. However there
is no ∅-definable bijection. In fact, for any b, b′ ∈ S, there is a (unique)
automorphism of the full structure fixing M pointwise and sending b to b′,
namely y 7→ b′b−1 · y.

Note that this construction is conservative, that is does not add any new
definable sets in M . Also, if b ∈ S is a point and A ⊂M , then any subset
X of M definable over Ab is definable over A (X is also definable over Ab′

for any b′ ∈ S, by the same formula and then we can quantify on b′ to
obtain a formula over A).

Lemma 8.19. Let G be a definable group and construct S as above. Then
G admits a global f -generic type over A if and only if the formula xS = xS,
xS of sort S, does not fork over A.

Proof. Assume that xS = xS does not fork over A and let pS(xS) be
a global non-forking extension. Fix an arbitrary point b ∈ S. It induces
a definable bijection between S and G which sends pS(xS) to some global
type p(x). The type p does not fork over Ab. By the remarks above, it
follows that p does not fork over A. Changing b to b′ amounts to translating
p by b−1b′, therefore no translate of p forks over A.
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Conversely, assume that p is f -generic over A. Any point b in S gives
rise to a bijection between G and S. If q is a type in G, we let qb be the
type in the sort S which is the image of q under this bijection. Take now
two points b, b′ in S. Then pb does not fork over Ab. However, pb is also
equal to qb′ where q is the adequate translate of p. Hence it does not fork
over Ab′. As b′ was arbitrary, pb does not fork over A. a

Corollary 8.20. If G admits an f -generic type over some model M ,
then it admits an f -generic type over any model M0.

Proof. We work in the expanded structure with a new sort S. Assume
that the formula xS = xS does not fork over M , but does fork over M0.
By definition of forking, xS = xS implies a disjunction

∨
i<n φi(xS ; bi),

each φi(xS ; bi) divides over M0. Let (bij : j < ω) be an M0-indiscernible
sequence witnessing dividing. Let M1 realize a coheir of tp(M/M0) over
M0 ∪ {bij : i < n, j < ω}. Then each sequence (bij : j < ω) remains
indiscernible over M1 and φi(xS ; bi) divides over M1. But since M1 and
M have the same type over ∅, this implies that xS = xS forks over M .
Contradiction. a

Proposition 8.21. Let M be a model over which G is defined. Then G
admits a global f -generic type over M if and only if G is definably amenable.

Proof. We may restrict to countable L and then by Corollary 8.20, we
may assume that M is also countable.

One direction follows from Proposition 8.16: if G is definably amenable
then it admits a global left invariant measure µ which does not fork over
M and any type weakly random for µ is f -generic over M .

For the converse, let p(x) be a global f -generic type. Then by Lemma
8.18, p is G00-invariant. In particular, if ḡ ∈ G/G00, then the translate
ḡ · p is well defined. Let h be the Haar measure on G/G00. We define
a global measure µ(x) by µ(φ(x)) = h({ḡ ∈ G/G00 : ḡ · p ` φ(x)}), for
φ(x) ∈ L(U). We need to check that this is allowed, that is that the set
on the right is Borel. Assume this for now, then G-invariance of µ follows
from the invariance of the Haar measure. Also if µ(φ(x)) > 0, then φ(x)
is in some translate of p, hence does not fork over M . Therefore any type
weakly random for µ is f -generic over M .

It remains to check that µ is well defined. Let φ(x) ∈ L(U). By Borel de-
finability of p (Proposition 7.19), the set X = {g ∈ G : g ·p ` φ(x)} is Borel
over M . In fact we know from Proposition 7.19 that it is a finite Boolean
combination of closed sets. In particular, as L and M are countable, it is
a countable union of closed sets. The canonical map π : SG(M)→ G/G00

is continuous, hence closed. We conclude that π(X) is Borel in G/G00 as
required. a
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Example 8.22 (SLn(R)). We show that the group SLn(R) is not defin-
ably amenable. First note that since PSLn(K) = SLn(K)/{±1} is sim-
ple for any infinite field K, we know that there are no normal subgroups
of bounded index (definable or not) except possibly a normal subgroup
of index 2. The fact that SLn(R) is perfect rules out this latter case,
hence G00 = G0 = G. It follows that any f -generic type needs to be G-
invariant. Let p(x) be such a type. Then pmust imply either |x11| ≥ |x21| or
|x11| < |x21|. Assume the first case. Let g ∈ SLn(R) be the matrix with 1’s
on the diagonal and t, |t| > 2, on the (2, 1)-entry. Then g · p ` |x11| < |x21|
contradicting invariance. In the other case, do the same but with t in the
(1, 2)-entry.

Exercise 8.23. Let G be definable and H a definable normal subgroup of
G.

1. If G is definably amenable, then so is G/H.
2. If both H and G/H are definably amenable, then so is G.

Exercise 8.24. 1. Let G = RoZ/2Z where the non-zero element of Z/2Z
acts on R by x 7→ −x. Show that, as a definable group in RCF, G has a
left invariant measure which is not right invariant.

2. Show that any definably amenable group admits a global Keisler
measure which is both left and right invariant.

Exercise 8.25. 1. Let G = (Q2,+) as a definable set in (Q; 0, <). Show
that G has 2ℵ0 global left invariant types.

2. Let G = (R2,+) seen as a definable set in RCF. Then G has unbound-
edly many left invariant types. In particular it admits left invariant types
which are not invariant over any small model.

Exercise 8.26 (Automorphism groups). Let p ∈ S(A) be a type. Show
that p does not fork over A if and only if p extends to a global A-invariant
measure.

[ Hint : Assume that p has a global non-forking extension p̃. Then p̃ is
invariant under G = Aut(bdd(A)/A), which is a compact group. Using
the Haar measure of G we can average translates of p̃ and generate an A-
invariant Keisler measure as in Proposition 8.21. See [61, Proposition 4.7]
for details. ]

8.3. fsg groups

Definition 8.27. Let G be a ∅-definable group. We say that G has fsg
(finitely satisfiable generics) if there is a small model M0 and a global type
p such that every left translate of p is finitely satisfiable in M0.
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In particular, such a type p is f -generic over M0 and hence G is definably
amenable.

Definition 8.28. A definable set X ⊆ G is left generic if finitely many
left translates of X cover G. We define right generic similarly.

Proposition 8.29. Let G be a definable fsg group. Let p, M0 be as
in the definition of fsg. For X a definable subset of G, the following are
equivalent:

(i) X is left generic;
(ii) X is right generic;
(iii) every left (right) translate of X meets G(M0);
(iv) some left (right) translate of X is in p.

Proof. Assume that X is left generic. Then X is in some left translate
of p hence X meets G(M0). The same is true starting with any left trans-
late of X instead of X. By compactness, there are finitely many points
g1, . . . , gn ∈ G(M0) such that any left translate of X meets one the gi’s.
This exactly means that X · g−1

1 ∪ · · · ∪X · g−1
n covers G, hence X is right

generic. a
Let G have fsg, witnessed by p. By the previous proposition, left and

right generic sets of G coincide, so we just call them generics. The type p
is generic in the sense that all definable sets in it are generic.

Let µp be the left invariant measure on G obtained from averaging trans-
lates of p as in Proposition 8.21. Then µp is generic in the sense that only
generic sets have positive measure. Conversely, if X is generic then it must
have positive measure with respect to any invariant measure. Hence X is
generic if and only if µp(X) > 0. This shows that non-generic formulas
form an ideal: if X1 ∪X2 is generic, then either X1 or X2 is generic. Also
any generic formula extends to a global generic type.

Lemma 8.30. Let G be a definable fsg group. A generic definable subset
X of G has a point in G(M) for any small model M .

Proof. Let φ(x; a) ∈ L(U) be a formula such that X = φ(G; a) is
generic in G: some m translates of X cover G. We know that for any
a′ such that m translates of φ(G; a′) cover G, φ(x; a′) intersects G(M0).
Hence by compactness there is {g1, . . . , gn} ⊂ G(M0) which intersects any
such φ(x; a′). This is a definable condition in (g1, . . . , gn), hence we can
find such points in any model. a

Lemma 8.31. Let G be a ∅-definable group and M0 a small model. Let
λ0 ∈ MG(M0) be a measure over M0 invariant by left translation by ele-
ments of G(M0). Then λ0 admits a global extension λ which is left invariant
and definable.
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Proof. First we find some model M1 �M0 and an extension λ1 of λ0 to
M1 which is left invariant (by translation by elements of G(M1)) and such
that λ1 admits a unique left invariant extension to any bigger model. This
is done by a smoothing argument as in Proposition 7.9: Notice first that any
left invariant measure over some M admits a left invariant extension to any
larger model (for example using the M̃µ-construction exposed after Lemma
7.4). Then if there are two such extensions, we consider their average and
iterate. This process must stop as in the construction of smooth measures.

Having obtained λ1, let λ be the unique global left invariant extension
of λ1. We claim that λ is definable. Using again the construction referred
to in the previous paragraph, let M̃1 = (M1, [0, 1], fφ)φ encode the mea-
sure λ1. Let N be an elementary extension of M1 and φ(x; a) ∈ L(N).
Let r = λ(φ(x; a)) and fix some ε > 0. By assumption, there is no ele-

mentary extension of M̃1 containing a whose associated measure ν satisfies
|ν(φ(x; a))−r| ≥ ε. By compactness, there is some formula ψ(y) ∈ tp(a/M)
such that any a′ |= ψ(y) has the same property. In particular, any a′ ∈ ψ(U)
satisfies |λ(φ(x; a′))− r| < ε which proves definability of λ. a

Proposition 8.32. Let G be a definable fsg group, then G admits a
unique global left invariant measure µ. Moreover µ is generic, is the unique
right invariant measure and is generically stable.

Proof. Start by letting µ = µp be the global generic left invariant
measure obtained from p as above. Then µ is finitely satisfiable is any
small model. Let λ be any global right invariant measure on G which
is definable over some M . By Proposition 7.22, µ and λ commute. Let
φ(x) ∈ L(M) be a formula and we compute µx ⊗ λy(φ(y · x)).

On the one hand, we have (with some abuse of notations): µx⊗λy(φ(y ·
x)) =

∫
b∈U µ(φ(b · x))dλ(b) =

∫
b
µ(φ(x))dλ(b) = µ(φ(x)). On the other

hand, using commutativity of µ and λ: µx ⊗ λy(φ(y · x)) =
∫
a∈U λ(φ(y ·

a))dµ(a) =
∫
a
λ(φ(y))dµ(a) = λ(φ(y)).

Hence µ = λ. This shows that µ is right invariant and definable, hence
it is generically stable. It is in fact the unique definable right invariant
measure. As µ is right invariant, we can do the same reasoning starting with
some left invariant λ, and we conclude that µ is also the unique definable
left invariant measure on G.

