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Abstract

The random forest algorithm, proposed by L. Breiman in 2001, has
been extremely successful as a general purpose classification and re-
gression method. The approach, which combines several randomized
decision trees and aggregates their predictions by averaging, has shown
excellent performance in settings where the number of variables is
much larger than the number of observations. Moreover, it is versa-
tile enough to be applied to large-scale problems, is easily adapted to
various ad-hoc learning tasks, and returns measures of variable im-
portance. The present article reviews the most recent theoretical and
methodological developments for random forests. Emphasis is placed
on the mathematical forces driving the algorithm, with special atten-
tion given to the selection of parameters, the resampling mechanism,
and variable importance measures. This review is intended to provide
non-experts easy access to the main ideas.

Index Terms — Random forests, randomization, resampling, param-
eter tuning, variable importance.

2010 Mathematics Subject Classification: 62G05, 62G20.

1 Introduction

To take advantage of the sheer size of modern data sets, we now need learn-
ing algorithms that scale with the volume of information, while maintaining
sufficient statistical efficiency. Random forests, devised by L. Breiman in
the early 2000s (Breiman, 2001), are part of the list of the most successful
methods currently available to handle data in these cases. This supervised
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learning procedure, influenced by the early work of Amit and Geman (1997),
Ho (1998), and Dietterich (2000), operates according to the simple but ef-
fective “divide and conquer” principle: sample small fractions of the data,
grow a randomized tree predictor on each small piece, then paste (aggregate)
these predictors together.

What has greatly contributed to the popularity of forests is the fact that
they can be applied to a wide range of prediction problems and have few
parameters to tune. Aside from being simple to use, the method is generally
recognized for its accuracy and its ability to deal with small sample sizes and
high-dimensional feature spaces. At the same time, it is easily parallelizable
and has therefore the potential to deal with large real-life systems. The
corresponding R package randomForest can be freely downloaded on the
CRAN website (http://www.r-project.org), while a MapReduce (Jeffrey and
Sanja, 2008) open source implementation called Partial Decision Forests is
available on the Apache Mahout website at https://mahout.apache.org. This
allows the building of forests using large data sets as long as each partition
can be loaded into memory.

The random forest methodology has been successfully involved in various
practical problems, including a data science hackathon on air quality pre-
diction (http://www.kaggle.com/c/dsg-hackathon), chemoinformatics (Svet-
nik et al., 2003), ecology (Prasad et al., 2006; Cutler et al., 2007), 3D
object recognition (Shotton et al., 2011) and bioinformatics (Dı́az-Uriarte
and de Andrés, 2006), just to name a few. J. Howard (Kaggle) and M.
Bowles (Biomatica) claim in Howard and Bowles (2012) that ensembles of
decision trees—often known as “random forests”—have been the most suc-
cessful general-purpose algorithm in modern times, while H. Varian, Chief
Economist at Google, advocates in Varian (2014) the use of random forests
in econometrics.

On the theoretical side, the story of random forests is less conclusive and,
despite their extensive use, little is known about the mathematical properties
of the method. The most celebrated theoretical result is that of Breiman
(2001), which offers an upper bound on the generalization error of forests in
terms of correlation and strength of the individual trees. This was followed
by a technical note (Breiman, 2004), which focuses on a stylized version
of the original algorithm (see also Breiman, 2000a,b). A critical step was
subsequently taken by Lin and Jeon (2006), who highlighted an interesting
connection between random forests and a particular class of nearest neighbor
predictors, further developed by Biau and Devroye (2010). In recent years,
various theoretical studies have been performed (e.g., Meinshausen, 2006;
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Biau et al., 2008; Ishwaran and Kogalur, 2010; Biau, 2012; Genuer, 2012;
Zhu et al., 2012), analyzing more elaborate models and moving ever closer to
the practical situation. Recent attempts towards narrowing the gap between
theory and practice include that of Denil et al. (2013), who prove the first
consistency result for online random forests, and Mentch and Hooker (2014b)
and Wager (2014), who study the asymptotic distribution of forests.

The difficulty in properly analyzing random forests can be explained by the
black-box flavor of the method, which is indeed a subtle combination of dif-
ferent components. Among the forests’ essential ingredients, both bagging
(Breiman, 1996) and the Classification And Regression Trees (CART)-split
criterion (Breiman et al., 1984) play critical roles. Bagging (a contraction
of bootstrap-aggregating) is a general aggregation scheme, which generates
bootstrap samples from the original data set, constructs a predictor from
each sample, and decides by averaging. It is one of the most effective compu-
tationally intensive procedures to improve on unstable estimates, especially
for large, high-dimensional data sets, where finding a good model in one step
is impossible because of the complexity and scale of the problem (Bühlmann
and Yu, 2002; Kleiner et al., 2012; Wager et al., 2013). As for the CART-split
criterion, it originates from the influential CART algorithm of Breiman et al.
(1984), and is used in the construction of the individual trees to choose the
best cuts perpendicular to the axes. At each node of each tree, the best cut is
selected by optimizing the CART-split criterion, based on the so-called Gini
impurity (for classification) or the prediction squared error (for regression).

However, while bagging and the CART-splitting scheme play key roles in the
random forest mechanism, both are difficult to analyze with rigorous math-
ematics, thereby explaining why theoretical studies have so far considered
simplified versions of the original procedure. This is often done by simply
ignoring the bagging step and/or replacing the CART-split selection by a
more elementary cut protocol. As well as this, in Breiman’s (2001) forests,
each leaf (that is, a terminal node) of individual trees contains a fixed pre-
specified number of observations (this parameter is usually chosen between 1
and 5). Disregarding the subtle combination of all these components, most
authors have focused on stylized, data-independent procedures, thus creating
a gap between theory and practice.

The goal of this survey is to embark the reader on a guided tour of ran-
dom forests. We focus on the theory behind the algorithm, trying to give an
overview of major theoretical approaches while discussing their inherent pros
and cons. For a more methodological review covering applied aspects of ran-
dom forests, we refer to the surveys by Criminisi et al. (2011) and Boulesteix
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et al. (2012). We start by gently introducing the mathematical context in
Section 2 and describe in full detail Breiman’s (2001) original algorithm. Sec-
tion 3 focuses on the theory for a simplified forest model called purely random
forests, and emphasizes the connections between forests, nearest neighbor es-
timates and kernel methods. Section 4 provides some elements of theory
about resampling mechanisms, the splitting criterion and the mathematical
forces at work in Breiman’s approach. Section 5 is devoted to the theo-
retical aspects of associated variable selection procedures. Lastly, Section
6 discusses various extensions to random forests including online learning,
survival analysis and clustering problems.

2 The random forest estimate

2.1 Basic principles

As mentioned above, the random forest mechanism is versatile enough to
deal with both supervised classification and regression tasks. However, to
keep things simple, we focus in this introduction on regression analysis, and
only briefly survey the classification case.

