
Sheaves in Machine Learning

Grégoire Sergeant-Perthuis∗

January 15, 2024

Abstract

In these notes, we begin with an overview of how data with graph
structures are processed in deep learning, introducing graph neural net-
works. We discuss their limitations and present how extending graphs to
sheaves, processed by sheaf neural networks, can address these limitations.
We then discuss different ways to extend graphs to higher-order interac-
tions and the associated sheaves and invariants (cohomology groups). Fi-
nally, we show how these ideas can be extended to inference on graphical
models to improve interaction modeling under constraints and to provide
novel theoretical insights into classical message-passing algorithms.

1 Signals on Graphs and Graph Neural Net-
works

The presentation of this section is taken from the course slides [12] and Chapter
5 of [9].

Graphs, adjacency matrix, Laplacian, and signals on graphs. Graphs
are a flexible and expressive language for representing entities and the relations
or interactions between them. Many real-world domains naturally give rise to
graph-structured data, for example: knowledge graphs, regulatory and biological
networks, scene graphs in vision, code graphs in program analysis, molecules in
chemistry, and 3D shapes in computer graphics.

Definition 1 (Graph). A graph is a pair G = (V,E) where V is a set of vertices
(nodes) and E is a set of edges describing relations between vertices.

• In a directed graph, each edge e ∈ E is an ordered pair e = (u, v) indicating
direction, with u, v ∈ V .

• In an undirected graph, each edge e ∈ E is an unordered pair {u, v}.
∗CQSB, Sorbonne Université

1

A signal with the same feature space (Rn) on a graph is a collection of vectors
{xv ∈ Rn : v ∈ V }, where each xv represents the feature vector associated with
node v.

For this presentation, we will focus on undirected graphs in order to have
a graph Laplacian and normalized Laplacian that can be diagonalized. Recall
that the adjacency matrix of an undirected graph G = (V,E) is defined as

Au,v =

{
1 if {u, v} ∈ E,

0 otherwise,

where A is a symmetric |V | × |V | matrix with entries in {0, 1} indicating the
presence or absence of an edge between nodes u and v. Since A is symmetric for
undirected graphs, the combinatorial Laplacian L = D−A and the normalized
Laplacian ∆ = I −D−1/2AD−1/2 are also symmetric and therefore admit real
eigenvalues and an orthogonal eigenbasis [9].

Let us denote by N (u) the set of neighbors of u in the graph (V,E), i.e.

N (u) = { v ∈ V : Au,v ̸= 0}.

Graph Neural Networks. Tasks on graphs can take place at different levels
of granularity, including: node-level prediction, edge-level prediction, subgraph
and community-level tasks, graph-level prediction, graph generation. A typical
machine learning workflow on graphs first extracts features at the node, edge,
and graph levels, and then learns a model (e.g., SVM, neural network) that
maps these features to target labels. Graph representation learning alleviates
the need for manual feature engineering by learning informative representations
directly from the graph structure and node/edge attributes.

What corresponds to neural networks in deep learning are Graph Neural
Networks (GNN). They work as follows, a signal on a graph G, denoted h(0),

which, is a collection (h
(0)
v ∈ Rd(0)

, v ∈ V) is the input of the GNN. A GNN

consists of stacking L ∈ N layers GNNLay(ℓ) for ℓ = 1, . . . , L. Typically, each

layer GNNLay(ℓ) : Rd(ℓ−1)×|V | → Rd(ℓ)×|V | sends a signal h(ℓ−1) on the graph
G to an other signal h(ℓ) on the same graph G. Each layer is made of two
main operations: generating messages that each node sends to its neighbors and
aggregating those messages at each node before updating its representation.

The message functions are differentiable and parameterized, allowing them
to be learned from data during training. In general, there are two message
functions: one for the node sending a message to itself, denoted by MSGself,
and another for its neighbouring nodes, denoted by MSGneigh. These functions
do not depend on the identities of the nodes: for each node, the appropriate
function is used depending on whether the message originates from the node
itself or from one of its neighbours.

The sent messages take the following form:

2

m(ℓ)
u = MSGneigh

(
h(ℓ−1)
u

)
∀u ∈ N (v),

m(ℓ)
v = MSGself

(
h(ℓ−1)
v

)
Messages from all neighbors and optionally from the node itself are aggre-

gated using a permutation-invariant function:

h(ℓ)
v = AGG

({
m(ℓ)

u : u ∈ N (v)
}
, m(ℓ)

v

)
,

The aggregation function AGG can also include learnable parameters, as
is the case for example when using attention coefficients αu,v to weight the
contributions of neighbors in the aggregation. The total layer is

GNNLay(ℓ)(h(ℓ−1)) = AGG
({

MSGneigh

(
h(ℓ−1)
u

)
: u ∈ N (v)

}
, MSGself

(
h(ℓ−1)
v

))
.

The basic message-passing update for a Graph Neural Network layer (see [9,
Chapter 5.1.3]) can be written as

h(ℓ)
v = σ

W
(ℓ)
self h

(ℓ−1)
v +W

(ℓ)
neigh

∑
u∈N (v)

h(ℓ−1)
u + b(ℓ)

 ,

In this case:

m(ℓ)
u = MSGneigh

(
h(ℓ−1)
u

)
= W

(ℓ)
self h

(ℓ−1)
u , ∀u ∈ N (v),

m(ℓ)
v = MSGself

(
h(ℓ−1)
v

)
= W

(ℓ)
neigh h

(ℓ−1)
v ,

and,

h(ℓ)
v = AGG

({
m(ℓ)

u : u ∈ N (v)
}
, m(ℓ)

v

)
= σ

 ∑
u∈N (v)∪u

m(ℓ)
u + b(ℓ)


whereW

(ℓ)
self ,W

(ℓ)
neigh ∈ Rd(ℓ)×d(ℓ−1)

and b(ℓ) ∈ Rd(ℓ)

are respectively the learn-
able weight matrices and bias term at layer ℓ.

