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TUNING PARAMETERS IN RANDOM FORESTS

Erwan Scornet1

Abstract. Breiman’s (2001) random forests are a very popular class of learning algorithms often able
to produce good predictions even in high-dimensional frameworks, with no need to accurately tune
its inner parameters. Unfortunately, there are no theoretical findings to support the default values
used for these parameters in Breiman’s algorithm. The aim of this paper is therefore to present recent
theoretical results providing some insights on the role and the tuning of these parameters.

1. Introduction
Random forests, designed by Breiman [8], belong to the class of learning algorithms and are among the most

used aggregation schemes which predict by combining several weak learners (decision trees in the case of random
forests). Facing a single data set, a number of different trees are built by introducing randomness into the initial
tree construction process. Random forest prediction is then computed as the average over all tree predictions.

Because random forests appear to have the ability to detect relevant features even in noisy environments,
they are very convenient when dealing with high-dimensional feature spaces and hence are often implemented
in fields such as chemoinformatics [28], ecology [12, 23], 3D object recognition [26], and bioinformatics [13], just
to name a few.

In details, the random forest construction in a regression setting proceeds as follows. Each tree is built
using a sample of size an drawn from the original data set (either with or without replacement). Only these
an observations are used to construct the tree partition and to ultimately make the tree prediction. Once the
observations have been selected, the algorithm forms a recursive partitioning of the covariates space. In each
cell, a number mtry of variables are selected uniformly at random among all covariates. Then, the best split
is chosen as the one optimizing the CART splitting criterion (details are given in Section 2) only along the
mtry preselected directions. Equivalently, the procedure selects the split minimizing the quadratic risk of the
tree estimate at each step. This process is repeated until each cell contains less than a prespecified number
nodesize of observations. After tree partition has been completed, the prediction at a new point is computed
by averaging observations falling into the cell of the new point. Then each one of the M trees in the forest gives
a prediction, and the forest prediction is simply the average of the M predicted values.

All in all, the algorithm depends on several parameters: the subsample size an, the number mtry of preselected
directions for splitting, the tree depth which can be specified in different ways (nodesize, or the maximal number
of cells maxnodes, or the tree level kn) and the number M of trees.

It is of common belief that implemented default values for these parameters yield good empirical performance
in prediction, which is partially why random forests became so popular. One major related drawback is the total
absence of theoretical justification for these default values. Whereas the very specific default values mtry =

√
d

(classification setting) and mtry = d/3 (regression setting) can be thought of as the consequence of in-depth
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mathematical analysis, they result in reality from several simulations designed by Breiman in the seminal paper
[8]. There is no more theoretical supports for choosing nodesize = 1 or nodesize = 5, or an = n (which
corresponds to bootstrap procedure if sampling is done with replacement), nor using M = 500 decision trees as
default values in the R package randomForest. Because random forests performance can depend on parameter
values and thus can be improved by a proper tuning of these parameters, there is a real need to apprehend their
influence on random forest predictions.

The goal of this paper is to present how existing theoretical results provide insights about how to choose
parameters in random forests procedure. We do not intend to review exhaustively existing literature on the
generic topic of random forests; the interested reader can refer to the survey by [11] and [7] for applied aspects of
random forests and to [6] (and the discussions therein) for an overview of theoretical results. In Section 2 of the
present paper, we introduce mathematical notations for random forest estimates and briefly discuss the impact
of mtry. Section 3 focuses on the influence of the number M of trees. Section 4 is devoted to the connection
between the tree depth (nodesize, maxnodes or kn) and the subsample size an.

2. Random forest algorithm and mtry parameter
In this paper, we consider a regression framework and assume to be given a training sample Dn = {(X1, Y1),

. . . , (Xn, Yn)} of [0, 1]d× R-valued independent and identically distributed observations of a random pair (X,
Y ), where E[Y 2] <∞. We denote by X = (X(1), . . . , X(d)) the input variables, by Y the response variable and
our objective is to estimate the regression function m(x) = E [Y |X = x]. In this context, we use random forests
to construct an estimate mn : [0, 1]d → R of m, based on the data set Dn.

2.1. Random forest algorithm
Random forest is a generic term to name an aggregation scheme of decision trees. Due to its popularity and

its good empirical performance, Breiman’s (2001) forest is one of the most used random forest algorithms, and
are subsequently called by some abuse of terms “random forests”. Whereas our major focus will be on Breiman’s
forests, we will have to consider other forest variants. To avoid confusion, we will explicitly mention when we
refer to specific forests different from Breiman’s forests.

Breiman’s forests are based on a collection of M randomized trees. We denote by mn(x,Θj ,Dn) the predicted
value at point x given by the j-th tree, where Θ1, . . . ,ΘM are independent random variables, distributed as
a generic random variable Θ, independent of the sample Dn. In practice, the variable Θ contains indexes of
observations that are used to build each tree and indexes of splitting candidate directions in each cell. Thus Θ
belongs to a large space, which can vary if different randomization processes are at stake, i.e. if forests other
than Breiman’s are considered. The predictions of the M randomized trees are then averaged to obtain the
random forest prediction

mM,n(x,Θ1, . . . ,ΘM ,Dn) = 1
M

M∑
m=1

mn(x,Θm,Dn). (1)

To lighten notation, when there is no ambiguity, we will omit the explicit dependence on Dn and simply write,
for instance, mn(x,Θm).

In Breiman’s forests, each node of a single tree is associated with a hyper-rectangular cell included in [0, 1]d.
The root of the tree is [0, 1]d itself and, at each step of the tree construction, a node (or equivalently its
corresponding cell) is split in two parts. The terminal nodes (or leaves), taken together, form a partition of
[0, 1]d (see, Figure 1 for an illustration). The procedure is described in Algorithm 1.

