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Available online at www.sciencedirect.com

ScienceDirect
Small regulatory RNAs can not only guide post-transcriptional

repression of target genes, but some of them can also direct

heterochromatin formation of specific genomic loci. Here we

review the published literature on small RNA-guided epigenetic

regulation in insects. The recent development of novel

analytical technologies (deep sequencing and RNAi screens)

has led to the identification of some of the factors involved in

these processes, as well as their molecular mechanism and

subcellular localization. Other findings uncovered an additional

mode of epigenetic control, where maternally inherited small

RNAs can affect phenotypes in a stable, transgenerational

manner. The evolutive history of small RNA effector proteins in

insects suggests that these two modes of regulation are

variably conserved among species.
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Introduction
Small regulatory RNAs in eukaryotes typically direct

post-transcriptional repression of specific genes. How-

ever, some small RNAs are involved in transcriptional

regulation, directing chromatin modifications that epigen-

etically control gene expression. These phenomena have

been thoroughly explored in insects. This review will

summarize current knowledge on the mode of action of

insect small RNAs in epigenetic regulation.

Characterization of small RNA-mediated phenomena in

animals revealed the co-existence of three major path-

ways (see [1] for a review). Each class of small RNAs is

loaded onto a protein of the ‘Argonaute’ family, which

contains the ‘Ago’ and ‘Piwi’ protein subfamilies [2]. In

one pathway, named ‘RNA interference’ (‘RNAi’), long

double-stranded RNAs are cleaved by an enzyme named

Dicer, generating diverse populations of small interfering
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RNAs (‘siRNAs’) that tend to cover the double-stranded

trigger sequence in a head-to-tail fashion. In an alternate

pathway, microRNAs (‘miRNAs’) are generated from

discrete genomic loci, whose transcripts fold into short

(� 70 nt long) hairpins. These hairpin-folded precursors

are cleaved by the RNases Drosha and Dicer, liberating

homogeneous RNA species, with most small RNA pro-

ducts being derived from a given locus having the exact

same sequence. Both siRNAs and miRNAs are loaded

onto effector proteins belonging to the ‘Ago’ subfamily.

Finally, a third pathway generates small RNAs in a Dicer-

independent manner, which are then loaded onto

proteins of the ‘Piwi’ subfamily. These Piwi-interacting

RNAs (‘piRNAs’) are mostly expressed in the gonad. Of

note, piRNAs were initially called ‘rasiRNAs’ (repeat-

associated siRNAs) [3].

Since the discovery of small RNA-mediated gene regu-

lation, the implication of small RNAs in guiding chroma-

tin changes has been demonstrated in several model

organisms such as plants [4], fungi [5,6] and ciliates [7].

These early discoveries in such diverse eukaryotic

lineages suggested that small RNA-mediated heterochro-

matinization could be a conserved feature among eukar-

yotes, particularly in insects. Indeed, several studies soon

reported chromatin defects in Drosophila when the bio-

genesis or action of small RNAs is perturbed (see [8–12]

for the key initial reports).

It is now clear that piRNAs are the primary small RNAs

mediating chromatin modifications. The implication of

Dicer (which does not generate piRNAs) and Piwi proteins

(which are only loaded with piRNAs) in a common phe-

notype became hard to rationalize, and it is likely that some

of the reported observations are not due to a direct effect of

small RNAs on homologous chromatin sequences. For

example, heterochromatic marks increase, rather than

decrease, on the tested loci in adult fly heads when RNAi

or the piRNA pathway is perturbed, suggesting that the

effect of small RNAs in that organ is indirect [13]. The

RNAi machinery is also dispensable for endogenous Poly-

comb-mediated heterochromatinization [14].

Whereas a direct role of the RNAi pathway in guiding

chromatin modification is now questioned, the involve-

ment of piRNAs is supported by many lines of evidence. In

addition to chromatin modifications, piRNAs in insects

have also been shown to promote extrachromosomal forms

of epigenetic inheritance. This review will focus on the

biogenesis and mode of action of piRNAs in these various

forms of epigenetic regulation. Most available data were

obtained in Drosophila melanogaster, but comparative
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2 That fraction can be evaluated in a Drosophila ovary somatic cell line,
genomics and pioneer biochemical work in additional

insect systems help draw a general picture of small

RNA-guided epigenetic modifications in insects.