Graph Convolutional Network. One of the most widely used baseline
graph neural network models is the Graph Convolutional Network (GCN)[9, 13].
The layer-wise message passing update can be written as

h(ℓ)
v = σ

W (ℓ)
∑

u∈N (v)∪{v}

h
(ℓ−1)
u√

|N (v)| |N (u)|

 , (1)

where

3

• h
(ℓ)
u is the embedding of node u at layer k,

• N (u) denotes the set of neighbors of u,

• self-loops {u} are included explicitly in the neighborhood,

• the symmetric normalization
√
|N (u)| |N (v)| down-weights messages by

node degrees,

• W (ℓ) ∈ Rd(ℓ)×d(ℓ−1)

is a trainable weight matrix,

• σ(·) is a pointwise nonlinearity (e.g., ReLU).

In matrix form, the layer-wise message passing update can be rewritten as,

H(ℓ+1) = σ
(
H(ℓ) +D− 1

2 AD− 1
2 H(ℓ) W (ℓ)

)
, (2)

Let Ã = A+ I denote the adjacency matrix of the undirected graph G with
added self-connections, where I is the identity matrix. The degree matrix D̃ is
the diagonal matrix with

D̃ii =
∑
j

Ãij ,

i.e., its diagonal entries are given by the row sums of Ã.
To avoid signal amplification, [13] proposed to replace the first propaga-

tion rule given by I + D− 1
2 AD− 1

2 with a renormalized version defined by
D̃− 1

2 Ã D̃− 1
2 . The total update rule is then;

H(ℓ+1) = σ
(
D̃− 1

2 Ã D̃− 1
2 H(ℓ) W (ℓ)

)
. (3)

The issue of stacking many GNN layers. One of the central challenges
in designing deep Graph Neural Networks (GNNs) is the phenomenon known
as over-smoothing.

• Over-smoothing problem: As the number of GNN layers increases, the
node embeddings tend to become increasingly similar and ultimately con-
verge to nearly identical values across the graph. This results in represen-
tations that are indistinguishable from one another, even for nodes with
different structural or feature contexts.

• This is detrimental because in most downstream tasks (e.g., node classifi-
cation, link prediction) we rely on the ability of embeddings to differentiate
nodes based on their local and global context — which the over-smoothing
effect undermines.

• Why does over-smoothing happen? At a high level, standard GNNs
rely on iterative message passing and aggregation. Each layer updates
a node’s representation by combining its previous embedding with infor-
mation from its neighbors. After many such aggregations, the repeated

4

mixing of signals across the graph causes the representations of nodes, es-
pecially within the same connected component, to become homogenized.

• Formally, this effect has been characterized as the exponential convergence
of similarity measures between node features as depth increases. Under
typical message-passing schemes, the repeated application of local averag-
ing (or low-pass filtering on the graph) drives the node features toward a
consensus state, reducing their variance and expressive diversity.

We can understand the phenomenon of over-smoothing in GNNs through
the notion of the receptive field of a node.

• In a GNN, the embedding of a node at layer k is determined by information
aggregated from its receptive field, i.e., the set of nodes whose features can
influence that node after k message-passing layers, which typically corre-
sponds to its k-hop neighborhood. Each message-passing layer expands
this receptive field by one hop.

• If two nodes have highly overlapping receptive fields, then they will aggre-
gate similar information during message passing, and thus their learned
embeddings will tend to be highly similar. This similarity increases with
depth because more and more neighbors are included in each node’s re-
ceptive field.

• As we stack many GNN layers, the receptive fields of nodes within a con-
nected component increasingly overlap, eventually encompassing most of
the graph. Consequently, the node embeddings become nearly indistin-
guishable. This is precisely the over-smoothing problem, where represen-
tations collapse and lose discriminative power.

2 Sheaf Neural Networks

This section will be base on [17]. Celebrated references are [10, 5, 1].

Traditional GNNs treat node features as vectors in a single vector space
and aggregate them using simple operations (sum, mean, max). However, this
approach has limitations:

• Over-smoothing: Deep GNNs tend to make node representations increas-
ingly similar, losing discriminative power.

• Heterophily: When connected nodes have dissimilar features (heterophilic
graphs), simple aggregation performs poorly.

Sheaf neural networks address the previously mentioned issues by introducing
functors and sheaves over cell complexes, as we will see in the next section. For
now, the sheaves that are most amenable are those constructed over graphs. For
this section we will limit our attention to sheaves on graphs.

5

Let us first recall the link between heat diffusion and GCNs, recasting a
remark in [5]. Consider a graph with adjacency matrix A, diagonal degree
matrix D, normalised graph Laplacian ∆ := I − D−1/2AD−1/2, and an n × f
feature matrix X. We can define the heat diffusion equation and its Euler
discretisation with a unit step as follows:

Ẋ(t) = −∆X(t)

X(t+ 1) = X(t)−∆X(t) = (I−∆)X(t).

Comparing this with the Graph Convolutional Network model, we observe that
GCN is an augmented heat diffusion process with an additional f × f weight
matrix W and a nonlinearity σ:

GCN(X) = σ(D−1/2AD−1/2XW) = σ((I−∆0)XW). (4)

From this perspective, it is perhaps not surprising that GCN is particularly af-
fected by heterophily and oversmoothing since heat diffusion makes the features
of neighbouring nodes increasingly smooth. In what follows, we consider a much
more general and powerful family of (sheaf) diffusion processes leading to more
expressive sheaf convolutions.