Our goal in this section is to provide a concise but mathematically precise
presentation of the algorithm for building a random forest. The general
framework is nonparametric regression estimation, in which an input ran-
dom vector X ∈ [0, 1]p is observed, and the goal is to predict the square
integrable random response Y ∈ R by estimating the regression function
m(x) = E[Y |X = x]. With this aim in mind, we assume we are given a
training sample Dn = (X1, Y1), . . . , (Xn, Yn) of independent random vari-
ables distributed the same as the independent prototype pair (X, Y ). The
goal is to use the data set Dn to construct an estimate mn : [0, 1]p → R of
the function m. In this respect, we say that the regression function estimate
mn is (mean squared error) consistent if E[mn(X)−m(X)]2 → 0 as n→∞
(the expectation is evaluated over X and the sample Dn).

A random forest is a predictor consisting of a collection of M randomized
regression trees. For the j-th tree in the family, the predicted value at the
query point x is denoted by mn(x; Θj,Dn), where Θ1, . . . ,ΘM are indepen-
dent random variables, distributed the same as a generic random variable Θ
and independent of Dn. In practice, the variable Θ is used to resample the
training set prior to the growing of individual trees and to select the suc-
cessive directions for splitting—more precise definitions will be given later.
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At this stage, we note that the trees are combined to form the (finite) forest
estimate

mM,n(x; Θ1, . . . ,ΘM ,Dn) =
1

M

M∑
j=1

mn(x; Θj,Dn). (1)

In the R package randomForest, the default value of M (the number of
trees in the forest) is ntree = 500. Since M may be chosen arbitrarily
large (limited only by available computing resources), it makes sense, from
a modeling point of view, to let M tends to infinity, and consider instead of
(1) the (infinite) forest estimate

m∞,n(x;Dn) = EΘ [mn(x; Θ,Dn)] .

In this definition, EΘ denotes the expectation with respect to the random
parameter Θ, conditional on Dn. In fact, the operation “M →∞” is justified
by the law of large numbers, which asserts that almost surely, conditional on
Dn,

lim
M→∞

mM,n(x; Θ1, . . . ,ΘM ,Dn) = m∞,n(x;Dn)

(see for instance Breiman, 2001, and Scornet, 2014, for more information on
this limit calculation). In the following, to lighten notation we will simply
write m∞,n(x) instead of m∞,n(x; Dn).

Classification. In the (binary) supervised classification problem (Devroye
et al., 1996), the random response Y takes values in {0, 1} and, given X, one
has to guess the value of Y . A classifier or classification rule mn is a Borel
measurable function of x and Dn that attempts to estimate the label Y from
x and Dn. In this framework, one says that the classifier mn is consistent if
its conditional probability of error

L(mn) = P[mn(X) 6= Y |Dn]

satisfies
lim
n→∞

EL(mn) = L?,

where L? is the error of the optimal—but unknown—Bayes classifier:

m?(x) =

{
1 if P[Y = 1|X = x] > P[Y = 0|X = x]
0 otherwise.

In the classification situation, the random forest classifier is obtained via a
majority vote among the classification trees, that is,

mM,n(x; Θ1, . . . ,ΘM ,Dn) =

{
1 if 1

M

∑M
j=1mn(x; Θj,Dn) > 1/2

0 otherwise.
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2.2 Algorithm

We now provide some insight on how the individual trees are constructed and
how randomness kicks in. In Breiman’s (2001) original forests, each node of
a single tree is associated with a hyperrectangular cell. At each step of the
tree construction, the collection of cells forms a partition of [0, 1]p. The root
of the tree is [0, 1]p itself, and the terminal nodes (or leaves), taken together,
form a partition of [0, 1]p. If a leaf represents region A, then the regression
tree outputs on A the average of all Yi for which the corresponding Xi falls in
A. Algorithm 1 describes in full detail how to compute a forest’s prediction.

Algorithm 1 may seem a bit complicated at first sight, but the underlying
ideas are simple. We start by noticing that this algorithm has three important
parameters:

1. an ∈ {1, . . . , n}: the number of sampled data points in each tree;

2. mtry ∈ {1, . . . , p}: the number of possible directions for splitting at
each node of each tree;

3. nodesize ∈ {1, . . . , n}: the number of examples in each cell below
which the cell is not split.

The algorithm works by growing M different (randomized) trees as follows.
Prior to the construction of each tree, an observations are drawn at random
with replacement from the original data set; then, at each cell of each tree,
a split is performed by maximizing the CART-criterion (see below); lastly,
construction of individual trees is stopped when each cell contains less than
nodesize points. By default in the regression mode, the parameter mtry is
set to p/3, an is set to n, and nodesize is set to 5. The role and influence
of these three parameters on the accuracy of the method will be thoroughly
discussed in the next section.

We still have to describe how the CART-split criterion operates. With this
aim in mind, we let A be a generic cell and denote by Nn(A) the number
of data points falling in A. A cut in A is a pair (j, z), where j is some
value (dimension) from {1, . . . , p} and z the position of the cut along the
j-th coordinate, within the limits of A. Let CA be the set of all such possible
cuts in A. Then, with the notation Xi = (X

(1)
i , . . . ,X

(p)
i ), for any (j, z) ∈ CA,

the CART-split criterion takes the form
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Algorithm 1: Breiman’s random forest predicted value at x.

Input: Training set Dn, number of trees M > 0, an ∈ {1, . . . , n},
mtry ∈ {1, . . . , p}, nodesize ∈ {1, . . . , n}, and x ∈ [0, 1]p.

Output: Prediction of the random forest at x.
1 for j = 1, . . . ,M do
2 Select an points, with replacement, uniformly in Dn.
3 Set P0 = {[0, 1]p} the partition associated with the root of the tree.
4 For all 1 ≤ ` ≤ an, set P` = ∅.
5 Set nnodes = 1 and level = 0.
6 while nnodes < an do
7 if Plevel = ∅ then
8 level = level + 1
9 else

10 Let A be the first element in Plevel.
11 if A contains less than nodesize points then
12 Plevel ← Plevel\{A}
13 Plevel+1 ← Plevel+1 ∪ {A}
14 else
15 Select uniformly, without replacement, a subset

Mtry ⊂ {1, . . . , p} of cardinality mtry.
16 Select the best split in A by optimizing the CART-split

criterion along the coordinates in Mtry (see text for details).
17 Cut the cell A according to the best split. Call AL and AR

the two resulting cells.
18 Plevel ← Plevel\{A}
19 Plevel+1 ← Plevel+1 ∪ {AL} ∪ {AR}
20 nnodes = nnodes + 1

21 end

22 end

23 end
24 Compute the predicted value mn(x; Θj,Dn) at x equal to the average of

the Yi falling in the cell of x in partition Plevel ∪ Plevel+1.
25 end
26 Compute the random forest estimate mM,n(x; Θ1, . . . ,ΘM ,Dn) at the query

point x according to (1).
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Lreg,n(j, z) =
1

Nn(A)

n∑
i=1

(Yi − ȲA)21Xi∈A

− 1

Nn(A)

n∑
i=1

(Yi − ȲAL
1
X

(j)
i <z
− ȲAR

1
X

(j)
i ≥z

)21Xi∈A, (2)

where AL = {x ∈ A : x(j) < z}, AR = {x ∈ A : x(j) ≥ z}, and ȲA (resp.,
ȲAL

, ȲAR
) is the average of the Yi belonging to A (resp., AL, AR), with the

convention 0/0 = 0. For each cell A, the best cut (j?n, z
?
n) is selected by

maximizing Ln(j, z) over Mtry and CA; that is,

(j?n, z
?
n) ∈ arg max

j∈Mtry

(j,z)∈CA

Ln(j, z).

