Here is a list of corrections to the published version of *A Guide to NIP Theories*. Those have all been incorporated in the online version available on my webpage: http://www.normalesup.org/~simon/book.html.

Many thanks to Itay Kaplan, Nadja Hempel, Domenico Zambella, Alessandro Beraducci, Christian d’Elbée and Levon Haykazyan for pointing them out to me.

Last revision: October 16, 2015

- **Lemma 2.7**
 In the proof of left to right: \[\{ \phi(x; c) : c \in I_0 \} \cup \{ \neg \phi(x; c) : c \in I_1 \} \] should be \[\{ \phi(c; y) : c \in I_0 \} \cup \{ \neg \phi(c; y) : c \in I_1 \} \].

- **Chapter 2, References and related subjects, p.30:**
 Kaplan, Scanlon and Wagner show that NIP fields are Artin-Schreier closed, along with results about valued fields.

- **Observation 3.2**
 If \(\pi(x) \) is a definable set with at least two elements and is stably embedded, then one can choose the formula \(\psi(x_1, \ldots, x_n; z) \) in a way that it depends only on \(\phi(x_1, \ldots, x_n; y) \) and not on the parameters \(b \).

- **Remark 3.34**
 It follows from Proposition 3.32 that if \(I \) is ordered by a complete order and if there is a formula \(\theta(x, y) \in L(I) \) which orders \(I \), then \(I \) is stably embedded.

- **Lemma 5.17**
 The end of the proof should read:
 By Ramsey, we may find an \(Aa' \)-indiscernible sequence \((b'_i : i < \omega) \) realizing the EM-type of \((b_i : i < \omega) \) over \(Aa' \). Then \(a' \models \pi(x; b'_i) \) for every \(i < \omega \). Let \(f \in Aut(U/A) \) send \((b'_i : i < \omega) \) to \((b_i : i < \omega) \) and set \(a = f(a') \). Then \(a \models \pi \) and the sequence \(I \) is indiscernible over \(Aa \).

- **Definition 6.8**
 The set \(X_0 \) should be a multiset, i.e. we allow repetitions.

- **Corollary 6.13**
 The centered equation should read
 \[\left| \mu(S) - \frac{|\{i : x_i \in S\}|}{q} \right| \leq \epsilon. \]

- **Section 7.1, Borel measures.**
 They are some details missing in the proof of construction of the regular Borel measure extending a Keisler measure. Here is a more complete argument.

 Let \(\mu \in M_\sigma(A) \) be a Keisler measure. It assigns a measure to every clopen set of the space \(S_x(A) \). We show how to extend that measure to a \(\sigma \)-additive Borel probability measure. First, if \(O \subseteq S_x(A) \) is open, we define \(\mu(O) = \sup \{ \mu(D) : D \subseteq O, D \text{ clopen} \} \). Similarly, the measure of a closed set \(F \) is the infimum of the measures of clopen sets which contain it. If \(F \subseteq O \) are respectively closed and open, then there is a definable set between them. This implies that if \(X \) is either closed or open, we have

 \[\text{(Reg)} \quad \sup \{ \mu(F) : F \subseteq X, F \text{ closed} \} = \inf \{ \mu(O) : X \subseteq O, O \text{ open} \}. \]
It is not hard to see that that μ is subadditive on open sets and that $\mu(O \setminus F) = \mu(O) - \mu(F)$ for F closed inside the open set O.

The next step is to show that the set of subsets $X \subseteq S_x(A)$ satisfying (Reg) is closed under complement and countable union. Complement is clear. For countable union: let $X = \bigcup_{i<\omega} X_i$ and fix $\epsilon > 0$. For each $i < \omega$, take $F_i \subseteq X_i \subseteq O_i$ with $\mu(O_i) - \mu(F_i) \leq 2^{-i}$. Let $O = \bigcup_{i<\omega} O_i$. Note that $\mu(O) = \lim_n \mu(\bigcup_{i<n} O_i)$, because by compactness any clopen set inside O is already inside some $\bigcup_{i<n} O_i$. Then we can find some finite N such that $\mu(O) - \mu(\bigcup_{i<N} O_i) \leq \epsilon$. Let $F = \bigcup_{i<N} F_i$. Then we have $F \subseteq X \subseteq O$ and $\mu(O) - \mu(F) = \mu(\bigcup_{i<N} O_i \setminus F) \leq \mu(\bigcup_{i<N} O_i \setminus F) + \epsilon \leq \epsilon + \sum_{i<N} \mu(O_i) - \mu(F_i) \leq 3\epsilon$.