2.1 Cellular sheaves over graphs

In a cellular sheaf, data is associated with both the nodes and edges of a graph,
effectively representing local and global structures.

Given an undirected graph G = (V,E), for each node v ∈ V , we associate
a vector space or algebraic structure F(v). Similarly, for each edge e ∈ E, we
associate a vector space or algebraic structure, F(e). F(v) and F(e) the local
data on the graph.

A restriction map Fv⊴e : F(v) → F(e) represents the relationship between
local data on nodes and edges for each incident node-edge pair v ⊴ e. In this
context, the vector spaces F(v) and F(e), corresponding to nodes and edges,
are called stalks.

For a given sheaf (G,F), the space of 0-cochains C0(G,F) is defined as the
direct sum over the vertex stalks:

C0(G,F) =
⊕
v∈V

F(v)

By assigning an arbitrary orientation to each edge e, the co-boundary map
serves as a linear map associating 0-cochains to 1-cochains by capturing the
difference between the data associated with the vertices connected by an edge.
Formally, the co-boundary map is defined as:

δ : C0(G,F)→ C1(G,F) = δ(x)e = Fv⊴exv −Fu⊴exu

The sheaf Laplacian is an operator that maps 0-cochains to 0-cochains:

LF = δT δ =
∑
v,u⊴e

FT
v⊴e(Fv⊴exv −Fu⊴exu) (5)

6

The sheaf Laplacian is a positive semi-definite block matrix. The diagonal
blocks are LF vv =

∑
v⊴e F⊤

v⊴eFv⊴e, while the non-diagonal blocks LF vu =

−F⊤
v⊴eFu⊴e. Denoting by D the block-diagonal of LF , the normalised sheaf

Laplacian is given by ∆F := D−1/2LFD
−1/2.

For simplicity, we assume that all the stalks have a fixed dimension d. In
that case, the sheaf Laplacian is a nd× nd real matrix, where n is the number
of nodes of G. When the vector spaces are set to R (i.e., d = 1) and the linear
maps to the identity map over R, the underlying sheaf is trivial and one recovers
the well-known n×n graph Laplacian matrix and its normalised version ∆0. In
general, ∆F is preferred to LF for most practical purposes due to its bounded
spectrum and, therefore, we focus on the former. A cochain x is called harmonic
if LFx = 0 or, equivalently, if x ∈ ker(LF). This means harmonic cochains are
characterised by zero disagreements along all the edges of the graph, and it is
not difficult to see that, in fact, H0(G;F) and ker(LF) are isomorphic as vector
spaces.

If the maps Fu⊴e are invertible, the sheaf Laplacian is called a connection
Laplacian; this is the case considered in [1], where the maps are orthogonal.

2.2 Neural Sheaf Diffusion

Considering a graph G = (V,E), each individual node v ∈ V is associated
with a d-dimensional feature vector xv ∈ F(v). The individual vectors xv are
column-stacked to create an nd-dimensional vector x ∈ C0(G,F). The vectors
belonging to C0(G,F) form the columns of the feature matrix X ∈ R(nd)×f .

Sheaf diffusion can then be described as a process that operates on (G,F),
controlled, at time t, by the differential equation:

X(0) = X, Ẋ(t) = −∆FX(t)

This equation is discretized using the explicit Euler scheme, which employs
a unit step size:

X(t+ 1) = X(t)−∆FX(t) = (Ind −∆F)X(t)

In the model proposed in [4], the discretization of the above equation is
carried out as follows:

X(t+ 1) = X(t)− σ(∆F(t)(In ⊗W t
1)XtW

t
2) (6)

In this case, the sheaf F(t) and the weights W t
1 ∈ Rd×d and W t

2 ∈ Rf1×f2 are
time-dependent. This implies that the underlying geometric structure of the
graph changes over time.

3 Around Topological Structures

We now discuss two different combinatorial structures: cell complexes and
posets, and the associated cohomology groups for their representations.

7

Definition 2 (Regular Cell Complex [7, Def. 4.1.1]). A regular cell complex X
is a topological space equipped with a partition into pieces {Xσ}σ∈PX

, called
cells, such that the following properties are satisfied:

1. Locally finite: Each point x ∈ X has an open neighborhood U that inter-
sects only finitely many Xσ.

2. For each σ ∈ PX , the cell Xσ is homeomorphic to Rk for some k (where
R0 is a point).

3. Axiom of the Frontier: If Xτ ∩Xσ ̸= ∅, then Xσ ⊆ Xτ . In this case, we
say that the pair (σ, τ) are incident or that Xσ is a face of Xτ . The face
relation makes the indexing set PX a poset by declaring σ ≤ τ whenever
Xσ ⊆ Xτ .

4. For each σ ∈ PX , the pair Xσ ⊆ Xσ is homeomorphic to the pair
int(Bk) ⊆ Bk, i.e. there is a homeomorphism φ : Bk → Xσ that sends the
interior int(Bk) homeomorphically onto Xσ.

Definition 3 (Cell Complex [7, Def. 4.1.3]). A cell complex is a topological
space X equipped with a partition into pieces {Xσ} that satisfies the first three
axioms of a regular cell complex.

Moreover, we require that when we take the one-point compactification of
X, then the cells {Xσ} ∪ {∞} are the cells of a regular cell complex structure
on X ∪ {∞}.

