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First of all, we would like to thank S. Arlot, P. Bühlmann, R. Genuer, P. Geu-
rts, G. Hooker, F. Leonardi, L. Mentch, S. Wager and L. Wehenkel for their
insightful and stimulating comments on our review paper, as well as for their
thorough investigation. We also thank the Editors-in-Chief for letting us the
opportunity to comment the issues raised in the discussions.

The comments all underline the importance of random forests and of the con-
nected topic of variable selection. Of special interest is the diversity of per-
spectives, which include theoretical, practical, and computational issues. To
summarize, there are five main points in the discussions that are quite recur-
rent:

(i) How can the results on “simplified” random forests be used to gain
access to the complex machinery of Breiman’s forests?

(ii) Do the existing results on Breiman’s forests extend to the non-i.i.d. set-
ting?
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(iii) What is the best randomization scheme? (feature selection at each
node? at the beginning of tree construction?)

(iv) How does the correlation between features impact the forest procedure
and the variable importance?

(v) Which splitting criterion is the most adapted to a given learning task?

It is unfortunately not possible to address all these exciting issues within the
confines of this rejoinder. In effect, each of them is a research area in its own,
and they all together define an ambitious multi-year research program. We
would like instead to add a sixth item to the list above, regarding the out-
of-bag (oob) error estimate properties (which is defined on page 10 of the
manuscript).

Consider a forest in the classification regime, where each pair (Xi, Yi) takes
its values in, say, [0, 1]d × {0, 1} and n ≥ 2. Assuming that the resampling
prior to the j-th tree construction is done with bootstrap (so, an = n and
replacement is allowed), we end up with two data sets: the original obser-

vations Dn = ((X1, Y1), . . . , (Xn, Yn)), and the bootstrapped data set D
(j)
n =

((X
(j)
1 , Y

(j)
1 ), . . . , (X

(j)
n , Y

(j)
n )), with possible repetitions. In the notation of the

article, the j-th tree classifier is mn(X;Θj ,Dn). In the sequel we set Θ(j) ≡ Θj
and use the more explicit notation mn(X;Θ(j),D

(j)
n ), which highlights the fact

that the tree is grown with the resampled data D
(j)
n .

The oob error estimate is defined as follows. For any observation Xi, let

B(i)
n =

{
j ∈ {1, . . . ,M} : (Xi, Yi) /∈ D (j)

n

}
be the set of indices j such that the j-th tree does not use Xi in its con-
struction (i.e., Xi is not selected in the j-th bootstrap step). Accordingly, let
moob
M,n(Xi; Dn) be the majority vote among trees that do not use Xi in their

construction, that is

moob
M,n(Xi; Dn) =

{
1 if 1

|B(i)
n |

∑
j∈B(i)

n
mn(Xi;Θ

(j),D
(j)
n ) > 1/2

0 otherwise.

Then, the oob error estimate is but the error of the moob
M,n(Xi; Dn) averaged

over all Xi:

L̂oob
M,n =

1

n

n∑
i=1

1moob
M,n (Xi;Dn) 6=Yi

.

Then, if mM,n(X;Θ1, . . . , ΘM ,Dn) denotes Breiman’s random forest, an in-

teresting open problem is to compare L̂oob
M,n with the natural target

LM,n = P[mM,n(X;Θ1, . . . , ΘM ,Dn) 6= Y |Dn],

where the probability is taken with respect to both (X, Y ) and Θ1, . . . , ΘM .
The random quantity LM,n measures the effectiveness of the forest, and since
it cannot be computed, the immediate need of the statistician is to estimate
it by L̂oob

M,n as accurately as possible. Therefore, the challenge that we put on
the sixth position of the list is the following one:
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(vi) Derive an exponential inequality for P[|L̂oob
M,n − LM,n| ≥ ε].

Let us now describe another stimulating challenge. Letting

A(j)
n =

{
i ∈ {1, . . . , n} : (Xi, Yi) /∈ D (j)

n

}
and denoting by α

(j)
n its cardinality, we may define the j-th individual oob

error estimate as

L̂(j)
n = 1

α
(j)
n 6=0

× 1

α
(j)
n

∑
i∈A(j)

n

1
mn(Xi;Θ(j),D

(j)
n )6=Yi

.

L̂
(j)
n is the estimation of the j-th tree error evaluated over the data that are left

out by the j-th bootstrap. We note that the event [α
(j)
n = 0] has probability

n!/nn, which by Stirling’s approximation behaves as
√

2πne−n as n→∞.

Logically, the global oob error estimate is the average of the individual error
estimates. Thus, for a forest with M trees, we have

L̂M,n =
1

M

M∑
j=1

L̂(j)
n .

Let
Ln = P[mn(X;Θ,Dn) 6= Y |Dn]

be the error of a random tree. The following lemma is proved at the end of
the discussion.

Lemma 1 For all ε > 0 and n ≥ 2,

P
[
|L̂M,n − Ln| ≥ ε

]
≤ 2Me

−nmin
(

ε2

160 ,
2
25

)
+Me

√
ne−n + 2e−Mε2/2.