Now let λ be any global left (or right) invariant measure. Let M0 be a
small model. By the previous lemma, λ|M0

extends to a global definable
invariant measure, which must be equal to µ. Therefore λ = µ. a

Proposition 8.33. Let G be a definable group. Then G has fsg if and
only if it is definably amenable and admits a generically stable left invariant
measure.
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Proof. One direction follows from the previous statement. For the
converse, assume that G is definably amenable and admits a generically
stable left invariant measure µ. Then in particular µ is finitely satisfiable
in some model M . Let p be a weakly random type for µ. By invariance of
µ, all left translates of p are also weakly random for µ. Hence p and all its
translates are finitely satisfiable in M which shows that G has fsg. a

Example 8.34. • Every stable group has fsg. (A generic type of a stable
group does not fork over ∅ and by stability it is finitely satisfiable in any
small model.)
• Any compact matrix group G(R) has fsg.
[ Sketch of proof: As G is compact, there is a standard part map st :

G→ G(R). Let h denote the normalized Haar measure on G(R). For X a
definable subset of G, st(X) is Borel and we can define µ(X) = h(st(X)).
If the dimension of X is less than that of G, then µ(X) = 0. Hence if

µ(X) > 0, also µ(X̊) > 0 and then X̊ contains a point in G(R). Thus µ
is finitely satisfiable in the model R and G has fsg. This is an instance of
compact domination which is studied in the next section. ]

More generally, any definably compact group definable in an o-minimal
expansion of a real closed field has fsg (see Hrushovski, Peterzil and Pillay
[60]).
• The additive group (Zp,+) of p-adic integers has fsg, as one can check

directly.

8.4. Compact domination

Let X be a type-definable over M set. Let K be a compact set equipped
with a Borel probability measure h. We say that a map f : X → K is
definable over M if for every closed subset C ⊆ K, the preimage f−1(C) is
type-definable over M . In other words, f induces a continuous map from
SX(M) (the set of types concentrating on X) to K.

We say that X is compactly dominated by (K,h, f) if for every U-
definable set D, the set {a ∈ K : f−1(a) ∩ D 6= ∅ and f−1(a) ∩ Dc 6= ∅}
has h-measure 0.

When this holds, the measure h lifts to an M -invariant global Keisler
measure µ on X defined by µ(D) = h(f(D)) for any U-relatively definable
set D. In particular, h is the pushforward of µ by f .

Lemma 8.35. Let X be type-definable and µ be an M -invariant Keisler
measure concentrating on X. Let µ0 denote the associated Borel measure
on S(M). Then X is compactly dominated by (S(M), µ0, tp(·/M)) if and
only if µ is smooth.
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Proof. Assume first that µ is smooth. Let b ∈ U and fix a formula
φ(x; b) ∈ L(Mb). By smoothness of µ, for any ε > 0 we can find sets
θ0,ε(x) and θ1,ε(x) both over M such that U |= θ0,ε(x)→ φ(x; b)→ θ1,ε(x)
and µ(θ1,ε(x)) − µ(θ0,ε(x)) < ε. Let Cφ(x) =

∧
ε θ1,ε(x) ∧ ¬θ0,ε(x), where

ε ranges over (0, 1) ∩ Q. Then Cφ(x) is closed over M and has µ-measure
0. For a ∈ X(U) \ Cφ(U), for any a′ ≡M a, we have |= φ(a; b) ↔ φ(a′; b).
This proves domination.

Conversely, assume that X is dominated by (S(M), µ0, tp(·/M)). Let
φ(x; b) ∈ L(U) be a formula. Let D1 ⊆ S(M) be the set of types p such that
p(x) ` φ(x; b) and D2 ⊆ S(M) the set of types p such that p(x) ` ¬φ(x; b).
Then any extension µ̃ of µ must satisfy µ(D1) ≤ µ̃(φ(x; b)) ≤ 1 − µ(D2).
By hypothesis µ(S(M) \ (D1 ∪D2)) = 0. Hence µ(D1) = 1− µ(D2) and µ̃
is determined. a

Let now G be a definable group. We say that G is compactly dominated
(as a group) by some (K,π) if K is a compact group, π : G → K a
definable morphism and G is compactly dominated (as a type-definable
set) by (K,h, π) where h is the Haar measure on K.

Lemma 8.36. If G is compactly dominated by some (K,π), then it is
compactly dominated by (G/G00, π0) where π0 is the canonical projection.

Proof. Let H = π−1(e). It is a type-definable subgroup of G and we
have a bijection between G/H and K. Hence H has bounded index in
G. Therefore G00 is contained in H and π0 factors through π. The result
follows. a

With this lemma in mind, we will say that a definable group G is com-
pactly dominated , if it is compactly dominated by (G/G00, π0).

The aim of this section is to prove the following theorem.

Theorem 8.37. The definable group G is compactly dominated if and
only if it admits a smooth left invariant measure.

By Proposition 8.33, it follows in particular that G is fsg and that the
left invariant measure is unique and also right invariant.

One direction is relatively easy.

Proposition 8.38. Assume that G is compactly dominated, then it ad-
mits a left invariant smooth measure.

Proof. Let π0 denote the canonical projection from G to G/G00 and h
the Haar measure on the latter. We define a global Keisler measure µ on G
as follows: Let D be a U-definable set. Define U = {ḡ ∈ G/G00 : π−1

0 (ḡ) ⊆
D} and C = {ḡ ∈ G/G00 : π−1

0 (ḡ) ∩D 6= ∅}. Then U is open, C is closed
and by compact domination, h(U) = h(C). We let µ(D) be their common
value. It is clear that µ is a G-invariant measure.
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Fix any model M over which G is defined. We have a canonical continu-
ous map f : SG(M)→ G/G00 and π0 factorizes through f . In particular, µ
is M -invariant and G is compactly dominated by (S(M), µ, tp(·/M)). By
Lemma 8.35, the measure µ is smooth. a
In order to prove the converse, we first explain how to restrict to the case
where L is countable. Assume that G admits a left invariant smooth mea-
sure µ. Fix a definable set D and we have to show that {ḡ ∈ G/G00 :
π−1

0 (ḡ)∩D 6= ∅ and π−1
0 (ḡ)∩Dc 6= ∅} has measure 0. There is a countable

sublangage L̃ sufficient to define D and such that the restriction of µ to L̃
is smooth. Denote by G̃00 the connected component of G in the reduct to
L̃. Assuming we know the theorem for countable languages, then the set
Ũ = {ḡ ∈ G/G̃00 : π−1

0 (ḡ) ∩ D 6= ∅ and π−1
0 (ḡ) ∩ Dc 6= ∅} has measure

0. Let f : G/G00 → G/G̃00 be the canonical map. The Haar measure

on G/G̃00 is the pushforward by f of the Haar measure h on G/G00. Set

U = {ḡ ∈ G/G̃00 : π−1
0 (ḡ)∩D 6= ∅ and π−1

0 (ḡ)∩Dc 6= ∅}. Then U = f−1(Ũ)
and h(U) = 0 as required.

Assume from now on that L is countable. Let G be a definable fsg
group whose invariant measure µ is smooth. Fix a countable model M
over which G is defined (and hence µ is M -invariant). If a, b are two
elements of U with tp(a/Mb) weakly random for µ, it is not always the
case that tp(b/Ma) is weakly random. To remedy this, we introduce a
stronger notion of randomness.

Fix a countable elementary submodel U of the set theoretic universe
containing L, T , M , G, µ etc. If a ∈ U is a finite tuple, a point b ∈ G(U)
is said to be random over Ma if there does not exist some Borel set B ⊆
Sxy(M) in U such that B(a, b) holds and µ(B(a, y)) = 0. Note that such
a b always exists because we have to avoid countably many Borel sets of
measure 0.

Lemma 8.39. If g ∈ G is random over Mh, then h · g is random over
Mh.

Proof. This follows from left-invariance of µ: if µ(B(x)) = 0 then also
µ(B(h · x)) = 0. a

Lemma 8.40. Let a be random over M and b be random over Ma, then
a is random over Mb.

Proof. The proof uses symmetry of µ. Assume the conclusion does
not hold and let B(x, y) in U be Borel over M such that B(a, b) holds and
B(x; b) has measure 0. Then the set of points b′ such that µ(B(x, b′)) = 0 is
Borel over M and lies in U. As it contains b, it must have non-zero measure.
Restricting the y variable to that set, we may assume that µ(B(x, b′)) = 0
for all b′. But then by symmetry of µ, µ(2)(B(x, y)) =

∫
b′
µ(B(x, b′))dµ = 0.
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Hence the set of points a′ such that µ(B(a′, y)) > 0 has measure 0 and also
lies in U. So a does not lie in that set and µ(B(a, y)) = 0. This contradicts
the fact that b is random over Ma. a

Proposition 8.41. (T is countable) Assume that G admits a left invari-
ant measure µ(x) which is smooth over M , then G is compactly dominated.

Proof. As T is countable, we may assume that M is also countable.
Fix a notion of randomness as explained above. Let µ0 be the restriction
of µ to M and let f : S(U)→ S(M) be the restriction map.

Claim: For all b ∈ U , for all g ∈ G(U) random over Mb, for all g′ ∈ G(U),
we have

tp(g/M) = tp(g′/M) =⇒ tp(g/Mb) = tp(g′/Mb).

Proof: Let φ(x; y) ∈ L(M) and define Bφ(x, y) = {(g, b) ∈ U : tp(g/M) `
φ(x; b) or tp(g/M) ` ¬φ(x; b)}. Then Bφ(x, y) is Borel over M (in fact
open) and by compact domination, for any b′ ∈ U , we have µ(B(x, b′)) = 1.
In particular the Borel set B(x, b) =

⋂
φ∈L(M)Bφ(x, b) has µ-measure 1.

By the definition of randomness, tp(g/Mb) does not lie in that set. The
claim follows.

Pick now g ∈ G(U) random over M and let g′ ∈ G(U) be any element in
the same G00-coset as g. We will show that tp(g/M) = tp(g′/M).

Let h ∈ G(U) be random over Mgg′. Then in particular, tp(h/Mgg′) is
f -generic. As f -generic types are G00-invariant, we have tp(g−1 · h/M) =

tp(g′
−1 · h/M). Hence

(∗) tp(h−1 · g/M) = tp(h−1 · g′/M).
Now as h is random both over Mg and Mg′, Lemma 8.40 tells us that

g is random over Mh and by Lemma 8.39, h−1 · g is random over Mh.
Therefore by (∗) and the claim, tp(h−1 · g/Mh) = tp(h−1 · g′/Mh). It
follows that tp(g/M) = tp(g′/M).

Consider the canonical map f : S(M) → G/G00. We have shown that
there is some Borel set X ⊆ S(M) of µ0-measure 1 such that for p ∈ X,
f−1(f(p)) = {p}. Let X ′ = f(X). Then X ′ has measure 1 and any
point in X ′ has a unique preimage under f . Let π1 : S(U) → S(M) and
π0 : S(U) → G/G00 be the canonical projections. Then π0 = f ◦ π1.
By Lemma 8.35, G is compactly dominated by (S(M), µ0, π1) and by the
properties of X ′, it follows that G is compactly dominated by (G/G00, π0).

a

Example 8.42. Any definably compact group in an o-minimal structure is
compactly dominated, as is the group (Zp,+) of p-adic integers. A direct
proof was sketched in Example 8.34 for the o-minimal case. More generally
in the class of distal theories (see Chapter 9), every fsg group is compactly
dominated.
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CHAPTER 9

DISTALITY

One basic intuition we have about NIP structures is that they are some-
how built out of stable components and linear orders. In this view, the
theory ACVF of algebraically closed valued fields is archetypical: it has a
stable part embodied in the residue field, an order part which is the value
group, and the whole structure is in some sense dominated by those two
components. Stable theories appear as NIP theories which are degenerate
in a certain way. The idea of distality is to characterize the other extreme:
NIP theories which are as far away from stable as possible.