Definition 4 (Cell category [7, Def. 4.1.5]). To a cell complex (X, {Xσ}σ∈PX
)

we can associate a category Cell(X; {Xσ}), which is the indexing poset PX

viewed as a category. This means that there is one object σ for each Xσ and
a unique morphism σ → τ for each incident pair Xσ ⊆ Xτ . When there is no
risk of confusion, or a cell structure is specified at the beginning, then we will
suppress the extra notation and just use Cell(X) or X.

Definition 5 (Cellular Sheaves). A cellular sheaf F valued in a category D on
a cell complex X is a functor F : Cell(X)→ D, i.e. it consists of

• an assignment to each cell Xσ in X of an object F (σ) in D,

• and to every pair of incident cells Xσ ⊆ Xτ a restriction map ρFσ,τ :
F (σ)→ F (τ) such that, whenever σ ≤ τ ≤ γ,

ρFσ,τ ◦ ρFτ,γ = ρFσ,γ

Definition 6 ([7, Def. 6.1.7]). We write σ ≤i τ if the difference in the dimen-
sions of the cells σ and τ is i, i.e.

dim(σ)− dim(τ) = i.

Definition 7 (Signed Incidence Relation [7, Def. 6.1.9]). A signed incidence
relation is an assignment to any pair of cells σ, τ ∈ X of a number [σ : τ] ∈
{0,±1} such that

8

• if [σ : τ] ̸= 0, then σ ≤1 τ (i.e. τ covers σ in the face poset),

• and if γ and τ are any pair of cells, then∑
σ

[γ : σ] [σ : τ] = 0.

Definition 8 ([7, Def. 6.2.1]). Given a cellular sheaf F : X → Vect, the category
of vector spaces, we define its compactly supported k–cochains to be the product
of the vector spaces residing over all the k–dimensional cells:

Ck
c (X;F) =

⊕
σk

F (σk).

These vector spaces are graded components in a complex of vector spaces
C•

c (X;F). The differentials are defined by

δkc =
∑

σk≤τk+1

[σk : τk+1] ρτ,σ.

Let us now discuss Partially ordered sets

Definition 9 (Partially Ordered Set (poset)). A partially ordered set, or poset,
is a pair (P,≤) where P is a set and ≤ is a binary relation on P that is

1. reflexive: for all x ∈ P , x ≤ x,

2. antisymmetric: for all x, y ∈ P , if x ≤ y and y ≤ x then x = y,

3. transitive: for all x, y, z ∈ P , if x ≤ y and y ≤ z then x ≤ z.

The relation ≤ is called a partial order on P , and not every pair of elements in
P must be comparable under ≤.

Let C(A) denotes the category whose arrows go in the same direction to the
relation ≤, i.e. we have an arrow β → α whenever β ≤ α. Functors from C(A)op
to Vect, i.e. contravaraint functors, correspond to sheaves on XA for the lower
topology on A as we will define now.

Definition 10 (Alexandroff’s topologies on a poset). P. S. Alexandroff intro-
duced a natural topology on a poset A, given by a basis of open sets called
down-sets Uα = {β : β ≤ α}, indexed by α ∈ A; there are sometime denoted
as α ↓ in the poset litterature. The open subsets for the associated topology
are the sets U ⊆ A such that whenever b ≤ a with a ∈ U then b ∈ U ; those
opens subsets are called the lower-sets of A. We will name this topology the
lower Alexandroff topology (A-topology) of A, and denote XA as the topological
space obtained in this way.

The Čech cohomology on XA is one way to define cohomology groups for
functors on A [2]. Another approach is given by the derived cohomology of
the limit functor lim , the cohomology groups H•(C(A);F) are defined as the
right derived functors R•lim of the section functor of F [8, Definition 11.17,
Definition 13.2].

9

Definition 11 (H0(C(A);F)). Let A be a finite poset, and F : C(A) → Vect
a contravariant functor over C(A). The following short exact sequence defines
lim F = H0(C(A);F),

0 −→ lim F −→
∏
a∈A

Fa
δF−−→

∏
a,b∈A
a≥b

Fb

where for any

v ∈
∏

a,b∈A
a≥b

Fb and a, b ∈ A with b ≤ a,

we define (
δF (v)

)
(a, b) = F a

b (va)− vb.

4 Inference on diagrams in the category of Markov
kernels

This is the work presented at ACT 7[19], see also the more general setting
[21]. Graphical models are widely used families of probability distributions
that capture conditional independence relations between a collection of variables
Xi, i ∈ I; celebrated examples are Hidden Markov models, Bayesian Networks
[14]. Graphical models are built from directed and undirected graphs G = (I, A)
where nodes i ∈ I are uniquely identified with the variables Xi. Inference in
graphical models ultimately boils down to inference for an undirected graphical
model, achieved through the Belief Propagation algorithm [25]. Such Infer-
ence constitutes a specific instance of variational inference as it revolves around
a free energy termed the Bethe free energy [25].Adopting a variational infer-
ence perspective for graphical models has facilitated the extension of the Belief
Propagation algorithm to encompass broader classes of probability distributions,
enabling the accommodation of interactions among more that 2 variables in con-
trast to traditional graphical models (factor graphs [3]); this is achieved through
the introduction of the Kikuchi free energies [24]. Let us denote Mesf ,Kernf ,
the categories with objects finite measurable spaces and respectively with mor-
phisms measurable maps and the second Markov Kernels (stochastic matrices).
Mesf can be seen as a subcategory of Kernf . As exhibited in [26, 16, 15], what
underlies variational inference for those classes of probability distributions are
presheaves from a finite poset to Mesf which morphisms are epimorphisms. We
will call them the ’graphical’ presheaves. Our contribution is to extend the Gen-
eralized Belief Propagation [26] to any presheaf from a finite poset to Kernf .
This work is contained in Chapter 9 of [20] and Appendix 1 of unpublished [22],
where we consider the more general problem of optimizing a collection of cost
functions over a presheaf of signals.