So far, we have not made explicit the CART-split criterion used in Algorithm 1. To properly define it, we
let A be a generic cell and Nn(A) be the number of data points falling in A. A cut in A is a pair (j, z), where
j is a dimension in {1, . . . , d} and z is the position of the cut along the j-th coordinate, within the limits of
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Algorithm 1: Breiman’s forests algorithm
(1) Grow M trees as follows:

(a) Prior to the j-th tree construction, select uniformly with replacement, an data points among
Dn. Only these an observations are used in the tree construction.

(b) Consider the cell [0, 1]d.
(c) Select uniformly without replacement mtry coordinates among {1, . . . , d}.
(d) Select the split maximizing the CART-split criterion (see below for details) along the pre-

selected mtry directions.
(e) Cut the cell at the selected split.
(f) Repeat (c)− (e) for the two resulting cells until each cell of the tree contains less than

nodesize observations.
(g) For a query point x, the j-th tree outputs the average of the Yi falling into the same cell as x.

(2) For a query point x, Breiman’s forest outputs the average of the predictions given by the M trees.

Figure 1. Example of a single tree in Breiman forests (d = 2)

A. We let CA be the set of all such possible cuts in A. Then, with the notation Xi = (X(1)
i , . . . ,X(d)

i ), for any
(j, z) ∈ CA, the CART-split criterion [10] takes the form

Ln(j, z) = 1
Nn(A)

n∑
i=1

(Yi − ȲA)21Xi∈A

− 1
Nn(A)

n∑
i=1

(Yi − ȲAL1X(j)
i
<z
− ȲAR1X(j)

i
≥z)

21Xi∈A, (2)

where AL = {x ∈ A : x(j) < z}, AR = {x ∈ A : x(j) ≥ z}, and ȲA (resp., ȲAL , ȲAR) is the average of the Yi’s
belonging to A (resp., AL, AR), with the convention 0/0 = 0. At each cell A, the best cut (j?n, z?n) is finally
selected by maximizing Ln(j, z) over Mtry and CA, that is

(j?n, z?n) ∈ arg max
j∈Mtry
(j,z)∈CA

Ln(j, z).

To remove ties in the arg max, the best cut is always performed at the middle of two consecutive data points,
along the selected direction j?n. Note that selecting the split that minimizes the CART-split criterion is equivalent
to selecting the split such that the local mean square error (second term in (2)) is minimal.

The whole procedure depends on four parameters: the number M of trees, the number an of observations
used in each tree, the number mtry of preselected directions for splitting, and the maximum number nodesize
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of observations in each leaf. By default in the R package randomForest, M is set to 500, an = n (bootstrap
samples are used to build each tree, that is sampling is done with replacement), mtry = d/3 and nodesize= 5.

2.2. Number of candidate variables for splitting
The first parameter we focus on is the number mtry of preselected directions along which the splitting

criterion is optimized. To the best of our knowledge, there is no theoretical results highlighting the benefits
of randomizing the eligible directions for splitting. From a heuristical point of view, introducing additional
randomness via the parameter mtry yield more tree diversity. Indeed, if we set mtry = 1, the splitting variable
is chosen uniformly at random among the d initial variables. On the other hand, if mtry = d, the split is
optimized along all possible directions, which means that up to the randomness induced by subsampling, the
tree construction is deterministic (given the original data set).

There is also a computational benefit of employing mtry < d: the splitting criterion is computed along
less than mtry < d covariates therefore making the algorithm faster than the one where exhaustive search is
performed [mtry = d as in original CART procedure, see 10]. This is of particular interest in high-dimensional
problems, where exhaustive search is prohibited due to computational cost.

From a methodological perspective, the interested reader can refer to [13] and [16] who showed in different
contexts that the default value of mtry is either optimal or too small. Note also there are implementations of
random forests in which mtry can be automatically determined [see for example 2].

3. Number of trees
The aim of this section is to study the impact of the number M of trees on the statistical performance of

random forests.

3.1. Risk of finite and infinite forests
The number of trees in random forests is only used to limit the difference between the finite forest defined

by (1) and the infinite forest defined as

m∞,n(x) = EΘ [mn(x,Θ)] ,

where EΘ denotes the expectation with respect to the random variables Θ (conditional on all other random
variables). Indeed, the law of large numbers states that, conditional on Dn, for any fixed x ∈ [0, 1]d, almost
surely,

mM,n(x,Θ1, . . . ,ΘM ) →
M→∞

m∞,n(x), (3)

The finite forest estimate is nothing but a Monte Carlo approximation of the infinite forest, whose computation
is infeasible in practice since it would require knowledge about the dependence of mn(x,Θ) on Θ. To see the
influence of M , let us define the risk of m∞,n as

R(m∞,n) = E[m∞,n(X)−m(X)]2,

and the risk of mM,n as

R(mM,n) = E[mM,n(X,Θ1, . . . ,ΘM )−m(X)]2.
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As for any other aggregated estimate, the parameter M controls the variance of the Monte Carlo approximation:

E
[
mM,n(X,Θ1, . . . ,ΘM )−m(X)

]2
= E

[
mM,n(X,Θ1, . . . ,ΘM )−m∞,n(X)

]2︸ ︷︷ ︸
Monte Carlo error

+E
[
m∞,n(X)− E[m∞,n(X)]

]2︸ ︷︷ ︸
Estimation error of m∞,n

+E
[
E[m∞,n(X)]−m(X)

]2︸ ︷︷ ︸
Approximation error of m∞,n

. (4)

In the light of this result, the larger M , the more accurate the prediction will be in term of mean squared error.
Thus, M should be chosen large enough to reach the desired statistical precision and small enough to make the
calculations feasible (the computational cost increases linearly with M). Equation (4) presents a decomposition
of the mean squared error, and thus for a particular instance of forests, the error can increase by adding a single
tree. Luckily, the error will decrease on average with M as precisely stated in Theorem 3.1. As we did above
regarding expectation, we will denote by VΘ the variance with respect to Θ.
Theorem 3.1 ([24]). Assume that Y = m(X) + ε, where ε is a centered Gaussian noise with finite variance
σ2, independent of X, and ‖m‖∞ = sup

x∈[0,1]d
|m(x)| <∞. Then, for all M,n ∈ N?,

R(mM,n) = R(m∞,n) +
E
[
VΘ [mn(X,Θ)]

]
M

.