A first attempt towards such a definition might be to ask for the absence
of non-realized generically stable types. However this is not a well-behaved
notion. For example it need not pass from T to T eq. Generically stable
types are too rare in general to encode enough information. On the other
hand, we have seen that generically stable measures are more widespread.
The condition that all generically stable measures are smooth turns out
to be much more robust and to have a number of equivalent formulations.
Since measures are not convenient to work with, we give the definition in
terms of invariant types. We will see in the end that the two conditions are
equivalent. Also we show that distal theories enjoy a strong form of honest
definitions which is a powerful tool to work with.

Apart from subsection 9.3.2, this chapter does not require familiarity
with measures.

Throughout this chapter, we assume that T is NIP.

9.1. Preliminaries and definition

Recall that by an invariant type, we mean a global type invariant over
some small set of parameters. Two invariant types p(x) and q(y) commute
if p(x) ⊗ q(y) = q(y) ⊗ p(x). If p and q are M -invariant, this is in general
stronger than saying that p(x) ⊗ q(y)|M = q(y) ⊗ p(x)|M . However, if N
contains M and is |M |+-saturated, then p(x) ⊗ q(y)|N = q(y) ⊗ p(x)|N
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implies that p and q commute (since any formula with parameters in U has
an Aut(U/M)-conjugate over N).

A notion which is stronger than commuting is orthogonality. Two types
p(x) and q(y) over the same set A are weakly orthogonal if p(x)∪q(y) implies
a complete type over A. Two global M -invariant types p(x) and q(y) are
orthogonal if they are weakly orthogonal as global types. Equivalently,
if p|N and q|N are weakly orthogonal, where N � M is |M |+-saturated.
Again, it may happen that p|M and q|M are weakly orthogonal, but p and
q are not orthogonal.

Example 9.1. Any generically stable type commutes with all invariant
types, in particular with itself. It is however not orthogonal to itself unless
it is a realized type.

Take T to be DLO. Then any two 1-types over a model M are either
equal or weakly orthogonal. If p and q are two global invariant 1-types,
then they commute if and only if they are orthogonal if and only if they are
distinct. In higher dimensions two distinct types need not be orthogonal,
but we still have that two invariant types commute if and only if they are
orthogonal. As we will see, this latter property is equivalent to distality of
the theory.

Exercise 9.2. Give an example in the theory of dense trees of an M -
invariant type p which satisfies p(x) ⊗ p(y)|M = p(y) ⊗ p(x)|M , but is not
generically stable.

We now give the main definition of this chapter.

Definition 9.3. Let p be a global A-invariant type. We say that p is
distal over A if for any tuple b ∈ U , if I |= p(ω) � Ab, then the two types
p � AI and tp(b/AI) are weakly orthogonal.

If p is not distal over A, then there is some b ∈ U , I |= p(ω)|Ab and
a |= p|AI such that a does not realize p over AbI. Such a triple (I, a, b)
will be called a witness of non-distality of p over A. Note that there is
some finite initial segment I0 of I such that already a does not realize p
over AbI0. Write I = I0 + I1 and set b′ = I0b. Then (I1, a, b

′) is a witness
of non-distality with the additional property that a does not realize p over
Ab′.

If p is generically stable and distal over some A, then it is realized.
To see this take in the definition b to realize p|A, then also b |= p|AI by
commutativity, hence the two types p|AI and tp(b/AI) are equal. Being
weakly orthogonal, they must be algebraic, hence p is a realized type.

Example 9.4. In the theory of dense linear orders, any A-invariant type
p is distal over A because the sequence I forces the two types p|AI and
tp(b/AI) to fall in different cuts.
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Example 9.5. Take T to be DLO expanded by a binary predicate E which
defines an equivalence relation with infinitely many dense-co-dense classes.
Let p be the 1-type of an element at +∞ lying in a new equivalence class.
Then p is not distal: with the notations as above, one can take b |= p|A
and then a |= p|AI to be in the same E-class as b.

The non-distality of p is due here to the existence of a generically stable
type in the imaginary sort of E-classes. We will see later that in fact if
there is a non-distal type in T eq, then there is one in T . In Section 9.3.3, we
give an example of a non-distal theory with no (non-realized) generically
stable types, even in T eq.

9.2. Base change lemmas

The main technical difficulty in the study of distality has to do with
base changes: we are given some construction over a base A and we want
to carry out a similar construction over a larger set B. The following
lemmas will enable us to do such base changes when dealing with witnesses
of non-distality.

Lemma 9.6. Let p be a global A-invariant type and b ∈ U . Let I |=
p(ω)|Ab and a |= p|AI . Let B ⊇ A. Then there are a′, I ′, b′ such that
I ′ |= p(ω)|Bb′ , a′ |= p|BI′ and tp(a′b′/A) = tp(ab/A).

Furthermore, if b |= q|A for some A-invariant type q which commutes
with p, then we may add the condition b′ |= q|BI′ .

Proof. First observe that for any linear order J, we can find J such that
J is a Morley sequence of p over Ab of order type J and a |= p|AJ . Indeed, it
suffices to construct a Morley sequence of lim(I) over AIab indexed by the
opposite order J∗ and take for J that sequence read in the reverse direction.

Assume the conclusion is false and let I ′ |= p(ω)|Bb. Then by com-
pactness, there is a formula θ(x) ∈ p|BI′ such that whenever a′, b′ satisfy
tp(a′b′/A) = tp(ab/A) and I ′ |= p(ω)|Bb′ , then |= ¬θ(a′).

Set b0 = b and I0 = I ′. As I0b0 ≡A Ib, there is a0 ∈ U such that
I0b0a0 ≡A Iba. By the previous paragraph, we must have |= ¬θ(a0). Now
let I1 |= p(ω) � BI0a0. Then I0 + I1 is a Morley sequence of p over B and
I0 + (a0) + I1 is indiscernible over A. By the first paragraph of the proof,
we may find a1, b1 ∈ U such that a1b1 ≡A ab, I0 + (a0) + I1 is a Morley
sequence of p over Ab1 and I0 + (a0) + I1 + (a1) is indiscernible over A. As
previously, we have ¬θ(a1).

Proceed by taking I2 |= p(ω) � BI0I1a0a1 and iterate this construction.
After ω steps we obtain a sequence I∗ = I0 +(a0)+I1 +(a1)+I2 +(a2)+ · · ·
which is a Morley sequence of p over A, such that I0 + I1 + · · · is a Morley
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sequence of p over B and |= ¬θ(ai) for each i < ω. But then the formula
θ(x) alternates infinitely often on the sequence I∗, contradicting NIP.

For the ‘furthermore’ part, first note that by the commutativity assump-
tion, for any linear order I, if I ′ |= p(I)|B and b′ |= q|B , then I ′ |= p(I)|Bb′ if
and only if b′ |= q|BI′ . Keeping this in mind, the proof is the same except
that at each step, we take bk realizing q over the union of B and the Morley
sequence of p constructed so far: At the first step, we pick b0 |= q|B ; at
the second step, we take b1 |= q|BI0I1a0 then find a1 satisfying the require-
ments, and so on. The contradiction at the end is obtained in the exact
same way. a

Proposition 9.7. If p is a global type invariant over both A and B, then
p is distal over A if and only if it is distal over B.

Proof. We may assume that A ⊆ B. First suppose that p is distal over
A. Let b ∈ U and I |= p(ω)|Bb. Then setting b′ = Bb, we have I |= p(ω)|Ab′ ,
hence by distality over A, p|AI and tp(b′/AI) are weakly orthogonal. A
fortiori so are p|BI and tp(b/BI).

Conversely, assume that p is not distal over A. There are b ∈ U , I |=
p(ω)|Ab and a |= p|AI such that a 2 p|Ab. By Lemma 9.6, we can find
a′, b′, I ′ such that I ′ |= p(ω)|Bb′ , a′ |= p|BI′ and tp(a′b′/A) = tp(ab/A).
Then a′ 2 p|Bb′ and p is not distal over B. a

If p is a global invariant type, we will say that p is distal if it is distal
over some (equiv. any) A over which it is invariant.

Lemma 9.8. Let p be a global A-invariant type and I = (bi : i ∈ I) an
indiscernible sequence where I has cofinality > 2|T |+|A|. Let q = lim(I) be
the limit type of I. Then p and q commute.

Proof. Let m ∈ U and φ(x, y;m) such that p(x) ⊗ q(y) ` φ(x, y;m).
Let b |= q|AIm. By the cofinality assumption, there is some im ∈ I such
that tp(bi/Am) is constant for i ≥ im. As b realizes the limit type of I over
AIm, we have tp(b/Am) = tp(bi/Am) for any i ≥ im. Let a |= p|AImb.
By assumption we have |= φ(a, b;m). Then by A-invariance of p, also
φ(a, bi;m) holds for i ≥ im. Therefore if b′ |= q|AIma, then φ(a, b′;m) holds
and this shows that q(y)⊗ p(x) |= φ(x, y;m) as required. a

The hypothesis that I has large cofinality can be removed if we assume
that I is A-indiscernible; see Exercise 9.16.

Lemma 9.9. Let p be A-invariant. Let b ∈ U , I |= p(ω)|Ab and a |= p|AI .
Then there is some set B ⊇ A, a global B-invariant type q and a′, b′, I ′

such that:
· q commutes with p;
· I ′ |= p(ω)|Bb′ and a′ |= p|BI′ ;
· b′ |= q|BI′ ;
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· tp(a′b′/A) = tp(ab/A).

Proof. Let κ = (2|T |+|A|)
+

and λ = iκ. Construct inductively a se-
quence J = (Ik, ak, bk : k < λ) such that (I0, a0, b0) = (I, a, b) and for each
0 < k < λ, (Ik, ak, bk) is given by Lemma 9.6 with B = AI<ka<kb<k.
By Erdős-Rado (Proposition 1.1), there is an A-indiscernible sequence
(I ′i, a

′
i, b
′
i : i < κ + 1) such that for any n, there are i0 < · · · < in−1 < λ

with
(∗) Ii0ai0bi0 . . . Iin−1ain−1bin−1 ≡A I ′0a′0b′0 . . . I ′n−1a

′
n−1b

′
n−1.

Set B = A∪{b′i : i < κ}. Then (∗) ensures that I ′κ |= p(ω)|Bb′k , a′k |= p|BI′k
and tp(a′κb

′
κ/A) = tp(ab/A). Define q as the limit type of the sequence

(b′i : i < κ). By Lemma 9.8, p and q commute. Also b′κ |= q|BI′κ since the
sequence (b′i : i ≤ κ) is indiscernible over I ′κ. Hence we have what we want
if we set (I ′, a′, b′) = (I ′κ, a

′
κ, b
′
κ). a

Lemma 9.10. Let p be a global invariant type. Assume that p is not
distal, then there are M ≺ N such that N is |M |+-saturated, p is invariant
over M and there is (I, a, b), a witness of non-distality of p over N such
that for some M -invariant type q, b |= q|NI and q commutes with p.