Genomics of piRNAs in insects
piRNAs are extremely diverse in sequence, and individ-

ual piRNA sequences tend to be of very low abundance.

Consequently, the total piRNA repertoire, even in well-

studied species like D. melanogaster, is still far from being

completely documented, despite years of high-through-

put sequencing of ovarian small RNAs, and millions of

published fly piRNA sequences [15]. piRNAs tend to

originate from specialized genomic loci, the so-called

‘piRNA clusters’, which are usually located in hetero-

chromatic regions, and whose size typically ranges from a

few kilobases (kb) to more than 200 kb [16,17].

Drosophila piRNAs also frequently map on transposable

elements (TE) or other repeated sequences [16,18].

Many TE sequences are actually embedded in piRNA

clusters, although some piRNAs also originate from iso-

lated, euchromatic copies of TEs. All in all, whether they

are generated from piRNA clusters or from isolated TE

copies, between one-third and two-thirds of Drosophila
piRNAs map on TE sequences [15,16]. In a cell line

derived from Bombyx ovary that expresses both Piwi

proteins and piRNAs, 31% of the detected piRNAs

map on annotated repeated genomic sequences [19]. It

should be kept in mind that non-TE-matching RNAs in

these experiments may be co-immunoprecipitated con-

taminants, or actual TE-matching piRNAs that map to

non-anotated TE copies. Hence, these numbers may be

an under-estimation of the real percentage of TE-match-

ing piRNAs.

Several recent studies uncovered the surprising plasticity

of piRNA clusters in evolution. Insertion of either a TE or

a transgene containing fragments of a TE sequence can

transform a genomic locus into a novel piRNA cluster

[20,21]. As for pre-existing piRNA clusters, they can

experience frequent rearrangements (insertions,

deletions, recombinations) that alter the repertoire of

generated piRNAs [22].

TE-matching piRNAs are involved in the repression of

their cognate TEs. For example, mutants lacking either

components of the piRNA pathway (see for example

[18,23–28]) or functional piRNA clusters1 [29,30] de-

repress TEs in the germ line, which leads to massive

transposon mobilization, double-strand DNA breaks [31]

and, ultimately, sterility. Natural variability in piRNA

cluster composition also permits the isolation of fly strains

with diverse TE-repressing abilities [32,33].
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As for piRNAs that do not arise from repeated genomic

sequences, a fraction of them2 map on the 30 untranslated

regions (UTRs) of annotated, non-transposable genes

[34,35]. Since these piRNAs map on 30 UTRs in the

sense orientation, they are not complementary to the

gene’s mRNA and are therefore not expected to base-

pair with these mRNAs. The function of such piRNAs, if

any, remains elusive.

piRNA biogenesis
Unlike siRNAs and miRNAs, piRNAs are not generated

by a Dicer enzyme [18,36]. Their biogenesis has been

thoroughly studied in insects, with detailed genetic and

biochemical studies in D. melanogaster and Bombyx mori.

The oocyte is transcriptionnally inactive, and does not

express piRNAs. piRNAs are produced in additional germ

line cells, called ‘nurse cells’ (see Figure 1), then depos-

ited in the oocyte. Deep-sequencing analyses of Droso-
phila ovarian piRNAs revealed that piRNAs tend to be

complementary to each other throughout their first 10

nucleotides. This sequence feature suggested an auto-

ampliflying biogenesis pathway (named the ‘ping-pong

loop’), where a mature piRNA guides the cleavage of a

complementary piRNA precursor, thus contributing to

the maturation of another piRNA ([17,37]; see Figure 1).

More precisely, piRNAs loaded on a Piwi protein named

‘Aubergine’ (Aub) tend to be complementary to piRNAs

loaded on another Piwi protein, named ‘Ago3’. As Aub-

loaded piRNAs tend to have an uridine at their 50-most

position, Ago3-loaded piRNAs frequently have an ade-

nosine at position 10. For those piRNAs that match

transposon sequences, Aub-loaded piRNAs are usually

antisense to the transposon sequence, while Ago3-loaded

piRNAs are usually in the sense orientation.