(To remove some of the ties in the argmax, the best cut is always performed
in the middle of two consecutive data points.)

Thus, at each cell of each tree, the algorithm chooses uniformly at random
mtry coordinates in {1, . . . , p}, evaluates criterion (2) over all possible cuts
in the mtry directions, and returns the best one. The quality measure (2) is
the criterion used in the most influential CART algorithm of Breiman et al.
(1984). This criterion measures the (renormalized) difference between the
empirical variance in the node before and after a cut is performed—the only
difference here is that it is evaluated over a subsetMtry of randomly selected
coordinates, and not over the whole range {1, . . . , p}. However, contrary
to the CART algorithm, the individual trees are not pruned, and the final
cells have a cardinality that does not exceed nodesize. Also, each tree is
constructed on a subset of an examples picked within the initial sample, not
on the whole sample Dn. When an = n, the algorithm runs in bootstrap
mode, whereas an < n corresponds to subsampling (with replacement). Last
but not least, the process is repeated M (a large number) times.

Classification. In the classification case, if a leaf represents region A, then
a randomized tree classifier takes the simple form

mn(x; Θj,Dn) =

{
1 if

∑n
i=1 1Xi∈A,Yi=1 >

∑n
i=1 1Xi∈A,Yi=0, x ∈ A

0 otherwise.

That is, in each leaf, a majority vote is taken over all (Xi, Yi) for which
Xi is in the same region. Ties are broken, by convention, in favor of class
0. Algorithm 1 can be easily adapted to do classification by modifying the
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CART-split criterion for the binary setting. For any cell A, let p0,n(A) (resp.,
p1,n(A)) be the empirical probability that a data point with label 0 (resp.
label 1) falls into A. Then, for any (j, z) ∈ CA, the classification CART-split
criterion takes the form

Lclass,n(j, z) = p0,n(A)p1,n(A)− Nn(AL)

Nn(A)
× p0,n(AL)p1,n(AL)

− Nn(AR)

Nn(A)
× p0,n(AR)p1,n(AR). (3)

This criterion is based on the so-called Gini impurity measure 2p0,n(A)p1,n(A)
(Breiman et al., 1984), which has a simple interpretation. Instead of using
the majority vote to classify a data point that falls in cell A, one can use
the rule that assigns an observation, selected at random from the node, to
label ` with probability p`,n(A), for j ∈ {0, 1}. The estimated probability
that the item has actually label ` is p`,n(A). Therefore the estimated prob-
ability of misclassification under this rule is the Gini index 2p1,n(A)p2,n(A).
When dealing with classification problems, it is usually recommended to set
nodesize = 1 and mtry =

√
p (see, e.g., Liaw and Wiener, 2002).

2.3 Parameter tuning

Literature focusing on tuning the parameters M , mtry, nodesize and an is
unfortunately rare, with the notable exception of Dı́az-Uriarte and de Andrés
(2006), Bernard et al. (2008), and Genuer et al. (2010). It is easy to see that
the forest’s variance decreases as M grows. Thus, more accurate predictions
are likely to be obtained by choosing a large number of trees. It is interesting
to note that picking a large M does not lead to overfitting, since finite forests
converge to infinite ones (Breiman, 2001). However, the computational cost
for inducing a forest increases linearly with M , so a good choice results from
a trade-off between computational complexity (M should not be too large for
the computations to finish in a reasonable time) and accuracy (M must be
large enough for predictions to be stable). In this respect, Dı́az-Uriarte and
de Andrés (2006) argue that the value of M is irrelevant (provided that M is
large enough) in a prediction problem involving microarray data sets, where
the aim is to classify patients according to their genetic profiles (typically,
less than one hundred patients for several thousand genes). For more details
we refer the reader to Genuer et al. (2010), who offer a thorough discussion
on the choice of this parameter in various regression problems. Another in-
teresting and related approach is by Latinne et al. (2001), who propose a

9



simple procedure that determines a priori a minimum number of tree esti-
mates to combine in order to obtain a prediction accuracy level similar to
that obtained with a larger forest. Their experimental results show that it is
possible to significantly limit the number of trees.

In the R package randomForest, the default value of the parameter nodesize
is 1 for classification and 5 for regression. These values are often reported
to be good choices (e.g., Dı́az-Uriarte and de Andrés, 2006), despite the fact
that this is not supported by solid theory. The effect of mtry has been thor-
oughly investigated in Dı́az-Uriarte and de Andrés (2006), who show that
this parameter has a little impact on the performance of the method, though
larger values may be associated with a reduction in the predictive perfor-
mance. On the other hand, Genuer et al. (2010) claim that the default value
of mtry is either optimal or too small. Therefore, a conservative approach is
to take mtry as large as possible (limited by available computing resources)
and set mtry = p (recall that p is the dimension of the Xi). A data-driven
choice of mtry is implemented in the algorithm Forest-RK of Bernard et al.
(2008).

3 Simplified models and local averaging esti-

mates

3.1 Simplified models

Despite their widespread use, a gap remains between the theoretical under-
standing of random forests and their practical performance. This algorithm,
which relies on complex data-dependent mechanisms, is difficult to analyze
and its basic mathematical properties are still not well understood.

This state of affairs has led to polarization between theoretical and empirical
contributions to the literature. Empirically focused papers describe elabo-
rate extensions to the basic random forest framework, adding domain-specific
refinements that push the state of the art in performance, but come with no
clear guarantees. In contrast, most theoretical papers focus on simplifica-
tions or stylized versions of the standard algorithm, where the mathematical
analysis is more tractable.

