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Abstract

We formulate the measure analogue of generically stable types in
first order theories with NIP (without the independence property),
giving several characterizations, answering some questions from [9],
and giving another treatment of uniqueness results from [9]. We in-
troduce a notion of “generic compact domination”, relating it to sta-
tionarity of Keisler measures, and also giving group versions. We also
prove the “approximate definability” of arbitrary Borel probability
measures on definable sets in the real and p-adic fields.

1 Introduction and preliminaries

In this introduction we will discuss background and motivation, describe
and summarize our main results, and then recall some essential definitions
and prior results. A familiarity with the earlier papers [8] and [9] would be
advantageous, but we will try to make the bulk of the paper accessible to a
wider audience, even though we are somewhat terse. Even in the introduction

∗Supported by ISF grant 1048/07
†Supported by a Marie Curie Chair EXC 024052 and EPSRC grant EP/F009712/1

1



we may make some rather advanced comments or references, and the general
reader should feel free to ignore these at least on the first reading.

Shelah defined a formula φ(x, y) to have the independence property if there
exist arbitrarily large (finite) sets A such that any subset B of A has the form
{a ∈ A : φ(a, b)}, for some parameter b. A theory has NIP if no formula
has the independence property. An equivalent definition in a combinatorial
/ probabilistic rather than logical setting was found by Cervonenkis and
Vapnik [23]. o-minimal and p-minimal theories are notable examples.

A general theme in this paper is “stable-like” behaviour in theories with
NIP . One of the main points is to develop the theory of “generically stable
measures” in NIP theories, in analogy with generically stable types. A
“generically stable type” is a global type (namely a complete type over a
saturated model) which looks very much like a type in a stable theory, for
example it is both definable over and finitely satisfiable in some small model
M . The theory, at least in the NIP context was developed in [19], [9] and
[22]. Among the consequences (or even equivalences) of generic stability
of a type p, assuming T has NIP , are nonforking symmetry (or the total
indiscernibility of any “Morley sequence” in p), as well as stationarity, in the
sense that p is the unique global nonforking extension of its restriction to M .

In the theory of algebraically closed valued fields generically stable types
coincide with stably dominated types and play a major role in the structural
analysis of definable sets [6] as well as in a model-theoretic approach to
Berkovich spaces [10]. However in o-minimal theories and p-adically closed
fields for example, there are no (nonalgebraic) generically stable types.

On the other hand, what we have called Keisler measures (introduced
in Keisler’s seminal paper [12]), are the natural generalization of complete
types to finitely additive [0, 1] valued measures on Boolean algebras of defin-
able sets. Keisler showed (in slightly different terms) that in a NIP the-
ory, for any Keisler measure µ on a model M any formula φ(x, y) and
any ε > 0, there exist finitely many formulas φ(x, bi) such that for any b,
µ(φ(x, bi)4φ(x, b)) < ε for some i. To see this, take a maximal set {bi} such
that µ(φ(x, bi)4φ(x, bj)) ≥ ε/2 for i 6= j. If this set is finite, we are done. If it
is infinite, by compactness one obtains an indiscernible sequence (bn : n ∈ N)
and some measure µ′ with the same property. So µ(φ(x, bm) \ φ(x, bm+1)) ≥
ε/4 for all odd m (or for all even m; say odd.) It follows by elementary
measure considerations that (µ(φ(x, bm) \ φ(x, bm+1)) : m = 2, 4, . . .) cannot
be k-inconsistent, for any k. So {φ(x, bm) : m = 1, 2, . . .} ∪ {¬φ(x, bm) : m =
2, 4, . . .} is consistent. But by indiscernibility the same must be true for any
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subset in place of the odds, contradicting NIP .
Keisler measures play an important role in the solution of certain con-

jectures on groups in o-minimal structures [8]. They were studied further
and from a more stability-theoretic point of view in [9]. In fact in the latter
paper, we defined generically stable measures to be global Keisler measures
which are both definable over and finitely satisfiable in some small model.
We also found natural examples as translation invariant measures on suitable
definable groups (such as definably compact groups in o-minimal theories).
However, there were on the face of it technical obstacles to obtaining analo-
gous properties (like stationarity, total indiscernibility) for generically stable
measures as for generically stable types. For example, what is a “realiza-
tion” of a measure, or a “Morley sequence in a measure”? This is solved in
various ways in the current paper, including making heavy use of Keisler’s
“smooth measures” (see section 2). Essentially a complete counterpart to
the type case is obtained, the main results along these lines being Theorem
3.2 and Proposition 3.3, where another property, “frequency interpretation
measure” makes an appearance. Moreover we also point out how widespread
generically stable measures are in NIP theories.

Let us take the opportunity to remark that a natural formal way to deal
with “technical” issues such as realizing Keisler measures would be to pass to
the randomization TR of T . TR is a continuous first order theory whose mod-
els are random variables in models of T . The type spaces of TR correspond
to the spaces of Keisler measures (over ∅) of T . This randomization was
introduced by Keisler and situated in the context of continuous logic by Ben
Yaacov and Keisler [4]. Ben Yaacov proved that TR has NIP if T does, and
further showed that making systematic use of TR would provide, in principle,
another route to the results of the current paper ([2], [3]). Measures in NIP
theories are roughly of the same complexity as types, as is evidenced for in-
stance by boundedness of the number of formulas modulo measure zero. But
measures on the space of measures appear to be genuinely analytic objects,
and required nontrivial analytic tools in Ben Yaacov’s treatment. We make
use of a weak version of Ben Yaacov’s preservation theorem (see Lemma 2.10)
to give one proof of our characterization of generically stable measures (The-
orem 3.2), but also give an independent proof remaining within the usual
model theoretic framework.

In section 4 we generalize the notion of a group with finitely satisfiable
generics or with the fsg property, to types and measures, and make the
connection with generic stability.
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In section 5 we introduce a weak notion of “compact domination” where
the set being dominated is a space of types rather than a definable or type-
definable set. We relate this to stationarity of measures (unique nonforking
extensions) in what we consider to be a measure-theoretic version of the finite
equivalence theorem.

In section 6, we prove smoothness (unique extension to a global Keisler
measure) of Borel probability measures on real or p-adic semialgebraic sets,
yielding a quite extensive strengthening of work by Karpinski and Macintyre
in the case of Haar measure.

As far as sections 2, 3 and 6 are concerned, the paper is relatively self-
contained. However sections 4 and 5 make rather more references to the
earlier papers [8] and [9], and not only hyperimaginaries but also the compact
Lascar group are involved.

The current paper does not only follow on from those two earlier papers,
but also naturally continues and builds on Keisler’s original papers [12], [13].

We fix a complete first order theory T . We typically work in T eq. For
convenience we choose a very saturated “monster model” or “universal do-
main” M̄ = M̄ eq. M,N,M0, .. denote small elementary submodels. For now
A,B,C, .. denote subsets, usually small, of M̄ . x, y, .. range over (finitary)
variables and by convention a variable carries along with it its sort.

The reader is referred to say [17], [1], [18], [20] as well as [8], [9], for
extensive and detailed material around stable theories, NIP theories as well
as the adaptation/interpretation of forking to types and measures in NIP
theories.

However we recall here the key notions relevant to the current paper.
It is convenient to start with the notion of a finitely additive measure µ on

an arbitrary Boolean algebra Ω: µ(b) ∈ [0, 1] for all b in Ω, µ(1) = 1, µ(0) = 0
and µ is finitely additive. As in section 4 of [9], such a measure on a Boolean
algebra Ω can be identified with a regular Borel probability measure on the
Stone space SΩ of Ω. The set of finitely additive measures on Ω is naturally
a compact space.

We apply this to our monster model M̄ . By a Keisler measure µx over
A we mean a finitely additive measure on the Boolean algebra of formulas
φ(x) over A up to equivalence in M̄ . So a Keisler measure over A generalizes
the notion of a complete type over A rather than a partial type over A. By
a global Keisler measure we mean one over M̄ . So again a global Keisler
measure generalizes the notion of a global complete type. We repeat from
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the previous paragraph that a Keisler measure µx over A coincides with a
regular probability measure on Sx(A). We often talk about closed, open,
Borel, sets, over A. So for example, a Borel set over A is simply the union
of the sets of realizations in M̄ of types p ∈ S(A), for p in some given Borel
subset of Sx(A).

Keisler [12] uses the notion of a measure over or on a fragment, which
it is now convenient to work with in a generalized form. By a fragment F
he means a small collection of formulas φ(x) (or definable sets of sort x)
which is closed under (finite) Boolean combination. (A typical case is the
collection of all formulas over a given base set A.) Then a Keisler measure
on or over F is simply a finitely additive probability measure on this Boolean
algebra of definable subsets of sort x. As above this identifies with a regular
Borel probability measure on the space SF of complete types over F . He also
remarks that if F ⊆ G are fragments (in sort x) then any Keisler measure
on F extends to one on G. In particular any Keisler measure on F extends
to a global Keisler measure on the sort of x.

For most of this paper this notion of fragment is adequate, and the reader
may proceed with this in mind, at least until section 5. However in some
situations we will need to consider algebras of subsets of M̄ that, while con-
tained in the Borel subalgebra of SF for various fragments F of formulas,
cannot canonically be presented in this manner. We therefore give in ad-
vance a formalism beginning with closed rather than clopen sets, i.e. partial
types rather than formulas. Our fragments correspond to small topological
quotients of the space of global types: an element of the fragment is the
pullback of a closed set. We describe this more syntactically in the next
paragraph.

Let F now consist of a small collection of partial types Σ(x) in a fixed
set of variables x, identified if you wish with their sets of realizations in
M̄ . We assume F is closed under finite disjunctions and (possibly infinite)
conjunctions. We will call a subset of the x-sort of M̄ closed over F it is
defined by a partial type in F , and open over F if it is the complement of a
closed over F set (and also we can obtain the Borel over F sets).

Definition 1.1. (a) Let F be as in the above paragraph. We call F a frag-
ment if
(i) any open set over F is a union of closed sets over F , and
(ii) any two disjoint closed over F sets are separated by two disjoint open
over F sets.
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(b) If F is a fragment, let SF denote the set of maximal partial types in F
(i.e. maximal among partial types in F ).

Clearly a fragment in the sense of Keisler extends uniquely to a fragment
in the sense of Definition 1.1.

For a fragment F define a topology on SF in the obvious way: a closed
set is by definition a set of points extending a given partial type in F . Then
with this definition it is clear that SF will be a compact Hausdorff space.