Not only does the ping-pong loop produce mature piR-

NAs in an auto-amplifying fashion, but it also degrades

TE mRNAs: RNAs cleaved by Aub (these RNAs are the

precursors for Ago3-loaded piRNAs) are usually TE

mRNAs. For a few exceptional TEs, Aub-loaded piRNAs

are in the sense orientation and Ago3-loaded piRNAs are

in the antisense orientation. But in both cases, TE

mRNAs are chopped by either protein, hence degraded,

resulting in a post-transcriptional repression of TEs. At

the subcellular level, RNA cleavage by the ping-pong

loop occurs in an electron-dense structure named ‘nuage’,

that surrounds the nucleus of nurse cells (Figure 1).

This biogenesis mechanism, as well as these sequence

biases, is extremely conserved. For example, piRNAs

with a bias for uridine at position 1 and piRNAs with a

bias for adenosine at position 10 are found in the
involved in epigenetic regulations, Curr Opin Insect Sci (2014), http://dx.doi.org/10.1016/
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Figure 1
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Biogenesis of piRNAs. Bottom left: the canonical piRNA biogenesis involves the ping-pong amplification loop between Ago3-loaded piRNAs and Aub-

loaded (in Drosophila) or Siwi-loaded (in silkworm) piRNAs [17,19,37]. That process takes place in the cytoplasmic region surrounding the nucleus,

called ‘nuage’ (here in grey). In mosquitoes, piRNA sequence biases typical of the ping-pong loop have been observed, suggesting that mosquito

piRNAs are generated by the same mechanism [40–42]. Top and bottom right: in Drosophila, follicle cells produce piRNAs by an alternative

mechanism, involving a cytoplasmic maturation in Yb bodies followed by nuclear re-import [45–47]. These piRNAs are loaded on Piwi and they direct

heterochromatinization of target genomic loci.
Cnidarian Nematostella vectensis [39] whose last common

ancestor with insects occurred more than 600 million

years ago. Not surprisingly, these piRNA sequence

biases are also observed in Bombyx [19] and in mosqui-

toes [40–42], and an ortholog for Ago3 is easily ident-

ifiable in most insect species (‘Ago3 clade’ and

‘Putative divergent members of Ago3 clade’, in

Figure 2).

The ortholog for Aub underwent a more complex evolu-

tive history. Most insects possess a single Aub protein

(e.g. the Siwi protein in B. mori), but Drosophila expresses

a protein related to Aub, named Piwi (it is the founding

member of the Piwi subfamily, whose name was given to
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the whole protein subfamily). In Drosophila ovaries, the

Piwi protein is expressed not only in the germ cells, but

also in follicle cells (somatic cells flanking the oocyte).

Follicle cells, which do not express either Aub or Ago3,

produce piRNAs by a mechanism that does not appear to

involve the ping-pong amplification loop [34,38,43,44].

Rather, maturation of Piwi-loaded piRNAs in follicle cells

requires a transit through Yb bodies (these are cyto-

plasmic foci where several proteins involved in piRNA

biogenesis are concentrated), before the mature complex

is re-imported to the nucleus [45–47].

The duplication of an ancestral Aub/Piwi protein into

Aub and Piwi is recent: only the Brachycera suborder
involved in epigenetic regulations, Curr Opin Insect Sci (2014), http://dx.doi.org/10.1016/
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Figure 2

Pediculus humanus XP_002431988.1

Tribolium castaneum XP_001811159.1

Bombyx mori NP_001098066.2

Apis mellifera NP_001159378.1

Acyrthosiphon pisum XP_003245601.1

Pediculus humanus XP_002428948.1

Bombyx mori NP_001098067.2

Tribolium castaneum XP_968053.2

Apis mellifera XP_006565100.1

1.00

Drosophila melanogaster Ago1

Bombyx mori Ago1

Drosophila melanogaster Ago2

Bombyx mori Ago2

1.00

1.00

Drosophila grimshawi XP_001993535.1

Drosophila melanogaster NP_001036627.2

Musca domestica XP_005183556.1

Aedes aegypti XP_001652945.1

1.00
1.00

1.00 Drosophila grimshawi XP_001988082.1

Drosophila melanogaster NP_476734.1

Musca domestica XP_005192021.1

1.00
1.00

Drosophila grimshawi XP_001988079.1

Drosophila melanogaster NP_476875.1

Musca domestica XP_005182904.1

1.00
1.00

Acyrthosiphon pisum XP_001949248.1

Acyrthosiphon pisum XP_001945044.2

Acyrthosiphon pisum XP_001942742.2

1.00
1.00

0.98

Aedes aegypti XP_001657626.1

Aedes aegypti XP_001663408.1

Aedes aegypti XP_001663409.1

Aedes aegypti XP_001663870.1

1.00

1.00

0.85

0.97

Outgroup (Ago proteins)