We may furthermore assume that a does not realize p over Mb.

Proof. We just have to apply one after the other some of the previous
lemmas. Let A ⊂ U be such that p is A-invariant. Then there is (I, a, b)
a witness of non-distality of p over A. By incorporating a finite initial
segment of I into b, we may assume that tp(a/Ab) is not equal to p|Ab.
Then apply Lemma 9.9 to obtain some set B, sequence I ′ and tuples a′, b′

giving a witness of non-distality of p over B and such that b′ |= q|BI′ , where
q is a global B-invariant type commuting with p. Let N be a |B|+-saturated
model containing B. We apply again Lemma 9.6 to obtain (I ′′, a′′, b′′) a
witness of non-distality of p over N such that b′′ |= q|NI′′ .

Furthermore, the construction ensures that tp(a′′, b′′/A) = tp(a′, b′/A) =
tp(a, b/A). As a does not realize p over Ab, this gives the second part of
the lemma. a

Proposition 9.11. Let p be a global invariant type, then p is distal if and
only if p is orthogonal to every global invariant type to which it commutes.

Proof. First assume that p is distal and let q be a global invariant type
which commutes with p. Let M be a small model over which both p and
q are invariant. Let I |= p(ω)|M . We show that p(x)|MI ∪ q(y)|MI implies
a complete type in variables x ŷ over M . As M can be taken as large as
we want, this shows that p and q are orthogonal. Take any b |= q|MI . As
q commutes with p, we also have I |= p(ω)|Mb. Hence by distality of p over
M , p|MI and tp(b/MI) are weakly orthogonal.



140 9. Distality

Conversely, assume that p is not distal. Let M ≺ N and q as in the
previous lemma. Then the types p|N and q|N are not weakly orthogonal.
Since both are invariant over M and N is |M |+-saturated, p and q are not
orthogonal. a

Exercise 9.12. Let p(x) be a distal A-invariant type and f(x) an A-
definable function. Then the pushforward f∗(p) defined by f∗(p) ` φ(y)
if and only if p ` φ(f(x)) is also A-invariant and distal. In particular any
non-distal type in T eq lifts to a non-distal type in T .

[ Observe first that the proof of Lemma 9.10 gives a type q which com-
mutes with all invariant types based on A. ]

Proposition 9.13. Let p be a global invariant type of dp-rank 1. Then
p is either generically stable or distal.

Proof. Take A ⊂ U such that p is A-invariant and p|A already has
dp-rank 1. If p is not distal, then there is a global invariant type q which
commutes with p and such that p and q are not orthogonal. Increasing A
if necessary, we may assume that q is also A-invariant. Let I |= p(ω)|A,
J |= q(ω)|AI and B = AIJ . By non-orthogonality of p and q, there are
a, b ∈ U such that a |= p|B , b |= p|B and a does not realize p over Bb.
Let I ′ |= p(ω)|Bab and J ′ |= q(ω)|BI′ab. By commutativity of p and q, the
two sequences I + I ′ and J + (b) + J ′ are mutually indiscernible over A
(Example 4.5). We know that J + (b) + J ′ is not indiscernible over Aa.
Hence as dp-rk(a/A) = 1, the sequence I + I ′ must be indiscernible over a.
But I + (a) + I ′ is a Morley sequence of p over A, so this can only happen
if that latter sequence is totally indiscernible, that is if p is generically
stable. a

Exercise 9.14. Prove Lemma 9.6 without assuming NIP, but assuming
instead that p (and q for the ‘furthermore’ part) is invariant over some
C ⊂ A and A is a |C|+-saturated model.

Exercise 9.15. Let p be an A-invariant type. Show that if p is not distal,
then there is a witness of non-distality (I, a, b) over A with b |= p(n)|A for
some n.

Exercise 9.16. Prove that if p is an A-invariant type and I is any A-
indiscernible sequence, then p and lim(I) commute.

9.3. Distal theories

Definition 9.17. We say that the NIP theory T is distal if all invariant
types are distal.

Note that if T is distal, then so is T eq by Exercise 9.12.
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Theorem 9.18. Assume that every invariant type in one variable is dis-
tal, then T is distal.

Proof. Assume that every invariant type in one variable is distal and
let p be any global type invariant over some set A. We can find (I, a, b) a
witness of non-distality of p over A. Write the tuple b as b = (b0, . . . , bn−1)
and assume that (A, I, a, b) was chosen so as to minimize n. Then a realizes
p over AIb1 . . . bn−1. Set A′ = A∪{b1, . . . , bn−1}, then (I, a, b0) is a witness
of non-distality of p over A′. Hence by minimality of n, we have n = 1 and
b is a singleton. Incorporating some initial segment of I in the base A, we
may assume that a does not realize p over Ab.

Following the same procedure as in the proof of Lemma 9.10, we can
find B ⊆ N where N is |B|+-saturated, some B-invariant type q com-
muting with p and a witness (I ′, a′, b′) of non-distality of p over B such
that b′ |= q|B and tp(a′, b′/A) = tp(a, b/A). In particular b′ is a singleton,
hence by hypothesis q is distal. But then q|N is weakly orthogonal to p|N
contradicting the fact that a′ does not realize p over Ab′. a

Corollary 9.19. If T is dp-minimal with no non-realized generically
stable type then it is distal.

Proof. If T is dp-minimal, then by Proposition 9.13 every 1-type is
either distal or generically stable. If the latter case does not occur, then all
1-types are distal which by the previous theorem implies that T is distal. a

Note the following consequence of this corollary: If T is dp-minimal
and has no non-realized generically stable type, then also T eq has no non-
realized generically stable type.

Example 9.20. Any dp-minimal linearly ordered theory—in particular any
o-minimal theory or weakly o-minimal theory—is distal, as is the theory
Th(Qp) of p-adics.

The distality of a theory can be stated in a few equivalent ways. One
is that every invariant type is distal, equivalently any two invariant types
which commute are orthogonal. We will see now two other characterizations
in terms of strong honest definitions and generically stable measures.

9.3.1. Strong honest definitions. Perhaps the property of distal the-
ories which is the easiest to use is the following strong form of honest defi-
nitions.

Let φ(x; y) ∈ L and define as usual φopp(y;x) = φ(x; y). In what follows,
we use the notation θ(y; d) ` tpφopp(b/A) to mean that for every φ(a; y)ε ∈
tpφopp(b/A), ε ∈ {0, 1}, we have θ(y; d) ` φ(a; y)ε.

Theorem 9.21. Let T be a distal theory. Let M |= T , A ⊆M , φ(x; y) ∈
L and b ∈M a |y|-tuple. Then there is an elementary extension (M,A) ≺
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(M ′, A′), a formula θ(y; z) ∈ L and a tuple d of elements of A′ such that
M ′ |= θ(b; d) and θ(y; d) ` tpφopp(b/A).

If we set ψ(x; z) = ∀y(θ(y; z)→ φ(x; y)), then we have φ(A; b) = ψ(A; d)
and M ′ |= ψ(x; d) → φ(x; b). In particular, ψ(x; d) is an honest definition
of φ(x; b) over A. We can also define ψ′(x; z) = ∀y(θ(y; z) → ¬φ(x; y)).
Then the same two properties hold with ¬φ instead of φ. Conversely, if we
have some ψ(x; z) and ψ′(x; z) with these properties, than one can recover
a formula θ(y; z) by setting θ(y; z) = ∀x(ψ(x; z) → φ(x; y) ∧ ψ′(x; z) →
¬φ(x; y)).

Proof. Let SA ⊂ Sx(U) be the set of global types finitely satisfiable
in A: a compact set. Let p ∈ SA. As p is finitely satisfiable in A, for
any small set B ⊂ A′, p(x)|MB ∪ P(x) is finitely satisfiable. Hence by
saturation, there is a ∈ A′ realizing p over MB. In particular, we can find
I in A′, a Morley sequence of p over M . By distality of p, the types p|AI
and tp(b/AI) are weakly orthogonal. By compactness, there is ψp(x) ∈ p|AI
and θp(y) ∈ tp(b/IA) such that ψp(x) ∧ θp(y) ` φ(x; y)εp , where εp is such
that p ` φ(x; b)εp . As SA is compact, we can find a finite set S0 ⊂ SA such
that

⋃
p∈S0

ψp(x) covers SA. Set θ(y) =
∧
p∈S0

θp(y). Write θ(y) = θ(y; d)
making the parameters explicit.

We check that θ(y; d) ` tpφopp(b/A). Let a ∈ A and ε such that |=
φ(a; b)ε. There is p ∈ S0 such that a |= ψp(x). Since θp(y) ∧ ψp(x) →
φ(x; y)εp and θp(b) is true, we must have εp = ε. Thus θ(y; d) implies θp(y)
which implies φ(a; y)ε. a

As for usual honest definitions, there is an equivalent formulation avoid-
ing the use of pairs: Let T be distal, M , A, φ(x; y) and b as above. Then
there is a formula θ(y; z) such that for every finite A0 ⊆ A, for some d ∈ A
we have M |= θ(b; d) and θ(y; d) ` tpφopp(b/A0). Equivalently, there is a
formula ψ(x; z) such that for every finite A0 ⊆ A, for some d ∈ A, we have
ψ(A0; d) = φ(A0; b) and M |= ψ(x; d)→ φ(x; b).

Uniformity for this strong form of honest definitions can be proved the
same way as for the weak form.

Theorem 9.22. Let T be a distal theory and let φ(x; y) ∈ L. Then there
is a formula θ(y; z) ∈ L such that for all M |= T , A ⊆ M of size at least
2, and b ∈ M |y|, there is an elementary extension (M,A) ≺ (M ′, A′) and
d ∈ A′ such that M ′ |= θ(b; d) and θ(y; d) ` tpφopp(b/A).

Proof. We use the formulation with ψ(x; z) as stated above. The proof
is then exactly the same as for usual honest definitions: First, as in Lemma
6.15 we use compactness to show that if we associate to each ψ(x; z) an
integer qψ, there are finitely many ψ0, . . . , ψn−1 such that for any pair
(M,A) and φ(x; b) ∈ L(M), for some j < n and for every A0 ⊆ A of size
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≤ qψj there is some d ∈ A with φ(A0; b) ⊆ ψj(M ; d) ⊆ φ(M ; b). Next we
use the (p, q)-theorem as in Theorem 6.16 to conclude. a

Corollary 9.23. Let T be distal and let φ(x; y) ∈ L. Then there is a
formula θ(y; z) ∈ L such that for all M |= T , A ⊆ M a finite set of size
at least 2 and b ∈ M |y|, there is some d ∈ A such that θ(b; d) holds and
θ(y; d) ` tpφopp(b/A0).

Exercise 9.24. Show that conversely if T satisfies the conclusion of The-
orem 9.21, then it is distal.

Remark 9.25. It is important to note that distality is not preserved under
reducts (since the theory of equality is not distal). This is also witnessed
by the fact that in Theorem 9.21 one might have to look for θ(y; z) outside
of the language generated by φ(x; y). For example if φ(x; y) is x = y, then
no formula in the language of equality will work for θ.