In particular,

0 ≤ R(mM,n)−R(m∞,n) ≤ 8
M
×
(
‖m‖2∞ + σ2(1 + 4 logn)

)
.

Theorem 3.1 reveals that the risk of infinite forests is lower than the risk of finite forests. Since infinite random
forests cannot be computed, Theorem 3.1 should be seen as a way to ensure that R(mM,n) is close to R(m∞,n)
provided the number of trees is large enough. Indeed, under assumptions of Theorem 3.1, R(mM,n)−R(m∞,n) ≤
ε if

M ≥ 8(‖m‖2∞ + σ2)
ε

+ 32σ2 logn
ε

.

Note that the “logn” term comes from the Gaussian noise assumption and in all generality, the previous
bound can be rewritten as

M ≥ 8‖m‖2∞
ε

+ 8
ε
E

[
max

1≤i≤n
ε2
i

]
.

Another interesting consequence of Theorem 3.1 is that if M/ logn→∞ as n→∞, finite random forests are
consistent as soon as infinite random forests are. This allows to derive consistency results for finite forests based
on results about infinite forests [see, e.g., 5, 21]. Since the “logn” factor depends on the noise assumption, the
asymptotic M/ logn → ∞ changes with the type of noise and, for instance, turns into M → ∞ if the noise is
bounded.

3.2. Distribution of finite forests, conditional on Dn

Now that we have assessed how the forest accuracy depends on the number of trees, we take a closer look
at the forest predictions and try to determine their distribution. In other words, we examine the asymptotic
behavior of the finite forest estimate mM,n(•,Θ1, . . . ,ΘM ) as M tends to infinity. To do so, let us assume for
now that the data set Dn is fixed: this setting is consistent with practical problems, where observations are
fixed, and one can grow as many trees as possible. Theorem 3.2 extends the pointwise convergence in (3) to the
convergence of the whole functional estimate mM,n(•,Θ1, . . . ,ΘM ), towards the functional estimate m∞,n(•).
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Theorem 3.2 ([24]). Consider a finite Breiman’s forest formed with M trees. Then, conditional on Dn, almost
surely, for all x ∈ [0, 1]d, we have

mM,n(x,Θ1, . . . ,ΘM ) →
M→∞

m∞,n(x).

Since the set [0, 1]d is not countable, we cannot reverse the “almost sure” and “for all x ∈ [0, 1]d” statements
in (3). Thus, Theorem 3.2 is not a direct consequence of (3). Theorem 3.2 is a first step to prove that infinite
forest estimates can be uniformly approximated by finite forest estimates. To pursue the analysis, a natural
question is to determine the rate of convergence in Theorem 3.2. The pointwise rate of convergence is provided
by the central limit theorem which states that, conditional on Dn, for all x ∈ [0, 1]d,

√
M
(
mM,n(x,Θ1, . . . ,ΘM )−m∞,n(x)

) d→
M→∞

N
(
0, σ̃2(x)

)
, (5)

where σ̃2(x) = VΘ [mn(x,Θ)] ≤ 4 max
1≤i≤n

Y 2
i (as before, VΘ denotes the variance with respect to Θ, conditional

on Dn). Theorem 3.3 extends the pointwise convergence in distribution in (5) to the convergence in distribution
of the random process

mM,n(•,Θ1, . . . ,ΘM )−m∞,n(•) = 1
M

M∑
m=1

mn(•,Θm)− EΘ [mn(•,Θ)] .

Theorem 3.3 ([24]). Consider a finite Breiman’s forest with M trees. Then, conditional on Dn,

√
M
(
mM,n(•,Θ1, . . . ,ΘM )−m∞,n(•)

) L→ Gg•.

where G is a Gaussian process with mean zero and covariate function

CovΘ(Ggx,Ggz) = CovΘ (mn(x,Θ),mn(z,Θ)) .

In other words, Theorem 3.2 states that almost surely, the finite forest converges to the infinite forest and
Theorem 3.3 states that the corresponding limiting process is Gaussian. This last result provides theoretical
foundations to use confidence bounds for the whole forest estimate. Previous theorems are also valid for other
type of random forests [for details, see 24]

3.3. Relation between number of trees and subsampling
To go further into the analysis of forest predictions, Mentch and Hooker [22] considered the framework where

both the size of the data set and the number Mn of trees tends to infinity. To formulate their result, we consider
trees with no extra randomness (and thus omit the random variable Θ) built with a ≤ n observations, and
define for any fixed x ∈ [0, 1]d,

ζ1,a = Cov(mn(x, {Z1, . . . , Za}),mn(x, {Z1, Z
′
2, . . . , Z

′
a})), (6)

where Z ′i = (X ′i, Y ′i ) is an independent copy of Zi = (Xi, Yi). For any c ∈ {1, . . . , a}, ζc,a has the same expression
as (6) but with c observations in common. Theorem 3.4 gives the limiting distribution of forest prediction at
a fixed point x in different regimes. It relies on the assumption that forest predictions do not vary too much
when one single observation label in the training set is slightly modified.