Ago3 clade

Aub clade

Piwi clade

Members of a putative
Siwi clade

Mosquito-specific clade

Aphid-specific Siwi clade

Putative divergent
members of Ago3 clade

1.00

Current Opinion in Insect Science

Piwi protein subfamilies in insects. Piwi subfamily protein sequences were searched in the RefSeq database using HMMer, then aligned using clustalw

and the tree was computed using RAxML (using D. melanogaster and B. mori Ago protein sequences as an outgroup). Numeric values indicate the

bootstrap score of each branch; branches with bootstrap scores lower than 0.7 were dissociated (e.g. the putative Siwi clade). Only nine insect

species were retained for graphical clarity.

3 miRNA*s are small RNAs generated by the maturation of miRNA

precursors, they are sometimes as abundant as miRNAs and they can

also be loaded on Ago proteins: they are now considered to be as

functional as miRNAs.
(Drosophila and related fly species, such as Musca domes-
tica and Ceratitis capitata) possess recognizable forms of

both Aub and Piwi. Other Diptera (e.g. mosquitoes)

and other insects possess Aub/Piwi orthologs, which are

as similar to Drosophila Aub as to Drosophila Piwi.

Mosquito and aphid orthologs for Aub and Piwi were

also duplicated, but after the divergence with Brachy-

cera. Nothing indicates that any of their Aub/Piwi

proteins plays a role similar to that of the Drosophila
Piwi. Hence the role of Drosophila Piwi in guiding

chromatin changes (see below) may only be shared

with Brachycera species.
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Mature piRNAs are methylated on the 20 oxygen of their

30-most nucleotide, by a methyl-transferase named Hen1

[48,49]. In Drosophila, that chemical modification is not

unique to piRNAs, since Ago2-loaded small RNAs also

bear a 20-O-methyl group on their 30 end. Drosophila Ago2-

loaded RNAs consist of siRNAs [50] as well as some

miRNAs [51] and miRNA*s3 [52–54].
involved in epigenetic regulations, Curr Opin Insect Sci (2014), http://dx.doi.org/10.1016/
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Piwi-dependent transcriptional silencing
While the Drosophila post-transcriptional repressors Aub

and Ago3 are cytoplasmic, the third Drosophila Piwi

protein (which is named Piwi itself) is predominantly

nuclear. Piwi-mediated repression can be assessed in

follicle cells, that do not express Aub and Ago3: the role

of Piwi is not shadowed by these two subfamily members.

Consequently, most mechanistic studies regarding the

role of Piwi were performed in follicle cells, or a cultured

cell line derived from follicle cells. However, it should be

kept in mind that Piwi may exert a different molecular

function in the germ line [55��].

The RNase activity of Piwi is not required for TE

repression [46,56], suggesting that it does not repress

its target post-transcriptionally by RNA cleavage. Rather,

Piwi appears to be guided towards TE loci and to promote

the deposition of heterochromatic marks (e.g. histone 3

lysine 9 trimethylation, H3K9me3) on the neighbouring

chromatin, resulting in transcriptional silencing

[55��,57��,58��] (see bottom right panel of Figure 1).

These studies showed that the loss of Piwi results in

increased levels of nascent TE transcripts, of PolII occu-

pancy on TE genes, and a decrease in H3K9me3 marks on

TE genes. Piwi and its associated piRNAs also affect the

expression of genes surrounding euchromatic TE copies

by the spreading of the H3K9me3 repressive mark on

flanking sequences [57��]. It is hypothesized that piRNAs

guide the Piwi protein to target loci by base-pairing to the

nascent transcript (rather than to a DNA strand), since

piRNAs can trigger heterochromatinization only when

they are antisense to an artificial target transcription unit

[57��] and Piwi interacts indirectly (in an RNase-sensitive

manner) with several proteins that bind nascent tran-

scripts [58��]. As the nascent transcript is physically

bound to chromatin, recruitment of Piwi on these RNAs

could trigger heterochromatinization locally, on the target

gene and neighbouring genes.