Definition 1.2. By a Keisler measure on or over a fragment F we mean a
map from the set of closed/open over F sets to [0, 1] which is induced by a
regular Borel probability measure on the space SF .

For hyperimaginaries, as well as the notion bdd(A) (set of hyperimaginar-
ies in the bounded closure of A) see [7] or [24].

Lemma 1.3. (i) Let A be a small set of hyperimaginaries. Then the collec-
tion of partial types over A is a fragment.
(ii) Let F ⊆ G be fragments (in sort x). Then any Keisler measure over F
extends to a Keisler measure over G.

One more definition at the level of fragments is:

Definition 1.4. Let µ be a measure over a fragment F . Let D be a Borel
set over F with positive µ measure. Then the localization µD of µ at D is
defined by: For any Borel E over F , µD(E) = µ(E ∩D)/µ(D).

Now we pass to forking for measures in NIP theories. First, T is said to
have the independence property, if there is an indiscernible (over ∅) sequence
(ai : i < ω) and formula φ(x, b) such that |= φ(ai, b) for i even, and |=
¬φ(ai, b) for i odd. We usually say that T is (or has) NIP if T does not have
the independence property.

We recall that a formula φ(x, b) (where we exhibit the parameters) divides
over a small set A if there is an A-indiscernible sequence (bi : i < ω) with
b0 = b such that {φ(x, bi) : i < ω} is inconsistent. A formula forks over A if
it implies a finite disjunction of formulas each of which divides over A. We
say that a global Keisler measure µx does not divide (does not fork) over a
small set A if every formula φ(x) with positive µ-measure does not divide
(does not fork) over A. In fact for such global µ, not dividing over A and
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not forking over A are equivalent, and A can even be a set of hyperimagi-
naries. Recall from [9] that assuming T has NIP , µ does not fork over A iff
µ is Aut(M̄/bdd(A)) invariant (we just say bdd(A)-invariant) iff µ is Borel
definable over bdd(A). Here Borel-definability of µ over A, means that for a
given formula φ(x, y) ∈ L and closed subset C of [0, 1], {b : µ(φ(x, b) ∈ C}
is Borel over A. We persist in calling a global measure µx definable over A
if for φ(x, y) ∈ L and closed C ⊆ [0, 1], {b : φ(x, b) ∈ C} is closed over A,
namely type-definable over A. (Although the expression ∞-definable might
be better.) We also say that µ is finitely satisfiable in A (where usually A is
a model M) if every formula over M̄ with positive µ-measure is satisfied by
some element (or tuple) from A. These are all natural generalizations of the
corresponding classical notions for global types.

Let us make the important remark that if the global Keisler measure µx
is finitely satisfiable over A, then it is also A-invariant, hence (assuming that
T has NIP ) is Borel definable (over A).

The (nonforking) product of measures µx and λy is a fundamental notion
in this paper (as well as in [9]). Identifying a global Keisler measure µx
with a measure on Sx(M̄), then this could not simply be the usual product
measure because the type space Sxy(M̄) is not the product of Sx(M̄) with
Sy(M̄) (and the same issue arises for types). In the case of types, if p(x),
q(y) are global complete types, and p(x) does not split over A for some small
A (equivalently is A-invariant), then we can form p(x)⊗ q(y) in variables xy,
defined as tp(a, b/M̄) where b realizes q and a realizes p|M̄, b. Equivalently,
φ(x, y,m) ∈ p(x) ⊗ q(y) if for some (any) b realizing q|A,m, φ(x, b) ∈ p.
Now if µ(x) is Borel definable (over A) say, and λ(y) arbitrary (both global
say) then the analogous product µx ⊗ λy is obtained via integration: Pick a
formula φ(x, y) over M̄ . For any q(y) ∈ Sy(M̄), and realization b of q, we
can consider the extension µ′ = µ|(M̄, b) of µ′ given by applying the same
Borel definition. In any case µ′(φ(x, b)) depends only on q, so we can write
it as f(q) for some function f : Sy(M̄) → [0, 1]. The Borel definability of µ
says that the function f is Borel (preimage of a closed set is Borel). Hence
we can integrate f along λ (treated as a Borel measure on Sy(M̄)), to obtain∫
Sy(M̄)

f(q)dλ. And we call this (µ(x)⊗ λ(y))(φ(x, y)).

Note that this integral can be “computed” as follows: again choose a
formula φ(x, y,m) where now we exhibit additional parameters from M̄ as
m. Fix natural number N and partition [0, 1] into equal intervals I1, .., IN
of length 1/N , let Yj = {b : µ(φ(x, b,m) ∈ Ij} (a Borel set over A,m),
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let cj be the midpoint of Ij. Let FN =
∑

j=1,..,N λ(Yj)cj. Then (µ(x) ⊗
λ(y))(φ(x, y,m)) = limN→∞FN .

We will often use this, when doing approximations or computations.

Lemma 1.5. Suppose that µ(x), λ(y) are global Keisler measures which are
both definable. Then so is µ(x) ⊗ λ(y). Likewise for Borel definable, and
(assuming NIP ) “finitely satisfiable in a small model”.

Proof. Let us just deal with the finitely satisfiable case, the proof of which
will be an elementary example of methods which pervade the paper. Assume
that both µ and λ are finitely satisfiable in M . We show that µ ⊗ λ is too.
Let φ(x, y,m) be a formula over M̄ with positive µx⊗λy measure (where we
exhibit the parameter m). It follows from the definition of this “nonforking
product” that Y = {b ∈ M̄ : µ(φ(x, b,m)) > 0} is a Borel set over M,m of
positive λy-measure. By regularity of λ (as a Borel measure on Sy(M,m))
there is a closed over M,m set Z say, with Z ⊆ Y and λ(Z) > 0. By
compactness let b ∈ Z be weakly random for λ|(M,m) in the sense that
|= ¬χ(b) for any formula χ(y) over M,m with λ(χ(y)) = 0. As b ∈ Z ⊆ Y ,
µ(φ(x, b,m)) > 0. As µ is finitely satisfiable in M , there is a′ ∈M such that
|= φ(a′, b,m). By choice of b, λ(φ(a′, y,m)) > 0, so by finite satisfiability of
λ in M there is b′ ∈M such that |= φ(a′, b′,m). This completes the proof.

In general, the product of measures is not commutative; a measure need
not even commute with itself: we can have µx⊗ µy 6= µy ⊗ µx. The question
of commutativity will become central later on. We note at this point that
µx ⊗ λy = λy ⊗ µx iff the Borel measure-zero sets of these two measures
coincide. This will not be explicitly used in the body of the paper. In the
lemma below we take the point of view of a global Keisler measure as a
regular probability measure on the relevant Stone space of global types.

Lemma 1.6. (NIP) Let µx, λy be global measures, invariant over some small
set.

1. For any definable set φ(x, y) there is a Borel subset Uφ of the space
Sx(M̄)×Sy(M̄) (so in the σ-algebra on Sxy(M̄) generated by rectangles
Dx × Ey) such that φ(x, y), Uφ are equal up to µx ⊗ λy-measure zero.

2. Commutativity can be checked at the level of the Borel measure-zero
ideal: if µx ⊗ λy(U) = 0 for any closed U such that λy ⊗ µx(U) = 0,
then µx ⊗ λy = λy ⊗ µx.
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Proof. We may write µ =
∫
a∈X p

a, λ =
∫
b∈Y q

b, where X, Y are the Stone
spaces of the Boolean algebra of global definable sets, modulo the measure
zero sets of µ, λ respectively; made into measure spaces using the measures
induced from µ, λ; where for a ∈ X, b ∈ Y , pa, qb are the corresponding
invariant types.

1. Given a formula φ(x, y), let Uφ = {(a, b) ∈ X × Y : φ ∈ pa ⊗ qb}. We
will show below that Uφ is Borel up to a measure zero set. Clearly the
stated equality holds.

2. The assumption extends from closed to Borel sets: if U ′ is any Borel
set with µx⊗λy(U ′) = 0, then µx⊗λy(U) = 0 for all closed U ⊆ U ′, so
by assumption λy⊗µx(U) = 0 for all such U , and since this measure is
regular, λy ⊗µx(U ′) = 0. Now let φ(x, y) be any formula. By (1) there
exists a Borel U with µx ⊗ λy(φ4U) = 0, so λy ⊗ µx(φ4U) = 0. But
µx ⊗ λy(U) = λy ⊗ µx(U). So µx ⊗ λy(φ) = λy ⊗ µx(φ).

To show that Uφ is Borel up to measure 0, choose a finite set Lm of formu-
las φ(x, e) such that for any parameter c, there exists a definable set D ∈ Lm
with µ(φ(x, c)4D) < 2−m. Let L = ∪mLm, and fix some enumeration of L
(or just of each Lm). All formulas of L are defined over some small model
M0, such that µ, λ are M0-invariant.

Any b ∈ Y determines a weakly random type for λ over M0, qb|M0. Since
µ is M0-invariant, for c, c′ |= qb|M0 and D ∈ L(M) we have µ(φ(x, c)4D) <
2−m iff µ(φ(x, c′)4D) < 2−m; so µ(φ(x, c)4φ(x, c′)) = 0. Thus we will write
φ(x, b) to denote the class of any such φ(x, c), up to µ measure 0.

Let Dm(b) be the least D ∈ Lm such that µ(φ(x, b)4D) < 2−m.
By the usual proof of completeness of L1(µ), φ(x, b) differs by µ-measure

zero from the Borel set

D(b) = {x : (∃m0)(∀m ≥ m0)(x ∈ Dm(a))}

Since µ is a Borel measure,

{(b,m,D) : D ∈ Lm, µ(φ(x, b)4D) < 2−m}

is Borel, and so the map (b,m) 7→ Dm(b) is Borel.
So E = {(a, b) : (∃m0)(∀m ≥ m0)(∃D ∈ L)(D = Dm(b) and a ∈ D} is

also Borel. For all b, E(a) differs from Uφ(b) by µ-measure zero. This finishes
the proof.
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Definition 1.7. (Assume NIP .) Let µx be a global Keisler measure which

is invariant (i.e. A-invariant for some small A). Then µ
(n)
x1,..,xn is defined

(inductively) by µ
(1)
x1 = µx1, and µ

(n+1)
x1,..,xn,xn+1 = µxn+1 ⊗ µ

(n)
x1,..,xn. We put

µωx1,x2,...
to be the union.

Finally we recall the weak law of large numbers in the form we will use it.
Any basic text on probability theory is a reference.