Theorem 3.4 ([22]). Let us consider a random forests whose randomization process entirely lies in sampling
the data set, where each tree is built with an observations. and set α = limn/Mn. Assume that the regression
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function m is bounded and that there exists a constant c > 0 such that for all an ≥ 1, almost surely,∣∣∣mn

(
x,
{

(X1, Y1), . . . , (Xan+1, Yan+1)
})
−mn

(
x,
{

(X1, Y1), . . . , (Xan+1, Y
?
an+1)

})∣∣∣ ≤ c|Yan+1 − Y ?an+1|,

where Yan+1 = m(Xan+1) + εan+1, Y ?an+1 = m(Xan+1) + ε?an+1, ε?an+1 is an independent copy of εan+1 with
exponential tail. Assume also that lim ζ1,an 6= 0, lim an/

√
n = 0 and

lim
n→∞

E
[
mn(x,Θ,Dn)−m∞,n(x,Θ,Dn)

]2 6=∞.
Then, we have three different regimes:

(1) If α = 0, then
√
n(mMn,n(x,Θ,Dn)− E[mMn,n(x,Θ,Dn)])

an
√
ζ1,an

d→ N (0, 1).

(2) If α =∞, then
√
Mn(mMn,n(x,Θ,Dn)− E[mMn,n(x,Θ,Dn)])

an
√
ζ1,an

d→ N (0, 1).

(3) If 0 < α <∞, then
√
Mn(mMn,n(x,Θ,Dn)− E[mMn,n(x,Θ,Dn)])√

a2
nζ1,an
α + ζan,an

d→ N (0, 1).

Theorem 3.4 describes the limiting distributions of the finite forest, assuming that the subsample size an =
o(
√
n). The three different regimes correspond to different values of the ratio n/Mn. It is one of the first results

that describes the behaviour of Breiman’s forest as a function of more than one parameter, here the subsample
size an and the number of trees Mn. Theorem 3.4 can be extended to general random forest, where eligible
directions for splitting are also randomized [see 22]. Besides, it is worth noticing that there exist procedures to
estimate the forest variance ζ1,an [see 22, 31].

In brief, finite random forests defined by (1) are nothing but Monte Carlo approximation of infinite
forests. Thus finite random forest estimate is asymptotically normal (Theorems 3.3 and 3.4) which
allows us to build confidence intervals for random forest predictions [see 22, 31]. Besides, Theorem
3.1 states that the risk decreases with M therefore leading to choose the highest possible value for
M given the computational power available. Besides, assuming Gaussian noise, taking M of order
(logn)1+ρ for any nonnegative ρ is sufficient to ensure that the risk of finite forest converges to the
risk of the infinite forest.

4. Tree depth and subsampling
Tree shape plays a great part in random forests performance. One key component is the stopping rule,

which specifies when to stop the splitting procedure in each cell. As mentioned in Section 2, the original
stopping rule in Breiman’s algorithm is to stop tree expansion when each cell contains less than nodesize
observations. A closer look at the R package randomForest shows that the parameter maxnodes can also be
used (with nodesize or alone) to stop the tree construction. In that case, the tree construction will end when
the number of terminal nodes reaches maxnodes. We study in this section the influence of tree depth (controlled
via parameters nodesize, maxnodes or tree level kn) and subsampling on predictive performance.
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4.1. Purely random forests

Algorithm 2: Centred tree
(1) Consider the whole data set Dn. This entire set will be used in the tree construction.
(2) Consider the root cell [0, 1]d.
(3) Select uniformly one coordinate among {1, . . . , d}.
(4) Cut the cell at the center of the cell along the preselected direction.
(5) Repeat (c)− (d) for the two resulting cells until each cell has been cut exactly kn times.
(6) For a query point x, the centred tree estimate outputs the average of the Yi falling into the same

cell as x.

Before considering the entire forest, let us first analyze a single tree. One of the simplest tree to construct
is the centred tree, described in Algorithm 2. A centred tree depends on one parameter, the tree level kn,
which models tree shape: the construction stops when each cell has been split kn times exactly. There is no
subsampling parameter since the entire data set is used for each tree.

General results on partitioning estimate whose construction is independent of the data set state that necessary
conditions for the consistency of centred trees are n/2kn → ∞ and kn → ∞, as n → ∞ [see, e.g. 5]. Indeed,
the tree level kn should grow to infinity with n so that the approximation error decreases: tree estimate
approximates the regression function with piecewise constant function in each cell of the partition, which
becomes a satisfactory approximation when cell diameters shrink to zero. On the other hand, there should
be a large number of observations in each cell so that the estimation error is low. This is a consequence of
n/2kn →∞ which forces the mean number of observations per cell to tend to infinity. Each tree satisfying these
two assumptions is consistent, and thus the forest composed of such trees is consistent too.

The first analysis of random forests was by [9] who found the rate of consistency of centred forest. Later on,
[3] extended this result assuming that splits are likely to concentrate around the S informative variables of the
model. In this particular setting, the upper bound on the generalization error is given by

R(m∞,n,m) ≤ c1n−3/(4S log 2+3), (7)

where c1 is some positive constant, if 2kn is chosen of order n4S log 2/(4S log 2+3). The fact that the upper bound
(7) depends only on S and not on the ambient dimension d can explain why random forests perform particularly
well in high dimensions, under the assumption that splits concentrate along relevant features. Other purely
random forests (whose construction is independent of the training set) has also been studied, for example by
[1] who established the rate of convergence of their bias.