It follows that every Borel subset of $S_x(A)$ satisfies (Reg). We can therefore define μ on all such sets by $\mu(X) = \sup\{\mu(F) : F \subseteq X, F \text{ closed} \} = \inf\{\mu(O) : X \subseteq O, O \text{ open} \}$. It is easy to check that this defines a σ-additive measure on $S_x(A)$. Property (Reg) is referred to as regularity of the measure μ.

- Proposition 7.10, last paragraph of the proof.

Now take points $(a_i : i < n)$ in U such that $a_i \models p_i$. Set $\nu = \frac{1}{n} \sum_{i<n} \text{tp}(a_i/U)$. Let $b \in U$ and let $i < n$ be such that $\models \psi_i(b)$. Then we have $\models \theta_i^0(x) \rightarrow (x;b) \rightarrow \theta_i^1(x)$ and $\mu(\theta_i^1(x)) - \mu(\theta_i^0(x)) \leq \epsilon$. Thus $|\mu(\phi(x;b) \cap X) - \mu(\theta_i^0(x) \cap X)| \leq \epsilon$ and similarly $|\lambda'(\phi(x;b) \cap X) - \lambda'(\theta_i^0(x) \cap X)| \leq 3\epsilon$. Finally, since $\lambda'(\theta_i^0(x) \cap X)$ is within ϵ of $\mu(\theta_i^0(x) \cap X)$, we have that $\lambda'(\phi(x;b) \cap X)$ is within 5ϵ of $\mu(\phi(x;b) \cap X)$.

- Definition 7.23

Let $\mu(x)$ be a global M-invariant measure. We say that μ is fin (frequency interpretation measure) if for any formula $\phi(x;y) \in L$, there is a family $(\theta_n(x_1,\ldots,x_n) : n < \omega)$ of formulas in $L(M)$ such that:

- $\lim \mu(\phi(x_1,\ldots,x_n)) = 1$;
- for any $\epsilon > 0$, there exists a family $(\theta_n(x_1,\ldots,x_n) : n < \omega)$ such that any $b \in U$, $\text{Av}(a_1,\ldots,a_n;\phi(x;b))$ is within ϵ of $\mu(\phi(x;b))$.

- Theorem 7.29

(ii) for any formula $\phi(x;y) \in L$ and $\epsilon > 0$, there are $a_1,\ldots,a_n \in M$ such that for any $b \in U$, $\text{Av}(a_1,\ldots,a_n;\phi(x;b))$ is within ϵ of $\mu(\phi(x;b))$.

- Proposition 7.30, end of the proof.

Fix $\epsilon > 0$. By Proposition 7.27 there are $a_1,\ldots,a_n \in N$ such that for all $b' \in U$, $\text{Av}(a_1,\ldots,a_n;\phi(x;b'))$ is within ϵ of $\mu(\phi(x;b))$ and also $\text{Av}(a_1,\ldots,a_n;X)$ is within ϵ of $\mu(X)$. Then $\mu_X(\phi(x,y))$ is within ϵ of $\text{Av}(a_1,\ldots,a_n;X)$ which by definition of X is equal to $\text{Av}(a_1,\ldots,a_n;\phi(x;b))$, which is within ϵ of $\mu(\phi(x,y))$.

As this holds for all $\epsilon > 0$, the result follows.

- Proposition 8.21

The reduction to countable L is not so clear. One can argue using facts from the paper “Definably amenable NIP groups” with A. Chernikov: if p is f-generic in some language L, then its reduct to any sublanguage is also f-generic because it has bounded orbit. The reader may simply prefer to assume that L is countable in this proposition.

- Section 8.4 Compact domination. The paragraph before Lemma 8.39 should be:
Fix a countable elementary submodel U of the set theoretic universe containing L, T, M, G, μ etc. If $a \in U$ is a finite tuple, a point $b \in G(U)$ is said to be random over $M a$ if there does not exist some Borel set $B \subseteq S_{xy}(M)$ coded in U such that $B(a, b)$ holds and $\mu(B(a, y)) = 0$. Note that such a b always exists because we have to avoid countably many Borel sets of measure 0.