A basic framework to assess the theoretical properties of forests involves
models that are calibrated independently of the training set Dn. This fam-
ily of simplified models is often called purely random forests. A widespread
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example is the centered forest, whose principle is as follows: (i) there is no
bootstrap step; (ii) at each node of each individual tree, a coordinate is uni-
formly chosen in {1, . . . , p}; and (iii) a split is performed at the center of the
cell along the selected coordinate. The operations (ii)-(iii) are recursively
repeated k times, where k ∈ N is a parameter of the algorithm. The pro-
cedure stops when a full binary tree with k levels is reached, so that each
tree ends up with exactly 2k leaves. The parameter k acts as a smoothing
parameter that controls the size of the terminal cells (see Figure 1 for an
example in two dimensions). It should be chosen large enough in order to
detect local changes in the distribution, but not too much to guarantee an
effective averaging process in the leaves. In uniform random forests, a variant
of centered forests, cuts are performed uniformly at random over the range of
the selected coordinate, not at the center. Modulo some minor modifications,
their analysis is similar.
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16,9
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Figure 1: A centered tree at level 2.

The centered forest rule was formally analyzed in Biau et al. (2008) and
Scornet (2014), who proved that the method is consistent (both for classifi-
cation and regression) provided k →∞ and n/2k →∞. The proof relies on
a general consistency result for random trees stated in Devroye et al. (1996,
Chapter 6). If X is uniformly distributed in [0, 1]p, then there are on av-
erage about n/2k data points per terminal node. In particular, the choice
k ≈ log n corresponds to obtaining a small number of examples in the leaves,
in accordance with Breiman’s (2001) idea that the individual trees should
not be pruned. Unfortunately, this choice of k does not satisfy the condition
n/2k →∞, so something is lost in the analysis. Moreover, the bagging step
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is absent, and forest consistency is obtained as a by-product of tree consis-
tency. Overall, this model does not demonstrate the benefit of using forests
in place of individual trees and is too simple to explain the mathematical
forces driving Breiman’s forests.

The rates of convergence of centered forests are discussed in Breiman (2004)
and Biau (2012). In their approaches, the target regression function m(X) =
E[Y |X], which is originally a function of X = (X(1), . . . , X(p)), is assumed to
depend only on a nonempty subset S (for Strong) of the p features. Thus,
letting XS = (X(j) : j ∈ S), we have

m(X) = E[Y |XS ].

The variables of the remaining set {1, . . . , p}\S have no influence on the
response Y and can be safely removed. In this dimension reduction scenario,
the ambient dimension p can be large, much larger than the sample size n,
but we believe that the representation is sparse, i.e., that a potentially small
number of coordinates of m are active— the ones with indices matching the
set S. Letting |S| be the cardinality of S, the value |S| characterizes the
sparsity of the model: the smaller |S|, the sparser m.

Breiman (2004) and Biau (2012) proved that if the random trees are grown
by using coordinates in S with high probability, and if m satisfies a Lipschitz-
type smoothness assumption, then

E [m∞,n(X)−m(X)]2 = O
(
n

−0.75
|S| log 2+0.75

)
.

This equality shows that the rate of convergence of mn to m depends only
on the number |S| of strong variables, not on the ambient dimension p. This
rate is strictly faster than the usual rate n−2/(p+2) as soon as |S| ≤ b0.54pc.
In effect, the intrinsic dimension of the regression problem is |S|, not p, and
we see that the random forest estimate cleverly adapts itself to the sparse
framework. This property may be useful for high-dimensional regression,
when the number of variables is much larger than the sample size. It may
also explain why random forests are able to handle a large number of input
variables without overfitting.

An alternative model for pure forests, called purely uniform random forests
(PURF) is discussed in Genuer (2012). For p = 1, a PURF is obtained by
drawing k random variables uniformly on [0, 1], and subsequently dividing
[0, 1] into random sub-intervals. Although this construction is not exactly
recursive, it is equivalent to growing a decision tree by deciding at each level
which node to split with a probability equal to its length. Genuer (2012)
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proves that PURF are consistent and, under a Lipschitz assumption, that
the estimate satisfies

E[m∞,n(X)−m(X)]2 = O
(
n−2/3

)
.

This rate is minimax over the class of Lipschitz functions (Stone, 1980, 1982).

It is often acknowledged that random forests reduce the estimation error of a
single tree, while maintaining the same approximation error. In this respect,
Biau (2012) argues that the estimation error of centered forests tends to
zero (at the slow rate 1/ log n) even if each tree is fully grown (i.e., k ≈
log n). This result is a consequence of the tree-averaging process, since the
estimation error of an individual fully grown tree does not tend to zero.
Unfortunately, the choice k ≈ log n is too large to ensure consistency of the
corresponding forest, whose approximation error remains constant. Similarly,
Genuer (2012) shows that the estimation error of PURF is reduced by a
factor of 0.75 compared to the estimation error of individual trees. The
most recent attempt to assess the gain of forests in terms of estimation and
approximation errors is by Arlot and Genuer (2014), who claim that the
rate of the approximation error of certain models is faster than that of the
individual trees.

3.2 Forests, neighbors and kernels

Let us consider a sequence of independent and identically distributed ran-
dom variables X1, . . . , Xn. In random geometry, a random observation Xi is
said to be a layered nearest neighbor (LNN) of a point x (from X1, . . . ,Xn)
if the hyperrectangle defined by x and Xi contains no other data points
(Barndorff-Nielsen and Sobel, 1966; Bai et al., 2005; see also Devroye et al.,
1996, Chapter 11, Problem 6). As illustrated in Figure 2, the number of LNN
of x is typically larger than one and depends on the number and configuration
of the sample points.

Surprisingly, the LNN concept is intimately connected to random forests.
Indeed, if exactly one point is left in the leaves, then no matter what splitting
strategy is used, the forest estimate at x is but a weighted average of the Yi
whose corresponding Xi are LNN of x. In other words,

m∞,n(x) =
n∑
i=1

Wni(x)Yi, (4)

where the weights (Wn1, . . . ,Wnn) are nonnegative functions of the sample
Dn that satisfy Wni(x) = 0 if Xi is not an LNN of x and

∑n
i=1Wni = 1.
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Figure 2: The layered nearest neighbors (LNN) of a point x in dimension
p = 2.

This important connection was first pointed out by Lin and Jeon (2006),
who proved that if X is uniformly distributed on [0, 1]p then, provided tree
growing is independent of Y1, . . . , Yn (such simplified models are sometimes
called non-adaptive), we have

E [m∞,n(X)−m(X)]2 = O

(
1

nmax(log n)p−1

)
,

where nmax is the maximal number of points in the terminal cells (Biau and
Devroye, 2010, extended this inequality to the case where X has a density on
[0, 1]p). Unfortunately, the exact values of the weight vector (Wn1, . . . ,Wnn)
attached to the original random forest algorithm are unknown, and a general
theory of forests in the LNN framework is still undeveloped.