In particular, with the choice M = dn/80e, regardless of the distribution of
(X, Y ),

P
[
|L̂M,n − Ln| ≥ ε

]
≤
(
n

40
+ 4 + e

)
e
−nmin

(
ε2

160 ,
2
25

)
.

Lemma 1 shows that L̂M,n and Ln are asymptotically exponentially close,
provided M = dn/80e. This distribution-free result is not surprising since,
given the data set Dn, Ln is but the error of a single random tree averaged
over the randomization parameter Θ.

Observe that Θ is of the form Θ = (Θ1, Θ2), where Θ1 describes the bootstrap
subset selection prior to the tree growing, and Θ2 encapsulates the random
feature selection in action at the nodes of the tree. So, for each tree of the

forest, Θ
(j)
1 chooses with replacement n items within the list {1, . . . , n} and

the j-th tree is grown with the bootstrapped data subset D
(j)
n . On the other

hand, if this tree were to be grown with the original data set Dn instead
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of D
(j)
n —that is, if we used all available data—then we would measure its

prediction performance via the criterion

L̄n = P[mn(X;Θ2,Dn) 6= Y |Dn].

The second challenge that we pose is as follows:

(vi)′ Derive an exponential inequality for P[|L̂M,n − L̄n| ≥ ε].

Put differently, we would like to know under which conditions on the distri-
bution of (X, Y ) the global oob error estimation process is smart enough to
accurately estimate the average error of a tree grown with the whole data set,
without any prior bootstrap randomization. A possible route to follow is to
note that each tree of the forest is a Layered Nearest Neighbor estimate (LNN,
see page 13 of the article) and adapt stability arguments given by Devroye and
Wagner (1969) for the holdout estimate of the classification error of k-local
rules. We believe however that the analysis is more involved in the case of
forests, since the tree rests upon the highly nonlocal cart program.

Appendix: Proof of Lemma 1. Let, for fixed j,

L(j)
n = P[mn(X;Θ(j),D (j)

n ) 6= Y |Θ(j),Dn]

and observe that
E[L̂(j)

n |Θ(j),D (j)
n ] = 1

α
(j)
n 6=0

L(j)
n . (1)

Also notice that

P
[
|L̂(j)
n − L(j)

n | ≥ ε
]

≤ P
[
|L̂(j)
n − 1α(j)

n 6=0
L(j)
n | ≥ ε/2

]
+ P

[
|1
α

(j)
n =0

L(j)
n | ≥ ε/2

]
≤ P

[
|L̂(j)
n − 1α(j)

n 6=0
L(j)
n | ≥ ε/2

]
+ P[α(j)

n = 0]

= P
[
|L̂(j)
n − 1α(j)

n 6=0
L(j)
n | ≥ ε/2

]
+ n!/nn.

Therefore, using (1) and Hoeffding’s inequality (Hoeffding, 1963), we obtain

P
[
|L̂(j)
n − L(j)

n | ≥ ε
]

≤ E
[
P
[∣∣L̂(j)

n − E[L̂(j)
n |Θ(j),D (j)

n ]
∣∣ ≥ ε/2 ∣∣∣Θ(j),D (j)

n

]]
+ n!/nn

≤ 2Ee−α
(j)
n ε2/2 + n!/nn.

A second application of (one-sided) Hoeffding’s inequality shows that for t > 0,

with probability larger than 1 − e−2t2/n, α
(j)
n > −t + n(1 − 1/n)n. Thus, for

all t > 0,

Ee−α
(j)
n ε2/2 ≤ e(tε

2−n(1−1/n)nε2)/2 + e−2t
2/n

≤ e−nε
2(−t/n+1/4)/2 + e−2t

2/n,
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since (1− 1/n)n ≥ 1/4 for all n ≥ 2. The choice t = n/5 yields

Ee−α
(j)
n ε2/2 ≤ 2e

−nmin
(

ε2

40 ,
2
25

)
.

Putting all the pieces together, we conclude that, for all ε > 0,

P
[
|L̂M,n − Ln| ≥ ε

]
≤ P

[ 1

M

M∑
j=1

|L̂(j)
n − L(j)

n | ≥ ε/2
]

+ P
[∣∣∣ 1

M

M∑
j=1

L(j)
n − Ln

∣∣∣ ≥ ε/2]

≤M
(

2e
−nmin

(
ε2

160 ,
2
25

)
+ n!/nn

)
+ P

[∣∣∣ 1

M

M∑
j=1

L(j)
n − Ln

∣∣∣ ≥ ε/2].
By Hoeffding’s inequality, the last term is upper bounded by 2e−Mε2/2. Thus,

P
[
|L̂M,n − Ln| ≥ ε

]
≤ 2Me

−nmin
(

ε2

160 ,
2
25

)
+Me

√
ne−n + 2e−Mε2/2.

Finally, letting M = dn/80e, we have

P
[
|L̂M,n − Ln| ≥ ε

]
≤
(
n

40
+ 4 + e

)
e
−nmin

(
ε2

160 ,
2
25

)
.
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