Fact 1.8. Let µ be a Borel probability measure on a space X. Let µk be the
product measure on Xk. Let Y be a measurable subset of X. For p1, .., pk ∈ X
let Frk(p̄, Y ) be |{i : pi ∈ Y }|/k. THEN for any ε > 0, µk({(p1, .., pk) :
|Frk(p̄, Y )− µ(Y )| < ε})→ 1 as k →∞.

Thanks to the Wroclaw model theory group, in particular H. Petrykowski,
for pointing out some errors in an early version of [9], which we deal with in
section 5 of the current paper. Some of the results in sections 2 and 3 of the
present paper appear in the third authors Master’s Thesis [21]. However we
do not follow the “formal points” formalism from there.

2 Smooth measures and indiscernibles

Here we discuss smooth measures, using and repeating some material from
Keisler’s paper [12], but also applying the results in the context of NIP theo-
ries to obtain useful results about arbitrary measures as well as “indiscernible
measures”.

We will NOT make a blanket assumption that T has NIP .

Definition 2.1. A global Keisler measure µx is said to be smooth if µ is the
unique global extension of µ|M for some small model M . We may also call
µ smooth over M , and also call µ|M smooth.

We should mention that Keisler’s notion of a smooth measure was some-
what weaker. He called a Keisler measure over a small set (or even a frag-
ment) if it had a unique global extension modulo the “stable part”. Possibly
“minimal” might be a better expression for us, but we stick with our Defini-
tion above. A key result of Keisler is Theorem 3.16 from [12]:

Lemma 2.2. (Assume T has NIP .) If µx is a Keisler measure over M then
it has an extension to a smooth global Keisler measure.
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Note that a complete type (over M , or M̄) is smooth iff it is realized (in
M , M̄) respectively. A key point of the current paper (also implicit in [9]),
is that in an NIP context, one can usefully view a smooth extension of µ
as a “realization” of µ, and thus deal effectively with technical issues around
measures.

Lemma 2.3. Suppose µx is smooth over M . Let φ(x, y) ∈ L and ε > 0.
Then there are formulas ν1

i (x), ν2
i (x) for i = 1, .., n and ψi(y) for i = 1, .., n,

all over M such that
(i) the formulas ψi(y) partition y-space,
(ii) for all i, if |= ψi(b), then |= ν1

i (x)→ φ(x, b)→ ν2
i (x), and

(iii) for each i, µ(ν2
i (x))− µ(ν1

i (x)) < ε.

Proof. By smoothness of µ and Lemma 1.3 (iv) of [12] for example, for each
b ∈ M̄ there are formulas ν1(x), ν2(x) over M , such that
(*) |= ν1(x)→ φ(x, b)→ ν2(x), and µ(ν2(x))− µ(ν1(x)) < ε.
By compactness, there are finitely many such pairs, say, (ν1

i (x), ν2
i (x)) such

that for every b one of these pairs satisfies (*). It is then easy to find the
ψi(y).

Note that it follows from Lemma 2.3 that if µ is a global smooth Keisler
measure, then µ is smooth over some model M0 of cardinality at most |T |.
Note also that Lemma 2.3 yields a direct way of seeing both the definability
over M and finite satisfiability in M of µ.

Definition 2.4. If µx and λy are both Keisler measures over M (with x, y
disjoint tuples of variables), then a Keisler measure ωx,y over M extending
both µx and λy is said to be a separated amalgam of µx and λy, if for any
formulas φ(x), ψ(y) over M , ω(φ(x) ∧ ψ(y)) = µ(φ(x)) · λ(ψ(y)).

This is the same thing as saying that ωx,y, as a regular Borel probabil-
ity measure on Sxy(M) extends the product measure µx × λy on the space
Sx(M)× Sy(M). Note that as soon as µx is not a complete type, there will
be at least two extensions of µx ∪ µy to Keisler measures over M ; one giving
x = y measure 1, which will not be separated, and one extending the product
µx × µy which will be separated. On the other hand if µx is a measure over
M and q(y) a complete type over M then any amalgam ωxy of µ and q will
be separated.

We now give several corollaries of Lemma 2.3.
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Corollary 2.5. Suppose µx is a smooth global Keisler measure. Then for
any global Keisler measure λy, there is a unique separated amalgam of µx
and λy.

Proof. Assume µ is smooth over M . Let ωx,y be such an amalgam. Let
φ(x, y) ∈ L and ε > 0. Let ν1

i (x), ν2
i (x), ψi(y), for i = 1, .., n be as given

by Lemma 2.3. Then for each i, |= ν1
i (x) ∧ ψi(y) → φ(x, y) ∧ ψi(y) →

ν2
i (x) ∧ ψi(y). Let ri = µ(ν1

i (x)) and ti = λ(ψi(y)). It follows from the
assumptions that

∑
i riti ≤ ωxy(φ(x, y)) ≤

∑
i(ri + ε)ti =

∑
i riti + ε.

Hence ωxy(φ(x, y)) is determined.

Note in particular that a smooth measure µx has a unique amalgam with
any complete type. Note also that if µx is a Borel definable global measure,
and λy arbitrary then µx ⊗ λy is a separated amalgam. It follows that if
µx is smooth and λy is Borel definable (in the NIP case, invariant) then
µx ⊗ λy = λy ⊗ µx. Namely a smooth measure “commutes” with any other
invariant measure.

Corollary 2.6. Suppose µx is smooth over M . Let φ(x, y) ∈ L and X1, .., Xk

a finite collection of Borel over M sets . Then for any ε > 0, for all suffi-
ciently large m, there is a formula θm(x1, .., xm) such that limm→+∞µ

(m)(θm) =
1 and for any (a1, .., am) |= θm,
(i) for each b ∈ M̄ , µ(φ(x, b)) is within ε of Fr(φ(x, b), a1, .., am).
Also, we can find such (a1, .., am) such that furthermore:
(ii) µ(Xi) is within ε of Fr(Xi, a1, .., am) for each i, and
(iii) for each b ∈ M̄ , µ(Xi ∩φ(x, b)) is within ε of Fr(Xi ∩φ(x, b), a1, .., am).

Proof. Note first that we can assume x = x is an instance of φ(x, y) and that
x = x is included among the Xi. Hence (iii) implies (i) and (ii).

Let ν1
i (x), ν2

i (x) (over M) for i = 1, .., n say be given by Lemma 2.3
for φ(x, y) and ε/4. Consider the formula θm(x1, .., xm) that expresses that
Fr(νji (x), x1, .., xm) is within ε/4 of µ(νji (x)) for each i and j. The weak law
of large numbers, Fact 1.8, applied to X = Sx(M), µx|M (as a probabil-
ity measure on X), to the Borel sets νji (x) (all i, j), and ε/4 implies that

limm→+∞µ
(m)(θm(x1, .., xm)) = 1. (We here use the fact that µ

(m)
(x1,..,xm) is a

separated amalgam of µx1 , .., µxm .)
Next apply the weak law of large numbers, this time to the Borels νji ∩Xr

(all i, j, r) and ε/4 to obtain suitable types p1, ..., pm ∈ Sx(M). Let a1, ..., am
be realizations of p1, .., pm respectively. Let λx be the average of the tp(ai/M̄).
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Let b ∈ M̄ , and i be such that ν1
i (x)→ φ(x, b)→ ν2

i (x). Then also for each
r, ν1

i (x) ∧ x ∈ Xr → φ(x, b) ∧ x ∈ Xr → ν2
i (x) ∧ x ∈ Xr. Also clearly

|(µ(ν2
i (x) ∩Xr)− µ(ν1

i (x) ∩Xr)| < ε/4.
Now λ(νji (x)∩Xr) is within ε/4 of µ(νji (x)∩Xr) for j = 1, 2 from which it

follows that λ(φ(x, b)∩Xr) is within ε of µ(φ(x, b)∩Xr) giving (iii) (so also (i)
and (ii), for (i); note that only the fact that (a1, .., am) |= θm is needed).

Definition 2.7. We will call a global Borel definable Keisler measure µx
fim (a “frequency interpretation measure”) if: for every φ(x, y) ∈ L, and
ε > 0, for arbitrary sufficiently large m, there is θm(x1, .., xm) (with parame-
ters) such that :
(i) limm→+∞µ

(m)(θm) = 1,
(ii) for all (a1, .., am) |= θm(x1, .., xm), µ(φ(x, b)) is within ε of Fr(φ(x, b), a1, .., am).

So we have seen that smooth measures are fim.
Note that it follows, as in Corollary 2.6, that for any fim measure, any

φ(x, y) and any Borel set X, we can find (a1, .., am) such that (i) and (ii) of
Corollary 2.6 hold. We will see later on that we can also have (iii).

Corollary 2.6 plus Lemma 2.2 enables us to directly prove something
about arbitrary measures, for which in [9] we used the Vapnik-Chervonenkis
Theorem.

Corollary 2.8. (Assume T has NIP .) Let µx be any measure over M . Let
φ(x, y) ∈ L, ε > 0, and let X1, .., Xk be Borel sets over M . THEN for all
large enough n there are a1, .., an such that for all r = 1, ..k and all b ∈ M ,
µ(Xr ∩ φ(x, b)) is within ε of Fr(Xr ∩ φ(x, b), a1, .., an).

Proof. By Lemma 2.2, let µ′ be global extension of µ which is smooth over
some M ′ > M . Apply Corollary 2.6 to µ′ and M ′.

We will often use the following consequence of this corollary (in a NIP
context): If µ, λ are two global invariant measures, assume that µ commutes
with every type p weakly random for λ, then µ and λ commute. (Here we
call p weakly random for µ if every formula in p has positive µ-measure.)

To see this, given a formula φ(x, y), write (µ(x)⊗λ(y))(φ(x, y)) =
∫
f(y)dλy

as in the paragraph before Lemma 1.5, and approximate that integral by some
finite sum FN =

∑
j=1,..,N λ(Yj)cj. Use the corollary to find types p1, .., pn

weakly random for λ such that if ai |= pi for all i, Fr(Yj ∩ φ(x, b), a1, .., an)
is within ε of λ(Yj ∩ φ(x, b)) for all j and b ∈ M̄ .
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If λ̃ denotes the average of the types p1, .., pn then we leave it to the
reader to check that (µ(x)⊗ λ̃(y))(φ(x, y)) is close to (µ(x)⊗ λ(y))(φ(x, y))
and (λ̃(y)⊗ µ(x))(φ(x, y)) is close to (λ(y)⊗ µ(x))(φ(x, y)). This is enough.

We now begin to discuss “indiscernibles” in the Keisler measure context.