In that respect, distality is of a different nature than combinatorial con-
ditions such as stable, NIP, NTP2 etc.

9.3.2. Generically stable measures. We show here a characteriza-
tion of distality in terms of generically stable measures: an NIP theory T
is distal if and only if all generically stable measures are smooth.

Proposition 9.26. If T is distal, then all generically stable measures
are smooth.

Proof. Assume that T is distal and let µ(x) be a global generically
stable measure, invariant over some M . We show that µ|M is smooth. Let
M ≺ N , φ(x; b) ∈ L(N) and ε > 0. Let (N ′,M ′) be a sufficiently saturated
extension of the pair (N,M). By Theorem 9.21, there is some θ(y; d) ∈
L(M ′) such that θ(b; d) holds and θ(y; d) ` tpφopp(b/M). Let ψ(x; z) =
∀y(θ(y; z) → φ(x; y)). Then we have φ(M ; b) = ψ(M ; d) and N ′ |=
ψ(x; d)→ φ(x; b). As µ is finitely satisfiable in M , µ(φ(x; b)4ψ(x; d)) = 0.
Furthermore, as µ is definable over M , there is some χ(z) ∈ tp(d/Mb) such
that for any e |= χ(z), |= ψ(x; e)→ φ(x; b) and µ(φ(x; b))− µ(ψ(x; e)) < ε.
By elementarity of the extension (N,M) ≺ (N ′,M ′), we can find such a e
in M . Applying the same argument for ¬φ(x; b), we find some ψ′(x; e′) ∈
L(M) such that |= φ(x; b)→ ψ′(x; e′) and µ(ψ′(x; e′))− µ(φ(x; b)) < ε.

Hence φ(x; b) is sandwiched between ψ(x; e) and ψ′(x; e′) and the differ-
ence of the µ measures of those two sets is at most 2ε. As ε was arbitrary,
this shows that the measure of φ(x; b) is determined by µ|M . Therefore µ
is smooth. a

Proposition 9.27. If all generically stable measures are smooth, then
T is distal.
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Proof. Assume that T is not distal and let p be a non-distal invari-
ant type. By Lemma 9.10, we can find M ≺ N and some M -invariant
type q such that N is |M |+-saturated, p is M -invariant, p and q com-
mute and there is (I, a, b) a witness of non-distality of p over N such that
b |= q|NI . We may furthermore assume that a does not realize p over Mb.
Let φ(x; b) ∈ p|Mb such that |= ¬φ(a; b).

Set a0 = a. Let I = Q ∩ (−1/2, 0) with the usual order and I∗ is I

with the opposite order. Build a Morley sequence of lim(I) over everything
considered so far with order type I∗. Let I0 = (at : t ∈ I) be that sequence
read in the opposite order. Set J = Q∩ (0, 1/2) and let J0 = (at : t ∈ J) be
a Morley sequence of p over everything. Then:
• the sequence I0 + J0 is a Morley sequence of p over Nb;
• the sequence I0 + (a0) + J0 is a Morley sequence of p over N ;
• b realizes q over N ∪ {at : t 6= 0}.

The last bullet follows from the first and commutativity of p and q.
Let P be a model containing I0 + J0 and such that b |= q|P . Let µ(x)

be the average measure of the sequence I0 + J0 (as in Example 7.2). As
explained in Example 7.32, µ is generically stable. We will show that µ is
not smooth over P and in fact that µ|P has an extension to Pb in which
µ(¬φ(x; b)) > 0.

If this is not the case, then by Lemma 7.4, there is some formula ψ(x) ∈
L(P ) such that |= ψ(x)→ φ(x; b) and µ(ψ(x)) > 1/2. Without loss, assume
that any ai in the sequence I0 satisfies ψ(x).

Fix an arbitrary sequence (ti : i < ω) of distinct elements of (−1/2, 0)\Q.
We construct inductively points (ati : i < ω) and (bi : i < ω) as follows:

Assume that (atj : j < i) have been defined. Set r = ti and let Ir = (at :
t < r) and Jr = (at : t > r), where we include all the at constructed so far.
Let also bi realize q over everything.

Then the triple (Ir, Jr, bi) has the same type over N as (I0, J0, b). Hence
there is some ar such that Ir + (ar) + Jr is a Morley sequence of p over N
and ¬φ(ar, bi) holds. As bi and b both realize q over P , we have |= ψ(x)→
φ(x; bi) and therefore ¬ψ(ar) holds.

Once the construction is finished, we have that ψ(at) holds if t is in
Q ∩ (−1/2, 0) and ¬ψ(ati) holds for i < ω. This implies that the formula
ψ(x) has infinite alternation rank, contradicting NIP. a

9.3.3. Indiscernible sequences. The first definiton of distality in [114]
was given in terms of indiscernible sequences. They are no longer required
in the approach presented here. However for completeness, we give the
definition of distal indiscernible sequences and point out the links with
previous notions. We will leave the proofs as exercises to the reader.

In the following definition, I can be an arbitrary sequence, although we
are mainly interested in the case where I is indiscernible.
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Definition 9.28. Let I be any infinite sequence of tuples and A a base
set of parameters. We say that I is distal over A if whenever J , a, B ⊇ A
satisfy:
· J is indiscernible and realizes the EM-type of I;
· J = J1 + (a) +J2, where both J1 and J2 are infinite with no endpoints;
· the sequence J1 + J2 is indiscernible over B;

then the sequence J = J1 + (a) + J2 is indiscernible over B.

Proposition 9.29. An A-invariant type p is distal over A if and only if
its Morley sequence is distal over A.

An A-indiscernible sequence I is distal over A if and only if its limit type
lim(I) is distal.

Proof. The implication: if p is not distal over A then its Morley se-
quence is not distal over A was observed (and used) in the proof of Propo-
sition 9.27. We leave the other verifications to the reader. a

In particular, if I is indiscernible both over A and B, then it is distal
over A if and only if it is distal over B. It makes sense therefore to speak
of a distal indiscernible sequence without mentioning the set A.

Proposition 9.30. Let I = (ai : i ∈ [0, 1]) be an indiscernible sequence
and µ(x) be the average measure of I as in Example 7.2. Then µ is smooth
if and only if I is distal.

Proof. Left to the reader (again, one direction is essentially included
in the proof of Proposition 9.27). a

9.3.4. An example. We end this chapter with an example of a non-
distal theory with no non-trivial generically stable type, even in T eq.

The language is L = {≤, Rn : n < ω} where all are binary predicates.
The theory T states that the reduct to L0 = {Rn : n < ω} is a local order,
as presented in Example 2.31: it is the theory of (Q;Rn : n < ω) where
Rn(x; y) holds if and only if x < y ∧ |y − x| ≤ n. In addition, we impose
that ≤ defines a dense linear order with no endpoint, which is generic with
respect to the Rn’s in the sense that any infinite set which is L0-definable
(with parameters) is dense co-dense with respect to ≤.

A straightforward back-and-forth argument shows that this defines a
consistent complete theory with elimination of quantifiers. As the structure
is linearly ordered, there are no (non-trivial) generically stable types over
the real sort. Furthermore, there are no definable equivalence relations with
infinite classes, hence no generically stable types in imaginary sorts either
(since if b ∈ acl(a) and tp(a/M) is generically stable, then so is tp(b/M)).

It remains to check that T is not distal. Let M be a model of T and let
p0(x) be the unique non-realized L0-type in one variable over U which is
generically stable. Namely: p0 ` ¬Rn(x; a) for every a ∈ U . Let p be any
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expansion of p0 to an L-type over U invariant over some small M . Take
b |= p|M and I |= p(ω)|Mb. Then b is Rn-incomparable with any element of
M or I. One can find a point a |= p|MI which is R1-comparable to b. This
shows that p|MI and tp(b/MI) are not weakly-orthogonal. Hence p is not
distal.

References and related subjects

Distal theories were introduced by the author in [114]. The approach
there is focussed on indiscernible sequences. The version we present here
has been reworked entirely. We believe that the definition we start with,
of a distal invariant type, is more natural and easier to work with.

The word distal comes from dynamical systems. If a group G acts on a
(compact or metric) space X, then two points of X are distal if they do not
become arbitrarily close when the group acts. There is no mathematical
relationship between the two notions. The idea behind using the word
here is that in distal theories, two points lying at different places in an
indiscernible sequences cannot interact and we like to think of them being
separated, or distant, from each other.

Strong honest definitions come from Chernikov and Simon [27].

When a NIP theory is not distal, one can define a non-trivial notion of in-
dependence called s-independence which is symmetric and has bounded
weight. This is done in the second part of [114]. If p and q are two com-
muting types over a sufficiently saturated model M , then a |= p and b |= q
are s-independent over M if and only if tp(a, b/M) = p⊗ q. The theory of
s-independence shows that in some sense p and q behave with respect to
each other as do types in a stable theory.

The theory can also be developed over an indiscernible sequence. The
main result is the following theorem which is a weaker form of distality and
holds in any NIP theory.

Theorem 9.31 ([114], Theorem 3.30). Let p be an A-invariant type and
b ∈ U . Let I |= p(ω) � Ab and let J |= p(ω) � AI. Then the limit type
lim(J/Ab) coincides with p|Ab.
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EXAMPLES OF NIP STRUCTURES

In this appendix we present the classical examples of (unstable) NIP the-
ories. We start with linear orders and trees, which are ubiquitous in NIP
structures. Closely related to them are o-minimal and C-minimal struc-
tures. We then discuss algebraic examples: ordered abelian groups and
most importantly valued fields which are often considered as the archetyp-
ical NIP structure.

It turns out that most of those structures are dp-minimal (Definition
4.27). As the reader might want to go through this appendix before having
read the material in Chapter 4, we recall the definition: A theory T is
dp-minimal if for any singleton a and any two infinite sequences of tuples
I0, I1, if Ik is indiscernible over I1−k for k = 0, 1, then there is k ∈ {0, 1}
such that Ik is indiscernible over a. This property implies NIP.

A.1. Linear orders and trees

A.1.1. Linear orders. A colored order is a structure (M ;<, (Ci)i<α)
where the Ci’s are arbitrary unary predicates and where < defines a linear
order on M .

Lemma A.1 (Rubin). Let (M ;<, (Ci)i<α) be a colored order and let a ∈
M . Let b̄1 ∈M be a tuple of points all smaller than a and b̄2 ∈M a tuple
of points greater than a, then tp(b̄1/a) ∪ tp(b̄2/a) ` tp(b̄1, b̄2/a).

Proof. The proof is a straightforward back-and-forth.
Assume M is ω-saturated and we are given two pairs of tuples (b̄1, b̄2)

and (b̄′1, b̄
′
2) satisfying the hypothesis and such that tp(b̄1/a) = tp(b̄′1/a) and

tp(b̄2/a) = tp(b̄′2/a). Notice that necessarily qftp(b̄1, b̄2, a) = qftp(b̄′1, b̄
′
2, a).

Assume we are given b ∈M , without loss, b < a. We can find b′ ∈M such
that tp(b̄1 b̂/a) = tp(b̄′1 b̂

′/a). Thus the back-and-forth goes through. a

Proposition A.2. Any colored order (M ;<, (Ci)i<α) is dp-minimal (in
particular NIP).