It remains however that equation (4) opens the way to the analysis of random
forests via a local-averaging approach, i.e., via the average of those Yi for
which Xi is “close” to x (Györfi et al., 2002). Indeed, observe, starting from
(1), that for a finite forest with M trees, we have

mM,n(x; Θ1, . . . ,ΘM) =
1

M

M∑
j=1

(
n∑
i=1

Yi1Xi∈An(x,Θj)

Nn(x,Θj)

)
,

where An(x,Θj) is the cell containing x and Nn(x,Θj) =
∑n

i=1 1Xi∈An(x,Θj)
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is the number of data points falling in An(x,Θj). Thus,

mM,n(x; Θ1, . . . ,ΘM) =
n∑
i=1

Wni(x)Yi,

where the weights Wni(x) are defined by

Wni(x) =
1

M

M∑
j=1

1Xi∈An(x,Θj)

Nn(x,Θj)
.

It is easy to see that the Wni are nonnegative and sum to one if the cell
containing x is not empty. Thus, the contribution of observations falling
into cells with a high density of data points is smaller than the contribution
of observations belonging to less-populated cells. This remark is especially
true when the forests are built independently of the data set—for example,
PURF—since, in this case, the number of examples in each cell is not con-
trolled. Next, if we let M tend to infinity, then the estimate m∞,n may be
written (up to some negligible terms)

m∞,n(x) ≈
∑n

i=1 YiKn(Xi,x)∑n
j=1Kn(Xj,x)

, (5)

where
Kn(x, z) = PΘ [z ∈ An(x,Θ)] .

The function Kn(·, ·) is called the kernel and characterizes the shape of the
“cells” of the infinite random forest. The quantity Kn(x, z) is nothing but
the probability that x and z are connected (i.e., they fall in the same cell) in
a random tree. Therefore, the kernel Kn can be seen as a proximity measure
between two points in the forest. Hence, any forest has its own metric Kn,
but unfortunately the one associated with Breiman’s forest is strongly data-
dependent and therefore complicated to work with.

It should be noted that Kn does not necessarily belong to the family of
Nadaraya-Watson-type kernels (Nadaraya, 1964; Watson, 1964), which sat-
isfy a homogeneous property of the form Kh(x, z) = 1

h
K((x−z)/h) for some

smoothing parameter h > 0. The analysis of estimates of the form (5) is, in
general, more complicated, depending of the type of forest under investiga-
tion. For example, Scornet (2015) proved that for a centered forest defined
on [0, 1]p with parameter k, we have

Kk,n(x, z) =
∑

k1,...,kp∑p
j=1 kj=k

k!

k1! . . . kp!

(
1

p

)k p∏
j=1

1d2kjxje=d2kj zje
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(d·e is the ceiling function). As an illustration, Figure 3 shows the graphical
representation for k = 1, 2 and 5 of the function fk defined by

fk : [0, 1]× [0, 1] → [0, 1]
z = (z1, z2) 7→ Kk,n

(
(1

2
, 1

2
), z
)
.

Figure 3: Representations of f1, f2 and f5 in [0, 1]2.

The connection between forests and kernel estimates is mentioned in Breiman
(2000a) and developed in detail in Geurts et al. (2006). The most recent
advances in this direction are by Arlot and Genuer (2014), who show that a
simplified forest model can be written as a kernel estimate, and provide its
rates of convergence. On the practical side, Davies and Ghahramani (2014)
highlight the fact that using Gaussian processes with a specific kernel-based
random forest can empirically outperform state-of-the-art Gaussian process
methods. Besides, kernel-based random forests can be used as the input
for a large variety of existing kernel-type methods such as Kernel Principal
Component Analysis and Support Vector Machines.
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4 Theory for Breiman’s forests

This section deals with Breiman’s (2001) original algorithm. Since the con-
struction of Breiman’s forests depends on the whole sample Dn, a mathe-
matical analysis of the whole algorithm is difficult. To move forward, the
individual mechanisms at work in the procedure have been investigated sep-
arately, namely the resampling step and the splitting scheme.

4.1 The resampling mechanism

The resampling step in Breiman’s (2001) original algorithm is performed by
choosing n times from of n points with replacement to grow the individual
trees. This procedure, which traces back to the work of Efron (1982) (see
also Politis et al., 1999), is called the bootstrap in the statistical literature.
The idea of generating many bootstrap samples and averaging predictors is
called bagging (bootstrap-aggregating). It was suggested by Breiman (1996)
as a simple way to improve the performance of weak or unstable learners.
Although one of the great advantages of the bootstrap is its simplicity, the
theory turns out to be complex. In effect, the bootstrapped observations
have a distribution that is different from the original one, as the following
example shows. Assume that X has a density, and note that whenever the
data points are sampled with replacement, then with positive probability,
at least one observation from the original sample will be selected more than
once. Therefore, the resulting Xi of the bootstrapped sample cannot have
an absolutely continuous distribution.

The role of the bootstrap in random forests is still poorly understood and, to
date, most analyses are doomed to replace the bootstrap by a subsampling
scheme, assuming that each tree is grown with an < n examples randomly
chosen without replacement from the initial sample (Mentch and Hooker,
2014b; Wager, 2014; Scornet et al., 2015). Most of the time, the subsampling
rate an/n is assumed to tend to zero at some prescribed rate—an assumption
that excludes de facto the bootstrap regime. In this respect, the analysis of
so-called median random forests by Scornet (2014) provides some insight
as to the role and importance of subsampling. The assumption an/n → 0
guarantees that every single observation pair (Xi, Yi) is used in them-th tree’s
construction with a probability that becomes small as n grows. It also forces
the query point x to be disconnected from (Xi, Yi) in a large proportion of
trees. Indeed, if this were not the case, then the predicted value at x would be
overly influenced by the single pair (Xi, Yi), which would make the ensemble
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inconsistent. In fact, the estimation error of the median forest estimate is
small as soon as the maximum probability of connection between the query
point and all observations is small. Thus, the assumption an/n → 0 is but
a convenient way to control these probabilities, by ensuring that partitions
are dissimilar enough.

Biau and Devroye (2010) noticed that Breiman’s bagging principle has a
simple application in the context of nearest neighbor methods. Recall that
the 1-nearest neighbor (1-NN) regression estimate sets rn(x) = Y(1)(x), where
Y(1)(x) corresponds to the feature vector X(1)(x) whose Euclidean distance
to x is minimal among all X1, . . . ,Xn. (Ties are broken in favor of smallest
indices.) It is clearly not, in general, a consistent estimate (Devroye et al.,
1996, Chapter 5). However, by bagging, one may turn the 1-NN estimate into
a consistent one, provided that the size of resamples is sufficiently small. We
proceed as follows, via a randomized basic regression estimate ran in which
1 ≤ an ≤ n is a parameter. The elementary predictor ran is the 1-NN rule
for a random subsample of size an drawn with (or without) replacement from
Dn. We apply bagging, that is, we repeat the random sampling an infinite
number of times and take the average of the individual outcomes. Thus, the
bagged regression estimate r?n is defined by

r?n(x) = E? [ran(x)] ,

where E? denotes expectation with respect to the resampling distribution,
conditional on the data set Dn. Biau and Devroye (2010) proved that the es-
timate r?n is universally (i.e., without conditions on the distribution of (X, Y ))
mean squared consistent, provided an →∞ and an/n→ 0. The proof relies
on the observation that r?n is in fact a weighted nearest neighbor estimate
(Stone, 1977) with weights

Wni = P(i-th nearest neighbor of x is the 1-NN in a random selection).