Analyzing such forests is not sufficient to understand the outstanding performance of Breiman’s forests in
high dimensions. Besides, there is still a huge gap between these forests and Breiman forests regarding the
number of observations in each cell: cells in Breiman’s forest contain less than five observations whereas cells
of purely forests contain a large number of data points. A more in-depth analysis is then required to take into
account cases where n/2kn ' 1.

4.2. Subsampling and tree depth in median forests
To deal with deeper trees, and thus to get closer to Breiman’s forests, we study in this section median forest

[see, for example, 4, for details on median tree]. Median forests construction depends on the Xi making them a
good tradeoff between the complexity of Breiman’s (2001) forests and the apparent simplicity of purely random
forests. Besides, median forests can be tuned such that each leaf of each tree contains exactly one observation,
thus being extremely close to Breiman’s forests.

We now describe the construction of median forest. In the spirit of Breiman’s (2001) algorithm, before
growing each tree, data are subsampled: an < n points are selected without replacement. Then, each split is
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performed at the empirical median along a coordinate, chosen uniformly at random among the d coordinates.
Note that data points on which splits are performed are not sent down to the resulting cells. This is done to
ensure that data points are uniformly distributed on the resulting cells. Finally, the algorithm stops when each
cell has been cut exactly kn times; kn is called the tree level. The overall construction process is detailed in
Algorithm 3.

Algorithm 3: Median random forests
(1) Grow M trees as follows:

(a) Prior to the j-th tree construction, select uniformly without replacement, an data points
among Dn. Only these an observations are used in the tree construction.

(b) Consider the cell [0, 1]d.
(c) Select uniformly one coordinate among {1, . . . , d}.
(d) Cut the cell at the empirical median of the Xi falling into the cell, along the preselected

direction.
(e) Repeat (c)− (d) for the two resulting cells until each cell has been cut exactly kn times.
(f) For a query point x, the j-th tree outputs the average of the Yi falling into the same cell as x.

(2) For a query point x, the median forest mM,n outputs the average of the predictions given by the M
trees.

The analysis of several random forests can be reduced to that of median forests (or more generally to quantile
forests) if their construction depends only on the Xi and if splits do not separate a small fraction of data points
from the rest of the sample. This last assumption is true, for example, if X has a density on [0, 1]d bounded
from below and from above, and if some splitting rule forces splits to be performed far from the cell edges.
This assumption is explicitly made in the analysis of [21] and [30] to ensure that cell diameters tend to zero as
n→∞, which is a necessary condition to prove the consistency of partitioning estimates, whose construction is
independent of the label in the training set [see Chapter 4 in 17]. Nevertheless, there are no results stating that
splits in Breiman’s (2001) forests are performed far from the cell edges [see 19, for an analysis of the splitting
criterion in Breiman’s forests]. Theorem 4.1 presents a first consistency result for forests of fully grown median
trees.

Theorem 4.1 ([24]). Assume that Y = m(X) + ε, where ε is a centred noise such that V[ε|X = x] ≤ σ2,
where σ2 < ∞ is a constant, X has a density on [0, 1]d and m is continuous. Consider a median forest where
kn is chosen such that each cell contains one or two observations. Then, providing an → ∞ et an/n → 0, the
infinite median random forest is consistent, that is R(m∞,n)→ 0 as n→∞.

Each tree in the median forest is inconsistent [see Problem 4.3 in 17], because each leaf contains less than
two data points, a number which obviously does not grow to infinity as n→∞. Thus, Theorem 4.1 shows that
median forest combines inconsistent trees to form a consistent estimate. Put differently, Theorem 4.1 proves
that there is no caveat to build fully grown median trees (i.e. to construct trees whose terminal nodes contain
a small number of observations), provided a subsampling step. Indeed, the subsampling procedure is crucial
to prove the consistency, and the condition an/n → 0 forces the subsample size to be small compared to the
original size of the training set.

Theorem 4.1 deals with median forests where subsampling is performed and trees are fully grown (kn is
maximal). Furthermore, general partitioning theorem states that, as for centred forests, median forests are
consistent if an = n and n/2kn → ∞ (the tree construction is stopped at level kn). A natural question is to
know for which values of an and kn the consistency of median forests holds and what the rate of consistency is.
This will find an answer in Theorem 4.2.
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Theorem 4.2 ([14]). Assume that Y = m(X) + ε, where ε is a centred noise such that V[ε|X = x] ≤ σ2 <∞,
X is uniformly distributed over [0, 1]d and m is L-Lipschitz continuous. Then, for all n, for all x ∈ [0, 1]d,

E
[
m∞,n(x)−m(x)

]2 ≤ 2σ2 2k

n
+ dL2C1

(
1− 3

4d

)k
. (8)

In addition, let β = 1− 3/4d. The right-hand side is minimal for

kn = 1
ln 2− ln β

[
ln(n) + C3

]
, (9)

under the condition that an ≥ C4n
ln 2

ln 2−ln β . For these choices of kn and an, we have

E
[
m∞,n(x)−m(x)

]2 ≤ Cn ln β
ln 2−ln β .

Equation (8) stems from the estimation/approximation error decomposition of median forests. The first
term in equation (8) corresponds to the estimation error of the forest as in [3] or [1] whereas the second term
is the approximation error of the forest, which decreases exponentially in k. Note that this decomposition is
consistent with the existing literature on random forests since letting n/2k →∞ and k →∞ allows us to control
respectively the estimation and approximation error. According to Theorem 4.2, making these assumptions for
median forests results in their consistency.