Consider a collection of agents represented by vertices i ∈ I that can commu-
nicate their beliefs to neighboring vertices ∂i through undirected edges e ∈ A.

10

Each agent has its own representation of its environment, denoted by Ei.
They can share their beliefs with neighboring nodes j ∈ ∂i through a measurable
map f i

e : Ei → Ee. Graphical models and their extensions do not allow us to
account for such heterogeneity in the way each agent models their environment.
Such setting is better captured by cellular sheaves [6] and applications [11], an
important example of which are Sheaf Neural Networks [5], are limited to func-
tors from the poset associated to a graph (i ≤ e ⇐⇒ i ∈ e) to the category
of finite vector spaces Vectf . We are interested in the more general case where
beliefs transfer through a hierarchy, i.e. a poset, and we provide an algorithm
for inference in such case where Sheaf Neural Networks can’t be used; by con-
vention we consider presheaves instead of functors: ‘orders’ are given top-down.
Furthermore, cellular sheaves are restricted to the face poset of a cell complexe
and hence don’t apply to all hierarchies.

Definition 12 (Graphical presheaves). Let I be a finite set and A ⊆ P(I)
be a sub-poset of the powerset of I. Let Ei, i ∈ I are finite sets. For a ∈ A
Ea :=

∏
i∈a Ei, let Fa := Ea, and for b ⊆ a, let F a

b : Ea → Eb be the projection

map from
∏

i∈a Ei to
∏

i∈b Ei. F is called a graphical presheaf from A to Mesf .

For A a finite poset, the ‘zeta-operator’ of A, denoted ζ, from
⊕

a∈A R to⊕
a∈A R is defined as, for any λ ∈

⊕
a∈A R and any a ∈ A, ζ(λ)(a) =

∑
b≤a

λb. ζ

is invertible [18], we denote µ its inverse; its matrix expression (µ(a, b), b ≤ a)
defines the Möbius function of A. Let F be a presheaf from A to Kernf .
It induces a presheaf F̃ from A to Vectf , where F̃ a

b : P(Fa) → P(Fb) is the
linear map that sends probability distributions p ∈ P(Fa) to F a

b ◦ p. Follow-
ing [26], we introduce a free energy F(Q) =

∑
a∈A c(a) (EQa [Ha]− S(Qa));

c(a) =
∑

b≥a µ(b, a) is the generalization of the inclusion-exclusion formula as-
sociated to A. S(Qa) = −

∑
xa∈Fa

Qa(xa) lnQa(xa) is the entropy of Qa. We

propose to solve infQ∈lim F̃ FBethe(Q). F̃ ∗ is the functor obtained by dualizing

the morphisms F̃ a
b , i.e. F̃

∗,b
a : F̃ ∗

b → F̃ ∗
a sends linear maps lb : F̃

∗
b → R to lb ◦ F̃ a

b .

We denote its transpose as F̃ †,b
a for the l2 scalar product on REa and REb .

For a functor G from A to R-vector spaces, we define µG as, for any a ∈ A
and v ∈

⊕
a∈A G(a), µG(v)(a) =

∑
b≤a µ(a, b)G

b
a(vb). Let us define the function

FE(Q) :
∏

a∈A P(Ea) →
∏

a∈A R as FE(Q) = (EQa
[Ha] − Sa(Qa), a ∈ A),

which sends a collection of probability measures over A to their Gibbs free
energies. For any Q ∈

∏
a∈A P(Ea), let us denote dQFE as the differential of

FE at the point Q.

Theorem 1. Let A be a finite poset, let F be a presheaf from A to Kernf . Let
Ha : Fa → R be a collection of (measurable) functions. The critical points of F
are the Q ∈ lim F̃ such that,

µF̃ †dQFE|lim F̃ = 0 (7)

The message-passing algorithm we consider is Algorithm 1; it specializes to
the General Belief Propagation for Graphical Presheaves. For two elements of

11

a, b ∈ A, such that b ≤ a, two types of messages are considered: top-down
messages ma→b ∈ RFb and bottom-up messages nb→a ∈ RFa .

Algorithm 1: Message passage algorithm for presheaves from A to
Kernf

Data: Initialization: (m0
a→b ∈ F̃b, b, a ∈ A s.t. b ≤ a), poset A, a

presheaf F : A → Kernf ;
1 for t ≤ T do
2 for a ∈ A, b ∈ A such that b ≤ a do
3 ∀ωa ∈ Fa

4 nb→a(ωa)←
∏

c:b≤c
c̸≤a

exp
(∑

ω
′
b∈Fb

lnmc→b(ω
′

b) · F a
b (ω

′

b|ωa)
)

5 end
6 for a ∈ A, b ∈ A such that b ≤ a do
7 ba = e−Ha

∏
b∈A:
b≤a

nb→a

8 pa = ba∑
ωa

ba(ωa)

9 ma→b ← ma→b · F̃
b
a(pb)
pa

10 end

11 end

A criterion to stop the algorithm is when the beliefs do not change, i.e.,
when pt+1

a ≈ pta. The fixed points of the previous message-passing algorithm
correspond to critical points of F over lim F (Corollary of Theorem 2.2 [22]v2).