147
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Proof. Let a ∈ M be a singleton and I = (āi : i ∈ Q) be an indis-
cernible sequence of n-tuples. For each index i write āi = (a1

i , . . . , a
n
i ). We

say that I is cut by a if there is k ≤ n and i, i′ ∈ Q such that aki ≤ a ≤ aki′ .
Assume that I is not cut by a, then it follows from Lemma A.1 that for

any i < i′ ∈ Q, tp(a/āiˆāi′) ∪ tp((āj : i < j < i′)/āiˆāi′) ` tp(a+ (āj : i <
j < i′)/āiˆāi′). As (āj : i < j < i′) is indiscernible over āiˆāi′ , it follows
that (āj : i < j < i′) is indiscernible over a and therefore I is indiscernible
over a.

If now I and J are two mutually indiscernible sequences, then a singleton
a cannot cut both I and J (otherwise either some point of I would cut J
or some point in J would cut I). Therefore at least one of I and J is
indiscernible over a. This proves dp-minimality. a

A.1.2. Trees. Trees were already introduced in Section 2.3.1 where we
studied dense trees. Nevertheless, we recall here all the relevant definitions.

Definition A.3 (Tree). A tree is a partially ordered set (M,≤) such
that for every a ∈M , the set {x ∈M : x ≤ a} is linearly ordered by ≤ and
for any a, b ∈M , there is some c smaller or equal to both a and b.

We say that (M,≤) is a meet-tree if in addition: for every two points
a, b ∈ M , the set {x ∈ M : x ≤ a ∧ x ≤ b} has a greatest element, which
we denote by a ∧ b.

Let (M,≤) be a meet-tree and c ∈ M is a point. The closed cone of
center c is by definition the set C(c) := {x ∈ M : x ≥ c}. We can define
on C(c) a relation Ec by: xEcy if x ∧ y > c. One can easily check that
this is an equivalence relation. We define an open cone of center c to be a
equivalence class under the relation Ec.

A leaf of the tree M is a point in M which is maximal.

Lemma A.4. Let (M,≤) be a tree, a ∈ M , and let C denote the closed
cone of center a. Let x̄ = (x1, . . . , xn) ∈ (M \C)n and ȳ = (y1, . . . , ym) ∈
Cm. Then tp(x̄/a) ∪ tp(ȳ/a) ` tp(x̄ ∪ ȳ/a).

Proof. The proof is a straightforward back-and-forth as for Lemma
A.1. a

Proposition A.5. Any tree (M,≤) is dp-minimal (hence NIP).

The proof is similar to that of Proposition A.2, but slightly longer as we
have to various cases to consider. We omit it here and refer the reader to
[112, Proposition 4.7].

A.1.3. O-minimality. Let (M ;<, . . . ) be a structure on which < de-
fines a linear order. We say that M is o-minimal if every definable set of
M (in dimension 1) is a finite union of intervals (closed or open). One can
prove that this implies that any model of Th(M) is o-minimal.
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As mentioned in the introduction, o-minimality is a major area of re-
search within model theory, as it is both a powerful and versatile framework.
This condition was isolated by van den Dries [117] and first systematically
studied by Pillay and Steinhorn in [91]. The latter paper establishes the
fundamental cell decomposition theorem which states that definable sub-
sets in any dimension can be decomposed as a finite union of cells (cells
in dimension 1 are intervals). This implies that o-minimal theories are
geometrically tame: pathologies such as space-filling curves do not exist
in them. An important landmark in the subject is the proof by Wilkie
[123] that Rexp, the reals with a predicate for the exponential function, is
o-minimal. Van den Dries [118] (and later Denef and van den Dries [33])
proved that expanding the reals by adding analytic functions restricted to
compact sets also yields an o-minimal structure.

Theorem A.6. Any o-minimal theory is dp-minimal.

Proof. Let (M ;<, . . . ) be an o-minimal structure. Let I = (b̄i : i ∈ Q)
be an indiscernible sequence of n-tuples and let φ(x; ȳ) be a formula, where
x is a single variable. Then by o-minimality, for every i ∈ Q, φ(x; b̄i) is a
finite union of intervals. Note that the end points of those intervals are de-
finable over b̄i. By indiscernibility of the sequence (b̄i : i ∈ Q), the number
of those intervals and their type (open or closed) is constant as i varies and
so are the functions sending b̄i to each of the end-points of those intervals.
In other words, there is a number N , ∅-definable functions (gk(ȳ) : k < N)
and a quantifier free formula θ(x; z̄) in the language {=, <} such that for
each i ∈ Q, the formula φ(x; b̄i) is equivalent to θ(x; g0(b̄i), . . . , gN−1(b̄i)).

Let a ∈ M be a singleton. If the sequence (tp(b̄i/a) : i ∈ Q) is not
constant, it follows from the previous analysis that a cuts the indiscernible
sequence (dcl(b̄i) : i ∈ Q) (where cut is defined as in the proof of A.2). If
I = (b̄i : i ∈ Q) and J = (d̄i : i ∈ Q) are mutually indiscernible, then the
sequences (dcl(b̄i) : i ∈ Q) and (dcl(d̄i) : i ∈ Q) are mutually indiscernible.
Therefore a singleton a cannot cut both. This shows that the theory is
dp-minimal. a

For more information about o-minimal theories, we refer the reader to
van den Dries’ book [119] and Wilkie’s survey [124].

A number of weakenings of o-minimality have been introduced. Some of
them—such as o-minimal open core—have a more geometric or topological
flavor and do not imply NIP. However, others do and we now briefly define
two of them.

The structure (M ;<, . . . ) is weakly o-minimal ([34], [78]) if in every
elementary extension of M , every definable unary set is a finite union of
convex sets. A theory is weakly o-minimal if all its models are (unlike in
the case of o-minimality it is not sufficient to look only at one model).
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An example of a weakly o-minimal structure is the Shelah expansion MSh

of an o-minimal structure M . In this case, the theory of MSh is weakly
o-minimal.

Any weakly o-minimal theory is NIP and even dp-minimal. This can be
seen by adapting the proof of Theorem A.6.

Going even further, one says that a structure (M ;<, . . . ) is quasi o-
minimal ([16]) if any definable unary set is a finite Boolean combination
of convex sets and ∅-definable sets. For example (Z;<, 0, 1,+) is quasi
o-minimal. Again, an adaptation of the previous theorem shows that if
a theory T is quasi o-minimal (i.e., all of its models are), then it is dp-
minimal.

Finally, we point out that dp-minimal ordered structures constitute an
interesting class to study in its own right. This has been done for example
in [45] and [112].

A.1.4. C-minimality. The property of C-minimality is to the set of
maximal branches of a tree what o-minimality is to linear orders.

Let (M ;≤) be a meet-tree with no leaf, and let BM be the set of maximal
branches of M , i.e., the set of maximal totally ordered subsets of M . Given
a ∈ BM and m ∈ M , we write m < a if m is in the branch a. Then
(M ∪{BM},≤) is a meet-tree, the leaves of which are exactly the elements
of BM .

If a, b, c ∈ BM , we write C(a, b, c) if either b = c 6= a or a, b, c are distinct
and a∧c < b∧c. Then the structure (BM , C) satisfies the following axioms:

(C1) ∀x, y, z[C(x, y, z)→ C(x, z, y)];
(C2) ∀x, y, z[C(x, y, z)→ ¬C(y, x, z)];
(C3) ∀x, y, z, w[C(x, y, z)→ (C(w, y, z) ∨ C(x,w, z)];
(C4) ∀x, y[x 6= y → ∃z 6= yC(x, y, z)].

Conversely, one can show that given a structure (M ;C) where C(x, y, z)
satisfies axioms (C1) - (C4), then there is a meet-tree (T ;≤) for which M
is a subset of the set of branches of T and the C-structure on M coincides
with the one defined above.

A structure (M ;C, . . . ) where (C1) - (C4) are satisfied is called a C-
structure.

A C-structure (M ;C, . . . ) is C-minimal if any definable unary subset is
quantifier-free definable using only C and equality. A theory is C-minimal
if all of its models are C-minimal.

The main example of a C-minimal structure is that of algebraically closed
valued fields (see below).

Theorem A.7. Any C-minimal theory is dp-minimal, hence NIP.

The proof is similar to that of Theorem A.6 using the fact that the
formula C(x; yz) has VC-dimension 1.
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C-minimality was defined by Macpherson and Steinhorn [79]; a cell de-
composition result was shown by Haskell and Macpherson [53]. Further
work has been done by Delon, Maalouf, Simonetta.

Both o-minimality and C-minimality are subsumed in the notion of VC-
minimal theory defined by Adler in [3] and further studied in [48] and [31].

A.2. Valued fields

Ordered abelian groups. An ordered abelian group is a structure
(Γ; 0,+, <) such that (Γ; 0,+) is an abelian group on which < defines a
linear order with the following compatibility condition:
x < y =⇒ x+ z < y + z, for all x, y, z.

A quantifier elimination result for ordered abelian groups is proved by
Schmitt in [99]. A similar result is proved by Cluckers and Halupczok in
[29]. Both languages are somewhat complicated, so we do not give the
details here. We however mention two important special cases.

1. Let Tdoag be the theory of (non-trivial) divisible ordered abelian groups
(i.e., we add to the theory of ordered abelian groups the axiom (∃x)x 6= 0
and for every integer n, the axiom (∀x)(∃y)n · y = x.) Then Tdoag is
a complete theory and admits elimination of quantifiers in the language
{0,+, <}.

2. Let Tpres be Presburger arithmetic, namely Th(Z; 0, 1,+, <). That
theory does not admit elimination of quantifiers, but it does if we add
predicates {Pn : n < ω} defined by Pn(x)↔ (∃y)n · y = x.

Using the general quantifier elimination result, Gurevich and Schmitt
prove in [50] the following theorem.

Theorem A.8. Any ordered abelian group (Γ; 0,+, <) is NIP.

It is not true however that any ordered abelian group is dp-minimal, or
even strongly dependent.

Example A.9 ([102]). Order Z[X] by setting
∑
aiX

i <
∑
biX

i if ak < bk,
where k is maximum such that ak 6= bk. This makes (Z[X]; 0,+, <) into an
ordered abelian group.

We show that even the pure group (Z[X]; 0,+) is not strongly dependent.
Let (pn : n < ω) list the prime numbers. Define sequences Ik = (aki < ω),

k < ω by aki = Xi and formulas φk(x; y) saying that y−x is divisible by pk.
For every path η : ω → ω one can find, using the Chinese remainder theo-
rem and compactness, a point bη in the monster model such that φk(akl ; bη)
holds if and only if l = η(k). This gives an ict-pattern of height ω and by
Proposition 4.22 shows that (Z[X]; 0,+) is not strongly dependent.
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Valued fields. Since the seminal work of Ax-Kochen and Eršov, valued
fields have played an important role in algebraic model theory. They also
provide interesting examples of NIP structures.

We will recall briefly some facts about valuations, but we assume some
familiarity with this notion in the proofs. The reader is referred to [38] for
more details.