Note that the estimation error of a single tree grown with an observations is of order 2k/an. Because of
the subsampling step (i.e., since an < n), the estimation error of median forests 2k/n is smaller than that of a
single tree. The random forests variance reduction is a well-known property, already proved by [15] for a purely
random forest, and by [24] for median forests. This highlights a first benefit of median forests over singular
trees.

Theorem 4.2 allows us to derive rates of consistency for two particular forests: the partially grown median
forest, where no subsampling is performed prior to building each tree, and the fully grown median forest, where
each leaf contains a small number of points. Corollary 1 deals with partially grown median forests, also called
small-tree median forests.
Corollary 1 (Small-tree median forests). Let β = 1 − 3/4d. Consider a median forest without subsampling
(i.e., an = n) and such that the parameter kn satisfies (9). Then, with the assumptions of Theorem 4.2, for all
n, for all x ∈ [0, 1]d,

E
[
m∞,n(x)−m(x)

]2 ≤ Cn ln β
ln 2−ln β .

Trees of the median forest studied in Corollary 1 are not fully developed. This context is similar to centred
forest where the construction of each tree is stopped at some level kn depending on the size of the data set
only. The consistency of the forest relies on the consistency of each individual tree which compose it. On the
other hand, Corollary 2 deals with median forests where trees are fully grown, therefore establishing the rate of
consistency of a particular forest which aggregates inconsistent trees.
Corollary 2 (Fully grown median forest). Let β = 1−3/4d and assume that assumptions of Theorem 4.2 hold.
Consider a fully grown median forest whose parameters kn and an satisfy kn = log2(an)−2. The optimal choice
for an that minimizes the mean squared error in (8) is then given by (9), that is

an = C4n
ln 2

ln 2−ln β .

In this case, for all n, for all x ∈ [0, 1]d,

E
[
m∞,n(x)−m(x)

]2 ≤ Cn ln β
ln 2−ln β .
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Whereas each individual tree in the fully developed median forest is inconsistent (since each leaf contains a
small number of points), the whole forest is consistent and its rate of consistency is provided by Corollary 2.
Besides, Corollary 2 provides us with the optimal subsampling size for fully developed median forests.

A closer look at Theorem 4.2 shows that the subsampling size has no effect on the performance, provided
it is large enough. The parameter of real importance is the tree depth kn. Thus, fixing kn as in equation (9),
and by varying the subsampling rate an/n one can obtain random forests whose trees are more-or-less deep, all
satisfying the optimal bound in Theorem 4.2. In this way, Corollary 1 and 2 are simply two particular examples
of such forests.

The main message behind Corollary 1 and Corollary 2 is that it is equivalent in terms of performance to tune
kn or an. Indeed, provided a proper parameter tuning, partially grown median forests without subsampling and
fully grown median forests (with subsampling) have similar performance. This means that there is no need for
tuning both parameters kn and an simultaneously.

Although our analysis sheds some light on the role of subsampling and tree depth, the statistical performance
of median forests does not allow us to choose between small-tree forests and subsampled forests. Interestingly,
these two types of random forests can be used in two different contexts. If one wants to obtain fast predictions,
then subsampled forests, as described in Corollary 2, are to be preferred since their computational time is lower
than small-tree forests (described in Corollary 1). However, if one wants to build more accurate predictions,
small-tree random forests should probably be chosen since the recursive random forest procedure allows to build
several forests of different tree depths in one run, therefore allowing to select the best model among these forests.

4.3. Subsampling and tree depth in Breiman’s forests
4.3.1. Theoretical results

Since our main goal is the study of Breiman’s forests, we would like to extend previous results on median
forests to Breiman’s forests. Unfortunately, the proof techniques turn out to be much more complex since the
tree construction in the original algorithm depends on both the positions Xi and the label Yi of the data set.
Due to this additional difficulty, we are still not able to derive rate of consistency for Breiman’s forest as for
median forests in Theorem 4.2. To move forward towards the understanding of Breiman’s forest, we will need
the following assumption on the regression model.
(H1) The response Y follows

Y =
d∑
j=1

mj(X(j)) + ε,

where X = (X(1), . . . ,X(d)) is uniformly distributed over [0, 1]d, ε is an independent centred Gaussian noise
with finite variance σ2 > 0, and each component mj is continuous.

The main assumption in (H1) is the additivity nature of the regression model [for details on additive models,
see e.g. 18, 27]. Indeed, under (H1), all covariates X(1), . . . ,X(d) are independent and since Y is the sum of
univariate terms, there are no interaction effects among covariates. These assumptions simplify the theoretical
analysis of random forests, which still remain a difficult task since the subsampling step and the CART-split
criterion used at each step need to be taken into account. But this context is far from reality since there is no
actual (big) data set where all variables are independent and where all interaction effects can be safely omitted.

Theorem 4.3 and Theorem 4.4 assess the consistency of Breiman’s forest for two different parameters values.
Theorem 4.3 focuses on small-trees forests, i.e. such that the number of terminal nodes maxnodes = tn is small
compared to the number of observations an used in each tree.

Theorem 4.3 ([25]). Assume that (H1) is satisfied. Then, provided an, tn → ∞ and tn(log an)9/an → 0,
random forests are consistent, i.e.,

lim
n→∞

E [mn(X)−m(X)]2 = 0.
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The condition under which Breiman’s forests are consistent are very similar to those for which centred forests
are consistent. Indeed, recall that centred forests are consistent if kn → ∞ and n/2kn → ∞, where kn is the
tree level. Since centred trees are complete binary trees, the number of leaves tn satisfies tn = 2kn . And thus
the consistency assumptions reduced to tn → ∞ and tn/n → 0. Up to the (log an)9 term, Breiman’s forest is
consistent under the same assumptions. Noteworthy, the (log an)9 comes from the Gaussian noise for one part
and from the partition complexity for the other part.