References

[1] Federico Barbero, Cristian Bodnar, Haitz Sáez de Ocáriz Borde, Michael
Bronstein, Petar Veličković, and Pietro Liò. Sheaf neural networks with
connection laplacians. In Topological, Algebraic and Geometric Learning
Workshops 2022, pages 28–36. PMLR, 2022.

[2] Daniel Bennequin, Olivier Peltre, Grégoire Sergeant-Perthuis, and
Juan Pablo Vigneaux. Extra-fine sheaves and interaction decompositions,
2020.

[3] Christopher M. Bishop. Pattern Recognition and Machine Learning.
Springer, 2006.

[4] Cristian Bodnar, Francesco Di Giovanni, Benjamin Paul Chamberlain,
Pietro Liò, and Michael M. Bronstein. Neural sheaf diffusion: A topo-
logical perspective on heterophily and oversmoothing in gnns, 2022.

[5] Cristian Bodnar, Francesco Di Giovanni, Benjamin Paul Chamberlain,
Pietro Lio, and Michael M. Bronstein. Neural sheaf diffusion: A topological

12

perspective on heterophily and oversmoothing in GNNs. In Alice H. Oh,
Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors, Advances
in Neural Information Processing Systems, 2022.

[6] Justin Curry. Sheaves, cosheaves and applications. PhD thesis, The Uni-
versity of Pennsylvania, 2013. arXiv:1303.3255.

[7] Justin Michael Curry. Sheaves, cosheaves and applications. University of
Pennsylvania, 2014.

[8] Jean Gallier and Jocelyn Quaintance. Homology, cohomology, and sheaf
cohomology for algebraic topology, algebraic geometry, and differential ge-
ometry. World Scientific, 2022.

[9] William L Hamilton. Graph representation learning. Morgan & Claypool
Publishers, 2020.

[10] Jakob Hansen and Thomas Gebhart. Sheaf neural networks. arXiv preprint
arXiv:2012.06333, 2020.

[11] Jakob Hansen and Robert Ghrist. Distributed optimization with sheaf ho-
mological constraints. In 2019 57th Annual Allerton Conference on Com-
munication, Control, and Computing (Allerton), pages 565–571, 2019.

[12] Jure Leskovec. CS224W: Machine Learning with Graphs. https://web.

stanford.edu/class/cs224w/, 2025. Course website, Stanford University.

[13] Thomas N. Kipf and Max Welling. Semi-supervised classification with
graph convolutional networks. In International Conference on Learning
Representations, 2017.

[14] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufmann Publishers, 1988.

[15] Olivier Peltre. A homological approach to belief propagation and Bethe
approximations. In International Conference on Geometric Science of In-
formation, pages 218–227. Springer, 2019.

[16] Olivier Peltre. Message passing algorithms and homology, 2020. Ph.D.
thesis, Link.

[17] Antonio Purificato, Giulia Cassarà, Federico Siciliano, Pietro Liò, and Fab-
rizio Silvestri. Sheaf4rec: Sheaf neural networks for graph-based recom-
mender systems. ACM Transactions on Recommender Systems, 4(2):1–26,
2025.

[18] Gian-Carlo Rota. On the foundations of combinatorial theory I. Theory of
Möbius functions. Probability theory and related fields, 2(4):340–368, 1964.

13

https://web.stanford.edu/class/cs224w/
https://web.stanford.edu/class/cs224w/
https://opeltre.github.io/assets/bib/Peltre-Message_Passing_Algorithms_and_Homology.pdf

[19] Grégoire Sergeant-Perthuis and Nils Ruet. Inference on diagrams in the
category of Markov kernels (Extended abstract). In 7th International Con-
ference on Applied Category Theory (ACT 7, 2024), Oxford (UK), United
Kingdom, June 2024. David Jaz Myers and Michael Johnso.

[20] Grégoire Sergeant-Perthuis. Intersection property, interaction decomposi-
tion, regionalized optimization and applications. PhD thesis, Université de
Paris, 2021. Link.

[21] Grégoire Sergeant-Perthuis. Regionalized optimization, 2022.

[22] Grégoire Sergeant-Perthuis. Regionalized optimization, 2022. https://

arxiv.org/abs/2201.11876.

[23] Grégoire Sergeant-Perthuis, Toby St Clere Smithe, and Léo Boitel. On the
functoriality of belief propagation algorithms on finite partially ordered
sets, 2025.

[24] Jonathan S. Yedidia, William T. Freeman, and Yair Weiss. Generalized
belief propagation. In Proceedings of the 13th International Conference
on Neural Information Processing Systems, NIPS’00, page 668–674, Cam-
bridge, MA, USA, 2000. MIT Press.

[25] Jonathan S. Yedidia, William T. Freeman, and Yair Weiss. Understanding
belief propagation and its generalizations, page 239–269. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2003.

[26] J.S. Yedidia, W.T. Freeman, and Y. Weiss. Constructing Free-Energy Ap-
proximations and Generalized Belief Propagation Algorithms. IEEE Trans-
actions on Information Theory, 51(7):2282–2312, July 2005.

14

https://www.researchgate.net/publication/349732943_Intersection_property_interaction_decomposition_regionalized_optimization_and_applications
https://arxiv.org/abs/2201.11876
https://arxiv.org/abs/2201.11876

A Sheaves and Belief Propagation

The next section is taken from [23, Section 2.3].
The General Belief Propagation algorithm is used to find the critical points of

the Generalized Bethe Free Energy. A classical result states that the fixed points
of this algorithm correspond to the critical points of that free energy, which
we state in Proposition 1. Let us now recall the expression of this algorithm
following [26, 16].