Let Γ be an ordered abelian group. We let ∞ be an additional formal
element and extend the ordering and composition law on Γ∪{∞} by declar-
ing that ∞ is greater than all elements of Γ and setting γ +∞ =∞+ γ =
∞+∞ =∞ for all γ ∈ Γ.

A valued field with value group Γ is a field K equipped with a surjective
map v : K → Γ ∪ {∞} satisfying:
· v(x) =∞ ⇐⇒ x = 0;
· v(x+ y) ≥ min(v(x), v(y));
· v(xy) = v(x) + v(y).
We write Kv to denote the field K equipped with the valuation v.
The valuation ring O of Kv is the ring {x ∈ K : v(x) ≥ 0}. It is a

local ring, i.e., has a unique maximal ideal M = {x ∈ K : v(x) > 0}. The
quotient k = O/M is called the residue field of Kv. We let res : O → k be
the canonical projection (called the residue map).

A valued field can be considered in various languages. The language Ldiv
is a one sorted language (K; 0, 1,+,−, ·, |) containing the ring language on
K and a binary predicate | interpreted as x|y ⇐⇒ v(x) ≤ v(y).

One can also consider valued fields in the three sorted language Lres
having as sorts K and k equipped with their respective ring structures and
Γ equipped with its ordered abelian group structure. We also have two
function symbols between sorts: v : K∗ → Γ and res : O → k interpreted
as the valuation and residue map. (If the reader is bothered by the fact that
those functions are not defined everywhere, she can extend them formally
by setting v(0) = 0 and res(x) = 0 when v(x) < 0.)

One can define on any valued field a natural C-structure by

C(x, y, z) ≡ v(x− z) < v(y − z).

ACVF. Let ACVF denote the theory of algebraically closed non-trivially
valued fields in the language Ldiv. The fact that the valued field Kv is
algebraically closed forces the residue field k to be also algebraically closed
and the value group Γ to be a divisible group.

We let ACVF(0,0), ACVF(0,p) and ACVF(p,p) denote the theories of al-
gebraically closed valued fields where the pair (characteristic of Kv, char-
acteristic of k) is respectively equal to (0, 0), (0, p) and (p, p).
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Theorem A.10. The theory ACVF eliminates quantifiers in the lan-
guage Ldiv. Its completion are the theories ACVF(0,0), ACVF(0,p) and
ACVF(p,p), for p a prime number.

This was essentially proved by Robinson in [97]. See also Chatzidakis
[22]. The following easily follows from the theorem.

Theorem A.11. The theory ACVF equipped with its natural C-structure
is C-minimal, in particular it is dp-minimal, hence NIP.

Henselian valued fields. Recall that a valued field Kv is called Henselian
if for every polynomial f(X) ∈ O[X] and a ∈ O such that res f(a) = 0 and
res f ′(a) 6= 0, there is some b ∈ O such that f(b) = 0 and res a = res b.

In particular, any algebraically closed valued field is Henselian. Note
that Henselianity is expressible by first order sentences.

An angular component is a map ac : Kv → k which satisfies:
· ac(0) = 0;
· the restriction of ac to K∗v has image in k∗ and is a morphism of

multiplicative groups;
· for any x ∈ Kv of valuation 0, ac(x) = res(x).
If x, y ∈ K, then v(x) < v(y) implies v(x + y) = v(x) and ac(x +

y) = ac(x). If v(x) = v(y), then either ac(x) 6= − ac(y), in which case
v(x+ y) = v(x) and ac(x+ y) = ac(x) + ac(y), or ac(x) = − ac(y) in which
case v(x+ y) > v(x) and we cannot say anything about ac(x+ y).

Fact A.12. If Kv is an ω1-saturated valued field, then Kv admits an
angular component.

See for example [23]. Keeping this fact in mind, we may restrict our study
to valued fields with an angular component. Let LPas be the language
Lres ∪ {ac} where ac is a new function symbol from K to k.

Theorem A.13 (Pas [87]). The (incomplete) theory of Henselian valued
fields of residue characteristic 0 eliminates fields quantifiers in the language
LPas.

See also [22] for a proof. Examples of such fields include C((t)), R((t)):
the fields of Laurent series respectively over R, or C, or more generally
any field of the type k((Γ)) where k is a field of characteristic 0 and Γ an
ordered abelian group (see [38, Exercise 3.5.6]).

A direct consequence is the celebrated result of Ax-Kochen and Eršov
(independently) on elementary equivalence of Henselian valued fields.

Theorem A.14 (Ax-Kochen, Eršov). Let Kv and Lw be Henselian val-
ued fields. Denote by ΓK ,ΓL their respective value groups equipped with the
ordered group structure and by k, l the residue fields in the ring language.
Assume that k and l have characteristic zero. Then we have:
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Kv ≡ Lw ⇐⇒ (ΓK ≡ ΓL and k ≡ l).

In the same spirit, if Kv is independent, then this can be traced down to
the residue field and the value group.

Theorem A.15 (Delon [32]). A Henselian field of residue characteristic
0 is NIP if and only if both its value group and its residue field are NIP.

Knowing Theorem A.8, we do not need to mention the value group.

Corollary A.16. A Henselian field of residue characteristic 0 is NIP
if and only if its residue field is NIP.

Delon’s proof uses a coheir-counting argument and requires to first un-
derstand types. We sketch here a more direct argument using indiscernible
sequences. As discussed previously, we may assume that our field Kv is
equipped with an angular component ac, and we work in the language
LPas. (The reduct of an NIP theory is NIP, so the result will follow for the
languages Ldiv and Lres.)

Lemma A.17. Let P (X) = Σk≤nakX
k be in Kv[X] and let (xi : i < ω) be

a sequence of elements of Kv such that (v(xi))i<ω is monotonic (increasing
or decreasing), then there are r ≤ n and t < ω such that for all i ≥ t and
k 6= r, v(P (xi)) = v(arx

r
i ) < v(akx

k
i ) (hence also ac(P (xi)) = ac(arx

r
i )).

Proof. As the sequence (v(xi))i<ω is increasing, there is t < ω such
that for i ≥ t, v(xi) has the same relative position with respect to all

values of the form v(ak)−v(ak′ )
k′−k , for k, k′ ≤ n (if Γ is not divisible, these

elements live in its divisible hull, to which the order extends in a unique
way). In particular, v(xi) is not equal to any of these values.

Hence for i ≥ t, the elements v(ak) + k · v(xi) for k ≤ n are pairwise
distinct and there is r ≤ n not depending on i such that their minimum is
v(ar) + r · v(xi). a

We now classify indiscernible sequences of singletons depending on their
type in the C-structure. Let (xi : i < ω) be an indiscernible sequence of
singletons of Kv.

Case 0: the sequence (v(xi) : i < ω) is non-constant. Then by indis-
cernibility, it is either decreasing or increasing.

We now assume that the sequence (v(xi) : i < ω) is constant. For 0 <
i < ω, let yi = xi−x0. Note that it is not possible for the sequence (v(yi) :
0 < i < ω) to be increasing. For then, we would have for i > 1, v(xi−x1) =
v(yi − y1) = v(y1). Thus the sequence v(xi − x1) would be constant, while
the sequence v(xi − x0) is not and this contradicts indiscernibility.

Case I: The sequence (v(yi) : 0 < i < ω) is decreasing.
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Case II: The sequence (v(yi) : 0 < i < ω) is constant and the sequence
(ac(yi) : 0 < i < ω) is not constant.

Case III: The sequences (v(yi) : 0 < i < ω) and (ac(yi) : 0 < i < ω) are
both constant. Then we have v(x2−x1) = v(y2− y1) > v(x2−x0). Let xω
be such that (xi : i ≤ ω) is indiscernible. For i < ω, we let zi = xi − xω.
Then the sequence (v(zi) : i < ω) is increasing.

Lemma A.18. Let (xi : i < ω) be an indiscernible sequence of singletons
of Kv. Then there are:
· an indiscernible sequence (αi : i < ω) of elements of Γ,
· an indiscernible sequence (bi : i < ω) of elements of k, such that:
for any P (X) ∈ Kv[X], there are r < ω and γ ∈ Γ such that v(P (xi)) =

γ + r · αi for all i large enough.
Also, there is q ∈ k[X] such that for all i large enough, ac(P (xi)) = q(bi).

Proof. If the sequence (xi)i<ω falls in case 0, we are done by Lemma
A.17. Assume it falls in case I. There is a polynomial DP (Y ) ∈ Kv[Y ] such
that we have P (x0 + Y ) = P (x0) + DP (Y ). Then for all 0 < i < ω, we
have P (xi) = P (x0) + DP (yi). We conclude by applying Lemma A.17 to
the sequence (yi)0<i<ω and the polynomial P (x0) +DP (Y ).

If (xi)i<ω falls in case III, we write similarly P (xω + Z) = P (xω) +
DP1(Z) and apply Lemma A.17 to the sequence (zi)i<ω and the polynomial
DP1(Z).

Finally, assume that we are in case II. We then write P (x0) +DP (Y ) =∑
k<n akY

k. Let v0 = v(y0). Let A ⊆ n be the set of k < n for which

v(ak) + k · v0 is minimal. Let q(t) ∈ k[t] be the polynomial
∑
k∈A ac(ak)tk.

Then for some i∗ < ω, for every i∗ < i < ω, ac(yi) is not a root of q(t). For
such an i, we have v(P (xi)) = v(P (x0) +DP (yi)) = v(ak) + k · v0, k ∈ A,
and ac(P (xi)) = ac(P (x0) +DP (yi)) = q(ac(yi)). The lemma follows. a

We now prove Theorem A.15.
By Theorem A.13 (and keeping Proposition 2.11 in mind), it is enough

to show that the following formulas are NIP:

• φ(x, ȳ) = 0, where x, ȳ are variables of sort Kv and φ is a quantifier
free formula in the ring language of Kv;
• ψ(x, t̄(ȳ)), where x is a variable of sort Γ, ȳ variables of sorts Kv and

Γ, ψ is a formula in the language of Γ, and t̄ is a tuple of terms with image
in Γ;
• θ(x, t̄(ȳ)), where x is a variables of the sort k, ȳ variables from Kv and

k, θ is a formula in the language of k, and t̄ is a tuple of terms with image
in k;
• ψ(v(P1(x, ȳ1)), , v(Pn(x, ȳ1)), ȳ2), where ȳ2 are variables from Γ and ψ

is a formula in the language of Γ;
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• θ(ac(P1(x, ȳ1)), , ac(Pn(x, ȳ1)), ȳ2), where ȳ2 are variables from k and
θ is a formula in the language of k.

In the first three cases, the results follows from the fact that algebraically
closed fields, Th(Γ) and Th(k) respectively are NIP.

Assume that the formula ϕ(x; ȳ1, ȳ2) = ψ(v(P1(x, ȳ1)), , v(Pn(x, ȳ1)), ȳ2)
has IP. Then there is an indiscernible sequence (xi : i < ω) of singletons
and parameters b̄1, b̄2 such that ϕ(xi; b̄1, b̄2) holds if and only if i is even.