The connection between bagging and nearest neighbor estimation is fur-
ther explored by Biau et al. (2010), who prove that the bagged estimate
r?n achieves optimal rate of convergence over Lipschitz smoothness classes,
independently from the fact that resampling is done with or without replace-
ment.

4.2 Decision splits

The coordinate-split process of the random forest algorithm is not easy to
grasp, essentially because it uses both the Xi and Yi variables to make its
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decision. Building upon the ideas of Bühlmann and Yu (2002), Banerjee and
McKeague (2007) establish a limit law for the split location in the context
of a regression model of the form Y = m(X) + ε, where X is real-valued
and ε an independent Gaussian noise. In essence, their result is as follows.
Assume for now that the distribution of (X, Y ) is known, and denote by d?

the (optimal) split that maximizes the theoretical CART-criterion at a given
node. In this framework, the regression estimates restricted to the left and
right children of the cell takes the respective forms

β?`,n = E[Y |X ≤ d?] and β?r,n = E[Y |X > d?].

When the distribution of (X, Y ) is unknown, so are β?` , β
?
r and d?, and these

quantities are estimated by their natural empirical counterparts:

(β̂`,n, β̂r,n, d̂n) ∈ arg min
β`,βr,d

n∑
i=1

[
Yi − β`1Xi≤d − βr1Xi>d

]2
.

Assuming that the model satisfies some regularity assumptions (in particu-
lar, X has a density f , and both f and m are continuously differentiable),
Banerjee and McKeague (2007) prove that

n1/3(β̂`,n − β?` , β̂r,n − β?r , d̂n − d?)
D→ (c1, c2, 1) arg max

t
Q(t), (6)

where D denotes convergence in distribution, Q(t) = aW (t)− bt2, and W is
a standard two-sided Brownian motion process on the real line. Both a and
b are positive constants that depend upon the model parameters and the un-
known quantities β?` , β

?
r and d?. The limiting distribution in (6) allows one to

construct confidence intervals for the position of CART-splits. Interestingly,
Banerjee and McKeague (2007) refer to the study of Qian et al. (2003) on
the effects of phosphorus pollution in the Everglades, which uses split points
in a novel way. There, the authors identify threshold levels of phosphorus
concentration that are associated with declines in the abundance of certain
species. In their approach, split points are not just a means to build trees
and forests, but can also provide important information on the structure of
the underlying distribution.

A further analysis of the behavior of forest splits is performed by Ishwaran
(2013), who argues that the so-called end-cut preference (ECP) of the CART-
splitting procedure (that is, the fact that splits along non-informative vari-
ables are likely to be near the edges of the cell—see Breiman et al., 1984)
can be seen as a desirable property. Given the randomization mechanism
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at work in forests, there is indeed a positive probability that none of the
preselected variables at a node are informative. When this happens, and if
the cut is performed, say, at the center of a side of the cell, then the sample
size of the two resulting cells is drastically reduced by a factor of two—this
is an undesirable property, which may be harmful for the prediction task. In
other words, Ishwaran (2013) stresses that the ECP property ensures that a
split along a noisy variable is performed near the edge, thus maximizing the
tree node sample size and making it possible for the tree to recover from the
split downstream. Ishwaran (2013) claims that this property can be of benefit
even when considering a split on an informative variable, if the corresponding
region of space contains little signal.

There exists a variety of random forest variants based on the CART-criterion.
For example, the Extra-Tree algorithm of Geurts et al. (2006) consists in ran-
domly selecting a set of split points and then choosing the split that maxi-
mizes the CART-criterion. This algorithm has similar accuracy performance
while being more computationally efficient. In the PERT (Perfect Ensemble
Random Trees) approach of Cutler and Zhao (2001), one builds perfect-fit
classification trees with random split selection. While individual trees clearly
overfit, the authors claim that the whole procedure is eventually consistent
since all classifiers are believed to be almost uncorrelated. Let us also men-
tion that additional randomness can be added in the tree construction by
considering splits along linear combinations of features. This idea, due to
Breiman (2001), has been implemented by Truong (2009) in the package
obliquetree of statistical computing environment R.

4.3 Asymptotic normality and consistency

All in all, little has been proven mathematically for the original procedure
of Breiman (2001). Recently, consistency and asymptotic normality of the
whole algorithm were proved under simplifications of the procedure (replac-
ing bootstrap by subsampling and simplifying the splitting step). Wager
(2014) proves the asymptotic normality of the method and establishes that
the infinitesimal jackknife consistently estimates the forest variance. A simi-
lar result on the asymptotic normality of finite forests, proved by Mentch and
Hooker (2014b), states that whenever M (the number of trees) is allowed to
vary with n, and when an = o(

√
n) and limn→∞ n/Mn = 0, then for a fixed

x, √
n(mM,n(x; Θ1, . . . ,ΘM)−m∞,n(x))√

a2
nζ1,an

D→ N,
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where N is a standard normal random variable,

ζ1,an = Cov
[
mn(X1,X2, . . . ,Xan ; Θ),mn(X1,X

′
2, . . . ,X

′
an ; Θ′)

]
,

X′i an independent copy of Xi and Θ′ an independent copy of Θ. Note
that in this model, both the sample size and the number of trees grow to
infinity. Recently, Scornet et al. (2015) proved a consistency result in the
context of additive regression models for the pruned version of Breiman’s
forest. Unfortunately, the consistency of the unpruned procedure comes at
the price of a conjecture regarding the behavior of the CART algorithm that
is difficult to verify.

We close this section with a negative but interesting result due to Biau et al.
(2008). In this example, the total number k of cuts is fixed and mtry = 1.
Furthermore, each tree is built by minimizing the true probability of error at
each node. Consider the joint distribution of (X, Y ) sketched in Figure 4 and
let m(x) = P[Y = 1|X = x]. The variable X has a uniform distribution on
[0, 1]2 ∪ [1, 2]2 ∪ [2, 3]2 and Y is a function of X—that is, m(x) ∈ {0, 1} and
L∗ = 0—defined as follows. The lower left square [0, 1]× [0, 1] is divided into
countably infinitely many vertical strips in which the strips with m(x) = 0
and m(x) = 1 alternate. The upper right square [2, 3] × [2, 3] is divided
similarly into horizontal strips. The middle rectangle [1, 2]× [1, 2] is a 2× 2
checkerboard. It is easy to see that no matter what the sequence of random
selection of split directions is and no matter for how long each tree is grown,
no tree will ever cut the middle rectangle and therefore the probability of error
of the corresponding random forest classifier is at least 1/6. This example
illustrates that consistency of greedily grown random forests is a delicate
issue. Note however that if Breiman’s (2001) original algorithm is used in
this example (i.e., when all cells with more than one data point in them are
split) then one obtains a consistent classification rule.