Let I be a finite set that serves as index for variables (Xi ∈ Ei; i ∈ I), each
of which takes values in a finite set Ei; let A ⊆ P(I) be a collection of subsets
of I and denote F the associated graphical presheaf. Let (Ha : Ea → R, a ∈ A)
be a collection of Hamiltonians. Let us denote the update rule of the General
Belief Propagation algorithm as BP. BP acts on messages that we will now
define. In the classical presentation of the algorithm, there are two types of
messages at each time t ∈ N∗. For elements a, b ∈ A such that b ⊆ a, we have
top-down messages ma→b ∈ REb

>0 and bottom-up messages nb→a ∈ REb
>0.

These messages are related as follows:

∀a, b ∈ A, s.t. b ⊆ a, nt
b→a =

∏
c:b⊆c
c̸⊆a

mt
c→b (8)

Beliefs, which are interpreted as probability distributions up to a multiplica-
tive constant and correspond to candidate sections of F , are defined as follows:

∀a ∈ A, ∀xa ∈ Ea bta(xa) ∝ e−Ha(xa)
∏
b∈A:
b≤a

nt
b→a(xb) (9)

where ∝ stands for proportional to. The multiplication of function nb→a

that have different domains is made possible because there is an the embedding
of REb into REa implicitly implied in the last equation; indeed, for x ∈ Ea and
f ∈ Eb, f : x 7→ f(xb) defines a function from Ea to R.

To clarify the presentation, we require that ba be a probability distribution
and normalize it accordingly. The update rule is given by,

∀a, b ∈ A, s.t.b ≤ a mt+1
a→b(xb) = mt

a→b(xb)

∑
ya:Fa

b (ya)=xb
bta(ya)

btb(xb)
(10)

One observes that in the previous Equation 10, any normalization of beliefs
does not change the update rule. The update rule can be rewritten in a more
condensed manner, updating only the top-down messages, for all a, b ∈ A, such
that b ≤ a,

mt+1
a→b(xb) = mt

a→b(xb)

∑
ya:F

a
b (ya)=xb

e−Ha(ya)
∏

c∈A:
c⊆a

∏
d:c⊆d
d̸⊆a

mt
d→c(xc)

e−Hb(xb)
∏

c∈A:
c⊆b

∏
d:c⊆d
d̸⊆b

mt
d→c(xc)

(11)

15

We denote the collection (ma→b; a, b ∈ A, b ≤ a) as m. We denote BP :⊕
a,b:b⊆a REb →

⊕
a,b:b⊆a REb as the operator underlying the update rule of

Equation 11, i.e., we define BP(mt) = mt+1.
Consider the collection (Ca→bma→b; a, b ∈ A, b ≤ a), where Ca→b is a strictly

positive constant, i.e., it does not depend on xb ∈ F (b). Then, there is a
collection of constants (C ′

a→b > 0; a, b ∈ A, b ≤ a) such that

BP(Ca→bma→b) = C ′
a→bBP(ma→b).

Furthermore, the associated beliefs defined by Equation 9 remain unchanged
under multiplication ofma→b by a constant Ca→b for all a, b ∈ A such that b ≤ a.

Therefore, BP is an algorithm that preserves the equivalence classes {C ·m},
i.e., it is defined by the relation m ∼ m′ whenever there is a collection of scalars
(Ca→b ̸= 0; a, b ∈ A, b ≤ a) such that

ma→b = Ca→bm
′
a→b for any a, b ∈ A with b ≤ a.

We shall denote the equivalence class of m as [m]. The action of BP on the
equivalence classes of messages is denoted by [BP] and defined as [BP]([m]) =
[BP(m)].

Proposition 1 (Yedidia, Freeman, Weiss, Peltre). Let I be an finite set, and
A ⊆ P(I) a collection of subsets of I; let F be a graphical presheaf. Let (ma→b ∈
REb

>0, a, b ∈ As.t. b ⊆ a) be a fix point of the Generalized Belief Propagation up to
a multiplicative constant, i.e. [m] = [BP]([m]). Let (ba, a ∈ A) be the associated
beliefs normalized so that each ba ∈ P(Ea) (Equation 9). Then (ba, a ∈ A) is a
critical point of FBethe under the constraint that p ∈ limPF . Furthermore, any
critical point of FBethe in limPF is a belief associated to a fixed point of BP.

Proof. See Theorem 5.15 in [16] or Theorem 5 in [26]. This result is also a
corollary of Theorem 2.2. [22].

An extension of the Belief Propagation algorithm to presheaves from a fi-
nite poset taking values in finite sets can be found in [22]. In their work, for
each presheaf F , they propose a message-passing algorithm, that we will de-
note as MP, whose set of fixed points corresponds to the critical points of the
Generalized Bethe Free Energy. When considering graphical presheaves, these
message-passing algorithms slightly differ from the Belief Propagation algorithm
but have the same fixed points, see for a description of the shared properties of
the two algorithms. However, as we will show, MP behaves well under natural
transformations ϕ : F → G, whereas BP does not. Let us now recall their
message-passing algorithm, MP. To do so, following [22], we need to introduce
the elementary operators from which MP is built.

For a functor G from A to R-vector spaces, we define µG as, for any a ∈ A
and v ∈

⊕
a∈A Ga, µG(v)(a) =

∑
b≤a µ(a, b)G

b
a(vb). Let F be a presheaf from a

finite poset A to finite sets FinSet. Let us call FE :
∏

a∈A REa →
∏

a∈A R the
extension of FBethe to real valued functions, i.e.