By Lemma A.18, there is an indiscernible sequence (αi : i < ω) of ele-
ments of Γ, and for each k ≤ n there are rk < ω and γk ∈ Γ such that
v(Pk(xi, b̄1)) = γk + rk · αi for all i large enough. Hence we can replace
each v(Pk(x, ȳ1)) in the formula ψ by a term in the language of Γ and we
obtain a contradiction to the fact that the ordered abelian group Γ is NIP.

We treat similarly the last case. This finishes the proof of Theorem A.15.

The theory ACVF has been intensely studied in the last ten years.
Haskell, Hrushovski and Macpherson provided in [51] a description of imagi-
naries. They showed in [52] how types can be decomposed into an o-minimal
component coming from the value group and a stable quotient, internal to
the residue field. This property is referred to as metastability . A measure-
theoretic analog of the Ax-Kochen principle is studied by Hrushovski and
Kazhdan [58]. More recently, Hrushovski and Loeser [59] have given a
model-theoretic construction of Berkovich spaces from rigid geometry.

The p-adics. Let Qp denote the usual field of p-adic numbers. The valued
field Qp is Henselian, but of residue characteristic p, hence the previous
results do not apply. Nonetheless its theory is well understood as we explain
now.

First we give an axiomatization of Th(Qp) in the language Lres. In
addition to the paper [10] by Ax and Kochen where the result first appeared,
we refer the reader to Cherlin [23, II Th. 40].

Theorem A.19. Let Tp be the theory in the language Lres expressing
that:
· K is a Henselian valued fields of characteristic zero;
· the residue field k is isomorphic to Fp;
· the value group Γ is elementarily equivalent to (Z; 0,+, <);
· v(p) is the smallest positive element of Γ.
Then Tp is a complete theory, and is equal to the theory of Qp in the

language Lres.

It is worth noting that in the field Qp, the valuation is definable in the
pure field structure (namely, the valuation ring is definable by the formula
φ(x) = ∃t(t2 = 1 + p3y4)), hence we also obtain an axiomatization of
Th(Qp) as a pure field.
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The valued field Qp does not admit elimination of field quantifiers in
either Ldiv or Lres. To remedy this, we introduce two enriched languages.
First, let Lmac be the language Ldiv to which we add unary predicates
{Pn : 0 < n < ω}. The valued field Qp is made into an Lmac-structure by
interpreting Pn as the set of n-th powers.

Theorem A.20 (Macintyre [77]). The field Qp has elimination of quan-
tifiers in the language Lmac.

Another way to obtain quantifier elimination is by adding angular com-
ponents as we did in the case of residue characteristic zero. However, we
now need to add infinitely many. Let Kv be a valued field of characteristic
0, whose residue field has characteristic p. A family (acn : n < ω) is a
compatible family of angular components if:
· acn is a map Kv → O/pnO;
· acn(0) = 0; the restriction of acn to K∗v has image in (O/pnO)∗ and is

a morphism of groups;
· let πn denote the canonical projection πn : O/pn+1O → O/pnO, then

πn ◦ acn+1 = acn.

Let LPas,ω be the language Lres ∪ {acn : n < ω}.
We can explicitely construct a family of compatible angular components

on Qp. Let x ∈ Q∗p and let v = v(x). Set x0 = x/pv. Then x0 ∈ O \ pO.
Now let acn(x) be the image of x0 in O/pnO.

The properties of the sequence (acn : 0 < n < ω) are easy to check.

Theorem A.21 (Belair [15]). The canonical expansion of Qp in the lan-
guage LPas,ω admits elimination of quantifiers.

Now one can adapt the proof of the previous subsection to show that Qp
is NIP (or alternatively adapt Delon’s proof, which is what Belair does in
[15]). Actually, more is true.

Theorem A.22 (Dolich, Goodrick, Lippel [35]). For any prime p, the
field Qp of p-adics in the language Ldiv is dp-minimal.





APPENDIX B

PROBABILITY THEORY

We recall here some basic results of probability theory that we need in
this text. We refer the reader to any introductory book on the subject for
more details. Alon and Spencer’s book [7], although not a textbook on
probability theory, is a nice reference.

A probability space (Ω,B, µ) is a set Ω equipped with a σ-algebra B and
a σ-additive measure µ on B such that µ(Ω) = 1. For each integer k, the
cartesian power Ωk is naturally equipped with the product σ-algebra B⊗k
which is the σ-algebra generated by sets of the form B1 × · · · × Bk for
B1, . . . , Bk ∈ B. The product measure µk is defined as the unique proba-
bility measure on (Ωk,B⊗k) such that µk(B1×· · ·×Bk) = µ(B1) · · ·µ(Bk).

A measurable subset A ⊆ Ω is called an event . If A is an event, we let 1A
be its characteristic function. We write Prob(A) = µ(A). If f, g : Ω → R
are measurable functions, we will write {f ≥ g} for the event {ω ∈ Ω :
f(ω) ≥ g(ω)} and Prob(f ≥ g) instead of Prob({ω ∈ Ω : f(ω) ≥ g(ω)}).

A measurable function f : Ω → R is called a random variable. The
probability distribution of f is the probability measure on R obtained by
taking the pushforward of µ by f . It is a common practice to construct
a random variable f by specifying only its probability distribution and
assume that there is some underlying probability space Ω on which f is
defined.

The expectancy E(f) of the random variable f is defined as
∫

Ω
f(ω)dµ.

Notice that expectancy is linear in f . The variance of f is Var(f) =
E((f − E(f))2).

More generally, if X is a Borel space, then a random element of X is a
measurable function x : Ω→ X. The distribution of x is defined as above.

Random variables f1, . . . , fn : Ω → R are said to be mutually inde-
pendent if for any Borel sets B1, . . . , Bn of R, we have Prob(

⋂
k≤n{fk ∈

Bk}) =
∏
k≤n Prob(fk ∈ Bk). If f1, . . . , fn are mutually independent, then

E(f1 · · · fn) = E(f1) · · ·E(fn) and Var(f1 + · · · + fn) = Var(f1) + · · · +
Var(fn).

159
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Lemma B.1 (Union bound). Let A,B be any two events, then

Prob(A ∪B) ≤ Prob(A) + Prob(B).

Lemma B.2 (First moment). Let f : Ω → R+ be a random variable.
Then for all r > 0, we have

Prob(f ≥ r) ≤ E(f)

r
.

Proof. Write that E(f) ≥ E(f · 1{f≥r}) ≥ rProb(f ≥ r). a

Proposition B.3 (Chebyshev’s inequality). Let f : Ω → R be measur-
able. Then we have

Prob(|f − E(f)| ≥ ε) ≤ Var(f)

ε2
.

Proof. Apply the first moment inequality to the random variable (f −
E(f))2 and r = ε2. a

Proposition B.4 (Weak law of large numbers). Let A ⊆ Ω be an event
and fix ε > 0, then for any integer n

µn

(
ω̄ ∈ Ωn :

∣∣∣∣∣ 1n
n∑
i=1

1A(ωi)− µ(A)

∣∣∣∣∣ ≥ ε
)
≤ 1

4nε2
.

Proof. Fix some integer n. For i ≤ n, the random variable 1A(ωi) :
Ωn → R has expectancy equal to µ(A) and variance µ(A)(1−µ(A)) ≤ 1/4.
Also the variables 1A(ωi), i = 1, . . . , n, are mutually independent. Hence
the random variable 1

n

∑n
i=1 1A(ωi) has expectancy µ(A) and variance ≤

1
4n .

The result then follows from Chebychev’s inequality. a

Theorem B.5 (Chernoff’s bound, special case). Let f1, . . . , fn be inde-
pendent random variables, such that Prob(fk = 1) = Prob(fk = −1) = 1/2,
for all k. Let ε > 0, then letting g = 1

n

∑
fk, we have

Prob(|g| ≥ ε) ≤ 2 exp

(
−nε

2

2

)
.

For a proof, see [7, Appendix A].
In the course of the proof of Theorem 6.6, we will need to apply this

theorem to a family of random variables fi, some satisfying the required
hypothesis and the others being uniformly equal to zero. The inequality
of course also holds in this case. This can be seen by a short calculation:
assume that f1, . . . , fm are as in the theorem and fm+1, . . . , fn are equal
to zero. Let g = 1

n

∑
k≤n fk and g′ = 1

m

∑
k≤m fk. We have
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Prob(|g| ≥ ε) = Prob
(
|g′| ≥ n

m
ε
)
≤ 2 exp

(
−
m
(
nε
m

)2
2

)
≤ 2 exp

(
−nε

2

2

)
.
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convex equivalence relation, 47

critical points, 49

ded(λ), 34

definable, 21, 39

measure, 104

definable type, 18, 30

definably amenable, 122
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distal

indiscernible sequence, 144

theory, 140, 143

type, 136, 139

distribution (probability), 159

dividing, 71, 82

for measures, 104

dp-minimal, 60, 65, 141, 148

group, 62

ordered, 150

dp-rank, 54, 57

EM-type, 11

endless, 11

ε-approximation, 90

Erdős-Rado, 12

event, 159

expectancy, 159

extension base, 72

externally definable, 41

Farkas’s lemma, 91

finitely satisfiable, 18, 21

measure, 104

first moment, 160

forking, 67, 71, 76, 82

for measures, 104

fsg, 127

G-compact, 75

generic, 127

generically stable, 23

measure, 108, 111

group, 17, 22, 62, 117

ordered abelian, 151

stable, 123

type-definable, 115

heir, 79

Henselian, 153

honest definition, 42, 43

strong, 141

uniformity, 92

independent (probability), 159

indiscernible, 11

mutually, 51

totally, 11, 22

invariant

measure, 104
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subgroup, 117

type, 18

IP formula, 14

κict, 59

Keisler (measure), 97

KP, 70

large numbers (law), 160

Lascar strong type, 68, 75

linear order, 147

low, 82

measures, 97

Borel, 99

metastable, 156

monster model, 10

Morley sequence, 21, 77

NIP formula, 13

NTP2, 76, 83

o-minimal, 17, 148

quasi, 150

weakly, 149

order, 147

order property, 30

orthogonal, 136

weakly, 136

p-adics, 156

pair, 42, 50

(p, q)-property, 90

(p, q)-theorem, 90

probability, 159

product measure (probability), 159

product of measures, 106

product of types, 20

pseudofinite, 94

Ramsey, 11

random variable, 159

randomization, 113

relatively definable, 116

restriction, 10

s-independence, 146

Sauer-Shelah, 86

set system, 85

dual, 86

shatter, 13, 85

shatter function, 85

dual, 86

Shelah expansion, 41, 45

shrinking, 39, 46

small, 10
smooth, 102

SOP (strict order property), 33

stable, 30, 37
fully, 32

groups, 133
stably embedded, 39, 44

strictly non-forking, 80

sequence, 80
strong dependence, 65

strongly dependent, 60

superstable, 60, 62
support, 99

topological dynamics, 133
tree, 28, 148

dense, 28

UDTFS, 94
union bound, 159

valued fields, 152
Vapnik-Chervonenkis, 87

variance, 159

VC-density, 87, 95
VC-dimension, 85

dual, 86

of a formula, 14
VC-minimal, 65, 151
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(2007/08), exp. n ◦985, Asérisque, vol. 326 (2009), pp. 131 –
142.
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