Definition 2.9. Let µx1,x2,... be a Keisler measure over M , where x1, x2, ...
are distinct variables of the same sort.
(i) We say that µ(xi)i

is indiscernible if for every formula φ(x1, .., xn) over
M and all i1 < i2 < .. < in, µ(φ(x1, .., xn)) = µ(φ(xi1 , .., xin)).
(ii) We say that µ is totally indiscernible if µ(φ(x1, .., xn)) = µ(φ(xi1 , .., xin)),
whenever i1, .., in are distinct.

So indiscernibility of a measure µ is with respect to a given sequence (xi)i
of variables. Likewise we can speak of an indiscernible measure in variables
(xi : i ∈ I) where I is a totally ordered index set. We can use compactness
to “stretch” indiscernible measures in the obvious manner.

We do not know any elementary proof of the following lemma, so we refer
the reader to [2]. The lemma is an equivalent formulation of Theorem 5.3 of
that paper, the equivalence being a consequence of Lemma 5.4 there.

Lemma 2.10. (Assume T has NIP .) If µ(xi:i<ω) over M is indiscernible,
ν(y) is a measure over M , and ω is an amalgam of these over M , and
φ(x, y) ∈ L, then limi→∞ω(φ(xi, y)) exists. Equivalently, for any such φ, µ,
ν, and ω, and ε, it is not the case that |ω(φ(xi, y)) − ω(φ(xi+1, y))| > ε for
all i.

Remark 2.11. (NIP ) In particular, given indiscernible measure µ(xi)i
and

an extension µ′ over M ′ then we obtain a unique Keisler measure in single
variable x over M ′, which we call Av(µ′,M ′), whose measure of φ(x, c) (for
c ∈M ′) is limi→∞(µ′(φ(xi, c))).

Corollary 2.12. (NIP ) For any formula φ(x, y) and ε there is N such that
for any indiscernible Keisler measure µ(xi:i<ω) over a model M (or set A),
b ∈ M̄ and extension µ′ of µ over (M, b), there do not exist i1 < i2 < ... < iN
such that |µ′(φ(xij , b))− µ′(φ(xij+1

, b))| > ε for all j = 1, .., N − 1.

Proof. By compactness, in the space of measures overM in variables ((xi)i<ω, y).
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Corollary 2.13. (NIP ) Given φ(x, y) and ε > 0 there is N such that for any
totally indiscernible Keisler measure µ(xi:i<ω) over a model M , and b ∈ M̄ and
extension µ′ of µ over (M, b), for any r ∈ [0, 1] either {i : µ′(φ(xi, b)) ≥ r+ε}
has cardinality < N , or {i : µ′(φ(xi, b) ≤ r − ε} has cardinality < N .

Proof. Let N be as given by Corollary 2.12 for φ(x, y) and ε. Then clearly
it also works for the present result.

Lemma 2.14. (NIP .) Let µ be a global invariant Keisler measure. Then
(i) µ(ω) is indiscernible,
(ii) if both µ and ν are A-invariant and µ(ω)|A = ν(ω)|A then µ = ν.

Proof. (i) Obvious and easily proved by induction.
(ii) This is as in the type case: namely suppose for a contradiction that
µ(φ(x, b)) = r 6= s = ν(φ(x, b)). Let λ1(x1) = µ(x1), and for even n,
λn(x1, .., xn) = ν(xn) ⊗ λn−1(x1, .., xn−1) and for odd n, λn = µ(xn) ⊗
λn−1(x1, .., xn−1). Let λx1,x2,... be the union. Then one checks that λ|A =
µ(ω)|A = ν(ω)|A. But λ(φ(xi, b)) = r for odd i and equals s for even i,
contradicting Lemma 2.10.

3 Generically stable measures

This section contains our main results. Namely Theorem 3.2 below which
gives equivalent conditions for a measure to be generically stable in an NIP
theory. We assume NIP throughout, although it would not be uninteresting
to develop the theory for arbitrary T . We give two proofs of that theorem,
the first one follows very closely the proof of the analogous result for types
(Proposition 3.2 of [9]) while the second one is inspired by the proof of the
Vapnik-Chervonenkis theorem and avoids the use of Lemma 2.10.

We begin by giving a promised generalization of Lemma 3.4 of [9] to
measures.

Lemma 3.1. Suppose that µx and λy are global Keisler measures such that µ
is finitely satisfiable (in some small model) and λ is definable. Then µx⊗λy =
λy ⊗ µx.

Proof. We first note that using the remark following 2.8 it suffices to prove
the lemma when µ is a type p say. So assume M is a small model over
which the TYPE p(x) is finitely satisfiable and the measure λy is definable.
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Let φ(x, y) ∈ L. Suppose for a contradiction that φ(x, y) ∈ L and (p(x) ⊗
λy)(φ(x, y)) = r, (λy⊗ p(x))(φ(x, y)) = s, and r 6= s. Let ε = |r− s|/4. Note
that s is precisely λ(φ(a, y)) where a is some (any) realization of p|M . By
definability of λ over M , let θ(x) be a formula over M , which is in p|M , and
such that
(I) if |= θ(a′) then λ(φ(a′, y)) is strictly within ε of s.

By Borel definability of p over M , X = {b : φ(x, b) ∈ p} is Borel over M .
Hence r = λ(X). Apply 2.8 to λ|M to find b1, .., bn ∈ M̄ such that
(II) for all a′ ∈M , λ(φ(a′, y)) is within ε of Fr(φ(a′, y), b1, .., bn) and
(III) the proportion of bi’s in X is within ε of r. Suppose for simplicity that
that bi ∈ X for precisely i = 1, ..,m.

Let a realize p|(M, b1, ..., bn). Hence, by the definition of X, |= φ(a, bi)
just if 1 ≤ i ≤ m. Also of course |= θ(a). By finite satisfiability of p in M
there is a′ ∈M such that |= θ(a′), |= φ(a′, bi) for i = 1, ..,m, and |= ¬φ(a′, bi)
for i = m+ 1, .., n. By (II) λ(φ(a′, y)) is within ε of m/n. On the other hand
by (I) λ(φ(a′, y)) is within ε of s. As m/n is within ε of r. we have a
contradiction.

Theorem 3.2. Suppose that µ(x) is a global Keisler measure which is A-
invariant. Then the following are equivalent:
(i) µ is both definable (necessarily over A) and finitely satisfiable in a small
model (necessarily in any model containing A),

(ii) µ
(ω)
(x1,x2...)

|A is totally indiscernible,

(iii) µ is fim,
(iv) for any global A-invariant Keisler measure λy, µx ⊗ λy = λy ⊗ µx,
(v) µ commutes with itself : µx ⊗ µy = µy ⊗ µx.
(vi) for some small model M0 containing A, for any Borel over A set X and
any formula φ(x) over M̄ , if µ(X ∩φ(x)) > 0 then there is a ∈M0 such that
a ∈ X and φ(a).

Proof. (i) implies (ii): Note that if µ and λ are both definable measures,

then so is µ ⊗ λ. So we see that each µ
(n)
x1,..,xn is definable. By Lemma 3.1

µ
(n+1)
x1,..,xn+1 =def µxn+1 ⊗ µ

(n)
x1,..,xn = µ

(n)
x1,..,xn ⊗ µxn+1 . It follows easily (using

indiscernibility of each µ(n)) that each µ
(n)
x1,..,x(n) is totally indiscernible, hence

so is µ(ω).

(iii) implies (i): For all φ(x, y) ∈ L, ε = 1/n and sufficiently large m, the
definition of fim supplies us with a formula θ(x1, .., xm). Take a model M
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containing the parameters of those formulas for all φ, n and m. Then µ is
definable and finitely satisfiable over M .

(ii) implies (iii): Without loss A = M is a small model. Assume µ(ω) totally
indiscernible.
Claim. Suppose λx1,x2,.. is an extension of µ

(ω)
x1,x2,..|M to a model M ′ > M .

Then Av(λ,M ′) is precisely µ|M ′.
Proof of Claim. Otherwise, we have some formula φ(x, c) over M ′ such
that µ(φ(x, c)) = r say, and Av(λ,M ′)(φ(x, c)) = s 6= r. Without loss
s > r, and let ε = s − r. Let Nφ,ε be given by Corollary 2.13. By Lemma
2.10, λ(φ(xi, c)) > s − ε for eventually all i. However let α(xi:i<ω+ω) be

µ
(ω)
(xi:ω≤i<ω+ω)|M ′⊗λ(xi:i<ω), a measure over M ′. Then α is clearly an extension

of µ(ω+ω) to M ′. But α(φ(xi, c)) = r for all i ≥ ω, and we have a contradiction
to the existence of Nφ,ε. The claim is proved.

Let ε > 0 and φ(x, y) ∈ L. Let N be given by Corollary 2.13 for φ and ε
and let M = 4N . Then, by the Claim, for any two measures λ, λ′ extending
µ(ω), for any b ∈ M̄ , we have |{i : |λ(φ(xi, b)) − λ′(φ(xi, b))| ≥ 2ε}| < 2N .
By compactness, there is a formula Φ(x1, .., xM) and a small r > 0 such
that for any measure ν(x1,..,xM ) such that |ν(Φ) − µ(M)(Φ)| ≤ r, we have
|{i : |ν(φ(xi, b))− µ(M)(φ(xi, b))| ≥ 2ε}| < 2N .

For sufficiently large k, let θkM(x1, .., xkM) be the formula that expresses
that Fr(Φ(x1, .., xM); y0, .., yk−1) is within r/2 of µ(M)(Φ), where yi denotes
the tuple of variables (xMi+1, .., xMi+M). If kM < n < (k + 1)M , define
θn(x1, .., xn) = θkM(x1, .., xkM). Then by the weak law of large numbers,
limn→+∞µ

(ω)(θn) = 1. Futhermore, for sufficiently large n, if (a1, .., an) |= θn
then, letting ν be the average of tp(a1/M̄), .., tp(an/M̄), ν(φ(x, b)) is within
3ε of µ(φ(x, b)) for every b ∈ M̄ . This shows that µ is fim.

(iii) implies (iv). We have to prove that any fim measure commutes with
any invariant measure. As above it suffices to prove that an fim measure µx
commutes with any invariant type.