16

∀a ∈ A,FE(h)(a) =
∑

xa∈Fa

ha(xa)Ha(xa) +
∑

xa∈Fa

ha(xa) lnha(xa) (12)

Let us denote b ≤ a as a → b. Let δF :
⊕

a∈A Fa →
⊕

a,b∈A:b≤a Fb be
defined as, for (va ∈ Fa, a ∈ A):

∀a, b ∈ A, s.t. b ≤ a, δF (v)(a→ b) = F a
b (va)− vb (13)

For a (covariant) functor G, dG :
⊕

a,b∈A:b≤a G(b) →
⊕

a∈A Ga is defined
for (va→b, a, b ∈ A such that a ≥ b) as

dG(v)(a) =
∑
b:b≤a

Gb
a(va→b)−

∑
b:a≤b

vb→a. (14)

Here, G will be either F ∗ or F † when each space Fa is equipped with a scalar
product ⟨·, ·⟩a.

The ζ function of a functor G plays an import role in the Belief propagation
algorithm. ζG :

⊕
a∈A Ga →

⊕
a∈A Ga is defined as, for v ∈

⊕
a∈A Ga,

ζG(v)(a) =
∑
b≤a

Gb
a(vb) (15)

Proposition 2. Let F be a presheaf from a finite to finite sets. Let Ha ∈
RFa , a ∈ A, be a collection of Hamiltonians. The differential dFE :

⊕
a∈A F̃a →⊕

a∈A F̃ ∗
a that sends h to dhFE is invertible. We will denote its inverse by

gH :
⊕

a∈A F̃a →
⊕

a∈A F̃a.

Proof. Recall that FEa(ha) =
∑

xa
ha(xa)Ha(xa)+

∑
xa

ha(xa) lnha(xa), where

h ∈ REa , and dx denotes the differential of the function at point x. Therefore,

dhFEa =
∑
xa

dha(xa)(Ha(xa) + lnha(xa) + 1). (16)

with dha(xa) ∈
⊕

F̃ ∗
a being the linear form acting as (hb(xb); b ∈ A, xb ∈

Fb) 7→ ha(xa). Consider the scalar products ⟨ha, h
′

a⟩a =
∑

xa∈Fa
ha(xa)h

′

a(xa)

for each a ∈ A; denote ya ∈ F̃a the identification of dhFEa ∈ F ∗
a in Fa; then the

reformulation of Equation 16 is the following,

∀xa ∈ Fa, ya(xa) = Ha(xa) + lnha(xa) + 1

The previous equation is equivalent to

∀xa ∈ Fa, ha(xa) = e−Ha(xa)+ya(xa)−1

Therefore, we define

∀a ∈ A, ∀xa ∈ Ea, g+Ha,a
(l)(xa) = e−Ha(xa)+la(xa)−1. (17)

17

The function gH = (gHa,a; a ∈ A) is the inverse of dFE when the image

of dFE, i.e.,
⊕

a∈A F̃ ∗
a , is identified with

⊕
a∈A F̃a through the scalar product

⟨h, h1⟩ =
∑

a∈A⟨ha, h1,a⟩a.

Remark 1. Any other choice of scalar product ⟨·, ·⟩1 on F̃a induces another map

g
⟨·,·⟩1
a : F̃a → F̃a defined as ga ◦ f⟨·,·⟩ ◦ f−1

⟨·,·⟩1 , where ⟨·, ·⟩ is given by ⟨h, h1⟩ =∑
xa∈Ea

h(xa)h1(xa). The way the inverse gH = F̃ ∗
a → F̃a of Proposition 2 is

represented as a function g
⟨·,·⟩
H depends on the choice of scalar product on Fa. For

the scalar products ⟨ha, h
′

a⟩ =
∑

xa
ha(xa)h

′

a(xa), we denote the identification

f ⟨·,·⟩ : F̃ ∗
a → F̃a as f+ and the associated inverse map as g+H .

In what follows, we denote
⊕

a,b : b≤a Fb as F→ to simplify the notations.

Definition 13 (Message passing algorithms [22]). Choose for each a ∈ A a

scalar product ⟨·, ·⟩a on F̃a; equip F→ with the following scalar product: ⟨l, l1⟩ =∑
b,a : b≤a⟨la→b, l1,a→b⟩b. The message-passing algorithm MPF,H for inference

on a presheaf F from a finite poset A to finite sets, with Hamiltonians (Ha ∈
REa ; a ∈ A), is defined as follows:

∀l ∈ F→, MPF,H(l) = l + δF ◦ g⟨·,·⟩H ◦ ζF † ◦ dF †(l) (18)

The algorithm starts with a random initialization of messages l0 ∈ F→,
and lt+1 is updated into the value MPF,H(lt). We will denote ∆MPF,H the
increment δF ◦ gH ◦ ζF † ◦ dF † .

Proposition 3 (Sergeant-Perthuis). Let F be a presheaf from a poset A taking
values in finite sets. Let (Ha ∈ REa ; a ∈ A) be a collection of Hamiltonians.

Let (la→b ∈ F̃ ∗
b ; a, b ∈ A : b ≤ a) be a fixed point of MPF,H , i.e., MPF,H(l) = l.

Let ba ∈ P(Fa) be the unique probability distribution such that

ba ∝ gH ◦ ζF∗ ◦ dF (l).

Then (ba, a ∈ A) is a critical point of FBethe under the constraint that p ∈
limPF . Furthermore, any critical point of FBethe in limPF is a belief associated
to a fixed point of MPF,H .

18

	Signals on Graphs and Graph Neural Networks
	Sheaf Neural Networks
	Cellular sheaves over graphs
	Neural Sheaf Diffusion

	Around Topological Structures
	Inference on diagrams in the category of Markov kernels
	Sheaves and Belief Propagation