5 Variable selection

5.1 Variable importance measures

Random forests can be used to rank the importance of variables in regression
or classification problems via two measures of significance. The first, called
Mean Decrease Impurity (MDI), is based on the total decrease in node im-
purity from splitting on the variable, averaged over all trees. The second,
referred to as Mean Decrease Accuracy (MDA), stems from the idea that if
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Figure 4: An example of a distribution for which greedy random forests
are inconsistent. The distribution of X is uniform on the union of the three
large squares. White areas represent the set where m(x) = 0 and grey where
m(x) = 1.

the variable is not important, then rearranging its values should not degrade
prediction accuracy.

Set X = (X(1), . . . ,X(p)). For a forest resulting from the aggregation of M
trees, the MDI of the variable X(j) is defined as

M̂DI(X(j)) =
1

M

M∑
`=1

∑
t∈T`
j?n,t=j

2pn,tLreg,n(j?n,t, z
?
n,t),

where pn,t(t) is the fraction of observations falling in the node t, {T`}1≤`≤M
the collection of trees in the forest, and (j?n,t, z

?
n,t) the split that maximizes the

empirical criterion (2) in node t. Note that the same formula holds for clas-
sification random forests by replacing the criterion Lreg,n by its classification
counterpart Lclass,n. Thus, the MDI of X(j) computes the weighted decrease
of impurity corresponding to splits along the variable X(j) and averages this
quantity over all trees.

The MDA relies on a different principle and uses the so-called out-of-bag
error estimate. In random forests, there is no need for cross-validation or a
separate test set to get an unbiased estimate of the test error. It is estimated
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internally, during the run, as follows. Since each tree is constructed using a
different bootstrap sample from the original data, about one-third of cases
are left out of the bootstrap sample and not used in the construction of the
m-th tree. In this way, for each tree, a test set—disjoint from the training
set— is obtained, and averaging over all these left-out cases and over all trees
is known as the out-of-bag error estimate.

To measure the importance of the j-th feature, we randomly permute the
values of variable X(j) in the out-of-bag cases and put these cases down
the tree. The MDA of X(j) is obtained by averaging the difference in out-
of-bag error estimation before and after the permutation over all trees. In
mathematical terms, consider a variable X(j) and denote by D`,n the out-of-
bag test of the `-th tree and Dj`,n the same data set where the values of X(j)

have been randomly permuted. Recall that mn(·,Θ`) stands for the `-th tree
estimate. Then, by definition,

M̂DA(X(j)) =
1

M

M∑
`=1

[
Rn

[
mn(·,Θ`),Dj`,n

]
−Rn

[
mn(·,Θ`),D`,n

]]
, (7)

where Rn is defined for D = D`,n or D = Dj`,n by

Rn

[
mn(·,Θ`),D

]
=

1

|D|
∑

i:(Xi,Yi)∈D

(Yi −mn(Xi,Θ`))
2.

It is easy to see that the population version of M̂DA(X(j)) takes the form

MDA?(X(j)) = E
[
Y −mn(X′j,Θ)

]2 − E[Y −mn(X,Θ)
]2
,

where X′j = (X(1), . . . , X ′(j), . . . , X(p)) and X ′(j) is an independent copy of

X(j). For classification purposes, the MDA still satisfies (7) with Rn(mn(·,Θ)
,D) the number of points that are correctly classified by mn(·,Θ) in D.

5.2 Theoretical results

In the context of a pair of categorical variables (X, Y ), where X takes finitely
many values in, say, X1 × · · · × Xd, Louppe et al. (2013) consider totally
randomized and fully developed trees. At each cell, the `-th tree is grown by
selecting a variable X(j) uniformly among the features that have not been
used in the parent nodes, and by subsequently dividing the cell into |Xj|
children (so the number of children equals the number of modalities of the
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selected variable). In this framework, it can be shown that the population
version of MDI(X(j)) for a single tree satisfies

MDI?(X(j)) =

p−1∑
k=0

1(
k
p

)
(p− k)

∑
B∈Pk(V −j)

I(Xj;Y |B),

where V −j = {1, . . . , j−1, j+ 1, . . . , p}, Pk(V −j) the set of subsets of V −j of
cardinality k, and I(X(j);Y |B) the conditional mutual information of X(j)

and Y given the variables in B. In addition,

p∑
j=1

MDI?(X(j)) = I(X(1), . . . , X(p);Y ).

These results show that the information I(X(1), . . . , X(p);Y ) is the sum of
the importances of each variable, which can itself be made explicit using the
information values I(X(j);Y |B) between each variable X(j) and the output
Y , conditional on variable subsets B of different sizes.

Louppe et al. (2013) define a variable X(j) as irrelevant with respect to B ⊂
V = X1 × · · · × Xp whenever I(X(j);Y |B) = 0. Thus, X(j) is irrelevant if
and only if MDI?(X(j)) = 0. It is easy to see that if an additional irrelevant
variable X(p+1) is added to the list of variables, then the variable importance
of any of the X(j) computed with a single tree does not change if the tree
is built with the new collection of variables V ∪ {X(p+1)}. In other words,
building a tree with an additional irrelevant variable does not change the
importances of the other variables.

The most notable results regarding MDA are due to Ishwaran (2007), who
studies a slight modification of the criterion via feature noising. To add noise
to a variable X(j), one considers a new observation X, take X down the tree
and stop when a split is made according to the variable X(j). Then the
right or left child node is selected with probability 1/2, and this procedure
is repeated for each subsequent node (whether it is performed along the
variable X(j) or not). The importance of variable X(j) is still computed by
comparing the error of the forest with that of the “noisy” forest. Assuming
that the forest is consistent and that the regression function is piecewise

constant, Ishwaran (2007) gives the asymptotic behavior of M̂DA(X(j)) when
the sample size tends to infinity. This behavior is intimately related to the
set of subtrees (of the initial regression tree) whose roots are split along the
coordinate X(j).

Let us lastly mention the approach of Gregorutti et al. (2013), who computed
the MDA criterion for several distributions of (X, Y ). For example, consider
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a model of the form

Y = m(X) + ε,

where (X, ε) is a Gaussian random vector, and assume that the correlation
matrix C satisfies C = [Cov(Xj, Xk)]1≤j,k≤p = (1−c)Ip+c11> (the symbol >
denotes transposition, 1 = (1, . . . , 1)>, and c is a constant in (0, 1)). Assume,
in addition, that Cov(Xj, Y ) = τ0 for all j ∈ {1, . . . , p}. Then, for all j,

MDI?(X(j)) = 2

(
τ0

1− c+ pc

)2

.

Thus, in the Gaussian setting, the variable importance decreases as the in-
verse of the square of p when the number of correlated variables p increases.