So far, a single cofactor (Gtsf1, also known as Asterix) has

been reported to be involved in Piwi-dependent hetero-

chromatinization [59�,60�,61�]. The murine Gtsf1 is also

known to be essential for retrotransposon control, but

only in the male germ line [62]. Another Drosophila
cofactor, Maelstrom, is implicated in Piwi-dependent

transcriptional silencing, but not for heterochromatin

formation [57��]. Biochemical approaches will now be

needed to clarify the molecular mechanism of Piwi-de-

pendent TE transcriptional repression and the exact role

of each of these cofactors.

piRNAs and epigenetic inheritance
In addition to their role in heterochromatinization, Dro-
sophila piRNAs participate in another form of epigenetic

control, based on the inheritance of piRNAs across gener-

ations. piRNAs, loaded on Piwi proteins, are deposited in

the embryo by the mother [63,64]. The pool of inherited
Please cite this article in press as: Chambeyron S, Seitz H: Insect small non-coding RNA 
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piRNAs accumulates mainly in the posterior pole of the

embryo, which will give rise to germinal cell progenitors,

but it can also be detected in the bulk of the embryo that

will give rise to both gonadal and non-gonadal somatic

tissues (Figure 3). Maternal deposition of piRNAs is import-

ant for the production of piRNAs in both germinal and

somatic gonadal tissues in the adult fly following develop-

ment of the embryo [63,64]. While the maternal deposition

of Aub and Piwi has been demonstrated, deposition of

Drosophila Ago3 has not yet been observed. Ago3 may also

be deposited though, and its low intracellular abundance

may explain why it has escaped detection. However, Ago3

deposition has been described in B. mori [65].

In the germ line, two possible mechanisms have been

proposed to explain the role of maternal deposition in the

accumulation of piRNAs in the next generation. These

two models are not mutually exclusive.

The first proposed mechanism is based on the transcrip-

tional effects of Piwi. Owing to its ability to affect

chromatin marks through its binding to nascent RNAs,

Piwi might guide the deposition of special, piRNA clus-

ter-specific marks on loci recognized by its piRNAs. Such

molecular flags could then convert these loci into piRNA

factories, directing their transcripts to the piRNA bio-

genesis pathway. Such a phenomenon might explain the

awakening of a transgenic piRNA cluster by maternally

deposited piRNAs [66��]. Indeed, a repeated genomic

region that does not generate piRNAs becomes a germ-

inal piRNA producer in the presence of maternally inher-

ited homologous piRNAs. Once acquired, the ability to

produce piRNAs is stably transmitted over generations.

The second mechanism involves the post-transcriptional

ping-pong loop between Aub and Ago3. Germinal piRNA

biogenesis not only requires the production of functional

RNA precursor transcripts by competent piRNA clusters,

but also some initial, mature piRNAs that can initiate the

auto-amplifying loop [64]. The probability of initiation of

any given pair of Ago3-loaded and Aub-loaded piRNAs

should then determine the final abundance of that piRNA

pair in the ovary. Indeed, the amount of piRNAs in the

ovary correlates positively with the amount that was

deposited by the mother [67��]. The same study also

showed that the amount of deposited maternal piRNAs

depends on an environmental factor (temperature) as well

as on the age of the mother, providing a rationale for the

effect of these non-genetic factors [68]. A ping-pong loop

only requiring defective heterochromatic transcripts is

sufficient for the transmission of epigenetic silencing over

generations in the absence of functional TE transcripts.

Increased piRNA production is progressively lost over

five or more generations.

Ovarian somatic piRNA production also appears to be

affected by extrachromosomal inheritance. In Drosophila
involved in epigenetic regulations, Curr Opin Insect Sci (2014), http://dx.doi.org/10.1016/
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Figure 3
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Transgenerational inheritance of epigenetic piRNA-based repression in Drosophila. Maternally deposited piRNAs (loaded on their cognate Piwi

proteins) accumulate mostly in the posterior pole of the embryo, that will give rise to germinal cells. They could prime the ping-pong amplification loop

in the future germinal cells of the embryo, and activate the production of piRNAs from piRNA clusters by directing the deposition of specific chromatin

marks. Piwi-loaded piRNAs are also detected, but less abundantly, in the bulk of the embryo, where they are believed to guide heterochromatinization

in future somatic cells (gonadal and non-gonadal).
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simulans, maternally deposited piRNAs are essential for

the transcriptional repression of the tirant TE in ovarian

soma [69�]. This study suggests that maternally deposited

piRNAs might initiate the production of Piwi-dependent

piRNAs by inducing changes on the chromatin state of

piRNA clusters in gonadal somatic tissues, similarly to

what was proposed in the germ line (see above).