Theorem 4.3 holds for any value of an provided an →∞ and consequently the forest is consistent for an = n
(no subsampling step). The consistency result does not rely on the subsampling step, and a close inspection of
the proof of Theorem 4.3 shows that each tree in the forest is consistent. This is the first consistency result for
CART.

Enouncing Theorem 4.4 requires an additional assumption (H2) which helps to control cuts in the last tree
levels.
(H2) Let Wi = 1

X Θ↔Xi

the indicator that X falls in the same cell as Xi in the random tree designed with
Dn and the random parameter Θ. Similarly, we let W ′j = 1

XΘ′↔Xj

, where Θ′ is an independent copy of Θ.
Accordingly, we define

ψi,j(Yi, Yj) = E
[
WiW

′
j

∣∣X,Θ,Θ′,X1, . . . ,Xn, Yi, Yj

]
and ψi,j = E

[
WiW

′
j

∣∣X,Θ,Θ′,X1, . . . ,Xn

]
.

Then, one of the following two conditions holds:
(H2.1) One has

lim
n→∞

(log an)2d−2(logn)2E

[
max
i,j
i 6=j

|ψi,j(Yi, Yj)− ψi,j |
]2

= 0.

(H2.2) Letting Wi,j = (Wi,W
′
j), there exist a constant C > 0 and a sequence (γn)n → 0 such that,

almost surely,

max
`1,`2=0,1

|Corr(Yi −m(Xi),1Wi,j=(`1,`2)|Xi,Xj , Yj)|
P1/2

[
Wi,j = (`1, `2)|Xi,Xj , Yj

] ≤ γn,

and

max
`1=0,1

|Corr
(
(Yi −m(Xi))2,1Wi=`1 |Xi

)
|

P1/2
[
Wi = `1|Xi

] ≤ C.

This condition probably shares some similarities with that of [22] in Theorem 3.4 although the connection
is not limpid. Under (H2), Theorem 4.4 establishes the consistency of Breiman’s forests when trees are fully
grown, i.e. tn = an.

Theorem 4.4 ([25]). Assume that (H1) and (H2) are satisfied and let tn = an. Then, provided an →∞ and
an logn/n→ 0, random forests are consistent, i.e.,

lim
n→∞

E [mn(X)−m(X)]2 = 0.

Theorem 4.3 and Theorem 4.4 are the first consistency results for Breiman’s (2001) forests. As for median
forests, we see that the consistency holds if the tree construction is stopped long before each cell contains one
observation (Theorem 4.3), regardless of the subsample size an. But the subsampling step allows us to consider
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deeper trees (where each terminal node contains one observation) and to prove that the resulting forest is
consistent if an logn/n→ 0 (Theorem 4.4).

Note that Theorem 4.3 and Theorem 4.4 are not valid in the case of bootstrap. Indeed, all proofs assume
that subsampling is performed without replacement, which prevents the resulting data sets from containing
the same observations more than once. These data sets are then distributed as the original training set which
greatly simplifies the analysis. However, when performing bootstrap, generated data sets can contain several
replicates of the same observations.

4.3.2. Experiments
We now carry out some experiments to investigate the influence of subsampling size and tree depth on

Breiman’s procedure. To do so, we start by defining various regression models on which several experiments
are based. Throughout this section, we assess the forest performance via the empirical mean squared error.
Additional simulations can be found in [14].

Model 1: n = 800, d = 50, Y = X2
1 + exp(−X2

2 )
Model 2: n = 600, d = 100, Y = X1X2 +X2

3 −X4X7 +X8X10 −X2
6 +N (0, 0.5)

Model 3: n = 600, d = 100, Y = − sin(2X1) +X2
2 +X3 − exp(−X4) +N (0, 0.5)

Model 4: n = 600, d = 100, Y = X1 + (2X2 − 1)2 + sin(2πX3)/(2 − sin(2πX3)) + sin(2πX4) + 2 cos(2πX4) +
3 sin2(2πX4) + 4 cos2(2πX4) +N (0, 0.5)
Model 5: n = 700, d = 20, Y = 1X1>0 +X3

2 + 1X4+X6−X8−X9>1+X10 + exp(−X2
2 ) +N (0, 0.5)

Model 6: n = 500, d = 30, Y =
∑10
k=1 1X3

k
<0 − 1N (0,1)>1.25

For all regression frameworks, we consider covariates X = (X1, . . . , Xd) that are uniformly distributed over
[−1, 1]d. These models comes from various sources [see, e.g., 20, 29]. All numerical implementations have been
performed using the free R software. For each experiment, the data set is divided into a training set (80% of
the data set) and a test set (the remaining 20%). Then, the empirical risk is evaluated on the test set.

Tree depth. We start by comparing Breiman’s original forests and small-tree Breiman’s forests (in which
the tree depth is limited). Breiman’s forests are the standard procedure implemented in the R package
randomForest, with the parameters default values. Small-tree Breiman’s forests are similar to Breiman’s forests
except that tree depth is controlled via the parameter maxnodes and that the whole sample Dn is used to build
each tree (without any resampling step). To study only the influence of maxnodes, we fix nodesize = 1 for
both Breiman’s forests and small-tree Breiman’s forests.

We present the mean squared errors of small-tree Breiman’s forests for different number of terminal nodes
(10%, 30%, 63%, 80% and 100% of the sample size) for Models 1-6. The results can be found in Figure 2 in
the form of box-plots. We can notice that the forests such that maxnodes= 0.3n give similar (Model 5) or best
(Model 6) performances than standard Breiman’s forest.