Let q(y) be such. Assume both µ and q are M -invariant. Let φ(x, y) ∈ L.
Note that (µx⊗q(y))(φ(x, y)) = µ(φ(x, b)) = r for some (any) b realizing q|M .
And also (q(y) ⊗ µx)(φ(x, y)) = µ(X) = s where X = {a : φ(a, y)) ∈ q(y)}
(a Borel set over M). For given ε choose a set a1, ...., ak witnessing fim for
µ with respect to φ(x, y) and such that Fr(X; a1, .., ak) is within ε of µ(X).
Let b realize q|(M,a1, .., ak). So µ(X) is within ε of Fr(φ(x, b); a1, .., ak). But
the latter is within ε of µ(φ(x, b)). So r = s and we are finished.
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(iv) implies (v). Obvious.

(v) implies (ii). This follows from associativity of ⊗: for any k < n we have
assuming (v), µx1⊗...⊗µxk

⊗µxk+1
⊗...⊗µxn = µx1⊗...⊗µxk+1

⊗µxk
⊗...⊗µxn .

This is enough.

(vi) is a form of ”Borel satisfiability”. It is analogous to (i) since Borel
definability is automatic. The proof of equivalence with the other conditions
is postponed to Lemma 3.6 and Theorem 4.8 below.

We call a global Keisler measure µ generically stable if it satisfies the equiv-
alent conditions of Theorem 3.2. (Of course assuming T is NIP .)

Proposition 3.3. Suppose that µ is generically stable and A-invariant. Then
µ is the unique A-invariant extension of µ|A.

Proof. Suppose that ν is A-invariant and ν|A = µ|A. By property (iv)
above we check inductively that µ(n)|A = ν(n)|A for all n. By Lemma 2.14,
µ = ν.

We give now a proof of Theorem 3.2 which does not use Lemma 2.10.
That lemma was used only in the implication (ii) → (iii). So we give an
alternative proof that if an invariant measure µ is such that µ(ω) is totally
indiscernible, then µ is fim.

By a symmetric measure on some Xn, X a definable set, we will now
mean a measure µ(x1,..,xn) such that µ(xi ∈ X) = 1 for all i and for any
σ ∈ Sn and formula φ(x1, .., xn), µ(φ(x1, .., xn)) = µ(φ(xσ.1, .., xσ.n)).

The following crucial lemma is related to the classical Vapnik-Chervonenkis
theorem (see [23]) and could be proved by similar methods. But it does not
seem to be a direct consequence of it.

Lemma 3.4. (Assume T has NIP .) Let φ(x, y) ⊆ X × Y be a formula
over a model M . For n > 0, let µn be any symmetric, M-invariant global
measure on X2n. Given b ∈ Y and a = (a1, .., an) ∈ Xn, let f(a; b) =
Fr(φ(x, b); a1, .., an). Let

δ0(a, a′; b) = |f(a; b)− f(a′; b)|,

δ(a, a′) = sup
b∈M̄

δ0(a, a′; b).

Finally, let E(n) be the µn-expectation of δ. Then limn→∞E(n) = 0.
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Proof. Note first that δ is measurable for the boolean algebra generated
by the definable subsets of X2n of the form: (∃y)(

∧2n
i=1 φ(xi, y)ν(i)) (where

φ(xi, y)ν(i) is either φ(xi, y) or ¬φ(xi, y)). In particular it makes sense to ask
for the µn-expectation of δ.

Fix ε > 0, and let n be large compared to ε.
Let Z/2 act on the variables {xi, x′i} by flipping them, and let (Z/2)n act

on {x1, . . . , xn, x
′
1, . . . , x

′
n} by the product action.

Given (a, a′) and b, we have |δ0(a, a′; b)| ≤ 1. Let X(b) = {s ∈ (Z/2)n :
δ0(s(a, a′); b) > ε} and let c(b) = {i : φ(ai, b) 6≡ φ(a′i, b)}. If c(b) = ∅ then
δ0(s(a, a′); b) = 0 for all s. Otherwise, we view δ(s(a, a′); b) as a random
variable of s (on a finite probability space). More precisely, it is the absolute
value of a sum of |c(b)| independent random variables each of expectation 0
and variance 1/n2. Therefore δ0(s(a, a′); b) has expectation 0, and variance
|c(b)|/n2. By Tchebychev’s inequality we have |X(b)| ≤ |c(b)|/(nε)2 ≤ ε−2.
So |X(b)|/2n ≤ ε−22−n.

Now X(b) depends only on {i : φ(ai, b)} and {i : φ(a′i, b)}; there are
polynomially many possibilities for these sets, by NIP . Hence, ∪bX(b) is an
exponentially small subset of (Z/2)n. If n is large enough, it has proportion
< ε. Let s /∈ ∪bX(b). Then |δ0(s(a, a′), b)| ≤ ε for all b. If s ∈ ∪bX(b) we
have at any rate |δ0(s(a, a′); b)| ≤ 1. Thus 2−n

∑
s supb δ(s(a, a

′); b) < 2ε.
By the symmetry of µn, E(n) equals the µn-expectation of supa δ(s(a, a

′))
for any s ∈ (Z/2)n, hence it is also equal to the average 2−n

∑
s supa δ(s(a, a

′)).
So E(n) < 2ε.

Corollary 3.5. (NIP) Let µ be an M-invariant global measure, such that
µ(ω) is totally indiscernible, then µ is fim.

Proof. Let φ(x, y) be a formula, and take ε > 0. By the previous lemma, for
large enough n, the set W = {(a, a′) : δ(a, a′) < ε/4} satisfies µ(2n)(W ) ≥
1 − ε. Note that this is a definable set. Therefore there exists a such that
µ(n)(W (a)) ≥ 1 − 2ε > 1/2. (Where W (a) = {a′ : (a, a′) ∈ W}.) Now fix
a ∈ M̄ . Then for all b′, δ0(a, a′; b) ≤ δ(a, a′).

On the other hand letQ′n(b) be the set of a′ such that |f(a′; b)−µ(φ(x, b))| ≥
ε/2. By Tchebychev’s inequality, and since the variance of the truth value
of φ(x, b) is at most 1, we have µ(n)(Q′n(b)) ≤ 1/(n(ε/2)2). Let Qn(b) be the
complement of Q′n(b), and assume n > 2(ε/2)−2 (note that this does not de-
pend on b). Then µ(n)(Qn(b)) > 1/2. Hence there exists a′ ∈ W (a) ∩Qn(b).
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So δ0(a, a′; b) < ε/4 and |f(a′; b)−µ(φ(x, b))| < ε/2. Now for any a′′ ∈ W (a),
we have δ0(a′, a′′; b) < ε/2, therefore |f(a′′, b)− µ(φ(x, b))| < ε.

So we have found, for large enough n a formula θ′n = W (a) satisfying
condition (ii) in the definition of fim with µ(n)(θ′n) ≥ 1− 2ε. As this is true
for all ε, we can construct a sequence of formulas θn(x1, .., xn) satisfying the
same condition, but with µ(n)(θn)→ 1. This proves that µ is fim.

Lemma 3.6. Let µ be an M-invariant global fim measure. Let φ(x, y) be a
formula over M and let X be a Borel over M set. Then for any ε > 0, for
some m, we can find (a1, .., am) such that for each b ∈ M̄ , µ(X ∩ φ(x, b)) is
within ε of Fr(X ∩ φ(x, b), a1, .., an).

Proof. We know that µ(ω) is totally indiscernible. The proof is then a slight
modification of the lemma above and its corollary. First, in the lemma,
change the definition of f to f(a; b) = Fr(φ(x, b) ∧ x ∈ X; a1, .., an). Define
δ0 and δ accordingly. Then the proof goes through without any difficulties.
The corollary also goes through with the new definitions of f , δ0 and δ, only
W and W (a) are no longer definable. Still, W (a) is a Borel set of measure
greater than 1/2 and for any a′ ∈ W (a), and any b, we have |f(a′, b) −
(µ(φ(x, b) ∩X))| < ε.

Finally we will point out how generically stable measures are very widespread
in NIP theories, in fact can be constructed from any indiscernible sequence.
By an indiscernible segment we mean (ai : i ∈ [0, 1]) which is indiscernible
with respect to the ordering on the real unit interval [0, 1]. For any formula
φ(x, b), {i ∈ [0, 1] :|= φ(ai, b)} is a finite union of convex sets, and hence
intervals. (See [1] for example.) We define a measure µx as follows: µ(φ(x, b))
is the Lebesgue measure of {i ∈ [0, 1] :|= φ(ai, b)} (i.e. just the sum of the
lengths of the relevant disjoint intervals). Clearly µx is a global Keisler
measure on the sort of x.

Proposition 3.7. The global Keisler measure µx constructed above is gener-
ically stable.

Proof. Let A = {ai : i ∈ [0, 1]}. We show that µ is both finitely satisfiable in
A and definable over A. Finite satisfiability is clear from the definition of µ.
(If µ(φ(x, b)) > 0 then the Lebesgue measure of C = {i :|= φ(ai, b)} is > 0
hence C 6= ∅.)
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To show definability, we in fact note that µ is fim. First note that for
any formula φ(x, y), there is Nφ such that for all b {i ∈ [0, 1] :|= φ(x, b)} is
a union of at most N disjoint intervals. Hence, given ε > 0, if we choose
0 < δ < ε/N , and let ik = 0 + kδ for k such that kδ ≤ 1, then for any b,
µ(φ(x, b)) is within ε of the proportion of ik such that |= φ(aik , b).

4 The fsg property for groups, types and mea-

sures

We will again make a blanket assumption that T has NIP (but it is not
always needed). In [8] and [9] definable groups G with finitely satisfiable
generics (fsg) played an important role. This fsg property asserted the
existence of a global type of G every left translate of which was finitely
satisfiable in some given small model. By definition this is a property of a
definable group, rather than of some global type or measure. We wanted to
find adequate generalizations of the fsg notion to arbitrary complete types
p(x) over small sets, and even arbitrary Keisler measures over small sets. A
tentative definition of a complete type p(x) ∈ S(A) having fsg was given
in [9]. We try to complete the picture here, making the connection with
generically stable global measures. We should say that the subtlety of the
fsg notion is really present in the case where the set A is NOT bounded
closed. In the group case this corresponds to the case where G 6= G00.

We first return to the group case, adding to results from [9].
Recall the original definition:

Definition 4.1. The definable group G has fsg if there is a global complete
type p(x) of G and a small model M0 such that every left translate of p is
finitely satisfiable in M0.

As pointed out in [8] M0 can be chosen as any model over which G is
defined. In [9] the notion was generalized to type-definable groups G.

Remark 4.2. The definable group G has fsg if and only if there is global left
invariant Keisler measure µ on G which is finitely satisfiable in some (any)
small model M0 over which G is defined.