5.3 Related works

The empirical properties of the MDA criterion have been extensively ana-
lyzed and compared in the statistical computing literature. Indeed, Archer
and Kimes (2008), Strobl et al. (2008), Nicodemus and Malley (2009), Auret
and Aldrich (2011), and Toloşi and Lengauer (2011) stress the negative effect
of correlated variables on MDA performance. In this respect, Genuer et al.
(2010) noticed that MDA is less able to detect the most relevant variables
when the number of correlated features increases. Similarly, the empirical
study of Archer and Kimes (2008) points out that both MDA and MDI be-
have poorly when correlation increases—these results have been experimen-
tally confirmed by Auret and Aldrich (2011) and Toloşi and Lengauer (2011).
An argument of Strobl et al. (2008) to justify the bias of MDA in the presence
of correlated variables is that the algorithm evaluates the marginal impor-
tance of the variables instead of taking into account their effect conditional
on each other. A way to circumvent this issue is to combine random forests
and the Recursive Feature Elimination algorithm of Guyon et al. (2002), as
in Gregorutti et al. (2013). Detecting relevant features can also be achieved
via hypothesis testing (Mentch and Hooker, 2014b)—a principle that may be
used to detect more complex structures of the regression function, like for
instance its additivity (Mentch and Hooker, 2014a).

As for the tree building process, selecting uniformly at each cell a set of fea-
tures for splitting is simple and convenient, but such procedures inevitably
select irrelevant variables. Therefore, several authors have proposed mod-
ified versions of the algorithm that incorporate a data-driven weighing of
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variables. For example, Kyrillidis and Zouzias (2014) study the effectiveness
of non-uniform randomized feature selection in decision tree classification,
and experimentally show that such an approach may be more effective com-
pared to naive uniform feature selection. Enriched random forests, designed
by Amaratunga et al. (2008) choose at each node the eligible subsets by
weighted random sampling with the weights tilted in favor of informative
features. Similarly, the reinforcement learning trees (RLT) of Zhu et al.
(2012) build at each node a random forest to determine the variable that
brings the greatest future improvement in later splits, rather than choosing
the one with largest marginal effect from the immediate split.

Choosing weights can also be done via regularization. Deng and Runger
(2012) propose a Regularized Random Forest (RRF), which penalizes select-
ing a new feature for splitting when its gain is similar to the features used in
previous splits. Deng and Runger (2013) suggest a Guided RRF (GRRF), in
which the importance scores from an ordinary random forest are used to guide
the feature selection process in RRF. Lastly, a Garrote-style convex penalty,
proposed by Meinshausen (2009), selects functional groups of nodes in trees,
yielding to parcimonious estimates. We also mention the work of Konukoglu
and Ganz (2014) who address the problem of controlling the false positive
rate of random forests and present a principled way to determine thresholds
for the selection of relevant features without any additional computational
load.

6 Extensions

Weighted forests. In Breiman’s (2001) forests, the final prediction is the
average of the individual tree outcomes. A natural way to improve the
method is to incorporate tree-level weights to emphasize more accurate trees
in prediction (Winham et al., 2013). A closely related idea, proposed by
Bernard et al. (2012), is to guide tree building—via resampling of the train-
ing set and other ad hoc randomization procedures—so that each tree will
complement as much as possible the existing trees in the ensemble. The
resulting Dynamic Random Forest (DRF) shows significant improvement in
terms of accuracy on 20 real-based data sets compared to the standard, static,
algorithm.

Online forests. In its original version, random forests is an offline algo-
rithm, which is given the whole data set from the beginning and required
to output an answer. In contrast, online algorithms do not require that the
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entire training set is accessible at once. These models are appropriate for
streaming settings, where training data is generated over time and must be
incorporated into the model as quickly as possible. Random forests have been
extended to the online framework in several ways (Saffari et al., 2009; De-
nil et al., 2013; Lakshminarayanan et al., 2014). In Lakshminarayanan et al.
(2014), so-called Mondrian forests are grown in an online fashion and achieve
competitive predictive performance comparable with other online random
forests while being faster. When building online forests, a major difficulty
is to decide when the amount of data is sufficient to cut a cell. Exploring
this idea, Yi et al. (2012) propose Information Forests, whose construction
consists in deferring classification until a measure of classification confidence
is sufficiently high, and in fact break down the data so as to maximize this
measure. An interesting theory related to these greedy trees can be found in
Biau and Devroye (2013).

Survival forests. Survival analysis attempts to deal with incomplete data,
and particularly right-censored data in fields such as clinical trials. In this
context, parametric approaches such as proportional hazards are commonly
used, but fail to model nonlinear effects. Random forests have been extended
to the survival context by Ishwaran et al. (2008), who prove consistency of
Random Survival Forests (RSF) algorithm assuming that all variables are
factors. Yang et al. (2010) showed that by incorporating kernel functions
into RSF, their algorithm KIRSF achieves better results in many situations.
Ishwaran et al. (2011) review the use of the minimal depth, which measures
the predictive quality of variables in survival trees.

Ranking forests. Clémençon et al. (2013) have extended random forests to
deal with ranking problems and propose an algorithm called Ranking Forests
based on the ranking trees of Clémençon and Vayatis (2009). Their approach
is based on nonparametric scoring and ROC curve optimization in the sense
of the AUC criterion.

Clustering forests. Yan et al. (2013) present a new clustering ensemble
method called Cluster Forests (CF) in the context of unsupervised classifi-
cation. CF randomly probes a high-dimensional data cloud to obtain good
local clusterings, then aggregates via spectral clustering to obtain cluster
assignments for the whole data set. The search for good local clusterings
is guided by a cluster quality measure, and CF progressively improves each
local clustering in a fashion that resembles tree growth in random forests.

Quantile forests. Meinshausen (2006) shows that random forests provide
information about the full conditional distribution of the response variable,
and thus can be used for quantile estimation.
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Missing data. One of the strengths of random forests is that they can
handle missing data. The procedure, explained in Breiman (2003), takes
advantage of the so-called proximity matrix, which measures the proximity
between pairs of observations in the forest, to estimate missing values. This
measure is the empirical counterpart of the kernels defined in Section 3.2.
Data imputation based on random forests has further been explored by Rieger
et al. (2010), Crookston and Finley (2008), and extended to unsupervised
classification by Ishioka (2013).

Forests and machine learning. One-class classification is a binary clas-
sification task for which only one class of samples is available for learning.
Désir et al. (2013) study the One Class Random Forests algorithm, which
is designed to solve this particular problem. Geremia et al. (2013) have in-
troduced a supervised learning algorithm called Spatially Adaptive Random
Forests to deal with semantic image segmentation applied to medical imag-
ing protocols. Lastly, in the context of multi-label classification, Joly et al.
(2014) adapt the idea of random projections applied to the output space to
enhance tree-based ensemble methods by improving accuracy while signifi-
cantly reducing the computational burden.
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