Subsampling. We now study the influence of subsampling on Breiman’s forests by comparing the origi-
nal Breiman’s procedure with subsampled Breiman’s forests. Subsampled Breiman’s forests are nothing but
Breiman’s forests where the subsampling step consists in choosing an observations without replacement (instead
of choosing n observations among n with replacement).

In Figure 3, the mean squared errors of subsampled Breiman’s forests is plotted for different subsampling
sizes (0.4n, 0.5n, 0.63n and 0.9n) for Models 1-6. For every model, we can notice that subsampled forests
performance is comparable with that of standard Breiman’s forest (Figure 3), as long as the subsampling
parameter is well chosen. The large subsample sizes, around 0.9n, lead to small risk: this may arise from the
probably high signal/noise ratio. In each model, when the noise is multiplied by two, the results, exemplified
in Figure 4, are less obvious.
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According to the theoretical analysis of median forests, we know that there is no need to optimize
both the subsample size and the tree depth: optimizing only one of these two parameters leads to the
same performance as optimizing both of them. Regarding Breiman’s forests, theoretical results are
much more difficult to obtain and so far, there is no equivalent upper bound on the risk, which would
allow us to determine the joint influence of parameters on forest performance. However, according
to empirical results, there is no justification for default values in random forests for subsampling or
tree depth, since optimizing either leads to better performance.

5. Conclusion and perspective
Random forests depend on four parameters: the number of trees, the subsample size common to each tree,

the tree depth and the number of preselected features for splitting in each cell.

5.1. Number of eligible features for splitting
There is no theory to guide the choice of the number mtry of preselected features in each cell. If mtry is

small, the computational cost of the procedure is small compared to original trees (CART, mtry = d) and the
selection of the splitting direction is almost done uniformly at random over all directions. If mtry is too large,
the splitting direction is close to the best splitting direction and the calculation time is comparable to original
trees (CART, mtry = d). But the good tradeoff between these two extreme cases is unclear. Empirically, it
seems that the default value is too small [see, 13, 16]

5.2. Number of trees
The impact of the number of trees on forest performance is well understood since it corresponds to the

number of replicates in a Monte Carlo simulation. To obtain the best performance, we need to add a large
number of trees in the forest, knowing that it increases linearly the computational time of the procedure. To do
so, Theorem 3.1 provides a lower bound on the number of trees (depending on the regression model) to reach a
given accuracy. Empirically, the optimal number of trees is obtained when the forest error reaches its limit as
the number of trees grows to infinity. Once the other parameters of the forest have been properly tuned, one
can just plot the forest error as a function of M and choose M such that the error roughly reaches its limit.

5.3. Subsample size and tree depth
Tree depth can be controlled via different parameters: nodesize which controls the maximal number of

observations in each cell, maxnodes which limits the number of terminal nodes and the tree level kn which
ensures that each cell has been split at most kn times.

The subsample size and the tree depth play similar roles in random forest performance. As shown by
simulations and the theoretical analysis of median forest, it is sufficient to tune either the subsample size (and
consider fully grown trees) or the tree depth (and use the full data set for each tree) to obtain similar or better
performance compared to Breiman’s forests. Besides, there is no empirical justification for bootstrap compared
to a proper tuning of the subsample size.

5.4. Perspective
One promising line of research is to investigate the role of the parameter mtry on random forests performance.

Indeed, existing results do not take advantage of the extra randomization induced by preselecting mtry variables
at each cell. For instance, Theorems 4.3 and 4.4 stating the consistency of random forests are valid for any
value of mtry: in theory, all values of mtry are equivalent whereas in practice mtry needs to be properly tuned.

Another natural question regarding the results presented in this paper would be whether they can be ex-
tended to classification framework. In the context of binary classification, where Y ∈ {0, 1}, the extension is
straightforward for most of these results since binary classification is related to the problem of estimating the
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probability P[Y = 1|X = x], which is a regression task. However, for problems involving more than two classes,
the analysis is less obvious and probably require a non-negligible amount of work. For instance, the CART-split
criterion used for regression and the one used for two class classification leads to the same splits, and thus theory
on CART regression trees shares some similarities with that on CART classification trees (when Y is binary).
However these splitting criteria differ when considering multiclass classification problems, which broaden the
gap between the theoretical analysis of CART regression trees and CART multiclass classification trees.
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Figure 2. Comparison of standard Breiman’s forests against several small-tree Breiman’s
forests in terms of L2 error.
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Figure 3. Standard Breiman forests versus several subsampled Breiman forests.



ESAIM: PROCEEDINGS AND SURVEYS 19

●

●

40% 50% B. RF 63% 90% 100%

0.
10

0.
15

0.
20

Model 1

Subsample size

L2
 e

rr
or

●

●

● ●

40% 50% B. RF 63% 90% 100%

0.
35

0.
45

0.
55

0.
65

Model 2

Subsample size
L2

 e
rr

or

40% 50% B. RF 63% 90% 100%

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

Model 3

Subsample size

L2
 e

rr
or

●

●

●
●

●

40% 50% B. RF 63% 90% 100%

2.
0

2.
5

3.
0

3.
5

Model 4

Subsample size

L2
 e

rr
or

●

●

●

●

●
●

●

40% 50% B. RF 63% 90% 100%

0.
15

0.
20

0.
25

0.
30

0.
35

Model 5

Subsample size

L2
 e

rr
or

40% 50% B. RF 63% 90% 100%

0.
3

0.
4

0.
5

0.
6

Model 6

Subsample size

L2
 e

rr
or

Figure 4. Standard Breiman forests versus several subsampled Breiman forests (noisy models).
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