Finally, Piwi also appears to affect the chromatin of a

reporter gene in non-gonadal somatic tissues. Once

deposited, heterochromatin marks are maintained

throughout development in a Piwi-independent manner

[70]. Hence, Piwi-dependent heterochromatinization

seems to also take place in the bulk of the embryo, thus

controlling transcriptional activity in adult extra-gonadal

tissues.

Conclusion
Among the three classes of small regulatory RNAs in

insects, piRNAs have a clear effect on the acquisition

and propagation of epigenetic changes. In the best studied

species, D. melanogaster, piRNAs exert two types of epige-

netic controls. On the one hand, Piwi-loaded piRNAs can

guide heterochromatinization of homologous loci, appar-

ently triggered by the recruitment of piRNAs through

complementary nascent transcripts. This process could

be unique to the Brachycera suborder (Drosophilids and

related fly species, such as Musca domestica and Ceratitis
capitata). Other insects possess orthologs for the other two

Piwi subfamily proteins (Aub and Ago3), but nothing

indicates that they express a functional ortholog of Droso-
phila Piwi. Nevertheless, a conserved role for piRNAs in

heterochromatin formation cannot be ruled out, as mam-

malian piRNAs seem to be able to direct DNA methylation

[71]. A recent study indeed suggests that the two Bombyx
Piwi proteins, named Siwi and Ago3, play a transcriptional

role in addition to their post-transcriptional role [72].

Further studies are needed to determine what fraction

of Siwi and Ago3 is involved in these nuclear processes.

On the other hand, maternally deposited piRNAs, loaded

onto Piwi, Aub or Ago3, are responsible for an extrachro-

mosomal form of epigenetic inheritance, where mater-

nally inherited piRNAs prime the production of

secondary piRNAs in the embryo, thus allowing the

continuous repression of piRNA targets.

These two modes of action for piRNAs ensure a stable

silencing of repeated sequences across generations. The

peculiar biogenesis of piRNAs, expressing a large diversity

of small RNAs from fast evolving genomic clusters, pro-

vides the basis for a dynamic genome protection system,

which can adapt rapidly to emerging TE invasions.
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repeat-associated small interfering RNA-mediated silencing
pathway downregulates complementary sense gypsy
transcripts in somatic cells of the Drosophila ovary. J Virol
2007, 81:1951-1960.
involved in epigenetic regulations, Curr Opin Insect Sci (2014), http://dx.doi.org/10.1016/

www.sciencedirect.com

http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0080
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0080
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0085
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0085
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0085
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0085
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0090
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0090
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0090
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0095
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0095
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0095
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0095
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0100
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0100
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0100
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0100
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0100
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0105
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0105
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0105
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0105
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0110
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0110
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0110
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0110
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0110
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0115
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0115
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0115
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0115
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0120
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0120
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0120
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0120
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0125
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0125
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0125
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0125
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0125
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0130
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0130
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0130
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0130
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0135
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0135
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0135
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0140
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0140
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0140
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0145
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0145
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0145
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0150
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0150
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0150
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0150
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0155
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0155
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0155
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0155
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0155
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0160
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0160
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0160
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0160
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0165
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0165
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0165
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0170
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0170
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0170
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0170
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0175
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0175
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0175
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0175
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0175
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0180
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0180
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0180
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0180
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0180
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0185
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0185
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0185
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0185
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0185
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0190
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0190
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0190
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0190
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0195
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0195
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0195
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0195
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0200
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0200
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0200
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0200
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0205
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0205
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0205
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0205
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0210
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0210
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0210
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0215
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0215
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0215
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0215
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0215
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0220
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0220
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0220
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0220
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0225
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0225
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0225
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0225
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0230
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0230
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0230
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0230
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0235
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0235
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0235
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0235
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0240
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0240
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0240
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0240
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0245
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0245
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0245
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0245
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0245
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0245
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0250
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0250
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0250
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0250
http://refhub.elsevier.com/S2214-5745(14)00009-1/sbref0250
http://dx.doi.org/10.1016/j.cois.2014.05.001
http://dx.doi.org/10.1016/j.cois.2014.05.001


Insect small RNAs in epigenetic regulations Chambeyron and Seitz 9

COIS-8; NO. OF PAGES 9
51. Förstemann K, Horwich MD, Wee L, Tomari Y, Zamore PD:
Drosophila microRNAs are sorted into functionally distinct
argonaute complexes after production by Dicer-1. Cell 2007,
130:287-297.