Proof. Assuming that G has fsg, Proposition 6.2 of [8] produces the required
measure µ. Conversely, supposing that µ is a global left invariant Keisler
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measure on G, finitely satisfiable in M0, let p be some global type of G such
that µ(φ) > 0 for all φ ∈ p. Namely p comes from an ultrafilter on the
Boolean algebra of definable subsets of G modulo the equivalence relation
X ∼ Y if µ(X4Y ) = 0. Then every left translate of every formula in p has
µ measure > 0 so is realized in M0.

The following strengthens the “existence and uniqueness” of (left/right)
G-invariant global Keisler measures for fsg groups G, from [9]. But the proof
is somewhat simpler, given the results established in earlier sections.

Theorem 4.3. Suppose G has fsg, witnessed by a global left invariant
Keisler measure µ finitely satisfiable in small M0. Then
(i) µ is the unique left invariant global Keisler measure on G, as well as the
unique right invariant Keisler measure on G.
(ii) µ is both the unique left G00-invariant global Keisler measure, as well as
the unique right G00-invariant global Keisler measure on G, which extends
Haar measure h on G/G00.

Proof. (i) This is precisely 7.7 of [9]. But note that we can use Lemma
3.1 of the present paper and the relatively soft 5.8 of [9] in place of 7.3
and 7.6 of [9]. (Details: Suppose λ is also global left invariant. By the
Lemma 5.8 of [9], we may assume λ to be definable. Given definable subset
D of G, let Z = {(g, h) : g ∈ hZ}. By 3.1, µx ⊗ λy = λy ⊗ µx, whence
(µx ⊗ λy)(Z) = µ(D) and (λy ⊗ µx)(X) = λ(D−1). So λ = µ−1. This in
particular yields that µ = µ−1. So λ = µ and µ is also the unique right
invariant Keisler measure.)
(ii) Note first that µx induces a left invariant measure on G/G00 which has to
be (normalized) Haar measure, and of course µ is (left/right) G00-invariant.
Let λy be another global left G00-invariant Keisler measure extending (or
inducing) Haar measure on G/G00. As in 5.8 of [9] we may assume that λ is
definable.

Let X be a definable subset of G. Let r = λ(X). Choose ε > 0. As
G00 stabilizes λ, and λ is definable, there is a definable subset Y of G which
contains G00 and such that for all g ∈ Y , λ(gX) ∈ (r − ε, r + ε). Let
π : G → G/G00 be the canonical surjective homomorphism. Then {c ∈
G/G00 : π−1(c) ⊆ Y } is an open neighbourhood W of the identity in G/G00.
Let U = π−1(W ) ⊆ Y ⊆ G. Note that µ(U) > 0 (as it equals the Haar
measure of the open subset W of G/G00). We have
(1) for all g ∈ U , λ(gX) ∈ (r − ε, r + ε).
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Whence
(2) (r − ε)µ(U) ≤

∫
g∈U λ(gX)dµ ≤ (r + ε)µ(U).

Now let Z = {(h, g) : h ∈ gX and g ∈ G}. Then
(3) (λy ⊗ µx)(Z) =

∫
g∈U λy(gX)dµx.

On the other hand clearly
(4) (µx ⊗ λy)(Z) =

∫
h∈G µx(hX

−1 ∩ U)dλy.
Note that the value of µx(hX

−1∩U) depends only on h/G00, hence as λ and
µ agree “on G/G00”, we see that
(5) (µx ⊗ λy)(Z) = (µx ⊗ µy)(Z).
By 3.1 applied twice (to (µx ⊗ λy) AND to (µx ⊗ µy)) together with (5) we
see that
(6) (λy ⊗ µx)(Z) = (µy ⊗ µx)(Z).
But (µy ⊗ µx)(Z) =

∫
g∈U µy(gX)dµx = µ(X)µ(U).

So using (2) and (3) we see that
(7) (r − ε)µ(U) ≤ µ(X)µ(U) ≤ (r + ε)µ(U).
So r − ε ≤ µ(X) ≤ r + ε. As this is true for all ε we conclude that µ(X) =
r = λ(X).

Remark 4.4. The definable group G has fsg if and only if G has a global
generically stable left invariant measure.

We now consider the general situation. We first recall the definition from
[9]:

Definition 4.5. p(x) ∈ S(A) has fsg if p has a global extension p′ such that
for any formula φ(x) ∈ p′ and |A|+-saturated model M0 containing A, there
is a ∈M0 realizing p such that |= φ(a).

Lemma 4.6. p(x) ∈ S(A) has fsg iff there is a global A-invariant measure
µx extending p such that whenever φ(x) is a formula over M̄ with µ-measure
> 0, then for any |A|+-saturated model M0 containing A, there is a ∈ M0

realizing p such that |= φ(a).

Proof. RHS implies LHS. This is trivial because any weakly random type for
the measure µ will satisfy Definition 4.5.
LHS implies RHS: Let p′ be as given by Definition 4.5. Then 7.12 (i) of [9]
says that p′ is a nonforking extension of p. Moreover it is clear that any
Aut(M̄/A)-conjugate of p′ also satisfies Definition 4.5. Let µ be the global
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A-invariant measure extending p, constructed from p′ in Proposition 4.7 of
[9]. Then any formula with positive µ-measure must be in some Aut(M̄/A)-
conjugate of p′ so is satisfied in any saturated model M0 containing A by a
realization of p.

The last lemma motivates a definition of fsg for arbitrary measures over
A.

Definition 4.7. Let µx be a Keisler measure over A. We say that µ has
fsg, if µ has a global A-invariant extension µ′ such that for any Borel over
A set X, formula φ(x) over M̄ , and |A|+-saturated model M0 containing A,
if µ′(X ∩ φ(x)) > 0 then there is a ∈M0 such that a ∈ X and φ(a).

Theorem 4.8. Let µx be a measure over a set A, then the following are
equivalent :
(i) µ has a unique A-invariant global extension µ′ that is moreover generically
stable.
(ii) µ has fsg.
(iii) µ has a global A-invariant extension µ′ such that for any Borel over A
set X, formula φ(x) over M̄ , and |A|+-saturated model M0 containing A, if
µ(X) + µ(φ(x)) > 1 then there is a ∈M0 such that a ∈ X and φ(a).

Proof. (i) implies (ii): Follows from Lemma 3.6.
(ii) implies (iii) is clear.
(iii) implies (i): We fix global A-invariant measure µ′ extending µ and wit-
nessing the assumption. We will prove that µ′ commutes with every A-
invariant measure. It will follow that µ′(ω)|A is totally indiscernible, so µ′ is
generically stable. Uniqueness follows from 3.3. The proof will be a bit like
that of 3.1. In fact it is easy to see that µ commutes with any A-invariant
type. If A = bdd(A) this would suffice (as every bdd(A)-invariant measure is
“approximated” by bdd(A)-invariant types). But for arbitrary A it does not
seem to suffice.

So let us fix an A-invariant (thus Borel definable over A) global measure
λy.
Let P = (µx ⊗ λy)(φ(x, y)) =

∫
µ(φ(x, b))dλ and R = (λy ⊗ µx)(φ(x, y)) =∫

λ(φ(a, y))dµ. We want to show that P = R.
For any t ∈ [0, 1], let Ct = {q ∈ S(A) : µ(φ(x, b)) ≥ t for any b |= q} and

Bt = {p ∈ S(A) : λ(φ(a, y)) ≥ t for any a |= p}. These sets are Borel over
A.
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Let ε > 0 and take N ≥ 1/ε such that∣∣∣∣∣P − 1

N

N−1∑
k=0

λ(Ck/N)

∣∣∣∣∣ ≤ ε.

Take a model M containing A and |A|+-saturated. By Corollary 2.8,
there exist n and p1, .., pn ∈ S(M) such that Fr(φ(a; y); p1, .., pn) is within ε
of λ(φ(a; y)) for every a ∈ M and Fr(Ck/N ; p1, .., pn) is within ε of λ(Ck/N)

for every k < N . Realize p1, .., pn in M̄ by b1, .., bn respectively. Call λ̃ the
average measure of b1, .., bn (seen as global measures).

By construction, we have∣∣∣∣∣ 1

N

N−1∑
k=0

λ(Ck/N)− 1

N

N−1∑
k=0

λ̃(Ck/N)

∣∣∣∣∣ ≤ ε.

On the other hand, for all k < N :

λ̃
(
Ck/N

)
=

1

n

∣∣{i : pi ∈ Ck/N}
∣∣ =

1

n
|{i : µ (φ(x, bi)) ≥ k/N}| .

It follows that :∣∣∣∣∣ 1

N

N−1∑
k=0

λ̃
(
Ck/N

)
− 1

n

n∑
i=1

µ(φ(x, bi))

∣∣∣∣∣ ≤ 1

N
≤ ε.

Now, for k ≤ N let Θk(x) be the formula that says “There are at least k
values of i for which |= φ(x, bi) holds”. Then (looking at the Venn diagram
generated by the sets φ(x, bi) and counting each time each region appears in
both sums) we see that

1

n

n∑
k=1

µ (Θk(x)) =
1

n

n∑
i=1

µ (φ(x, bi)) .

Call P ′ the value of those two sums.
By the construction of λ̃, we have the inclusions Bk/n+ε(M) ⊆ Θk(M) ⊆

Bk/n−ε(M), and fsg for µ implies that µ(Bk/n+ε) ≤ µ(Θk(x)) ≤ µ(Bk/n−ε).
Then, choosing l such that l/n ≤ 2ε,

1

n

n∑
k=1

µ
(
Bk/n+l/n

)
≤ P ′ ≤ 1

n

n∑
k=1

µ
(
Bk/n−l/n

)
.
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The difference between the two sums to the right and to the left of P ′

is at most 8ε. We may assume that n was choosen large enough so that
|R− 1

n

∑n
k=1 µ(Bk/n)| ≤ ε. This latter sum satisfies the same double inequality

as P ′. Therefore |P ′ − R| ≤ 8ε. Putting everything together, we see that
|P −R| ≤ 11ε.

As ε was arbitrary, we are done.

5 Generic compact domination

In [8] the authors introduced the notion of “domination” or control of a type-
definable set X by a compact space C equipped with a measure (or ideal) µ:
namely there is a “definable” surjective function π : X → C such that for
every (relatively) definable subset Y of X, for almost all c ∈ C in the sense of
µ, either π−1(c) ⊆ Y or π−1(c)∩Y = ∅. Here of course X, π are defined over
a fixed set A of parameters, and Y is definable with arbitrary parameters.
There was also a “group version” where X = G is a (type)-definable group,
C is a compact group, π a homomorphism, and µ is Haar measure on C.

In this section we consider a weaker version of compact domination where
X is replaced by a suitable space of “generic” types, and we expand on and
correct some results which had appeared in a first version of [9].

We view this weak domination as a kind of measure-theoretic weakening
of the finite equivalence relation theorem. Let us begin by explaining this
interpretation. If T is a stable theory, and p(x) ∈ S(A) a type, then the
finite equivalence relation theorem states that the set of global nonforking
extensions of p is in one-one correspondence with the set of extensions of
p over acl(A). Namely if P is the family of global nonforking extensions
of p then the restriction map π taking p′ ∈ P to p′|acl(A) is a bijection.
In fact these two sets, P and the set C of extensions of p over acl(A), are
both topological (Stone) spaces and the restriction map π is a homeomor-
phism. We consider a more general situation, where T has NIP and acl(A)
is replaced by bdd(A). Assuming p does not fork over A, we again have the
nonempty space P of global nonforking extensions of p, the space C of ex-
tensions of p over bdd(A) and π : P → C. Now C is clearly a homogeneous
space for the compact Lascar group GalKP over A, and hence is equipped
with a unique GalKP -invariant (normalized) Borel measure, h say. In this
situation a weaker statement than π being a homeomorphism is that “P is
dominated by (C, π, h)”: for every clopen subset X of P (i.e., X is given by

26



a formula over M̄), for almost all c ∈ C in the sense of h, either π−1(c) ⊆ X
or π−1(c) ∩ X = ∅. We will point out that this domination statement is
equivalent to p having a unique extension to a global A-invariant measure.
In particular it will hold when p(x) has fsg. In fact all this holds with a
Keisler measure µ over A in place of the complete type p. Subsequently we
consider appropriate group versions.

We will again be assuming that T has NIP but it is not always needed.

Lemma 5.1. Let µx a Keisler measure over A. Then there is a unique
Keisler measure µ′x over bdd(A) which extends µx and is Aut(bdd(A)/A)-
invariant.

Proof. We identify a Keisler measure on bdd(A) with a regular probability
measure on Sx(bdd(A)). Likewise identify µ with a measure on S(A). Now
for each p(x) ∈ S(A), there is clearly a unique A-invariant Keisler measure
on S(bdd(A)) extending p, which we call µp: the space of extensions of p
over bdd(A) is, as mentioned above, a homogeneous space for the compact
Lascar group Aut(bdd(A)/A) so has a unique A-invariant measure, which is
precisely µp. Now define µ′ as follows: for a Borel set B over bdd(A), put
µ′(B) =

∫
p∈S(A)

µp(B)dµ. µ′ is clearly A-invariant and we leave to the reader

to check uniqueness.

Lemma 5.2. Suppose µx is a Keisler measure over A which does not fork
over A. Then µ has a global A-invariant extension.

Proof. Let λx be some global nonforking extension of µ. By [9], λ is bdd(A)-
invariant and moreover Borel definable over bdd(A). Fix a formula φ(x, b).
Let Q be the set of complete extensions of tp(b/A) over bdd(A). As above Q
is a homogeneous space for the compact Lascar group over A and inherits a
corresponding measure h say. Define µ′′(φ(x, b)) =

∫
b′∈Q λ(φ(x, b′))dh.

Lemma 5.3. Suppose µx is a Keisler measure over A which has a unique
global nonforking A-invariant. Then for any closed subset B of Sx(A) of
positive µ-measure, the localization µB of µ at B also has a unique global
nonforking extension.

Proof. Let µ′ be the unique global nonforking extension of µ. Then µ′B
is clearly a nonforking extension of µB. If it is not the unique one, let
λ be another nonforking extension of µB. Define global measure µ′′, by
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µ′′(X) = λ(X).µ(B)+µ′(X ∩Bc) (where Bc is the complement of B in S(A)
and X a definable set). Note that µ′′ also extends µ and does not fork over
A. (If µ′′(X) > 0, then either λ(X) > 0 or µ′(X) > 0, and either way, X
does not fork over A). However by choosing X such that λ(X) 6= µ′B(X) we
see that µ′′(X) 6= µ(X), contradicting our assumption.

Let us set up notations for the upcoming main theorem. We fix a set A
(not necessarily equal to bdd(A)), and let µx be a Keisler measure over A.
We will assume that µ does not fork over A, and we let P be the set of global
types p(x) that do not fork over A. This is a closed subspace of Sx(M̄). Let
C be {p(x)|bdd(A) : p ∈ P}, a closed subspace of Sx(bdd(A)) and π : P → C
the restriction map. Let µ′ be the (unique) A-invariant extension of µ over
bdd(A) given by Lemma 5.1. Then µ′ induces (and is determined by) a Borel
probability measure on C which we still call µ′.

Theorem 5.4. µ has a unique global nonforking extension if and only if P
is dominated by (C, π, µ′).

Proof. Assume the right hand side. Let λ be any global A-invariant Keisler
measure extending µ (there is one by Lemma 5.2). We will show that for any
definable set X, the value of λ(X) is determined, independently of λ. We
may identify λ with a measure on P , and X with a clopen subset of P .

Note first that λ|bdd(A) = µ′. Hence
(*) for any Borel subset D of C, λ(π−1(D)) = µ′(D).

Now, given our definable set X, let D0 = {c ∈ C : π−1(c) ∩ X 6= ∅
and π−1(c) ∩ Xc) 6= ∅}. Then D0 ⊆ C is closed with µ′ measure 0 by
assumption. C \ D0 is the disjoint union of Borel sets D1 and D2, where
π−1(c) ⊆ X for c ∈ D1 and π−1(c) ∩X = ∅ for c ∈ D2. It is then clear that
λ(X) = λ(π−1(D1)) which equals µ′(D1) by (*). So λ is determined.

For the converse, assume that µ has a unique global A-invariant exten-
sion, say λ. It is clear that λ|bdd(A) = µ′ and that λ must be the unique
global nonforking extension of µ′. Also P coincides with the set of global
types p(x) which do not fork over bdd(A). HENCE we may assume that
A = bdd(A), and so µ = µ′. If the domination statement fails, there is a
closed subset D of C of positive µ-measure and formula φ(x) over M̄ , such
that π−1(c) intersects both φ(x) and ¬φ(x) for all c ∈ D. Hence for every
p(x) ∈ D, both p(x) ∪ {φ(x)} and p(x) ∪ {¬φ(x)} do not fork over A. Let
µD be the localization of µ at D.
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Claim. There are ν1, ν2, global nonforking extensions of µD such that ν1(φ(x)) =
1 and ν2(φ(x)) = 0.
Proof of claim. Consider the fragment G generated by the partial types
over bdd(A), φ(x) and the set Ψ of formulas ψ(x) (over M̄) which fork over
bdd(A). For each p ∈ D, let rp = p(x) ∪ {φ(x)} ∪ {¬ψ(x) : ψ ∈ Ψ}. Then
D′ = {rp : p ∈ D} is a closed subset of S(G) and f : D → D′ defined by
f(p) = rp is a homeomorphism. Using f to define a measure ν ′1 supported on
D′ gives an extension of µ which assigns 1 to φ(x). Any extension of ν ′1 to a
global Keisler measure ν1 is a nonforking extension of µ assigning 1 to φ(x).

Likewise we find µ2.

So the claim is proved and gives a contradiction. This completes the proof
of the Theorem.

Note that a version of Theorem 5.4 also holds, where we take instead C
to be the space of extensions over bdd(A) of µ-weakly random types p(x) ∈
S(A), and P to be the space of global nonforking extensions of the types in
C. This version is of course close to the “finite equivalence theorem” analogy,
and follows from Theorem 5.4 as stated.

Finally in this section we return to definable groups. The relevant uniqueness
statement will be something like 4.3(ii). The domination statement will be
roughly the domination of a suitable family of “generic” types by G/G00 with
its Haar measure. We start by tying up a few loose ends.

Lemma 5.5. Let G be a definable group. Suppose there is a global type p of
G with Stabl(p) = G00. Then there is a global left G00-invariant measure µ
on G which lifts (extends) Haar measure on G/G00

Proof. Let h be Haar measure on G/G00 which we can think of as a Keisler
measure on a suitable fragment F (in fact the fragment consisting of the
preimages of closed sets under π : G → G/G00). Let p(x) be as given by
the assumptions. We may assume that p concentrates on G00. Note that
Stab(ap) = G00 for every translate ap of p. In particular for c ∈ G/G00 there
is a unique translate of p by some a in the coset c, so we just write it cp. Note
that for each definable subset X of G, and g ∈ G00 we have that X4gX /∈ cp
for all c. It follows as in the proof of 5.4 that h extends to a Keisler measure
µ over the fragment generated by F and all definable sets X4gX (g ∈ G00),
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such that µ(X4gX) = 0 for all such X, g, and so to a global Keisler measure
which is G00-invariant.

Lemma 5.6. Suppose µ is a global Keisler measure on G which is (left)
G00-invariant. Then µ(X4gX) = 0 for all definable X and g ∈ G00. In
particular for all µ-weakly random global p, Stabl(p) = G00.

Proof. This is a kind of group version of the fact that if a global Keisler
measure is bdd(A)-invariant (does not fork over bdd(A)) then µ(X4X ′) = 0
for any bdd(A)-conjugate X ′ of X. The proof of the latter was easy, but there
does not seem to be such a straightforward proof of the new lemma. We have
to prove that Stabl(p) = G00 for each µ-weakly random global type p. Passing
to a bigger monster model M̄ ′, and arguing as in 5.8 of [9], µ has an extension
to a definable left G00-invariant measure µ′ over M̄ ′. But then clearly there
is a small M ′

0 such that for all g ∈ G(M̄ ′), gµ′ does not fork over M ′
0. Now

our µ-weakly random type p of µ extends to a µ′-weakly random type p′.
By what we have just seen, p′ is left f -generic (every left translate does not
fork over a fixed M ′

0). By Proposition 5.6(i) of [9], Stabl(p
′) = G00(M̄ ′). It

follows that Stabl(p) = G00.

Proposition 5.7. Let G be a definable group. Then the following are equiv-
alent:
(i) There is a unique left G00-invariant global Keisler measure of G lifting
Haar measure on G/G00,
(ii) Let P be the family of global complete types of G such that Stabl(p) = G00.
Let π be the canonical surjective map from P to G/G00, and h Haar measure
on G/G00. Then P is nonempty and is dominated by (G/G00, π, h).