52. Okamura K, Liu N, Lai EC: Distinct mechanisms for microRNA
strand selection by Drosophila Argonautes. Mol Cell 2009,
36:431-444.

53. Czech B, Zhou R, Erlich Y, Brennecke J, Binari R, Villalta C,
Gordon A, Perrimon N, Hannon GJ: Hierarchical rules for
Argonaute loading in Drosophila. Mol Cell 2009, 36:445-456.

54. Ghildiyal M, Xu J, Seitz H, Weng Z, Zamore PD: Sorting of
Drosophila small silencing RNAs partitions microRNA*
strands into the RNA interference pathway. RNA 2010, 16:
43-56.

55.
��

Rozhkov NV, Hammell M, Hannon GJ: Multiple roles for Piwi in
silencing Drosophila transposons. Genes Dev 2013, 27:
400-412.

This article (as well as Refs [57��,58��]) demonstrates that the Piwi/piRNA
complex affects transcription of its target loci in follicle cells.

56. Darricarrère N, Liu N, Watanabe T, Lin H: Function of Piwi, a
nuclear Piwi/Argonaute protein, is independent of its slicer
activity. Proc Natl Acad Sci U S A 2013, 110:1297-1302.

57.
��

Sienski G, Dönertas D, Brennecke J: Transcriptional silencing of
transposons by Piwi and maelstrom and its impact on
chromatin state and gene expression. Cell 2012, 151:964-980.

This article (as well as Refs [55��,58��]) demonstrates that the Piwi/piRNA
complex affects transcription of its target loci in follicle cells.

58.
��

Le Thomas A, Rogers AK, Webster A, Marinov GK, Liao SE,
Perkins EM, Hur JK, Aravin AA, Tóth KF: Piwi induces piRNA-
guided transcriptional silencing and establishment of a
repressive chromatin state. Genes Dev 2013, 27:390-399.

This article (as well as Refs [55��,57��]) demonstrates that the Piwi/piRNA
complex affects transcription of its target loci in follicle cells.

59.
�

Dönertas D, Sienski G, Brennecke J: Drosophila Gtsf1 is an
essential component of the Piwi-mediated transcriptional
silencing complex. Genes Dev 2013, 27:1693-1705.

This article (as well as Refs [60�,61�]) identifies Drosophila Gtsf1 as a Piwi
cofactor for transcriptional silencing.

60.
�

Ohtani H, Iwasaki YW, Shibuya A, Siomi H, Siomi MC, Saito K:
DmGTSF1 is necessary for Piwi-piRISC-mediated
transcriptional transposon silencing in the Drosophila ovary.
Genes Dev 2013, 27:1656-1661.

This article (as well as Refs [59�,61�]) identifies Drosophila Gtsf1 as a Piwi
cofactor for transcriptional silencing.

61.
�

Muerdter F, Guzzardo PM, Gillis J, Luo Y, Yu Y, Chen C, Fekete R,
Hannon GJ: A genome-wide RNAi screen draws a genetic
framework for transposon control and primary piRNA
biogenesis in Drosophila. Mol Cell 2013, 50:736-748.

This article (as well as Refs [59�,60�]) identifies Drosophila Gtsf1 as a Piwi
cofactor for transcriptional silencing.
Please cite this article in press as: Chambeyron S, Seitz H: Insect small non-coding RNA 

j.cois.2014.05.001

www.sciencedirect.com 
62. Yoshimura T, Toyoda S, Kuramochi-Miyagawa S, Miyazaki T,
Miyazaki S, Tashiro F, Yamato E, Nakano T, Miyazaki J: Gtsf1/
Cue110, a gene encoding a protein with two copies of a CHHC
Zn-finger motif, is involved in spermatogenesis and
retrotransposon suppression in murine testes. Dev Biol 2009,
335:216-227.

63. Chambeyron S, Popkova A, Payen-Groschêne G, Brun C,
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