Proof. (i) implies (ii): This is like LHS implies RHS in 5.4. The nonemptiness
of P is given by the previous Lemma. Write C for G/G00. For c ∈ C, let
Pc be those members of P which concentrate on π−1(c). Suppose for a
contradiction that for some definable subset X of G, the (closed) subset D
of C consisting of c such that both Pc ∩ X and Pc ∩ Xc is non empty, has
positive Haar measure. Then, as in proofs of 5.4 and 5.5, h lifts to two global
left G00-invariant Keisler measures, one giving D ∩ X positive measure (in
fact that of D) and the other giving it 0 measure. Contradiction.
(ii) implies (i). The existence of µ is given by 5.5. So let us fix global left
G00-invariant µ which lifts Haar measure h on G/G00. Let P ′ be the set of
family of µ-weakly random global types. By Lemma 5.6, P ′ is a nonempty
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subset of P which clearly maps onto G/G00 = C under π. So now write π for
the map P ′ → C. The assumption (ii) implies that also P ′ is dominated by
(C, π, h). As in the proof of RHS implies LHS of Theorem 5.4, we conclude
that for any definable set X, µ(X) = h(D) where D = {c ∈ C : π−1(c) ⊆ X}.
So µ is determined.

By 4.3, the previous proposition applies to any definable group with fsg. In
fact the class P of global types with stabilizer G00 can clearly be replaced
by the subclass Pgen of global generic types p of G. (Here generic is in the
sense of [9].) Hence we have “generic compact domination” for fsg groups:

Proposition 5.8. Suppose G has fsg. Let Pgen be the space of global generic
types of G, π : G → G/G00 as before and h Haar measure on G/G00. Then
Pgen is dominated by (G/G00, π, h).

Finally we point out that under an additional hypothesis on G, we can
slightly strengthen the domination statement. Let us fix a definable group
G, π : G→ G/G00 = C, and definable subset X of G. We will say that X is
left generic in π−1(c) if finitely many left translates of X by elements of G00

cover π−1(c).
We will be interested in the following hypothesis on an fsg group G:

(H): Let X ⊆ G be definable. Then X is generic in G if and only if for some
small model M every left translate gX of X does not divide over M .

The left hand side implies the right hand side in any fsg group. We do
not know an example of an fsg group G where (H) fails. It is true in any
o-minimal expansion of RCF .

Lemma 5.9. Suppose that the fsg group G satisfies (H). Let X be a definable
subset of G, and c ∈ C. The following are equivalent:
(i) X is generic in π−1(c),
(ii) X ∈ p for every p ∈ Pgen concentrating on c,
(iii) for some definable set Y containing π−1(c), Y \X is not generic in G.

Proof. Without loss of generality let c be the identity of G/G00.
(i) implies (ii) holds without even assuming (H) as the stabilizer of any generic
type is G00. (See [8] or [9].)
(ii) implies (iii) also holds without assuming (H): By (ii), “x ∈ G00” ∪ “x /∈
X” ∪ {¬ψ : ψ over M̄, ψ nongeneric} is inconsistent, so by compactness, for
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some definable Y containing G00, Y \X is nongeneric (we use here that the
set of nongenerics is an ideal).
(iii) implies (i): Let Z = Y \ X. Let M be a model over which X and Y
are defined. By (H) there is some M -indiscernible sequence (ai : i < ω)
of elements of G such that ∩i=1,..,naiZ = ∅ for some n. Let gi = a−1

1 ai for
i = 1, .., n. So ∩i=1,..,ngiZ = ∅. All elements of ai are in the same coset of
G00, hence gi ∈ G00 for i = 1, .., n. As each giY contains G00 it follows that
g1X ∪ ... ∪ gnX ⊇ G00.

Corollary 5.10. Suppose that G is a group with fsg which satisfies (H),
and π : G → G/G00. Then for any definable subset X of G, for almost all
c ∈ G/G00 in the sense of Haar measure, either X is generic in π−1(c) or
¬X is generic in π−1(c).

Proof. Clear.

6 Borel measures over standard models

In this section we give a rich source of smooth measures in the case of theories
of o-minimal expansions of R, as well as Th(Qp). If M0 is the standard model,
V ⊆Mn

0 is definable, and µ∗ is a Borel probability measure on the topological
space V , then by restricting µ∗ to definable sets, we have a Keisler measure
which we call µ, over M0. We will show that any such µ is smooth: has a
unique extension to a Keisler measure µ′ over a saturated model. It follows in
particular that µ′ will be “definable” ([8]), from which one can easily obtain
“approximate definability” of µ∗ in the sense of Karpinski and Macintyre [11],
thereby considerably generalizing their results on approximate definability of
the real and p-adic Haar measures on unit discs.

For now, T is an arbitrary complete theory. It is convenient to formally
weaken the notion of a Keisler measure by allowing values in [0, r] for some
r, but of course maintaining finite additivity. Sometimes we may say that
the Keisler measure µ is ON the definable set X if µ(Xc) = 0.

Definition 6.1. Let µx be a Keisler measure over a model M . We will say
that µ is countably additive over M , if whenever X is definable over M , Yi
are definable over M for i < ω and pairwise disjoint and X(M) is the union
of the Yi(M), then µ(X) =

∑
i<ω µ(Yi).
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Remark 6.2. (i) Of course the definition depends on M . When M is ω-
saturated, any Keisler measure over M is countably additive, because if X(M)
is the union of the Yi(M) then by compactness it will be a finite subunion.
(ii) If, as above, M0 is a structure whose underlying set is a topological space
X say, and such that all definable subsets of the universe are Borel, THEN
any Borel measure µ∗ on X such that µ∗(X) 6=∞ induces a countably addi-
tive Keisler measure over M0 (on X), by restricting to definable sets.

Theorem 6.3. Let M0 be either an o-minimal expansion of (R,+, ·), or
the structure (Qp,+, ·). Let V be a definable set in M0, and µ a countably
additive Keisler measure on V over M0. THEN µ is smooth. That is, µ has
a unique extension to a global Keisler measure on V .

Proof. We will distinguish here between the definable set V (as a functor
say) and the set V (M0) of M0-points. The proof is by induction on the o-
minimal/p-adic dimension of V (or V (M0)) which we take to be n. Clearly it
suffices to partition V into M0-definable sets V1, .., Vk and prove the propo-
sition for µi = µ|Vi for each i (where we stipulate that µi is 0 outside Vi).
So by cell-decomposition we may assume that V ⊆ In where I is the closed
unit interval [0, 1] in the o-minimal case, and the valuation ring in the p-adic
case. So in fact there is no harm in assuming that V = In.

Let us fix an extension µ′ of µ to a global Keisler measure. And let D be
a definable (over M̄) subset of V . We aim to show that µ′(D) is determined,
namely can be computed in terms of µ.

Recall that we have the standard part map st from In(M̄) to In(M0),
namely from V (M̄) to V (M0). In both the o-minimal and p-adic cases all
types over the standard model are definable ([15], [5]). As explained in
[16] for example, this implies that for any definable in M̄ subset X of In,
st(X) is a definable set in the structure M0. In particular st(D), st(Dc),
and the intersection st(D) ∩ st(Dc) are definable sets in the structure M0.
Hence we can write V (M0) as the disjoint union of Y (M0), D0(M0), and
D1(M0), where as the notation suggests Y,D0, D1 are definable over M0,
Y (M0) = st(D) ∩ st(Dc), D1(M0) = st(D) \ Y and D0(M0) = st(Dc) \ Y .
Note also that D0, D1 are open M0-definable subsets of V , and of course V
is the disjoint union of Y , D0 and D1.

Claim 1. The M0-definable subset Y ∪ (cl(D0)∩ cl(D1)) of V has dimension
< n.
Proof of Claim 1. Otherwise it contains an open M0 definable set U say.
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But then either D ∩ U or Dc ∩ U contains an open M0-definable subset (of
V = In). (In the p-adic case this is Theorem 2.2(ii) of [16]. It is well-known
in the o-minimal case too, but formally follows from 10.3 of [8] for example.)
But this is clearly impossble. For if, for example, W is an open M0-definable
set contained in D, then for all w ∈ W (M0), st−1(w) ⊆ D, so for each
w ∈ W (M0), w /∈ Y (M0), and w /∈ cl(D0)(M0). The claim is proved.

Let D2 be the (closed, M0-definable) set Y ∪ (cl(D0) ∩ cl(D1)). Let µ2 be
µ|D2. Namely µ2 agrees with µ on M0-definable subsets of D2 and is 0 on the
complement of D2. Likewise define µ′2 to be equal to µ′ on definable subsets
of D2 and 0 on the complement of D2. Then as µ2 is still countably additive,
we see, by induction hypothesis and Claim 1, that µ′2 is the unique global
extension of µ2. In particular we have:
Claim 2. µ′2(D) = µ′(D ∩D2) is determined.

Claim 3. Let D3(M0) be an open M0-definable neighbourhood of the closed
set D2(M0). Then D \D3 = D1 \D3, hence µ′(D \D3) = µ(D1 \D3).
Proof of Claim 3. Let a ∈ V = V (M̄), and suppose a /∈ D3. So
(*) st(a) /∈ D2(M0).
Case (i): a ∈ D1. Then st(a) ∈ cl(D1)(M0). By (*), st(a) /∈ Y , and
st(a) /∈ D0. Hence st(a) ∈ D1 and we conclude that a ∈ D.
Case (ii): a ∈ D0. As in Case (i) we conclude that st(a) ∈ D0 hence a /∈ D.
This proves Claim 3.

Claim 4. µ′(D \D2) = µ(D1 \D2).
Proof. For small δ > 0 let Dδ(M0) be the δ neighbourhood of D2. Then
∩δDδ = D2. So µ(Dδ \D2)→ 0 as δ → 0, hence also µ′(D ∩ (Dδ \D2)→ 0
as δ → 0. It follows, using Claim 3, that µ′(D \ D2) = limδ→0µ

′(D \ Dδ =
limδ→0µ(D1 \Dδ) = µ(D1 \D2).

Claims 2 and 4 show that µ′(D) is determined.

Remark 6.4. (i) The key point about countably additive Keisler measures
µ over the standard model is that any global extension µ′ must assign 0 to
definable sets which are “infinitesimal”.
(ii) The inductive proof of Theorem 6.3 yields the following: for any definable
subset D of In(M̄), there is a partition of In into M0-definable cells V1, .., Vk,
such that for each i, EITHER for all a ∈ Vi(M0) st−1(a) ∩ Vi ⊆ D, OR for
all a ∈ Vi(M0) st−1(a) ∩ Vi ∩D = ∅.
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